An Aerosol Chemical Speciation Monitor (ACSM) for Ro-Composition and Mass Concentrations of Ambient Aero

Aerosol Science and Technology 45, 780-794 DOI: 10.1080/02786826.2011.560211

Citation Report

#	Article	IF	CITATIONS
2	Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies. Atmospheric Chemistry and Physics, 2011, 11, 12049-12064.	1.9	520
3	Organic functional groups in aerosol particles from burning and non-burning forest emissions at a high-elevation mountain site. Atmospheric Chemistry and Physics, 2011, 11, 6367-6386.	1.9	84
4	Characterization of a volcanic ash episode in southern Finland caused by the Grimsvötn eruption in Iceland in May 2011. Atmospheric Chemistry and Physics, 2011, 11, 12227-12239.	1.9	39
5	Changes in organic aerosol composition with aging inferred from aerosol mass spectra. Atmospheric Chemistry and Physics, 2011, 11, 6465-6474.	1.9	493
6	Seasonal variation of fine particulate composition in the centre of a UK city. Atmospheric Environment, 2011, 45, 4379-4389.	1.9	20
7	Temperature response of the submicron organic aerosol from temperate forests. Atmospheric Environment, 2011, 45, 6696-6704.	1.9	62
8	Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review. Analytical and Bioanalytical Chemistry, 2011, 401, 3045-3067.	1.9	764
9	Pollution Gradients and Chemical Characterization ofÂParticulateÂMatter from Vehicular Traffic near Major Roadways: Results from the 2009 Queens College Air Quality Study in NYC. Aerosol Science and Technology, 2012, 46, 1201-1218.	1.5	102
10	Evaluation of Composition-Dependent Collection Efficiencies for the Aerodyne Aerosol Mass Spectrometer using Field Data. Aerosol Science and Technology, 2012, 46, 258-271.	1.5	699
11	Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data. Atmospheric Chemistry and Physics, 2012, 12, 1649-1665.	1.9	449
12	Characterization of near-highway submicron aerosols in New York City with a high-resolution aerosol mass spectrometer. Atmospheric Chemistry and Physics, 2012, 12, 2215-2227.	1.9	55
13	On the gasâ€particle partitioning of soluble organic aerosol in two urban atmospheres with contrasting emissions: 1. Bulk waterâ€soluble organic carbon. Journal of Geophysical Research, 2012, 117, .	3.3	53
14	A review of methods for long term in situ characterization of aerosol dust. Aeolian Research, 2012, 6, 55-74.	1.1	61
15	Mass spectrometric approaches for chemical characterisation of atmospheric aerosols: critical review of the most recent advances. Environmental Chemistry, 2012, 9, 163.	0.7	84
16	Atomic spectrometry update. Environmental analysis. Journal of Analytical Atomic Spectrometry, 2012, 27, 187-221.	1.6	37
17	Characterization of summer organic and inorganic aerosols in Beijing, China with an Aerosol Chemical Speciation Monitor. Atmospheric Environment, 2012, 51, 250-259.	1.9	296
18	The 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5830-5866.	1.2	199
19	Atmospheric aerosols in Amazonia and land use change: from natural biogenic to biomass burning conditions. Faraday Discussions, 2013, 165, 203.	1.6	207

#	Article	IF	CITATIONS
20	Real-Time Continuous Characterization of Secondary Organic Aerosol Derived from Isoprene Epoxydiols in Downtown Atlanta, Georgia, Using the Aerodyne Aerosol Chemical Speciation Monitor. Environmental Science & Technology, 2013, 47, 5686-5694.	4.6	186
21	Submicron organic aerosol in Tijuana, Mexico, from local and Southern California sources during the CalMex campaign. Atmospheric Environment, 2013, 70, 500-512.	1.9	35
22	New particle formation and growth associated with East-Asian long range transportation observed at Fukue Island, Japan in March 2012. Atmospheric Environment, 2013, 74, 29-36.	1.9	13
23	Pallas cloud experiment, PaCE 2012. , 2013, , .		3
25	Air Pollution Monitoring Strategies and Technologies for Urban Areas. Handbook of Environmental Chemistry, 2013, , 277-296.	0.2	3
27	The ToF-ACSM: a portable aerosol chemical speciation monitor with TOFMS detection. Atmospheric Measurement Techniques, 2013, 6, 3225-3241.	1.2	184
28	Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) experiment: design, execution and science overview. Atmospheric Chemistry and Physics, 2013, 13, 6239-6261.	1.9	52
29	Identifying the sources driving observed PM _{2.5} temporal variability over Halifax, Nova Scotia, during BORTAS-B. Atmospheric Chemistry and Physics, 2013, 13, 7199-7213.	1.9	42
30	Aerosol composition, sources and processes during wintertime in Beijing, China. Atmospheric Chemistry and Physics, 2013, 13, 4577-4592.	1.9	507
31	Estimating the near-surface daily fine aerosol load using hourly Radon-222 observations. Atmospheric Pollution Research, 2013, 4, 1-13.	1.8	9
32	Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in downtown Atlanta, Georgia. Atmospheric Measurement Techniques, 2014, 7, 1929-1941.	1.2	70
34	Design and Laboratory Evaluation of a Sequential Spot Sampler for Time-Resolved Measurement of Airborne Particle Composition. Aerosol Science and Technology, 2014, 48, 655-663.	1.5	29
35	Hygroscopicity of particles generated from photooxidation of α-pinene under different oxidation conditions in the presence of sulfate seed aerosols. Journal of Environmental Sciences, 2014, 26, 129-139.	3.2	10
36	Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days. Scientific Reports, 2014, 4, 4172.	1.6	426
37	Mixing State of Black Carbon Aerosol in a Heavily Polluted Urban Area of China: Implications for Light Absorption Enhancement. Aerosol Science and Technology, 2014, 48, 689-697.	1.5	122
38	Transboundary Secondary Organic Aerosol in Western Japan Indicated by the δ ¹³ C of Water-Soluble Organic Carbon and the <i>m</i> / <i>z</i> 44 Signal in Organic Aerosol Mass Spectra. Environmental Science & Technology, 2014, 48, 6273-6281.	4.6	19
39	Chemical characteristics of size-resolved aerosols in winter in Beijing. Journal of Environmental Sciences, 2014, 26, 1641-1650.	3.2	27
40	Contribution of Isoprene Epoxydiol to Urban Organic Aerosol: Evidence from Modeling and	3.9	34 _

#	Article	IF	CITATIONS
41	Secondary Organic Aerosol Formation from in-Use Motor Vehicle Emissions Using a Potential Aerosol Mass Reactor. Environmental Science & Technology, 2014, 48, 11235-11242.	4.6	154
42	Measurements of submicron aerosols at the California–Mexico border during the Cal–Mex 2010 field campaign. Atmospheric Environment, 2014, 88, 308-319.	1.9	32
43	Investigation of the sources and evolution processes of severe haze pollution in Beijing in January 2013. Journal of Geophysical Research D: Atmospheres, 2014, 119, 4380-4398.	1.2	581
44	Rapid changes in biomass burning aerosols by atmospheric oxidation. Geophysical Research Letters, 2014, 41, 2644-2651.	1.5	175
45	The AeroCom evaluation and intercomparison of organic aerosol in global models. Atmospheric Chemistry and Physics, 2014, 14, 10845-10895.	1.9	363
46	Airborne observations of IEPOX-derived isoprene SOA in the Amazon during SAMBBA. Atmospheric Chemistry and Physics, 2014, 14, 11393-11407.	1.9	46
47	Chemical composition, sources, and processes of urban aerosols during summertime in northwest China: insights from high-resolution aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2014, 14, 12593-12611.	1.9	132
48	Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA) field experiment. Atmospheric Chemistry and Physics, 2014, 14, 12069-12083.	1.9	103
49	CCN activity of size-selected aerosol at a Pacific coastal location. Atmospheric Chemistry and Physics, 2014, 14, 12307-12317.	1.9	20
50	Submicron aerosol source apportionment of wintertime pollution in Paris, France by double positive matrix factorization (PMF ²) using an aerosol chemical speciation monitor (ACSM) and a multi-wavelength Aethalometer. Atmospheric Chemistry and Physics, 2014, 14, 13773, 13787	1.9	74
51	Chemical composition, main sources and temporal variability of PM ₁ aerosols in southern African grassland. Atmospheric Chemistry and Physics, 2014, 14, 1909-1927.	1.9	81
52	Processing of biomass-burning aerosol in the eastern Mediterranean during summertime. Atmospheric Chemistry and Physics, 2014, 14, 4793-4807.	1.9	133
53	Measured and modelled cloud condensation nuclei (CCN) concentration in São Paulo, Brazil: the importance of aerosol size-resolved chemical composition on CCN concentration prediction. Atmospheric Chemistry and Physics, 2014, 14, 7559-7572.	1.9	51
54	Aerosol hygroscopicity and cloud condensation nuclei activity during the AC ³ Exp campaign: implications for cloud condensation nuclei parameterization. Atmospheric Chemistry and Physics, 2014, 14, 13423-13437.	1.9	71
55	Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach. Atmospheric Chemistry and Physics, 2014, 14, 6159-6176.	1.9	308
56	Estimating the contribution of organic acids to northern hemispheric continental organic aerosol. Geophysical Research Letters, 2015, 42, 6084-6090.	1.5	43
57	Chemical composition, sources and evolution processes of aerosol at an urban site in Yangtze River Delta, China during wintertime. Atmospheric Environment, 2015, 123, 339-349.	1.9	60
58	Reevaluating the contribution of sulfuric acid and the origin of organic compounds in atmospheric nanoparticle growth. Geophysical Research Letters, 2015, 42, 10,486.	1.5	27

