Integrin activation and internalization on soft ECM as a cell differentiation by ECM elasticity

Proceedings of the National Academy of Sciences of the Unite 108, 9466-9471

DOI: 10.1073/pnas.1106467108

Citation Report

#	Article	IF	CITATIONS
1	Functional biomaterials for cartilage regeneration. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2526-2536.	2.1	79
2	Î ² 1 integrin. Cell Adhesion and Migration, 2012, 6, 71-77.	1.1	53
3	Caveolinâ \in 1 regulates proliferation and osteogenic differentiation of human mesenchymal stem cells. Journal of Cellular Biochemistry, 2012, 113, 3773-3787.	1.2	42
4	Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Current Opinion in Cell Biology, 2012, 24, 645-651.	2.6	363
5	Soft microenvironments promote the early neurogenic differentiation but not self-renewal of human pluripotent stem cells. Integrative Biology (United Kingdom), 2012, 4, 1049-1058.	0.6	132
6	Schwann Cell Myelination Requires Integration of Laminin Activities. Journal of Cell Science, 2012, 125, 4609-19.	1.2	49
7	Combining Topographical and Genetic Cues to Promote Neuronal Fate Specification in Stem Cells. Biomacromolecules, 2012, 13, 3427-3438.	2.6	23
8	Integrin trafficking at a glance. Journal of Cell Science, 2012, 125, 3695-3701.	1.2	164
9	BMP2 and mechanical loading cooperatively regulate immediate early signalling events in the BMP pathway. BMC Biology, 2012, 10, 37.	1.7	91
10	In-depth study on aminolysis of poly(É)-caprolactone): Back to the fundamentals. Science China Chemistry, 2012, 55, 2419-2427.	4.2	40
12	Calpain-dependent cytoskeletal rearrangement exploited for anthrax toxin endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4007-15.	3.3	27
13	Probing the mechanosensitivity in cell adhesion and migration: Experiments and modeling. Acta Mechanica Sinica/Lixue Xuebao, 2013, 29, 469-484.	1.5	5
14	Caveolae as plasma membrane sensors, protectors and organizers. Nature Reviews Molecular Cell Biology, 2013, 14, 98-112.	16.1	740
15	MiR-134-mediated \hat{l}^21 integrin expression and function in mesenchymal stem cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 3396-3404.	1.9	14
16	Artificial niche substrates for embryonic and induced pluripotent stem cell cultures. Journal of Biotechnology, 2013, 168, 218-228.	1.9	34
17	Matrix-specified differentiation of human decidua parietalis placental stem cells. Biochemical and Biophysical Research Communications, 2013, 437, 489-495.	1.0	13
18	Internalisation, Endosomal Trafficking and Recycling of Integrins During Cell Migration and Cancer Invasion., 2013,, 327-359.		2
19	Mechanoregulation of stem cell fate via micro-/nano-scale manipulation for regenerative medicine. Nanomedicine, 2013, 8, 623-638.	1.7	44

#	ARTICLE	IF	CITATIONS
20	The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs. Biomaterials, 2013, 34, 4404-4417.	5.7	290
21	Physical Cues of Biomaterials Guide Stem Cell Differentiation Fate. Chemical Reviews, 2013, 113, 3297-3328.	23.0	387
22	Tissue induction, the relationship between biomaterial's microenvironment and mesenchymal stem cell differentiation. Journal of Biomedical Science and Engineering, 2013, 06, 85-91.	0.2	3
23	Intracellular trafficking of integrins in cancer cells. , 2013, 140, 1-9.		34
24	Caveolinâ€1 regulates neural differentiation of rat bone mesenchymal stem cells into neurons by modulating Notch signaling. International Journal of Developmental Neuroscience, 2013, 31, 30-35.	0.7	40
25	PEG-Phosphorylcholine Hydrogels As Tunable and Versatile Platforms for Mechanobiology. Biomacromolecules, 2013, 14, 2294-2304.	2.6	54
26	Reduced expression of bone morphogenetic protein receptor IA in pancreatic cancer is associated with a poor prognosis. British Journal of Cancer, 2013, 109, 1805-1812.	2.9	24
27	Mesenchymal stem cell mechanobiology and emerging experimental platforms. Journal of the Royal Society Interface, 2013, 10, 20130179.	1.5	120
28	Mechanotransduction in cancer stem cells. Cell Biology International, 2013, 37, 888-891.	1.4	15
29	Discoidin Domain Receptor 1 Protein Is a Novel Modulator of Megakaryocyte-Collagen Interactions. Journal of Biological Chemistry, 2013, 288, 16738-16746.	1.6	42
30	Human mesenchymal stem cells differentiate to epithelial cells when cultured on thick collagen gel. Bio-Medical Materials and Engineering, 2013, 23, 143-153.	0.4	5
31	The less-often-traveled surface of stem cells: caveolin-1 and caveolae in stem cells, tissue repair and regeneration. Stem Cell Research and Therapy, 2013, 4, 90.	2.4	48
32	Nanotopographical surfaces for stem cell fate control: Engineering mechanobiology from the bottom. Nano Today, 2014, 9, 759-784.	6.2	220
33	Extracellular matrix considerations for scar-free repair and regeneration: Insights from regenerative diversity among vertebrates. International Journal of Biochemistry and Cell Biology, 2014, 56, 47-55.	1.2	59
34	Wavelet method applied to specific adhesion of elastic solids via molecular bonds. Theoretical and Applied Mechanics Letters, 2014, 4, 041009.	1.3	3
35	Secreted protein acidic and rich in cysteine internalization and its ageâ€related alterations in skeletal muscle progenitor cells. Aging Cell, 2014, 13, 175-184.	3.0	22
36	Integrin activation and internalization mediated by extracellular matrix elasticity: A biomechanical model. Journal of Biomechanics, 2014, 47, 1479-1484.	0.9	31
37	Rejuvenation of chondrogenic potential in a young stem cell microenvironment. Biomaterials, 2014, 35, 642-653.	5.7	90