#	Article	IF	CITATIONS
59	Transboundary secondary organic aerosol in western Japan: An observed limitation of the f44 oxidation indicator. Atmospheric Environment, 2015, 120, 71-75.	1.9	5
60	Two years of near real-time chemical composition of submicron aerosols in the region of Paris using an Aerosol Chemical Speciation Monitor (ACSM) and a multi-wavelength Aethalometer. Atmospheric Chemistry and Physics, 2015, 15, 2985-3005.	1.9	138
61	Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects. Atmospheric Chemistry and Physics, 2015, 15, 6023-6034.	1.9	126
62	Investigating the annual behaviour of submicron secondary inorganic and organic aerosols in London. Atmospheric Chemistry and Physics, 2015, 15, 6351-6366.	1.9	46
63	Chemical characterization of submicron regional background aerosols in the western Mediterranean using an Aerosol Chemical Speciation Monitor. Atmospheric Chemistry and Physics, 2015, 15, 6379-6391.	1.9	69
64	Seasonal differences in oxygenated organic aerosol composition: implications for emissions sources and factor analysis. Atmospheric Chemistry and Physics, 2015, 15, 6993-7002.	1.9	106
65	Aerosol characterization over the southeastern United States using high-resolution aerosol mass spectrometry: spatial and seasonal variation of aerosol composition and sources with a focus on organic nitrates. Atmospheric Chemistry and Physics, 2015, 15, 7307-7336.	1.9	259
66	Water soluble aerosols and gases at a UK background site – Part 1: Controls of PM _{2.5} and PM ₁₀ aerosol composition. Atmospheric Chemistry and Physics, 2015, 15, 8131-8145.	1.9	38
67	Particulate matter, air quality and climate: lessons learned and future needs. Atmospheric Chemistry and Physics, 2015, 15, 8217-8299.	1.9	641
68	Atmospheric new particle formation as a source of CCN in the eastern Mediterranean marine boundary layer. Atmospheric Chemistry and Physics, 2015, 15, 9203-9215.	1.9	52
69	The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols. Atmospheric Chemistry and Physics, 2015, 15, 10723-10776.	1.9	218
70	Chemical characterization of submicron aerosol and particle growth events at a national background site (3295 m a.s.l.) on the Tibetan Plateau. Atmospheric Chemistry and Physics, 2015, 15, 10811-10824.	1.9	41
71	Fourteen months of on-line measurements of the non-refractory submicron aerosol at the Jungfraujoch (3580 m a.s.l.) – chemical composition, origins and organic aerosol sources. Atmospheric Chemistry and Physics, 2015, 15, 11373-11398.	1.9	55
72	Characteristics and sources of submicron aerosols above the urban canopy (260 m) in Beijing, China, during the 2014 APEC summit. Atmospheric Chemistry and Physics, 2015, 15, 12879-12895.	1.9	100
73	Long-term real-time measurements of aerosol particle composition in Beijing, China: seasonal variations, meteorological effects, and source analysis. Atmospheric Chemistry and Physics, 2015, 15, 10149-10165.	1.9	324
74	Low hygroscopic scattering enhancement of boreal aerosol and the implications for a columnar optical closure study. Atmospheric Chemistry and Physics, 2015, 15, 7247-7267.	1.9	32
75	Chemical apportionment of aerosol optical properties during the Asiaâ€Pacific Economic Cooperation summit in Beijing, China. Journal of Geophysical Research D: Atmospheres, 2015, 120, 12,281.	1.2	34
76	ACTRIS ACSM intercomparison – Part 1: Reproducibility of concentration and fragment results from 13 individual Quadrupole Aerosol Chemical Speciation Monitors (Q-ACSM) and consistency with co-located instruments. Atmospheric Measurement Techniques, 2015, 8, 5063-5087.	1.2	104

		CITATION REPORT		
#	Article		IF	CITATIONS
77	Inland Concentrations of Cl2 and ClNO2 in Southeast Texas Suggest Chlorine Chemist Contributes to Atmospheric Reactivity. Atmosphere, 2015, 6, 1487-1506.	ry Significantly	1.0	61
78	ACTRIS ACSM intercomparison – Part 2: Intercomparison of ME-2 organic source app results from 15 individual, co-located aerosol mass spectrometers. Atmospheric Measu Techniques, 2015, 8, 2555-2576.	ortionment rement	1.2	118
79	Peak-fitting and integration imprecision in the Aerodyne aerosol mass spectrometer: ef accuracy on location-constrained fits. Atmospheric Measurement Techniques, 2015, 8,	fects of mass 4615-4636.	1.2	20
80	Long-term real-time chemical characterization of submicron aerosols at Montsec (sout	nern Pyrenees,) Tj ETQq1	1 0.78431 1.9	.4 rgBT /Ove
82	Implementing marine organic aerosols into the GEOS-Chem model. Geoscientific Mode 2015, 8, 619-629.	l Development,	1.3	12
84	Long-term measurements of submicrometer aerosol chemistry at the Southern Great P using an Aerosol Chemical Speciation Monitor (ACSM). Atmospheric Environment, 201	lains (SGP) 5, 106, 43-55.	1.9	92
85	Secondary aerosol formation and oxidation capacity in photooxidation in the presence particles and SO2. Science China Chemistry, 2015, 58, 1426-1434.	of Al2O3 seed	4.2	14
86	New particle formation at ground level and in the vertical column over the Barcelona ar Atmospheric Research, 2015, 164-165, 118-130.	ea.	1.8	37
87	Atmospheric Evolution of Sulfur Emissions from KıÌlauea: Real-Time Measurements Dilution, and Neutralization within a Volcanic Plume. Environmental Science & Tec 49, 4129-4137.	of Oxidation, hnology, 2015,	4.6	29
88	Effect of Vaporizer Temperature on Ambient Non-Refractory Submicron Aerosol Compo Mass Spectra Measured by the Aerosol Mass Spectrometer. Aerosol Science and Techn 485-494.	osition and ology, 2015, 49,	1.5	8
89	Organic Emissions from a Wood Stove and a Pellet Stove Before and After Simulated A Aging. Aerosol Science and Technology, 2015, 49, 1037-1050.	tmospheric	1.5	31
90	A Comparison Between a Semi-Continuous Analyzer and Filter-Based Method for Mease Cation Concentrations in PM10at an Urban Background Site in London. Aerosol Scienc Technology, 2015, 49, 793-801.	uring Anion and e and	1.5	13
91	Real-Time Characterization of Aerosol Particle Composition above the Urban Canopy in Insights into the Interactions between the Atmospheric Boundary Layer and Aerosol Ch Environmental Science & amp; Technology, 2015, 49, 11340-11347.	Beijing: Iemistry.	4.6	124
96	Applications and limitations of constrained high-resolution peak fitting on low resolving spectra from the ToF-ACSM. Atmospheric Measurement Techniques, 2016, 9, 3263-32	g power mass 81.	1.2	24
98	Characterization and source apportionment of organic aerosol using offline aerosol ma spectrometry. Atmospheric Measurement Techniques, 2016, 9, 23-39.	SS	1.2	110
99	Composition and Sources of Particulate Matter Measured near Houston, TX: Anthropog Interactions. Atmosphere, 2016, 7, 73.	genic-Biogenic	1.0	15
100	Evaluation of the Sequential Spot Sampler (S3) for time-resolved measurement of PM _{2.5} sulfate and nitrate through lab and f Atmospheric Measurement Techniques, 2016, 9, 525-533.	ield measurements.	1.2	7
101	Prevalence of Freshly Generated Particles during Pollution Episodes in Santiago de Chilo Air Quality Research, 2016, 16, 2172-2185.	e. Aerosol and	0.9	14

	CITATION I	Report	
#	Article	IF	CITATIONS
102	Organic and inorganic decomposition products from the thermal desorption of atmospheric particles. Atmospheric Measurement Techniques, 2016, 9, 1569-1586.	1.2	11
103	A technique for rapid source apportionment applied to ambient organic aerosol measurements from a thermal desorption aerosol gas chromatograph (TAG). Atmospheric Measurement Techniques, 2016, 9, 5637-5653.	1.2	9
104	Aerosol Physical and Optical Properties and Processes in the ARM Program. Meteorological Monographs, 2016, 57, 21.1-21.17.	5.0	20
105	Continuous Measurement of Ambient Aerosol Liquid Water Content in Beijing. Aerosol and Air Quality Research, 2016, 16, 1152-1164.	0.9	14
107	Size distribution and mixing state of refractory black carbon aerosol from a coastal city in South China. Atmospheric Research, 2016, 181, 163-171.	1.8	31
108	BAECC: A Field Campaign to Elucidate the Impact of Biogenic Aerosols on Clouds and Climate. Bulletin of the American Meteorological Society, 2016, 97, 1909-1928.	1.7	71
109	Secondary organic aerosol origin in an urban environment: influence of biogenic and fuel combustion precursors. Faraday Discussions, 2016, 189, 337-359.	1.6	40
110	Spiers Memorial Lecture : Introductory lecture: chemistry in the urban atmosphere. Faraday Discussions, 2016, 189, 9-29.	1.6	6
111	Aerosol characterization over the North China Plain: Haze life cycle and biomass burning impacts in summer. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2508-2521.	1.2	93
112	"APEC Blueâ€: Secondary Aerosol Reductions from Emission Controls in Beijing. Scientific Reports, 2016, 6, 20668.	1.6	155
113	Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two olumn Aerosol Project. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9814-9848.	1.2	15
114	Spatial Distribution of Carbonaceous Aerosol in the Southeastern Baltic Sea Region (Event of Grass) Tj ETQq1 I	l 0.784314 1.0	rggT /Overloo
115	Air Quality in European Cities. Comprehensive Analytical Chemistry, 2016, 73, 517-542.	0.7	1
116	Physicochemical characteristics of black carbon aerosol and its radiative impact in a polluted urban area of China. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,505.	1.2	49
117	Inorganic Salt Interference on CO ₂ ⁺ in Aerodyne AMS and ACSM Organic Aerosol Composition Studies. Environmental Science & Technology, 2016, 50, 10494-10503.	4.6	88
118	Gas-Particle Partitioning of Vehicle Emitted Primary Organic Aerosol Measured in a Traffic Tunnel. Environmental Science & Technology, 2016, 50, 12146-12155.	4.6	23
119	Synergetic formation of secondary inorganic and organic aerosol: effect of SO ₂ and NH ₃ on particle formation and growth. Atmospheric Chemistry and Physics, 2016, 16, 14219-14230.	1.9	102
120	Light absorption of brown carbon aerosol in the PRD region of China. Atmospheric Chemistry and Physics, 2016, 16, 1433-1443.	1.9	76