3

#	Article	IF	Citations
38	Spatial control of adult stem cell fate using nanotopographic cues. Biomaterials, 2014, 35, 2401-2410.	5.7	120
39	BMP growth factor signaling in a biomechanical context. BioFactors, 2014, 40, 171-187.	2.6	43
40	Sensing rigidity. Nature Materials, 2014, 13, 539-540.	13.3	28
41	Controlling stem cell-mediated bone regeneration through tailored mechanical properties of collagen scaffolds. Biomaterials, 2014, 35, 1176-1184.	5.7	83
42	Combined Effects of PEG Hydrogel Elasticity and Cell-Adhesive Coating on Fibroblast Adhesion and Persistent Migration. Biomacromolecules, 2014, 15, 195-205.	2.6	74
43	Influence of the pattern size of micropatterned scaffolds on cell morphology, proliferation, migration and F-actin expression. Biomaterials Science, 2014, 2, 399-409.	2.6	35
44	Stress fiber response to mechanics: a free energy dependent statistical model. Soft Matter, 2014, 10, 4603.	1.2	4
45	A review of the effects of the cell environment physicochemical nanoarchitecture on stem cell commitment. Biomaterials, 2014, 35, 5278-5293.	5.7	114
46	Auxetic nuclei. Nature Materials, 2014, 13, 540-542.	13.3	15
47	Hippo/YAP-mediated rigidity-dependent motor neuron differentiation of human pluripotent stemÂcells. Nature Materials, 2014, 13, 599-604.	13.3	238
48	Integrins and epithelial cell polarity. Journal of Cell Science, 2014, 127, 3217-25.	1.2	105
49	Real-time quantitative polymerase chain reaction and flow cytometric analyses of cell adhesion molecules expressed in human cell–multilayered periosteal sheets in vitro. Cytotherapy, 2014, 16, 653-661.	0.3	7
50	Role of extracellular matrix and YAP/TAZ in cell fate determination. Cellular Signalling, 2014, 26, 186-191.	1.7	72
51	Effects of fabrication on the mechanics, microstructure and micromechanical environment of small intestinal submucosa scaffolds for vascular tissue engineering. Journal of Biomechanics, 2014, 47, 2766-2773.	0.9	30
52	Functional Role of Membrane Lipids in EGF Receptor Dynamics and Regulation. , 2014, , 62-79.		1
53	In Search of the Pivot Point of Mechanotransduction: Mechanosensing of Stem Cells. Cell Transplantation, 2014, 23, 1-11.	1.2	48
54	The interaction of adipose-derived human mesenchymal stem cells and polyether ether ketone. Clinical Hemorheology and Microcirculation, 2015, 61, 301-321.	0.9	11
55	Promotion of human mesenchymal stem cell osteogenesis by PI3-kinase/Akt signaling, and the influence of caveolin-1/cholesterol homeostasis. Stem Cell Research and Therapy, 2015, 6, 238.	2.4	90

#	Article	IF	CITATIONS
56	Engineering Nanoscale Stem Cell Niche: Direct Stem Cell Behavior at Cell–Matrix Interface. Advanced Healthcare Materials, 2015, 4, 1900-1914.	3.9	37
57	Physical, Spatial, and Molecular Aspects of Extracellular Matrix of <i>In Vivo </i> Niches and Artificial Scaffolds Relevant to Stem Cells Research. Stem Cells International, 2015, 2015, 1-35.	1.2	135
58	Matrix Elasticity Affects Integrin Expression in Human Umbilical Cord-Derived Mesenchymal Stem Cells. Materials Science Forum, 0, 815, 412-423.	0.3	0
59	Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos. Tissue Barriers, 2015, 3, e1059004.	1.6	12
60	Control of hair cell development by molecular pathways involving Atoh1, Hes1 and Hes5. Gene, 2015, 558, 6-24.	1.0	24
61	Hypoxia increases extracellular fibronectin abundance but not assembly during epithelial cell transdifferentiation. Journal of Cell Science, 2015, 128, 1083-9.	1.2	16
62	Collagen Scaffolds Incorporating Coincident Gradations of Instructive Structural and Biochemical Cues for Osteotendinous Junction Engineering. Advanced Healthcare Materials, 2015, 4, 831-837.	3.9	54
63	Environmental physical cues determine the lineage specification of mesenchymal stem cells. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 1261-1266.	1.1	70
64	Evolving Strategies for Target Selection for Antibody-Drug Conjugates. Pharmaceutical Research, 2015, 32, 3494-3507.	1.7	108
65	On human pluripotent stem cell control: The rise of 3D bioengineering and mechanobiology. Biomaterials, 2015, 52, 26-43.	5.7	105
66	Mechanism of regulation of stem cell differentiation by matrix stiffness. Stem Cell Research and Therapy, 2015, 6, 103.	2.4	287
67	Pluripotency maintenance of amniotic fluid-derived stem cells cultured on biomaterials. Journal of Materials Chemistry B, 2015, 3, 3858-3869.	2.9	11
68	Single molecular force across single integrins dictates cell spreading. Integrative Biology (United) Tj ETQq0 0 0 rg	gBT/Overl	ock 10 Tf 50 2
69	Matrix stiffness-modulated proliferation and secretory function of the airway smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L1125-L1135.	1.3	60
70	Hypergravity-induced enrichment of $\hat{1}^2$ 1 integrin on the cell membranes of osteoblast-like cells via caveolae-dependent endocytosis. Biochemical and Biophysical Research Communications, 2015, 463, 928-933.	1.0	13
71	Tunable, Photoreactive Hydrogel System To Probe Synergies between Mechanical and Biomolecular Cues on Adipose-Derived Mesenchymal Stem Cell Differentiation. ACS Biomaterials Science and Engineering, 2015, 1, 718-725.	2.6	18
72	Heterotypic control of basement membrane dynamics during branching morphogenesis. Developmental Biology, 2015, 401, 103-109.	0.9	19
73	Union is strength: matrix elasticity and microenvironmental factors codetermine stem cell differentiation fate. Cell and Tissue Research, 2015, 361, 657-668.	1.5	17