#	Article	IF	CITATIONS
121	Organic aerosol source apportionment in London 2013 with ME-2: exploring the solution space with annual and seasonal analysis. Atmospheric Chemistry and Physics, 2016, 16, 15545-15559.	1.9	36
122	Seasonal characterization of submicron aerosol chemical composition and organic aerosol sources in the southeastern United States: Atlanta, Georgia,and Look Rock, Tennessee. Atmospheric Chemistry and Physics, 2016, 16, 5171-5189.	1.9	77
123	Impacts of organic aerosols and its oxidation level on CCN activity from measurement at a suburban site in China. Atmospheric Chemistry and Physics, 2016, 16, 5413-5425.	1.9	42
124	Single-particle characterization of biomass burning organic aerosol (BBOA): evidence for non-uniform mixing of high molecular weight organics and potassium. Atmospheric Chemistry and Physics, 2016, 16, 5561-5572.	1.9	41
125	Biomass-burning impact on CCN number, hygroscopicity and cloud formation during summertime in the eastern Mediterranean. Atmospheric Chemistry and Physics, 2016, 16, 7389-7409.	1.9	76
126	Variations in the chemical composition of the submicron aerosol and in the sources of the organic fraction at a regional background site of the Po Valley (Italy). Atmospheric Chemistry and Physics, 2016, 16, 12875-12896.	1.9	38
127	Investigating the impact of regional transport on PM _{2.5} formation using vertical observation during APEC 2014 Summit in Beijing. Atmospheric Chemistry and Physics, 2016, 16, 15451-15460.	1.9	48
128	Long-term observations of cloud condensation nuclei in the Amazon rain forest – Part 1: Aerosol size distribution, hygroscopicity, and new model parametrizations for CCN prediction. Atmospheric Chemistry and Physics, 2016, 16, 15709-15740.	1.9	105
129	Continuous measurements at the urban roadside in an Asian megacity by Aerosol Chemical Speciation Monitor (ACSM): particulate matter characteristics during fall and winter seasons in Hong Kong. Atmospheric Chemistry and Physics, 2016, 16, 1713-1728.	1.9	36
130	Gas–particle partitioning and hydrolysis of organic nitrates formed from the oxidation of <i>α</i> -pinene in environmental chamber experiments. Atmospheric Chemistry and Physics, 2016, 16, 2175-2184.	1.9	43
131	Light absorption and morphological properties of soot-containing aerosols observed at an East Asian outflow site, Noto Peninsula, Japan. Atmospheric Chemistry and Physics, 2016, 16, 2525-2541.	1.9	54
132	Particle water and pH in the eastern Mediterranean: source variability and implications for nutrient availability. Atmospheric Chemistry and Physics, 2016, 16, 4579-4591.	1.9	142
133	Fossil and non-fossil source contributions to atmospheric carbonaceous aerosols during extreme spring grassland fires in Eastern Europe. Atmospheric Chemistry and Physics, 2016, 16, 5513-5529.	1.9	35
134	Aerosol source apportionment from 1-year measurements at the CESAR tower in Cabauw, the Netherlands. Atmospheric Chemistry and Physics, 2016, 16, 8831-8847.	1.9	38
135	Highly time-resolved urban aerosol characteristics during springtime in Yangtze River Delta, China: insights from soot particle aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2016, 16, 9109-9127.	1.9	96
136	Chemical characterization of submicron particles during typical air pollution episodes in spring over Beijing. Atmospheric and Oceanic Science Letters, 2016, 9, 255-262.	0.5	6
137	New particle formation under the influence of the long-range transport of air pollutants in East Asia. Atmospheric Environment, 2016, 141, 30-40.	1.9	20
138	Characterization of submicron aerosols at a suburban site in central China. Atmospheric Environment, 2016, 131, 115-123.	1.9	37

#	Article	IF	CITATIONS
139	The "Parade Blueâ€ŧ effects of short-term emission control on aerosol chemistry. Faraday Discussions, 2016, 189, 317-335.	1.6	35
140	Evolution of Submicrometer Organic Aerosols during a Complete Residential Coal Combustion Process. Environmental Science & Technology, 2016, 50, 7861-7869.	4.6	61
141	Role of the boundary layer dynamics effects on an extreme air pollution event in Paris. Atmospheric Environment, 2016, 141, 571-579.	1.9	33
142	Review of receptor modeling methods for source apportionment. Journal of the Air and Waste Management Association, 2016, 66, 237-259.	0.9	405
143	Addressing the ice nucleating abilities of marine aerosol: A combination of deposition mode laboratory and field measurements. Atmospheric Environment, 2016, 132, 1-10.	1.9	66
144	The effects of molecular weight and thermal decomposition on the sensitivity of a thermal desorption aerosol mass spectrometer. Aerosol Science and Technology, 2016, 50, 118-125.	1.5	23
145	Evolutionary processes and sources of high-nitrate haze episodes over Beijing, Spring. Journal of Environmental Sciences, 2017, 54, 142-151.	3.2	32
146	Quantification of the sources and composition of particulate matter by field-deployable mass spectrometry: implications for air quality and public health. Analyst, The, 2017, 142, 687-690.	1.7	3
147	Real-time chemical characterization of atmospheric particulate matter in China: A review. Atmospheric Environment, 2017, 158, 270-304.	1.9	203
148	Evaluation of the new capture vaporizer for aerosol mass spectrometers (AMS) through field studies of inorganic species. Aerosol Science and Technology, 2017, 51, 735-754.	1.5	63
149	Influences of aerosol physiochemical properties and new particle formation on CCN activity from observation at a suburban site of China. Atmospheric Research, 2017, 188, 80-89.	1.8	30
150	Limited formation of isoprene epoxydiolsâ€derived secondary organic aerosol under NO _x â€rich environments in Eastern China. Geophysical Research Letters, 2017, 44, 2035-2043.	1.5	39
151	Characterising an intense PM pollution episode in March 2015 in France from multi-site approach and near real time data: Climatology, variabilities, geographical origins and model evaluation. Atmospheric Environment, 2017, 155, 68-84.	1.9	52
152	Air pollution characteristics and health risks in Henan Province, China. Environmental Research, 2017, 156, 625-634.	3.7	101
153	The Global Aerosol Synthesis and Science Project (GASSP): Measurements and Modeling to Reduce Uncertainty. Bulletin of the American Meteorological Society, 2017, 98, 1857-1877.	1.7	52
154	Primary and Photochemically Aged Aerosol Emissions from Biomass Cookstoves: Chemical and Physical Characterization. Environmental Science & Technology, 2017, 51, 9379-9390.	4.6	42
155	Role of organic aerosols in CCN activation and closure over a rural background site in Western Ghats, India. Atmospheric Environment, 2017, 158, 148-159.	1.9	30
156	Aerosol characteristics and sources in Yangzhou, China resolved by offline aerosol mass spectrometry and other techniques. Environmental Pollution, 2017, 225, 74-85.	3.7	82

#	Article	IF	CITATIONS
157	Air quality measurements—From rubber bands to tapping the rainbow. Journal of the Air and Waste Management Association, 2017, 67, 637-668.	0.9	11
158	Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition. Scientific Data, 2017, 4, 170003.	2.4	44
159	Chemical composition, sources and secondary processes of aerosols in Baoji city of northwest China. Atmospheric Environment, 2017, 158, 128-137.	1.9	60
160	Sources and Potential Photochemical Roles of Formaldehyde in an Urban Atmosphere in South China. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,934.	1.2	45
161	Characterization of Primary Organic Aerosol from Domestic Wood, Peat, and Coal Burning in Ireland. Environmental Science & Technology, 2017, 51, 10624-10632.	4.6	31
162	Source apportionment of submicron organic aerosol collected from Atlanta, Georgia, during 2014–2015 using the aerosol chemical speciation monitor (ACSM). Atmospheric Environment, 2017, 167, 389-402.	1.9	26
163	Uncertainty in Predicting CCN Activity of Aged and Primary Aerosols. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,723.	1.2	39
164	Multi-tracer approach to characterize domestic wood burning in Athens (Greece) during wintertime. Atmospheric Environment, 2017, 148, 89-101.	1.9	91
165	Laboratory characterization of an aerosol chemical speciation monitor with PM _{2.5} measurement capability. Aerosol Science and Technology, 2017, 51, 69-83.	1.5	82
166	Long-term chemical analysis and organic aerosol source apportionment at nine sites in central Europe: source identification and uncertainty assessment. Atmospheric Chemistry and Physics, 2017, 17, 13265-13282.	1.9	78
167	Long-term measurements (2010–2014) of carbonaceous aerosol and carbon monoxide at the Zotino Tall Tower Observatory (ZOTTO) in central Siberia. Atmospheric Chemistry and Physics, 2017, 17, 14365-14392.	1.9	33
168	New particle formation in the southern Aegean Sea during the Etesians: importance for CCN production and cloud droplet number. Atmospheric Chemistry and Physics, 2017, 17, 175-192.	1.9	55
169	Wintertime aerosol chemistry and haze evolution in an extremely polluted city of the North China Plain: significant contribution fromÂcoal and biomass combustion. Atmospheric Chemistry and Physics, 2017, 17, 4751-4768.	1.9	172
170	Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol. Atmospheric Chemistry and Physics, 2017, 17, 2103-2162.	1.9	307
171	Organic carbon at a remote site of the western Mediterranean Basin: sources and chemistry during the ChArMEx SOP2 field experiment. Atmospheric Chemistry and Physics, 2017, 17, 8837-8865.	1.9	45
172	Chemical characterization and source apportionment of submicron aerosols measured in Senegal during the 2015 SHADOW campaign. Atmospheric Chemistry and Physics, 2017, 17, 10291-10314.	1.9	17
173	Origin and variability in volatile organic compounds observed at an Eastern Mediterranean background site (Cyprus). Atmospheric Chemistry and Physics, 2017, 17, 11355-11388.	1.9	44
174	Argon offline-AMS source apportionment of organic aerosol over yearly cycles for an urban, rural, and marine site in northern Europe. Atmospheric Chemistry and Physics, 2017, 17, 117-141.	1.9	59

#	Article	IF	CITATIONS
175	CCN activity and organic hygroscopicity of aerosols downwind of an urban region in central Amazonia: seasonal and diel variations and impact of anthropogenic emissions. Atmospheric Chemistry and Physics, 2017, 17, 11779-11801.	1.9	71
176	Secondary organic aerosol from chlorine-initiated oxidation of isoprene. Atmospheric Chemistry and Physics, 2017, 17, 13491-13508.	1.9	61
177	Field characterization of the PM _{2.5} Aerosol Chemical Speciation Monitor: insights into the composition, sources, and processes of fineÂparticles in eastern China. Atmospheric Chemistry and Physics, 2017, 17, 14501-14517.	1.9	58
178	Insights into aerosol chemistry during the 2015 China Victory Day parade: results from simultaneous measurements at ground level and 260†m in Beijing. Atmospheric Chemistry and Physics, 2017, 17, 3215-3232.	1.9	90
179	Quantifying the volatility of organic aerosol in the southeastern US. Atmospheric Chemistry and Physics, 2017, 17, 501-520.	1.9	32
180	Optical, physical and chemical properties of aerosols transported to a coastal site in the western Mediterranean: a focus on primary marine aerosols. Atmospheric Chemistry and Physics, 2017, 17, 7891-7915.	1.9	19
181	Differentiating local and regional sources of Chinese urban air pollution based on the effect of the Spring Festival. Atmospheric Chemistry and Physics, 2017, 17, 9103-9114.	1.9	40
184	Elemental composition of ambient aerosols measured with high temporal resolution using an online XRF spectrometer. Atmospheric Measurement Techniques, 2017, 10, 2061-2076.	1.2	79
185	First Results of the "Carbonaceous Aerosol in Rome and Environs (CARE)―Experiment: Beyond Current Standards for PM10. Atmosphere, 2017, 8, 249.	1.0	54
190	The filter-loading effect by ambient aerosols in filter absorption photometers depends on the coating of the sampled particles. Atmospheric Measurement Techniques, 2017, 10, 1043-1059.	1.2	60
195	Characteristics and Formation Mechanisms of Fine Particulate Nitrate in Typical Urban Areas in China. Atmosphere, 2017, 8, 62.	1.0	52
196	Characteristics and sources of aerosol pollution at a polluted rural site southwest in Beijing, China. Science of the Total Environment, 2018, 626, 519-527.	3.9	32
197	Laser Ablation-Aerosol Mass Spectrometry-Chemical Ionization Mass Spectrometry for Ambient Surface Imaging. Analytical Chemistry, 2018, 90, 4046-4053.	3.2	6
198	Evaluation of the New Capture Vaporizer for Aerosol Mass Spectrometers (AMS): Elemental Composition and Source Apportionment of Organic Aerosols (OA). ACS Earth and Space Chemistry, 2018, 2, 410-421.	1.2	24
199	Seasonal variability in chemical composition and source apportionment of sub-micron aerosol over a high altitude site in Western Ghats, India. Atmospheric Environment, 2018, 180, 79-92.	1.9	45
200	Helicopter-borne observations of the continental background aerosol in combination with remote sensing and ground-based measurements. Atmospheric Chemistry and Physics, 2018, 18, 1263-1290.	1.9	23
201	Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories. Atmospheric Chemistry and Physics, 2018, 18, 2853-2881.	1.9	108
202	Organic functional groups in the submicron aerosol at 82.5° N, 62.5° W from 2012 to 2014. Atmospheric Chemistry and Physics, 2018, 18, 3269-3287.	1.9	40

#	Article	IF	CITATIONS
203	Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia. Atmospheric Chemistry and Physics, 2018, 18, 467-493.	1.9	63
204	Laboratory evaluation of species-dependent relative ionization efficiencies in the Aerodyne Aerosol Mass Spectrometer. Aerosol Science and Technology, 2018, 52, 626-641.	1.5	49
205	Aerosol properties and their impacts on surface CCN at the ARM Southern Great Plains site during the 2011 Midlatitude Continental Convective Clouds Experiment. Advances in Atmospheric Sciences, 2018, 35, 224-233.	1.9	14
206	Impact on short-lived climate forcers increases projected warming due to deforestation. Nature Communications, 2018, 9, 157.	5.8	86
207	Characterization of air pollutant concentrations, fleet emission factors, and dispersion near a North Carolina interstate freeway across two seasons. Atmospheric Environment, 2018, 177, 143-153.	1.9	58
208	Nitrate-driven urban haze pollution during summertime over the North China Plain. Atmospheric Chemistry and Physics, 2018, 18, 5293-5306.	1.9	143
209	Insights into organic-aerosol sources via a novel laser-desorption/ionization mass spectrometry technique applied to one year of PM ₁₀ samples from nine sites in central Europe. Atmospheric Chemistry and Physics, 2018, 18, 2155-2174.	1.9	7
210	Refractory black carbon at the Whistler Peak High Elevation Research Site – Measurements and simulations. Atmospheric Environment, 2018, 181, 34-46.	1.9	4
211	Formation of Particulate Matter from the Oxidation of Evaporated Hydraulic Fracturing Wastewater. Environmental Science & Technology, 2018, 52, 4960-4968.	4.6	12
212	Evaluation of the new capture vaporizer for aerosol mass spectrometers: Characterization of organic aerosol mass spectra. Aerosol Science and Technology, 2018, 52, 725-739.	1.5	25
213	Development of an on-line measurement system for water-soluble organic matter in PM 2.5 and its application in China. Journal of Environmental Sciences, 2018, 69, 33-40.	3.2	6
214	Measurements of PM10 ions and trace gases with the online system MARGA at the research station Melpitz in Germany – A five-year study. Journal of Atmospheric Chemistry, 2018, 75, 33-70.	1.4	37
215	Variability in the primary emissions and secondary gas and particle formation from vehicles using bioethanol mixtures. Journal of the Air and Waste Management Association, 2018, 68, 329-346.	0.9	13
216	Understanding the PM2.5 imbalance between a far and near-road location: Results of high temporal frequency source apportionment and parameterization of black carbon. Atmospheric Environment, 2018, 173, 277-288.	1.9	41
217	Application of remote sensing techniques to study aerosol water vapour uptake in a real atmosphere. Atmospheric Research, 2018, 202, 112-127.	1.8	14
218	Chlorine-initiated oxidation of <i>n</i> -alkanes under high-NO _{<i>/</i>} conditions: insights into secondary organic aerosol composition and volatility using a FIGAERO–CIMS. Atmospheric Chemistry and Physics. 2018. 18. 15535-15553.	1.9	53
219	Modeling organic aerosol concentrations and properties during winter 2014 in the northwestern Mediterranean region. Atmospheric Chemistry and Physics, 2018, 18, 18079-18100.	1.9	10
221	Low levels of nitryl chloride at ground level: nocturnal nitrogen oxides in the Lower Fraser Valley of British Columbia. Atmospheric Chemistry and Physics, 2018, 18, 6293-6315.	1.9	17

#	Article	IF	CITATIONS
222	Size-resolved characteristics of inorganic ionic species in atmospheric aerosols at a regional background site on the South African Highveld. Journal of Atmospheric Chemistry, 2018, 75, 285-304.	1.4	5
223	Dominant contribution of oxygenated organic aerosol to haze particles from real-time observation in Singapore during an Indonesian wildfire event in 2015. Atmospheric Chemistry and Physics, 2018, 18, 16481-16498.	1.9	24
226	Comparison of Measurement-Based Methodologies to Apportion Secondary Organic Carbon (SOC) in PM2.5: A Review of Recent Studies. Atmosphere, 2018, 9, 452.	1.0	37
227	Driving parameters of biogenic volatile organic compounds and consequences on new particle formation observed at an eastern Mediterranean background site. Atmospheric Chemistry and Physics, 2018, 18, 14297-14325.	1.9	33
228	A Case Study of Investigating Secondary Organic Aerosol Formation Pathways in Beijing using an Observation-based SOA Box Model. Aerosol and Air Quality Research, 2018, 18, 1606-1616.	0.9	25
230	Evidence of major secondary organic aerosol contribution to lensing effect black carbon absorption enhancement. Npj Climate and Atmospheric Science, 2018, 1, .	2.6	70
233	Nocturnal Low-level Winds and Their Impacts on Particulate Matter over the Beijing Area. Advances in Atmospheric Sciences, 2018, 35, 1455-1468.	1.9	16
234	Atmospheric new particle formation and growth: review of field observations. Environmental Research Letters, 2018, 13, 103003.	2.2	308
235	Relationship between the Optical Properties and Chemical Composition of Urban Aerosol Particles in Lithuania. Advances in Meteorology, 2018, 2018, 1-10.	0.6	7
236	Advanced source apportionment of carbonaceous aerosols by coupling offline AMS and radiocarbon size-segregated measurements over a nearly 2-year period. Atmospheric Chemistry and Physics, 2018, 18, 6187-6206.	1.9	54
237	Mixing state and particle hygroscopicity of organic-dominated aerosols over the Pearl River Delta region in China. Atmospheric Chemistry and Physics, 2018, 18, 14079-14094.	1.9	30
238	Long-term observations of cloud condensation nuclei over the Amazon rain forest – Part 2: Variability and characteristics of biomass burning, long-range transport, and pristine rain forest aerosols. Atmospheric Chemistry and Physics, 2018, 18, 10289-10331.	1.9	64
239	Black and brown carbon over central Amazonia: long-term aerosol measurements at the ATTO site. Atmospheric Chemistry and Physics, 2018, 18, 12817-12843.	1.9	54
240	Simulation of fine organic aerosols in the western Mediterranean area during the ChArMEx 2013 summer campaign. Atmospheric Chemistry and Physics, 2018, 18, 7287-7312.	1.9	27
241	Extreme air pollution from residential solid fuel burning. Nature Sustainability, 2018, 1, 512-517.	11.5	59
242	Predicting Secondary Organic Aerosol Enhancement in the Presence of Atmospherically Relevant Organic Particles. ACS Earth and Space Chemistry, 2018, 2, 1035-1046.	1.2	19
243	Seasonally Varying Secondary Organic Aerosol Formation From In-Situ Oxidation of Near-Highway Air. Environmental Science & Technology, 2018, 52, 7192-7202.	4.6	31
244	Biomass burning aerosols characterization from ground based and profiling measurements. EPJ Web of Conferences, 2018, 176, 08013.	0.1	0