#	ARTICLE	IF	CITATIONS
74	Emerging properties of adhesion complexes: what are they and what do they do?. Trends in Cell Biology, 2015, 25, 388-397.	3.6	101
75	Controlling Differentiation of Adipose-Derived Stem Cells Using Combinatorial Graphene Hybrid-Pattern Arrays. ACS Nano, 2015, 9, 3780-3790.	7.3	139
76	Aggregation dynamics of molecular bonds between compliant materials. Soft Matter, 2015, 11, 2812-2820.	1.2	22
77	Integrin-beta3 clusters recruit clathrin-mediated endocytic machinery in the absence of traction force. Nature Communications, 2015, 6, 8672.	5.8	75
78	Gravity induced crease-to-wrinkle transition in soft materials. Applied Physics Letters, 2015, 106, .	1.5	14
79	Binding of integrin $\hat{l}\pm 1$ to bone morphogenetic protein receptor IA suggests a novel role of integrin $\hat{l}\pm 1\hat{l}^21$ in bone morphogenetic protein 2 signalling. Journal of Biomechanics, 2015, 48, 3950-3954.	0.9	9
80	Mitotic Membrane Turnover Coordinates Differential Induction of the Heart Progenitor Lineage. Developmental Cell, 2015, 34, 505-519.	3.1	42
81	Endocytic Trafficking of Integrins in Cell Migration. Current Biology, 2015, 25, R1092-R1105.	1.8	224
82	Delivery of dexamethasone from bioactive nanofiber matrices stimulates odontogenesis of human dental pulp cells through integrin/BMP/mTOR signaling pathways. International Journal of Nanomedicine, 2016, 11, 2557.	3.3	25
83	Extracellular Matrix Enhances Therapeutic Effects of Stem Cells in Regenerative Medicine. , 0, , .		3
84	The Regulation of Cellular Responses to Mechanical Cues by Rho GTPases. Cells, 2016, 5, 17.	1.8	85
86	Extracellular matrix stiffness dictates Wnt expression through integrin pathway. Scientific Reports, 2016, 6, 20395.	1.6	155
87	Substrate stiffness of endothelial cells directs LFA-1/ICAM-1 interaction: A physical trigger of immune-related diseases?. Clinical Hemorheology and Microcirculation, 2016, 61, 633-643.	0.9	6
89	Signal transduction of the physical environment in the neural differentiation of stem cells. Technology, 2016, 04, 1-8.	1.4	13
90	Mechanics of Microenvironment as Instructive Cues Guiding Stem Cell Behavior. Current Stem Cell Reports, 2016, 2, 62-72.	0.7	10
91	Stem Cell Differentiation Mediated by Biomaterials/Surfaces. , 2016, , 187-251.		O
92	Polymeric Biomaterials for Tissue Regeneration. , 2016, , .		4
93	Molecular mechanisms of the angiogenic effects of low-energy shock wave therapy: roles of mechanotransduction. American Journal of Physiology - Cell Physiology, 2016, 311, C378-C385.	2.1	67

#	ARTICLE	IF	CITATIONS
94	Substrate effect modulates adhesion and proliferation of fibroblast on graphene layer. Colloids and Surfaces B: Biointerfaces, 2016, 146, 785-793.	2.5	20
95	Nanoscale mechanics guides cellular decision making. Integrative Biology (United Kingdom), 2016, 8, 929-935.	0.6	20
96	Tunable Crosslinked Cell-Derived Extracellular Matrix Guides Cell Fate. Macromolecular Bioscience, 2016, 16, 1723-1734.	2.1	32
97	Stiffness-dependent cellular internalization of matrix-bound BMP-2 and its relation to Smad and non-Smad signaling. Acta Biomaterialia, 2016, 46, 55-67.	4.1	29
98	Photoactivation of Noncovalently Assembled Peptide Ligands on Carbon Nanotubes Enables the Dynamic Regulation of Stem Cell Differentiation. ACS Applied Materials & Samp; Interfaces, 2016, 8, 26470-26481.	4.0	22
99	Ultrasensitivity of Cell Adhesion to the Presence of Mechanically Strong Ligands. Physical Review X, 2016, 6, .	2.8	7
100	Self-assembled Biodegradable Nanoparticles and Polysaccharides as Biomimetic ECM Nanostructures for the Synergistic effect of RGD and BMP-2 on Bone Formation. Scientific Reports, 2016, 6, 25090.	1.6	36
101	Modulation of BMP signalling by integrins. Biochemical Society Transactions, 2016, 44, 1465-1473.	1.6	19
102	Integrin endocytosis on elastic substrates mediates mechanosensing. Journal of Biomechanics, 2016, 49, 2644-2654.	0.9	10
103	Gelatin Directly Enhances Neurogenic Differentiation Potential in Bone Marrow-Derived Mesenchymal Stem Cells Without Stimulation of Neural Progenitor Cell Proliferation. DNA and Cell Biology, 2016, 35, 530-536.	0.9	5
104	Mechanical Forces Reshape Differentiation Cues That Guide Cardiomyogenesis. Circulation Research, 2016, 118, 296-310.	2.0	58
105	Soft Elasticity-Associated Signaling and Bone Morphogenic Protein 2 Are Key Regulators of Mesenchymal Stem Cell Spheroidal Aggregates. Stem Cells and Development, 2016, 25, 622-635.	1.1	20
106	Integrated Circuit-Based Biofabrication with Common Biomaterials for Probing Cellular Biomechanics. Trends in Biotechnology, 2016, 34, 171-186.	4.9	4
107	Cells Sensing Mechanical Cues: Stiffness Influences the Lifetime of Cell–Extracellular Matrix Interactions by Affecting the Loading Rate. ACS Nano, 2016, 10, 207-217.	7.3	54
108	Cell sensing of physical properties at the nanoscale: Mechanisms and control of cell adhesion and phenotype. Acta Biomaterialia, 2016, 30, 26-48.	4.1	152
109	Cellular modulation by the elasticity of biomaterials. Journal of Materials Chemistry B, 2016, 4, 9-26.	2.9	72
110	Mechanotransduction in small intestinal submucosa scaffolds: fabrication parameters potentially modulate the shear-induced expression of PECAM-1 and eNOS. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1427-1434.	1.3	3
111	Isolating subpopulations of human epidermal basal cells based on polyclonal serum against trypsin-resistant CSPG4 epitopes. Experimental Cell Research, 2017, 350, 368-379.	1.2	2