#	Article	IF	Citations
246	African volcanic emissions influencing atmospheric aerosols over the Amazon rain forest. Atmospheric Chemistry and Physics, 2018, 18, 10391-10405.	1.9	16
247	Spatiotemporal Variation in Composition of Submicron Particles in Santiago Metropolitan Region, Chile. Frontiers in Environmental Science, 2018, 6, .	1.5	9
248	Source apportionment of organic aerosol from 2-year highly time-resolved measurements by an aerosol chemical speciation monitor in Beijing, China. Atmospheric Chemistry and Physics, 2018, 18, 8469-8489.	1.9	110
249	Influence of Common Assumptions Regarding Aerosol Composition and Mixing State on Predicted CCN Concentration. Atmosphere, 2018, 9, 54.	1.0	8
250	PM1 Chemical Characterization during the ACU15 Campaign, South of Mexico City. Atmosphere, 2018, 9, 232.	1.0	9
251	Disentangling vehicular emission impact on urban air pollution using ethanol as a tracer. Scientific Reports, 2018, 8, 10679.	1.6	23
253	Heterogeneous production of Cl ₂ from particulate chloride: Effects of composition and relative humidity. AICHE Journal, 2018, 64, 3151-3158.	1.8	6
254	Characterization of aerosol hygroscopicity, mixing state, and CCN activity at a suburban site in the central North China Plain. Atmospheric Chemistry and Physics, 2018, 18, 11739-11752.	1.9	48
255	Field and laboratory evaluation of a high time resolution x-ray fluorescence instrument for determining the elemental composition of ambient aerosols. Atmospheric Measurement Techniques, 2018, 11, 3541-3557.	1.2	48
256	Observations of Manaus urban plume evolution and interaction with biogenic emissions in GoAmazon 2014/5. Atmospheric Environment, 2018, 191, 513-524.	1.9	17
257	Regional Similarities and NO x â€Related Increases in Biogenic Secondary Organic Aerosol in Summertime Southeastern United States. Journal of Geophysical Research D: Atmospheres, 2018, 123, 10620-10636.	1.2	14
258	Investigating particle emissions and aerosol dynamics from a consumer fused deposition modeling 3D printer with a lognormal moment aerosol model. Aerosol Science and Technology, 2018, 52, 1099-1111.	1.5	26
259	Source apportionment of fine PM by combining high time resolution organic and inorganic chemical composition datasets. Atmospheric Environment: X, 2019, 3, 100046.	0.8	21
260	A Black Carbonâ€Tracer Method for Estimating Cooking Organic Aerosol From Aerosol Mass Spectrometer Measurements. Geophysical Research Letters, 2019, 46, 8474-8483.	1.5	16
261	Biomass burning aerosol over the Amazon: analysis of aircraft, surface and satellite observations using a global aerosol model. Atmospheric Chemistry and Physics, 2019, 19, 9125-9152.	1.9	60
262	Overview of the Antarctic Circumnavigation Expedition: Study of Preindustrial-like Aerosols and Their Climate Effects (ACE-SPACE). Bulletin of the American Meteorological Society, 2019, 100, 2260-2283.	1.7	71
263	Speciation of organic fractions does matter for aerosol source apportionment. Part 3: Combining off-line and on-line measurements. Science of the Total Environment, 2019, 690, 944-955.	3.9	39
264	Overview of HOMEChem: House Observations of Microbial and Environmental Chemistry. Environmental Sciences: Processes and Impacts, 2019, 21, 1280-1300.	1.7	140

#	Article	IF	Citations
265	Ionization efficiency of evolved gas molecules from aerosol particles in a thermal desorption aerosol mass spectrometer: Numerical simulations. Aerosol Science and Technology, 2019, 53, 843-852.	1.5	5
267	Contributions of biomass-burning, urban, and biogenic emissions to the concentrations and light-absorbing properties of particulate matter in central Amazonia during the dry season. Atmospheric Chemistry and Physics, 2019, 19, 7973-8001.	1.9	36
268	Effectiveness of short-term air quality emission controls: a high-resolution model study of Beijing during the Asia-Pacific Economic Cooperation (APEC) summit period. Atmospheric Chemistry and Physics, 2019, 19, 8651-8668.	1.9	29
269	Long-term aerosol optical hygroscopicity study at the ACTRIS SIRTA observatory: synergy between ceilometer and in situ measurements. Atmospheric Chemistry and Physics, 2019, 19, 7883-7896.	1.9	3
271	Distinctions in source regions and formation mechanisms of secondary aerosol in Beijing from summer to winter. Atmospheric Chemistry and Physics, 2019, 19, 10319-10334.	1.9	42
272	Distinct Ultrafine―and Accumulationâ€Mode Particle Properties in Clean and Polluted Urban Environments. Geophysical Research Letters, 2019, 46, 10918-10925.	1.5	12
274	Aerosol properties and their influences on low warm clouds during the Two-Column Aerosol Project. Atmospheric Chemistry and Physics, 2019, 19, 9515-9529.	1.9	11
278	Laboratory and field evaluation of the Aerosol Dynamics Inc. concentrator (ADIc) for aerosol mass spectrometry. Atmospheric Measurement Techniques, 2019, 12, 3907-3920.	1.2	3
279	Characterisation of particulate matter at a high-altitude site in southwest India: Impact of dust episodes. Journal of Earth System Science, 2019, 128, 1.	0.6	13
280	Chemical Composition and Toxicity of Particles Emitted from a Consumer-Level 3D Printer Using Various Materials. Environmental Science & Technology, 2019, 53, 12054-12061.	4.6	71
281	Rapid transition in winter aerosol composition in Beijing from 2014 to 2017: response to clean air actions. Atmospheric Chemistry and Physics, 2019, 19, 11485-11499.	1.9	167
282	Concentrations and Adsorption Isotherms for Amphiphilic Surfactants in PM ₁ Aerosols from Different Regions of Europe. Environmental Science & Technology, 2019, 53, 12379-12388.	4.6	25
283	The role of highly oxygenated organic molecules in the Boreal aerosol-cloud-climate system. Nature Communications, 2019, 10, 4370.	5.8	91
284	Response of aerosol chemistry to clean air action in Beijing, China: Insights from two-year ACSM measurements and model simulations. Environmental Pollution, 2019, 255, 113345.	3.7	74
285	Wintertime Optical Properties of Primary and Secondary Brown Carbon at a Regional Site in the North China Plain. Environmental Science & Technology, 2019, 53, 12389-12397.	4.6	55
286	Seasonal variation in aerosol composition and concentration upon transport from the outdoor to indoor environment. Environmental Sciences: Processes and Impacts, 2019, 21, 528-547.	1.7	36
287	A Review of Aerosol Chemical Composition and Sources in Representative Regions of China during Wintertime. Atmosphere, 2019, 10, 277.	1.0	29
288	Fireworks: A major source of inorganic and organic aerosols during Christmas and New Year in Mexico city. Atmospheric Environment: X, 2019, 2, 100013.	0.8	23

#	Article	IF	CITATIONS
289	Summertime particulate matter and its composition in Greece. Atmospheric Environment, 2019, 213, 597-607.	1.9	20
290	Regional new particle formation as modulators of cloud condensation nuclei and cloud droplet number in the eastern Mediterranean. Atmospheric Chemistry and Physics, 2019, 19, 6185-6203.	1.9	26
291	Submicron aerosol composition in the world's most polluted megacity: the Delhi Aerosol Supersite study. Atmospheric Chemistry and Physics, 2019, 19, 6843-6859.	1.9	133
292	Quantitative capabilities of STXM to measure spatially resolved organic volume fractions of mixed organic â^• inorganic particles. Atmospheric Measurement Techniques, 2019, 12, 1619-1633.	1.2	14
293	Influence of semi- and intermediate-volatile organic compounds (S/IVOC) parameterizations, volatility distributions and aging schemes on organic aerosol modelling in winter conditions. Atmospheric Environment, 2019, 213, 11-24.	1.9	19
296	Ultrasonic nebulization for the elemental analysis of microgram-level samples with offline aerosol mass spectrometry. Atmospheric Measurement Techniques, 2019, 12, 1659-1671.	1.2	15
297	The second ACTRIS inter-comparison (2016) for Aerosol Chemical Speciation Monitors (ACSM): Calibration protocols and instrument performance evaluations. Aerosol Science and Technology, 2019, 53, 830-842.	1.5	35
298	Aerosol hygroscopic growth, contributing factors, and impact on haze events in a severely polluted region in northern China. Atmospheric Chemistry and Physics, 2019, 19, 1327-1342.	1.9	47
299	Yearlong variability of oxidative potential of particulate matter in an urban Mediterranean environment. Atmospheric Environment, 2019, 206, 183-196.	1.9	47
300	Sources and processes that control the submicron organic aerosol composition in an urban Mediterranean environment (Athens): a high temporal-resolution chemical composition measurement study. Atmospheric Chemistry and Physics, 2019, 19, 901-919.	1.9	62
301	Characterization of aerosol mass spectra responses to temperature over a forest site in Lithuania. Journal of Aerosol Science, 2019, 133, 56-65.	1.8	8
302	Retrieval of black carbon aerosol surface concentration using satellite remote sensing observations. Remote Sensing of Environment, 2019, 226, 93-108.	4.6	20
303	Aerosol Phase State and Its Link to Chemical Composition and Liquid Water Content in a Subtropical Coastal Megacity. Environmental Science & Technology, 2019, 53, 5027-5033.	4.6	43
304	Nighttime secondary organic aerosol formation from unburned fuel vapors. Atmospheric Environment, 2019, 204, 125-134.	1.9	2
305	Primary emissions versus secondary formation of fine particulate matter in the most polluted city (Shijiazhuang) in North China. Atmospheric Chemistry and Physics, 2019, 19, 2283-2298.	1.9	74
306	Analytical Challenges and Opportunities For Indoor Air Chemistry Field Studies. Analytical Chemistry, 2019, 91, 3761-3767.	3.2	27
307	Interactions between the atmosphere, cryosphere, and ecosystems at northern high latitudes. Atmospheric Chemistry and Physics, 2019, 19, 2015-2061.	1.9	42
308	Photooxidation of Emissions from Firewood and Pellet Combustion Using a Photochemical Chamber. Atmosphere, 2019, 10, 575.	1.0	3