#	ARTICLE	IF	CITATIONS
112	Competent processing techniques for scaffolds in tissue engineering. Biotechnology Advances, 2017, 35, 240-250.	6.0	89
113	The Horizon of Materiobiology: A Perspective on Material-Guided Cell Behaviors and Tissue Engineering. Chemical Reviews, 2017, 117, 4376-4421.	23.0	424
114	Gelatin-based 3D conduits for transdifferentiation of mesenchymal stem cells into Schwann cell-like phenotypes. Acta Biomaterialia, 2017, 53, 293-306.	4.1	38
115	Extracellular regulation of BMP signaling: welcome to the matrix. Biochemical Society Transactions, 2017, 45, 173-181.	1.6	40
116	Inductive biomaterials for bone regeneration. Journal of Materials Research, 2017, 32, 1047-1060.	1.2	16
117	Quantitative Analyses of Dynamic Features of Fibroblasts on Different Protein-Coated Compliant Substrates. ACS Biomaterials Science and Engineering, 2017, 3, 2987-2998.	2.6	5
118	A new path to platelet production through matrix sensing. Haematologica, 2017, 102, 1150-1160.	1.7	51
119	Actin cytoskeleton mediates BMP2-Smad signaling via calponin 1 in preosteoblast under simulated microgravity. Biochimie, 2017, 138, 184-193.	1.3	30
120	Single Plasmonic Nanosprings for Visualizing Reactive-Oxygen-Species-Activated Localized Mechanical Force Transduction in Live Cells. ACS Nano, 2017, 11, 541-548.	7.3	39
121	Extracellular matrix promotes clathrin-dependent endocytosis of prolactin and STAT5 activation in differentiating mammary epithelial cells. Scientific Reports, 2017, 7, 4572.	1.6	14
122	Substrate stiffness regulates arterial-venous differentiation of endothelial progenitor cells via the Ras/Mek pathway. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1799-1808.	1.9	29
123	Matrix Stiffness Differentially Regulates Cellular Uptake Behavior of Nanoparticles in Two Breast Cancer Cell Lines. ACS Applied Materials & Samp; Interfaces, 2017, 9, 25915-25928.	4.0	26
124	Evaluation of YAP signaling in a rat tympanic membrane under a continuous negative pressure load and in human middle ear cholesteatoma. Acta Oto-Laryngologica, 2017, 137, 1158-1165.	0.3	6
125	Integrin \hat{I}^21 activation by micro-scale curvature promotes pro-angiogenic secretion of human mesenchymal stem cells. Journal of Materials Chemistry B, 2017, 5, 7415-7425.	2.9	13
126	Nanotopographic Regulation of Human Mesenchymal Stem Cell Osteogenesis. ACS Applied Materials & Samp; Interfaces, 2017, 9, 41794-41806.	4.0	52
127	Treadmill Exercise Promotes Neurogenesis in Ischemic Rat Brains via Caveolin-1/VEGF Signaling Pathways. Neurochemical Research, 2017, 42, 389-397.	1.6	38
128	Matrix stiffness enhances VEGFR-2 internalization, signaling, and proliferation in endothelial cells. Convergent Science Physical Oncology, 2017, 3, 044001.	2.6	55
129	Zero-order controlled release of BMP2-derived peptide P24 from the chitosan scaffold by chemical grafting modification technique for promotion of osteogenesis <i>in </i> vitro and enhancement of bone repair <i>in vivo</i> . Theranostics, 2017, 7, 1072-1087.	4.6	57

#	Article	IF	CITATIONS
130	Paxillin facilitates timely neurite initiation on soft-substrate environments by interacting with the endocytic machinery. ELife, 2017 , 6 , $.$	2.8	27
131	Substrate Stiffness Controls Osteoblastic and Chondrocytic Differentiation of Mesenchymal Stem Cells without Exogenous Stimuli. PLoS ONE, 2017, 12, e0170312.	1.1	157
132	Cells may feel a hard substrate even on a grafted layer of soft hydrogel. Journal of Materials Chemistry B, 2018, 6, 1734-1743.	2.9	9
133	Materials for Neural Differentiation, Transâ€Differentiation, and Modeling of Neurological Disease. Advanced Materials, 2018, 30, e1705684.	11.1	30
134	Advances in Controlling Differentiation of Adult Stem Cells for Peripheral Nerve Regeneration. Advanced Healthcare Materials, 2018, 7, e1701046.	3.9	30
135	Nanotopography regulates motor neuron differentiation of human pluripotent stem cells. Nanoscale, 2018, 10, 3556-3565.	2.8	38
136	Human Pluripotent Stem Cell Culture on Polyvinyl Alcohol-Co-Itaconic Acid Hydrogels with Varying Stiffness Under Xeno-Free Conditions. Journal of Visualized Experiments, 2018, , .	0.2	6
137	Acidic pHe regulates cytoskeletal dynamics through conformational integrin \hat{l}^21 activation and promotes membrane protrusion. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2395-2408.	1.8	30
138	Extracellular matrix stiffness controls osteogenic differentiation of mesenchymal stem cells mediated by integrin $\hat{1}\pm5$. Stem Cell Research and Therapy, 2018, 9, 52.	2.4	132
139	Two-dimensional material-based bionano platforms to control mesenchymal stem cell differentiation. Biomaterials Research, 2018, 22, 10.	3.2	25
140	Why the impact of mechanical stimuli on stem cells remains a challenge. Cellular and Molecular Life Sciences, 2018, 75, 3297-3312.	2.4	35
141	Modulation of surface stiffness and cell patterning on polymer films using micropatterns. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 976-985.	1.6	5
142	Contact stiffness of regularly patterned multi-asperity interfaces. Journal of the Mechanics and Physics of Solids, 2018, 111, 277-289.	2.3	30
143	Effect of stem cell niche elasticity/ECM protein on the self-beating cardiomyocyte differentiation of induced pluripotent stem (iPS) cells at different stages. Acta Biomaterialia, 2018, 65, 44-52.	4.1	29
144	Extracellular Matrix Elasticity Regulates Osteocyte Gap Junction Elongation: Involvement of Paxillin in Intracellular Signal Transduction. Cellular Physiology and Biochemistry, 2018, 51, 1013-1026.	1.1	18
145	Photoresponsive Hydrogels with Photoswitchable Stiffness: Emerging Platforms to Study Temporal Aspects of Mesenchymal Stem Cell Responses to Extracellular Stiffness Regulation. Advances in Experimental Medicine and Biology, 2018, 1144, 53-69.	0.8	6
146	Caveolin-1 Modulates Mechanotransduction Responses to Substrate Stiffness through Actin-Dependent Control of YAP. Cell Reports, 2018, 25, 1622-1635.e6.	2.9	91
147	The Effect of Scaffold Modulus on the Morphology and Remodeling of Fetal Mesenchymal Stem Cells. Frontiers in Physiology, 2018, 9, 1555.	1.3	13

#	Article	IF	CITATIONS
148	Frustrated endocytosis controls contractility-independent mechanotransduction at clathrin-coated structures. Nature Communications, 2018, 9, 3825.	5.8	88
149	Membrane associated collagen XIII promotes cancer metastasis and enhances anoikis resistance. Breast Cancer Research, 2018, 20, 116.	2.2	50
150	MARVELD1 depletion leads to dysfunction of motor and cognition via regulating glia-dependent neuronal migration during brain development. Cell Death and Disease, 2018, 9, 999.	2.7	11
151	Three-Dimensional Nanostructured Architectures Enable Efficient Neural Differentiation of Mesenchymal Stem Cells via Mechanotransduction. Nano Letters, 2018, 18, 7188-7193.	4.5	60
152	The role of integrin \hat{l}^21 in the heterogeneity of human embryonic stem cells culture. Biology Open, 2018, 7, .	0.6	7
153	Electrospun three-dimensional aligned nanofibrous scaffolds for tissue engineering. Materials Science and Engineering C, 2018, 92, 995-1005.	3.8	91
154	Influence of cholesterol/caveolin-1/caveolae homeostasis on membrane properties and substrate adhesion characteristics of adult human mesenchymal stem cells. Stem Cell Research and Therapy, 2018, 9, 86.	2.4	40
155	Engineering mesenchymal stem cell spheroids by incorporation of mechanoregulator microparticles. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 84, 74-87.	1.5	21
156	Size-dependent effects of graphene oxide on the osteogenesis of human adipose-derived mesenchymal stem cells. Colloids and Surfaces B: Biointerfaces, 2018, 169, 20-29.	2.5	33
157	Substrate elasticity regulates adipose-derived stromal cell differentiation towards osteogenesis and adipogenesis through l^2 -catenin transduction. Acta Biomaterialia, 2018, 79, 83-95.	4.1	86
158	An Injectable Decellularized Matrix That Improves Mesenchymal Stem Cell Engraftment for Therapeutic Angiogenesis. ACS Biomaterials Science and Engineering, 2018, 4, 2571-2581.	2.6	10
159	Xeno-free and feeder-free culture and differentiation of human embryonic stem cells on recombinant vitronectin-grafted hydrogels. Biomaterials Science, 2019, 7, 4345-4362.	2.6	14
160	Migration of endothelial cells and mesenchymal stem cells into hyaluronic acid hydrogels with different moduli under induction of pro-inflammatory macrophages. Journal of Materials Chemistry B, 2019, 7, 5478-5489.	2.9	31
161	Heparan sulfate proteoglycan, integrin, and syndecanâ€4 are mechanosensors mediating cyclic strainâ€modulated endothelial gene expression in mouse embryonic stem cellâ€derived endothelial cells. Biotechnology and Bioengineering, 2019, 116, 2730-2741.	1.7	13
162	Mechanical characterization of single cells based on microfluidic techniques. TrAC - Trends in Analytical Chemistry, 2019, 117, 47-57.	5.8	17
163	Tissue mechanics, an important regulator of development and disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180215.	1.8	61
164	Caveolin-1 and MLRs: A potential target for neuronal growth and neuroplasticity after ischemic stroke. International Journal of Medical Sciences, 2019, 16, 1492-1503.	1.1	16
165	Bone marrow niche crosses paths with BMPs: a road to protection and persistence in CML. Biochemical Society Transactions, 2019, 47, 1307-1325.	1.6	7