#	Article	IF	CITATIONS
309	Orange Snow—A Saharan Dust Intrusion over Romania During Winter Conditions. Remote Sensing, 2019, 11, 2466.	1.8	20
310	Quantifying aerosol size distributions and their temporal variability in the Southern Great Plains, USA. Atmospheric Chemistry and Physics, 2019, 19, 11985-12006.	1.9	13
311	Six-year source apportionment of submicron organic aerosols from near-continuous highly time-resolved measurements at SIRTA (Paris area, France). Atmospheric Chemistry and Physics, 2019, 19, 14755-14776.	1.9	49
312	Predominance of secondary organic aerosol to particle-bound reactive oxygen species activity in fine ambient aerosol. Atmospheric Chemistry and Physics, 2019, 19, 14703-14720.	1.9	31
313	Summertime Aerosol over the West of Ireland Dominated by Secondary Aerosol during Long-Range Transport. Atmosphere, 2019, 10, 59.	1.0	7
314	Chemical composition and hydrolysis of organic nitrate aerosol formed from hydroxyl and nitrate radical oxidation of <i>α</i> -pinene and <i>β</i> -pinene. Atmospheric Chemistry and Physics, 2019, 19, 12749-12766.	1.9	66
315	Atmospheric Radiation Measurement (ARM) Aerosol Observing Systems (AOS) for Surface-Based In Situ Atmospheric Aerosol and Trace Gas Measurements. Journal of Atmospheric and Oceanic Technology, 2019, 36, 2429-2447.	0.5	19
316	Diesel Soot and Amine-Containing Organic Sulfate Aerosols in an Arctic Oil Field. Environmental Science & Technology, 2020, 54, 92-101.	4.6	7
317	Large-scale particulate air pollution and chemical fingerprint of volcanic sulfate aerosols from the 2014–2015 Holuhraun flood lava eruption of Bárðarbunga volcano (Iceland). Atmospheric Chemistry and Physics, 2019, 19, 14253-14287.	1.9	15
318	Interactions between aerosol organic components and liquid water content during haze episodes in Beijing. Atmospheric Chemistry and Physics, 2019, 19, 12163-12174.	1.9	29
320	Temperature―and Humidityâ€Dependent Phase States of Secondary Organic Aerosols. Geophysical Research Letters, 2019, 46, 1005-1013.	1.5	53
321	Formation of oxidized organic compounds from Cl-initiated oxidation of toluene. Atmospheric Environment, 2019, 199, 265-273.	1.9	25
322	Black carbon: source apportionment and its implications on CCN activity over a rural region in Western Ghats, India. Environmental Science and Pollution Research, 2019, 26, 7071-7081.	2.7	19
323	Insights into submicron particulate evolution, sources and influences on haze pollution in Beijing, China. Atmospheric Environment, 2019, 201, 360-368.	1.9	18
324	Evidence of precedent wind role on controlling PM1 wet scavenging of aerosols during monsoon rain events. Atmospheric Environment, 2019, 201, 265-277.	1.9	12
325	Temporal and spatial variability of traffic-related PM2.5 sources: Comparison of exhaust and non-exhaust emissions. Atmospheric Environment, 2019, 198, 55-69.	1.9	128
326	Evaluation of the Oxidation Flow Reactor for particulate matter emission limit certification. Atmospheric Environment, 2020, 224, 117086.	1.9	12
327	Long-term variability, source apportionment and spectral properties of black carbon at an urban background site in Athens, Greece. Atmospheric Environment, 2020, 222, 117137.	1.9	64

#	ARTICLE	IF	CITATIONS
328	Classifying aerosol particles through the combination of optical and physical-chemical properties: Results from a wintertime campaign in Rome (Italy). Atmospheric Research, 2020, 235, 104799.	1.8	33
329	Atmospheric ice nuclei concentration measurements over a high altitude-station in the Western Ghats, India. Atmospheric Research, 2020, 235, 104795.	1.8	8
330	Long-term brown carbon spectral characteristics in a Mediterranean city (Athens). Science of the Total Environment, 2020, 708, 135019.	3.9	55
331	Characterization of particulate and gaseous pollutants from a French dairy and sheep farm. Science of the Total Environment, 2020, 712, 135598.	3.9	11
333	Chemical characterization of PM2.5 and source apportionment of organic aerosol in New Delhi, India. Science of the Total Environment, 2020, 745, 140924.	3.9	60
334	Substantial brown carbon emissions from wintertime residential wood burning over France. Science of the Total Environment, 2020, 743, 140752.	3.9	41
335	Chemical characterization and source identification of submicron aerosols from a year-long real-time observation at a rural site of Shanghai using an Aerosol Chemical Speciation Monitor. Atmospheric Research, 2020, 246, 105154.	1.8	18
336	Chemical composition and sources of submicron aerosol in a coastal city of China: Results from the 2017 BRICS summit study. Science of the Total Environment, 2020, 741, 140470.	3.9	7
337	Gaining knowledge on source contribution to aerosol optical absorption properties and organics by receptor modelling. Atmospheric Environment, 2020, 243, 117873.	1.9	9
338	Haze pollution under a high atmospheric oxidization capacity in summer in Beijing: insights into formation mechanism of atmospheric physicochemical processes. Atmospheric Chemistry and Physics, 2020, 20, 4575-4592.	1.9	31
339	The acidity of atmospheric particles and clouds. Atmospheric Chemistry and Physics, 2020, 20, 4809-4888.	1.9	327
340	Chemical nature and sources of fine particles in urban Beijing: Seasonality and formation mechanisms. Environment International, 2020, 140, 105732.	4.8	26
341	Characteristics and Sources of Black Carbon Aerosol in a Mega-City in the Western Yangtze River Delta, China. Atmosphere, 2020, 11, 315.	1.0	2
342	Comprehensive Source Apportionment of Submicron Aerosol in Shijiazhuang, China: Secondary Aerosol Formation and Holiday Effects. ACS Earth and Space Chemistry, 2020, 4, 947-957.	1.2	9
343	Seasonal characterization of aerosol composition and sources in a polluted city in Central China. Chemosphere, 2020, 258, 127310.	4.2	16
344	Characterizing the ratio of nitrate to sulfate in ambient fine particles of urban Beijing during 2018–2019. Atmospheric Environment, 2020, 237, 117662.	1.9	20
345	Secondary organic aerosol formation from evaporated biofuels: comparison to gasoline and correction for vapor wall losses. Environmental Sciences: Processes and Impacts, 2020, 22, 1461-1474.	1.7	15
346	Effects of Sources and Meteorology on Ambient Particulate Matter in Austin, Texas. ACS Earth and Space Chemistry, 2020, 4, 602-613.	1.2	9

#	Article	IF	CITATIONS
347	Responses of gaseous sulfuric acid and particulate sulfate to reduced SO2 concentration: A perspective from long-term measurements in Beijing. Science of the Total Environment, 2020, 721, 137700.	3.9	28
348	Hygroscopicity of Different Types of Aerosol Particles: Case Studies Using Multi-Instrument Data in Megacity Beijing, China. Remote Sensing, 2020, 12, 785.	1.8	15
349	Source apportionment of highly time-resolved elements during a firework episode from a rural freeway site in Switzerland. Atmospheric Chemistry and Physics, 2020, 20, 1657-1674.	1.9	37
350	Characterization of anthropogenic organic aerosols by TOF-ACSM with the new capture vaporizer. Atmospheric Measurement Techniques, 2020, 13, 2457-2472.	1.2	33
351	Source apportionment of fine organic carbon (OC) using receptor modelling at a rural site of Beijing: Insight into seasonal and diurnal variation of source contributions. Environmental Pollution, 2020, 266, 115078.	3.7	19
352	A review of aerosol chemistry in Asia: insights from aerosol mass spectrometer measurements. Environmental Sciences: Processes and Impacts, 2020, 22, 1616-1653.	1.7	57
353	Particle number size distributions and new particle formation events over the northern Indian Ocean during continental outflow. Atmospheric Environment, 2020, 238, 117719.	1.9	22
354	A chemical cocktail during the COVID-19 outbreak in Beijing, China: Insights from six-year aerosol particle composition measurements during the Chinese New Year holiday. Science of the Total Environment, 2020, 742, 140739.	3.9	138
355	Impact of air transport and secondary formation on haze pollution in the Yangtze River Delta: In situ online observations in Shanghai and Nanjing. Atmospheric Environment, 2020, 225, 117350.	1.9	35
356	Chemical composition and sources of submicron aerosols in winter at a regional site in Beijing-Tianjin-Hebei region: Implications for the Joint Action Plan. Science of the Total Environment, 2020, 719, 137547.	3.9	23
357	Ambient Quantification and Size Distributions for Organic Aerosol in Aerosol Mass Spectrometers with the New Capture Vaporizer. ACS Earth and Space Chemistry, 2020, 4, 676-689.	1.2	10
358	Significant ultrafine particle emissions from residential solid fuel combustion. Science of the Total Environment, 2020, 715, 136992.	3.9	37
359	Fine particle characterization in a coastal city in China: composition, sources, and impacts of industrial emissions. Atmospheric Chemistry and Physics, 2020, 20, 2877-2890.	1.9	23
360	Long-term sub-micrometer aerosol chemical composition in the boreal forest: inter- and intra-annual variability. Atmospheric Chemistry and Physics, 2020, 20, 3151-3180.	1.9	26
361	Seasonal contrast in size distributions and mixing state of black carbon and its association with PM _{1.0} chemical composition from the eastern coast of India. Atmospheric Chemistry and Physics, 2020, 20, 3965-3985.	1.9	36
362	Enhanced New Particle Formation Above the Marine Boundary Layer Over the Yellow Sea: Potential Impacts on Cloud Condensation Nuclei. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031448.	1.2	12
363	Paradigm shift in aerosol chemical composition over regions downwind of China. Scientific Reports, 2020, 10, 6450.	1.6	45
364	Summertime and wintertime atmospheric processes of secondary aerosol in Beijing. Atmospheric Chemistry and Physics, 2020, 20, 3793-3807.	1.9	55

#	Article	IF	CITATIONS
365	CCN activation of carbonaceous aerosols from different combustion emissions sources: A laboratory study. Atmospheric Research, 2021, 248, 105252.	1.8	6
366	Long-term characterization of aerosol chemistry in cold season from 2013 to 2020 in Beijing, China. Environmental Pollution, 2021, 268, 115952.	3.7	56
367	Sources, variability and parameterizations of intra-city factors obtained from dispersion-normalized multi-time resolution factor analyses of PM2.5 in an urban environment. Science of the Total Environment, 2021, 761, 143225.	3.9	25
368	In situ identification of aerosol types in Athens, Greece, based on long-term optical and on online chemical characterization. Atmospheric Environment, 2021, 246, 118070.	1.9	24
369	Real-time retrieval of aerosol chemical composition using effective density and the imaginary part of complex refractive index. Atmospheric Environment, 2021, 245, 117959.	1.9	8
370	Characteristics, evolution, and potential source regions of submicron aerosol in Beijing, China. Atmospheric Environment, 2021, 246, 118061.	1.9	6
371	Review of online source apportionment research based on observation for ambient particulate matter. Science of the Total Environment, 2021, 762, 144095.	3.9	21
372	Characterization of organic aerosols in PM1 and their cytotoxicity in an urban roadside area in Hong Kong. Chemosphere, 2021, 263, 128239.	4.2	13
373	Real-time non-refractory PM1 chemical composition, size distribution and source apportionment at a coastal industrial park in the Yangtze River Delta region, China. Science of the Total Environment, 2021, 763, 142968.	3.9	3
374	Simultaneous Roadside and Urban Background Measurements of Submicron Aerosol Number Concentration and Size Distribution (in the Range 20–800 nm), along with Chemical Composition in Strasbourg, France. Atmosphere, 2021, 12, 71.	1.0	11
375	Near real-time PM1 chemical composition measurements at a French urban background and coastal site under industrial influence over more than a year: Temporal variability and assessment of sulfur-containing emissions. Atmospheric Environment, 2021, 244, 117960.	1.9	9
376	Overview of the French Operational Network for In Situ Observation of PM Chemical Composition and Sources in Urban Environments (CARA Program). Atmosphere, 2021, 12, 207.	1.0	23
377	A new method for long-term source apportionment with time-dependent factor profiles and uncertainty assessment using SoFi Pro: application to 1 year of organic aerosol data. Atmospheric Measurement Techniques, 2021, 14, 923-943.	1.2	50
378	A global model perturbed parameter ensemble study of secondary organic aerosol formation. Atmospheric Chemistry and Physics, 2021, 21, 2693-2723.	1.9	9
379	Seasonal Variation in Chemical Composition of Size-Segregated Aerosols Over the Northeastern Arabian Sea. Frontiers in Environmental Science, 2021, 8, .	1.5	11
380	Characterization of multiple atmospheric pollutants during haze and non-haze episodes in Beijing, China: Concentration, chemical components and transport flux variations. Atmospheric Environment, 2021, 246, 118129.	1.9	9
381	Strong Deviations from Thermodynamically Expected Phase Partitioning of Low-Molecular-Weight Organic Acids during One Year of Rural Measurements. ACS Earth and Space Chemistry, 2021, 5, 500-515.	1.2	9
382	Evaluation of ECMWF IFS-AER (CAMS) operational forecasts during cycle 41r1–46r1 with calibrated ceilometer profiles over Germany. Geoscientific Model Development, 2021, 14, 1721-1751.	1.3	4

#	Article	IF	CITATIONS
383	Aerosol pH indicator and organosulfate detectability from aerosol mass spectrometry measurements. Atmospheric Measurement Techniques, 2021, 14, 2237-2260.	1.2	12
384	Meteorology-driven variability of air pollution (PM ₁) revealed with explainable machine learning. Atmospheric Chemistry and Physics, 2021, 21, 3919-3948.	1.9	46
385	A European aerosol phenomenology - 7: High-time resolution chemical characteristics of submicron particulate matter across Europe. Atmospheric Environment: X, 2021, 10, 100108.	0.8	23
386	In-depth characterization of submicron particulate matter inter-annual variations at a street canyon site in northern Europe. Atmospheric Chemistry and Physics, 2021, 21, 6297-6314.	1.9	25
388	Characteristics, formation mechanisms, and sources of non-refractory submicron aerosols in Guangzhou, China. Atmospheric Environment, 2021, 250, 118255.	1.9	7
389	Increase in secondary organic aerosol in an urban environment. Atmospheric Chemistry and Physics, 2021, 21, 8323-8339.	1.9	25
390	Key factors influencing the formation of sulfate aerosol on the surface of mineral aerosols: Insights from laboratory simulations and ACSM measurements. Atmospheric Environment, 2021, 253, 118341.	1.9	6
391	Measurement report: Fourteen months of real-time characterisation of the submicronic aerosol and its atmospheric dynamics at the Marseille–Longchamp supersite. Atmospheric Chemistry and Physics, 2021, 21, 7293-7319.	1.9	11
392	The importance of size ranges in aerosol instrument intercomparisons: a case study for the Atmospheric Tomography Mission. Atmospheric Measurement Techniques, 2021, 14, 3631-3655.	1.2	34
393	Impacts of primary emissions and secondary aerosol formation on air pollution in an urban area of China during the COVID-19 lockdown. Environment International, 2021, 150, 106426.	4.8	54
394	Quantifying traffic, biomass burning and secondary source contributions to atmospheric particle number concentrations at urban and suburban sites. Science of the Total Environment, 2021, 768, 145282.	3.9	26
395	Source apportionment of carbonaceous aerosols in Beijing with radiocarbon and organic tracers: insight into the differences between urban and rural sites. Atmospheric Chemistry and Physics, 2021, 21, 8273-8292.	1.9	15
396	Real-time characterization and source apportionment of fine particulate matter in the Delhi megacity area during late winter. Science of the Total Environment, 2021, 770, 145324.	3.9	35
398	Hydroxymethanesulfonate (HMS) Formation during Summertime Fog in an Arctic Oil Field. Environmental Science and Technology Letters, 2021, 8, 511-518.	3.9	9
399	Physical and chemical properties of urban aerosols in São Paulo, Brazil: links between composition and size distribution of submicron particles. Atmospheric Chemistry and Physics, 2021, 21, 8761-8773.	1.9	7
400	Measurement report: Molecular composition and volatility of gaseous organic compounds in a boreal forest – from volatile organic compounds to highly oxygenated organic molecules. Atmospheric Chemistry and Physics, 2021, 21, 8961-8977.	1.9	12
401	Quantification of cooking organic aerosol in the indoor environment using aerodyne aerosol mass spectrometers. Aerosol Science and Technology, 2021, 55, 1099-1114.	1.5	20
402	Mixing state of refractory black carbon aerosol in the South Asian outflow over the northern Indian Ocean during winter. Atmospheric Chemistry and Physics, 2021, 21, 9173-9199.	1.9	16

#	Article	IF	Citations
403	Persistence of Primary and Secondary Pollutants in Delhi: Concentrations and Composition from 2017 through the COVID Pandemic. Environmental Science and Technology Letters, 2021, 8, 492-497.	3.9	11
404	Cloud condensation nuclei characteristics at the Southern Great Plains site: role of particle size distribution and aerosol hygroscopicity. Environmental Research Communications, 2021, 3, 075002.	0.9	12
406	Aerosol microphysics and chemistry reveal the COVID19 lockdown impact on urban air quality. Scientific Reports, 2021, 11, 14477.	1.6	14
407	Eight years of sub-micrometre organic aerosol composition data from the boreal forest characterized using a machine-learning approach. Atmospheric Chemistry and Physics, 2021, 21, 10081-10109.	1.9	14
408	Changes in Sourceâ€Specific Black Carbon Aerosol and the Induced Radiative Effects Due to the COVIDâ€19 Lockdown. Geophysical Research Letters, 2021, 48, e2021GL092987.	1.5	6
409	Critical Role of Simultaneous Reduction of Atmospheric Odd Oxygen for Winter Haze Mitigation. Environmental Science & Technology, 2021, 55, 11557-11567.	4.6	21
410	Characteristics and sources of non-methane VOCs and their roles in SOA formation during autumn in a central Chinese city. Science of the Total Environment, 2021, 782, 146802.	3.9	25
411	PM ₁ composition and source apportionment at two sites in Delhi, India, across multiple seasons. Atmospheric Chemistry and Physics, 2021, 21, 11655-11667.	1.9	13
412	Estimation of Possible Primary Biological Particle Emissions and Rupture Events at the Southern Great Plains ARM Site. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034679.	1.2	3
413	Gas-Phase Chlorine Radical Oxidation of Alkanes: Effects of Structural Branching, NO _{<i>x</i>} , and Relative Humidity Observed during Environmental Chamber Experiments. Journal of Physical Chemistry A, 2021, 125, 7303-7317.	1.1	13
414	Diurnal evolution of total column and surface atmospheric ammonia in the megacity of Paris, France, during an intense springtime pollution episode. Atmospheric Chemistry and Physics, 2021, 21, 12091-12111.	1.9	2
416	The response of the Amazon ecosystem to the photosynthetically active radiation fields: integrating impacts of biomass burning aerosol and clouds in the NASA GEOS Earth system model. Atmospheric Chemistry and Physics, 2021, 21, 14177-14197.	1.9	5
417	Evaluation of the contribution of new particle formation to cloud droplet number concentration in the urban atmosphere. Atmospheric Chemistry and Physics, 2021, 21, 14293-14308.	1.9	5
418	Chlorine-Initiated Oxidation of α-Pinene: Formation of Secondary Organic Aerosol and Highly Oxygenated Organic Molecules. ACS Earth and Space Chemistry, 2021, 5, 2307-2319.	1.2	12
419	The NPF Effect on CCN Number Concentrations: A Review and Reâ€Evaluation of Observations From 35 Sites Worldwide. Geophysical Research Letters, 2021, 48, e2021GL095190.	1.5	12
420	Lung deposited surface area of atmospheric aerosol particles at three observatories in Japan. Atmospheric Environment, 2021, 262, 118597.	1.9	6
421	Aerosol water content enhancement leads to changes in the major formation mechanisms of nitrate and secondary organic aerosols in winter over the North China Plain. Environmental Pollution, 2021, 287, 117625.	3.7	6
422	Local and transboundary transport contributions to the wintertime particulate pollution in the Guanzhong Basin (GZB), China: A case study. Science of the Total Environment, 2021, 797, 148876.	3.9	11