#	ARTICLE	IF	CITATIONS
166	A PINCH-1â€"Smurf1 signaling axis mediates mechano-regulation of BMPR2 and stem cell differentiation. Journal of Cell Biology, 2019, 218, 3773-3794.	2.3	11
167	Integrins as biomechanical sensors ofÂthe microenvironment. Nature Reviews Molecular Cell Biology, 2019, 20, 457-473.	16.1	768
168	Interplay Between LOX Enzymes and Integrins in the Tumor Microenvironment. Cancers, 2019, 11, 729.	1.7	50
169	Elevated BMP and Mechanical Signaling Through YAP1/RhoA Poises FOP Mesenchymal Progenitors for Osteogenesis. Journal of Bone and Mineral Research, 2019, 34, 1894-1909.	3.1	29
170	Substrate stiffness- and topography-dependent differentiation of annulus fibrosus-derived stem cells is regulated by Yes-associated protein. Acta Biomaterialia, 2019, 92, 254-264.	4.1	67
171	Silk fibroin induces chondrogenic differentiation of canine adipose–derived multipotent mesenchymal stromal cells/mesenchymal stem cells. Journal of Tissue Engineering, 2019, 10, 204173141983505.	2.3	16
172	Unchain My Heart: Integrins at the Basis of iPSC Cardiomyocyte Differentiation. Stem Cells International, 2019, 2019, 1-20.	1.2	20
173	Novel surface modification of three-dimensional bacterial nanocellulose with cell-derived adhesion proteins for soft tissue engineering. Materials Science and Engineering C, 2019, 100, 697-705.	3.8	41
174	Biomaterials used in stem cell therapy for spinal cord injury. Progress in Materials Science, 2019, 103, 374-424.	16.0	43
175	Kindlin-2 links mechano-environment to proline synthesis and tumor growth. Nature Communications, 2019, 10, 845.	5.8	85
176	Systems-wide analysis unravels the new roles of CCM signal complex (CSC). Heliyon, 2019, 5, e02899.	1.4	25
177	Dynamic Assembly of Human Salivary Stem/Progenitor Microstructures Requires Coordinated $\hat{l}\pm 1\hat{l}^21$ Integrin-Mediated Motility. Frontiers in Cell and Developmental Biology, 2019, 7, 224.	1.8	14
178	Atomic force acoustic microscopy reveals the influence of substrate stiffness and topography on cell behavior. Beilstein Journal of Nanotechnology, 2019, 10, 2329-2337.	1.5	9
179	Substrate elasticity regulates vascular endothelial growth factor A (VEGFA) expression in adipose-derived stromal cells: Implications for potential angiogenesis. Colloids and Surfaces B: Biointerfaces, 2019, 175, 576-585.	2.5	9
180	Integrin trafficking in cells and tissues. Nature Cell Biology, 2019, 21, 122-132.	4.6	269
181	O-GlcNAcylation regulates integrin-mediated cell adhesion and migration via formation of focal adhesion complexes. Journal of Biological Chemistry, 2019, 294, 3117-3124.	1.6	18
182	Curcumin promotes burn wound healing in mice by upregulating caveolinâ€1 in epidermal stem cells. Phytotherapy Research, 2019, 33, 422-430.	2.8	22
183	Biophysical phenotypes and determinants of anterior vs. posterior primitive streak cells derived from human pluripotent stem cells. Acta Biomaterialia, 2019, 86, 125-134.	4.1	8

#	Article	IF	CITATIONS
184	ACVR1 ^{R206H} FOP mutation alters mechanosensing and tissue stiffness during heterotopic ossification. Molecular Biology of the Cell, 2019, 30, 17-29.	0.9	30
185	Modulating human mesenchymal stem cells using poly(n-butyl acrylate) networks in vitro with elasticity matching human arteries. Clinical Hemorheology and Microcirculation, 2019, 71, 277-289.	0.9	4
186	Building an Artificial Stem Cell Niche: Prerequisites for Future 3Dâ€Formation of Inner Ear Structures—Toward 3D Inner Ear Biotechnology. Anatomical Record, 2020, 303, 408-426.	0.8	9
187	Hydrogel screening approaches for bone and cartilage tissue regeneration. Annals of the New York Academy of Sciences, 2020, 1460, 25-42.	1.8	19
188	Substrate stiffness affects the morphology and gene expression of epidermal neural crest stem cells in a short term culture. Biotechnology and Bioengineering, 2020, 117, 305-317.	1.7	24
189	ECM in Differentiation: A Review of Matrix Structure, Composition and Mechanical Properties. Annals of Biomedical Engineering, 2020, 48, 1071-1089.	1.3	104
190	Small Diameter Xenogeneic Extracellular Matrix Scaffolds for Vascular Applications. Tissue Engineering - Part B: Reviews, 2020, 26, 26-45.	2.5	22
191	Wetting of soap bubbles on soft elastomers with surface stress and gravity. Mathematics and Mechanics of Solids, 2020, 25, 791-803.	1.5	2
192	Caveolin1 Tyrosine-14 Phosphorylation: Role in Cellular Responsiveness to Mechanical Cues. Journal of Membrane Biology, 2020, 253, 509-534.	1.0	15
193	Soft Matrix Combined With BMPR Inhibition Regulates Neurogenic Differentiation of Human Umbilical Cord Mesenchymal Stem Cells. Frontiers in Bioengineering and Biotechnology, 2020, 8, 791.	2.0	7
194	Adhesion of a cell on a prestretched elastomer incorporating gravity effect. European Journal of Mechanics, A/Solids, 2020, 84, 104077.	2.1	2
195	Mechanical Properties of Materials for Stem Cell Differentiation. Advanced Biology, 2020, 4, e2000247.	3.0	67
196	Mechanotransduction and Stiffness-Sensing: Mechanisms and Opportunities to Control Multiple Molecular Aspects of Cell Phenotype as a Design Cornerstone of Cell-Instructive Biomaterials for Articular Cartilage Repair. International Journal of Molecular Sciences, 2020, 21, 5399.	1.8	41
197	Learning from BMPs and their biophysical extracellular matrix microenvironment for biomaterial design. Bone, 2020, 141, 115540.	1.4	22
198	Review of Integrinâ€Targeting Biomaterials in Tissue Engineering. Advanced Healthcare Materials, 2020, 9, e2000795.	3.9	54
199	Forcing a growth factor response $\hat{a}\in$ " tissue-stiffness modulation of integrin signaling and crosstalk with growth factor receptors. Journal of Cell Science, 2020, 133, .	1.2	20
200	Highâ€Throughput Screening and Hierarchical Topographyâ€Mediated Neural Differentiation of Mesenchymal Stem Cells. Advanced Healthcare Materials, 2020, 9, e2000117.	3.9	36
201	Hepatic Differentiation of Stem Cells in 2D and 3D Biomaterial Systems. Bioengineering, 2020, 7, 47.	1.6	16

#	Article	IF	Citations
202	Tissue stiffness contributes to YAP activation in bladder cancer patients undergoing transurethral resection. Annals of the New York Academy of Sciences, 2020, 1473, 48-61.	1.8	31
203	Lignocellulosic Materials for Biomedical Applications. , 2020, , 209-248.		2
204	Computational analysis of amino acids $\hat{a} \in \mathbb{T}^M$ adhesion to the graphene surface. European Physical Journal D, 2020, 74, 1.	0.6	5
205	The bioenergetics of integrin-based adhesion, from single molecule dynamics to stability of macromolecular complexes. Computational and Structural Biotechnology Journal, 2020, 18, 393-416.	1.9	12
206	Substrate stiffness modulates bone marrow-derived macrophage polarization through NF-κB signaling pathway. Bioactive Materials, 2020, 5, 880-890.	8.6	97
207	Feeling Things Out: Bidirectional Signaling of the Cell–ECM Interface, Implications in the Mechanobiology of Cell Spreading, Migration, Proliferation, and Differentiation. Advanced Healthcare Materials, 2020, 9, e1901445.	3.9	70
208	Functional nanoarrays for investigating stem cell fate and function. Nanoscale, 2020, 12, 9306-9326.	2.8	15
209	Shear stress stimulates integrin \hat{l}^21 trafficking and increases directional migration of cancer cells via promoting deacetylation of microtubules. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118676.	1.9	16
210	Substrate mechanics dictate cell-cell communication by gap junctions in stem cells from human apical papilla. Acta Biomaterialia, 2020, 107, 178-193.	4.1	35
211	Sema3A and HIF1α coâ€overexpressed iPSCâ€MSCs/HA scaffold facilitates the repair of calvarial defect in a mouse model. Journal of Cellular Physiology, 2020, 235, 6754-6766.	2.0	11
212	Stiffness and topography of biomaterials dictate cellâ€matrix interaction in musculoskeletal cells at the bioâ€interface: A concise progress review. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2426-2440.	1.6	14
213	Soft extracellular matrix enhances inflammatory activation of mesenchymal stromal cells to induce monocyte production and trafficking. Science Advances, 2020, 6, eaaw0158.	4.7	73
214	Influences of Morphology Parameters on the Contact Behavior of a Steel Interface. International Journal of Applied Mechanics, 2020, 12, 2050009.	1.3	2
215	Effects of extracellular matrix rigidity on sonoporation facilitated by targeted microbubbles: Bubble attachment, bubble dynamics, and cell membrane permeabilization. Ultrasonics Sonochemistry, 2020, 67, 105125.	3.8	6
216	Substrate Topography Regulates Differentiation of Annulus Fibrosus-Derived Stem Cells via CAV1-YAP-Mediated Mechanotransduction. ACS Biomaterials Science and Engineering, 2021, 7, 862-871.	2.6	14
217	Differential glycosylation of collagen modulates lung cancer stem cell subsets through \hat{l}^21 integrinâ \in mediated interactions. Cancer Science, 2021, 112, 217-230.	1.7	23
218	Cardiac and lung endothelial cells in response to fluid shear stress on physiological matrix stiffness and composition. Microcirculation, 2021, 28, e12659.	1.0	8
220	Stem cells and growth factors-based delivery approaches for chronic wound repair and regeneration: A promise to heal from within. Life Sciences, 2021, 268, 118932.	2.0	34

#	Article	IF	CITATIONS
221	Biophysical and Biochemical Cues of Biomaterials Guide Mesenchymal Stem Cell Behaviors. Frontiers in Cell and Developmental Biology, 2021, 9, 640388.	1.8	56
222	Integrin-dependent microgliosis mediates ketamine-induced neuronal apoptosis during postnatal rat retinal development. Experimental Neurology, 2021, 340, 113659.	2.0	6
223	Defining optimal enzyme and matrix combination for replating of human induced pluripotent stem cell-derived cardiomyocytes at different levels of maturity. Experimental Cell Research, 2021, 403, 112599.	1.2	7
224	Inhibition of aberrant tissue remodelling by mesenchymal stromal cells singly coated with soft gels presenting defined chemomechanical cues. Nature Biomedical Engineering, 2022, 6, 54-66.	11.6	24
226	Tissue engineered bovine saphenous vein extracellular matrix scaffolds produced via antigen removal achieve high in vivo patency rates. Acta Biomaterialia, 2021, 134, 144-159.	4.1	10
227	How signaling pathways link extracellular mechanoâ€environment to proline biosynthesis: A hypothesis. BioEssays, 2021, 43, 2100116.	1.2	4
228	Effect of Polymeric Matrix Stiffness on Osteogenic Differentiation of Mesenchymal Stem/Progenitor Cells: Concise Review. Polymers, 2021, 13, 2950.	2.0	21
229	Matrix biophysical cues direct mesenchymal stromal cell functions in immunity. Acta Biomaterialia, 2021, 133, 126-138.	4.1	16
230	Soft substrate and decreased cytoskeleton contractility promote coupling and morphology maintenance of pluripotent stem cells. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 1520-1529.	1.5	1
231	Caveolin1: its roles in normal and cancer stem cells. Journal of Cancer Research and Clinical Oncology, 2021, 147, 3459-3475.	1.2	0
233	Engineering hiPSC-CM and hiPSC-EC laden 3D nanofibrous splenic hydrogel for improving cardiac function through revascularization and remuscularization in infarcted heart. Bioactive Materials, 2021, 6, 4415-4429.	8.6	20
234	\hat{l}^2 1-Integrin binding to collagen type 1 transmits breast cancer cells into chemoresistance by activating ABC efflux transporters. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118663.	1.9	45
235	Actin polymerization downstream of integrins: signaling pathways and mechanotransduction. Biochemical Journal, 2020, 477, 1-21.	1.7	73
236	A conserved C-terminal sequence of high-risk cutaneous beta-human papillomavirus E6 proteins alters localization and signalling of \hat{l}^21 -integrin to promote cell migration. Journal of General Virology, 2014, 95, 123-134.	1.3	10
238	Paracrine Interactions between Mesenchymal Stem Cells Affect Substrate Driven Differentiation toward Tendon and Bone Phenotypes. PLoS ONE, 2012, 7, e31504.	1.1	63
239	Evolving concepts of chondrogenic differentiation: history, state-of-the-art and future perspectives., 2015, 30, 12-27.		28
240	Cell Encapsulation. , 0, , 1348-1358.		0
241	Sacralizaciones artÃsticas en los autos sacramentales de Lope. El caso de La puente del mundo . Revista De Literatura, 2018, 80, 569.	0.0	0

#	ARTICLE	IF	CITATIONS
242	Differentiation Fates of Human ES and iPS Cells Guided by Physical Cues of Biomaterials. Biomaterials Science Series, 2019, , 141-251.	0.1	0
243	The cardiac stem cell niche during aging. Advances in Stem Cells and Their Niches, 2020, , 197-242.	0.1	0
244	The role of caveolae in endothelial dysfunction. Medical Review, 2021, .	0.3	1
245	Effects of Electrical Stimulation on Stem Cells. Current Stem Cell Research and Therapy, 2020, 15, 441-448.	0.6	6
246	Basement Membrane of Small Diameter Xenogeneic Extracellular Matrix Scaffolds Modulate Quiescent Human Endothelial Cell Monolayer Formation. SSRN Electronic Journal, 0, , .	0.4	0
247	Constructing a cell microenvironment with biomaterial scaffolds for stem cell therapy. Stem Cell Research and Therapy, 2021, 12, 583.	2.4	23
248	Heparin Immobilization of Tissue Engineered Xenogeneic Small Diameter Arterial Scaffold Improve Endothelialization. Tissue Engineering and Regenerative Medicine, 2022, 19, 505-523.	1.6	9
249	Extramedullary Osseointegration—A Novel Design of Percutaneous Osseointegration Prosthesis for Amputees. Frontiers in Bioengineering and Biotechnology, 2022, 10, 811128.	2.0	0
250	Ligand Mobility-Mediated Cell Adhesion and Spreading. ACS Applied Materials & Samp; Interfaces, 2022, 14, 12976-12983.	4.0	12
251	Substrate Stiffness-Driven Membrane Tension Modulates Vesicular Trafficking <i>via</i> Caveolin-1. ACS Nano, 2022, 16, 4322-4337.	7.3	22
252	Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduction and Targeted Therapy, 2021, 6, 426.	7.1	274
253	Diffusion Behaviors of Integrins in Single Cells Altered by Epithelial to Mesenchymal Transition. Small, 2022, 18, e2106498.	5.2	9
254	Extracellular matrix–dependent mechanosensing and mechanotransduction. , 2022, , 101-127.		4
271	Recombinant expression a novel fibronectinâ€"collage fusion peptide modulating stem cell stemness via integrin β3. Applied Microbiology and Biotechnology, 2022, 106, 3765-3776.	1.7	4
273	Adaptive liquid interfaces induce neuronal differentiation of mesenchymal stem cells through lipid raft assembly. Nature Communications, 2022, 13, .	5.8	24
275	Extracellular matrix regulates force transduction at VE-cadherin junctions. Molecular Biology of the Cell, 2022, 33, .	0.9	5
276	Optineurin links Hace1-dependent Rac ubiquitylation to integrin-mediated mechanotransduction to control bacterial invasion and cell division. Nature Communications, 2022, 13, .	5.8	7
277	Caveolae couple mechanical stress to integrin recycling and activation. ELife, $0,11,.$	2.8	5

#	Article	IF	CITATIONS
278	Effect of mechanical forces on cellular response to radiation. Radiotherapy and Oncology, 2022, 176, 187-198.	0.3	2
279	Heparin coated decellularized xenogeneic small diameter vascular conduit for vascular repair with early luminal reendothelialization. Cell and Tissue Banking, 0, , .	0.5	0
280	Soft surfaces induce neural differentiation via the neuron restrictive silencer factor. Biochemical Engineering Journal, 2022, 189, 108724.	1.8	0
281	Moving through a changing world: Single cell migration in 2D vs. 3D. Frontiers in Cell and Developmental Biology, 0, 10 , .	1.8	7
282	Engineered cell culture microenvironments for mechanobiology studies of brain neural cells. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	2.0	9
283	Matrix stiffness regulates Notch signaling activity in endothelial cells. Journal of Cell Science, 2023, 136, .	1.2	3
284	Microenvironmental Stiffness Directs Chondrogenic Lineages of Stem Cells from the Human Apical Papilla <i>via</i> Cooperation between ROCK and Smad3 Signaling. ACS Biomaterials Science and Engineering, 2023, 9, 4831-4845.	2.6	4
285	Cancer cellâ€derived <scp>CD69</scp> induced under lipid and oxygen starvation promotes ovarian cancer progression through fibronectin. Cancer Science, 2023, 114, 2485-2498.	1.7	1
286	Xeno-free culture and proliferation of hPSCs on 2D biomaterials. Progress in Molecular Biology and Translational Science, 2023, , 63-107.	0.9	0
299	Stem Cell Differentiation Mediated by Biomaterials/Surfaces. , 2023, , 307-375.		0