#	Article	IF	CITATIONS
423	Secondary aerosol formation from a Chinese gasoline vehicle: Impacts of fuel (E10, gasoline) and driving conditions (idling, cruising). Science of the Total Environment, 2021, 795, 148809.	3.9	14
424	Effects of ozone and relative humidity in secondary inorganic aerosol formation during haze events in Beijing, China. Atmospheric Research, 2021, 264, 105855.	1.8	13
425	Apportionment of black and brown carbon spectral absorption sources in the urban environment of Athens, Greece, during winter. Science of the Total Environment, 2021, 801, 149739.	3.9	28
427	The different sensitivities of aerosol optical properties to particle concentration, humidity, and hygroscopicity between the surface level and the upper boundary layer in Guangzhou, China. Science of the Total Environment, 2022, 803, 150010.	3.9	9
428	Variability in the mass absorption cross section of black carbon (BC) aerosols is driven by BC internal mixing state at a central European background site (Melpitz, Germany) in winter. Atmospheric Chemistry and Physics, 2021, 21, 635-655.	1.9	20
429	Sources and Dynamics of Submicron Aerosol during the Autumn Onset of the Air Pollution Season in Delhi, India. ACS Earth and Space Chemistry, 2021, 5, 118-128.	1.2	27
430	Enhanced aerosol particle growth sustained by high continental chlorine emission in India. Nature Geoscience, 2021, 14, 77-84.	5.4	94
431	Ammonia and PM2.5 Air Pollution in Paris during the 2020 COVID Lockdown. Atmosphere, 2021, 12, 160.	1.0	32
433	Quantifying Longâ€Term Seasonal and Regional Impacts of North American Fire Activity on Continental Boundary Layer Aerosols and Cloud Condensation Nuclei. Earth and Space Science, 2020, 7, e2020EA001113.	1.1	1
434	Dimethyl sulfide control of the clean summertime Arctic aerosol and cloud. Elementa, 2013, 1, .	1.1	102
435	Association Between Health Symptoms and Particulate Matter from Traffic and Residential Heating â^' Results from RHINE III in Tartu. Open Respiratory Medicine Journal, 2016, 10, 58-69.	1.3	10
436	Transportable Aerosol Characterization Trailer with Trace Gas Chemistry: Design, Instruments and Verification. Aerosol and Air Quality Research, 2013, 13, 421-435.	0.9	33
437	Chemical Characterization of Submicron Aerosol Particles in Santiago de Chile. Aerosol and Air Quality Research, 2013, 13, 462-473.	0.9	55
438	Chemical and Source Characterization of Submicron Particles at Residential and Traffic Sites in the Helsinki Metropolitan Area, Finland. Aerosol and Air Quality Research, 2015, 15, 1213-1226.	0.9	29
439	Secondary Formation of Sulfate and Nitrate during a Haze Episode in Megacity Beijing, China. Aerosol and Air Quality Research, 2015, 15, 2246-2257.	0.9	65
440	Simultaneous Measurement of CCN Activity and Chemical Composition of Fine-Mode Aerosols at Noto Peninsula, Japan, in Autumn 2012. Aerosol and Air Quality Research, 2016, 16, 2107-2118.	0.9	24
441	Implication of Light Absorption Enhancement and Mixing State of Black Carbon (BC) by Coatings in Hong Kong. Aerosol and Air Quality Research, 2018, 18, 2753-2763.	0.9	10
442	Synthesis of Zeolites from Coal Fly Ash for Removal of Harmful Gaseous Pollutants: A Review. Aerosol and Air Quality Research, 2020, 20, 1127-1144.	0.9	57

#	Article	IF	CITATIONS
443	Characteristics of long-range transported PM2.5 at a coastal city using the single particle aerosol mass spectrometry. Environmental Engineering Research, 2019, 24, 690-698.	1.5	3
444	Molecular insights into new particle formation in Barcelona, Spain. Atmospheric Chemistry and Physics, 2020, 20, 10029-10045.	1.9	27
445	Laboratory studies of fresh and aged biomass burning aerosol emitted from east African biomass fuels – PartÂ1: Optical properties. Atmospheric Chemistry and Physics, 2020, 20, 10149-10168.	1.9	11
446	Model bias in simulating major chemical components of PM _{2.5} in China. Atmospheric Chemistry and Physics, 2020, 20, 12265-12284.	1.9	25
447	Using machine learning to derive cloud condensation nuclei number concentrations from commonly available measurements. Atmospheric Chemistry and Physics, 2020, 20, 12853-12869.	1.9	9
448	Sources and atmospheric dynamics of organic aerosol in New Delhi, India: insights from receptor modeling. Atmospheric Chemistry and Physics, 2020, 20, 735-752.	1.9	44
449	Characterization of submicron particles by time-of-flight aerosol chemical speciation monitor (ToF-ACSM) during wintertime: aerosol composition, sources, and chemical processes in Guangzhou, China. Atmospheric Chemistry and Physics, 2020, 20, 7595-7615.	1.9	33
450	Contrasting sources and processes of particulate species in haze days with low and high relative humidity in wintertime Beijing. Atmospheric Chemistry and Physics, 2020, 20, 9101-9114.	1.9	34
485	Cézeaux-Aulnat-Opme-Puy De Dôme: a multi-site for the long-term survey of the tropospheric composition and climate change. Atmospheric Measurement Techniques, 2020, 13, 3413-3445.	1.2	26
486	The new instrument using a TC–BC (total carbon–black carbon) method for the online measurement of carbonaceous aerosols. Atmospheric Measurement Techniques, 2020, 13, 4333-4351.	1.2	25
487	A new approach for measuring the carbon and oxygen content of atmospherically relevant compounds and mixtures. Atmospheric Measurement Techniques, 2020, 13, 4911-4925.	1.2	5
488	Multi-year ACSM measurements at the central European research station Melpitz (Germany) – PartÂ1: Instrument robustness, quality assurance, and impact of upper size cutoff diameter. Atmospheric Measurement Techniques, 2020, 13, 4973-4994.	1.2	20
489	Improved chloride quantification in quadrupole aerosol chemical speciation monitors (Q-ACSMs). Atmospheric Measurement Techniques, 2020, 13, 5293-5301.	1.2	9
490	An interlaboratory comparison of aerosol inorganic ion measurements by ion chromatography: implications for aerosol pH estimate. Atmospheric Measurement Techniques, 2020, 13, 6325-6341.	1.2	16
495	Numerical Simulation of Extreme Air Pollution by Fine Particulate Matter in China in Winter 2013. Asian Journal of Atmospheric Environment, 2014, 8, 25-34.	0.4	8
496	Significance of the organic aerosol driven climate feedback in the boreal area. Nature Communications, 2021, 12, 5637.	5.8	38
497	Chemical Characterization and Source Apportionment of Organic Aerosols in the Coastal City of Chennai, India: Impact of Marine Air Masses on Aerosol Chemical Composition and Potential for Secondary Organic Aerosol Formation. ACS Earth and Space Chemistry, 2021, 5, 3197-3209.	1.2	12
498	Comparative Assessment of Cooking Emission Contributions to Urban Organic Aerosol Using Online Molecular Tracers and Aerosol Mass Spectrometry Measurements. Environmental Science & Technology, 2021, 55, 14526-14535.	4.6	21

#	Article	IF	CITATIONS
499	Time-dependent source apportionment of submicron organic aerosol for a rural site in an alpine valley using a rolling positive matrix factorisation (PMF) window. Atmospheric Chemistry and Physics, 2021, 21, 15081-15101.	1.9	22
500	Characterization of non-refractory (NR) PM ₁ and source apportionment of organic aerosol in Kraków, Poland. Atmospheric Chemistry and Physics, 2021, 21, 14893-14906.	1.9	21
501	Determination of Emission Factors of Pollutants From Biomass Burning of African Fuels in Laboratory Measurements. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034731.	1.2	12
502	Evaluation of a New Aerosol Chemical Speciation Monitor (ACSM) System at an Urban Site in Atlanta, GA: The Use of Capture Vaporizer and PM _{2.5} Inlet. ACS Earth and Space Chemistry, 2021, 5, 2565-2576.	1.2	16
521	Fine Particle Water and PH in an Urban and Remote Location and the Role of Biomass Burning. Springer Atmospheric Sciences, 2017, , 837-843.	0.4	1
522	Aerosol Chemical Composition at the Mt. Cimone WMO/GAW Global Station. SpringerBriefs in Meteorology, 2018, , 99-118.	0.2	0
524	On the use of reference mass spectra for reducing uncertainty in source apportionment of solid-fuel burning in ambient organic aerosol. Atmospheric Measurement Techniques, 2021, 14, 6905-6916.	1.2	3
525	The Relationship between Molecular Size and Polarity of Atmospheric Organic Aerosol in Singapore and Its Implications for Volatility and Light Absorption Properties. ACS Earth and Space Chemistry, 2021, 5, 3182-3196.	1.2	9
526	Impact of COVID-19 lockdown on the optical properties and radiative effects of urban brown carbon aerosol. Geoscience Frontiers, 2022, 13, 101320.	4.3	6
527	Impact of the COVID-19 lockdown on the chemical composition and sources of urban PM2.5. Environmental Pollution, 2022, 292, 118417.	3.7	11
528	Mesoscale variations of the chemical composition of submicron aerosols and its influence on the cloud condensation nuclei activation. Atmospheric Environment, 2022, 268, 118778.	1.9	5
529	PM2.5 composition and sources in the San Joaquin Valley of California: A long-term study using ToF-ACSM with the capture vaporizer. Environmental Pollution, 2022, 292, 118254.	3.7	5
530	The impact of traffic on air quality in Ireland: insights from the simultaneous kerbside and suburban monitoring of submicron aerosols. Atmospheric Chemistry and Physics, 2020, 20, 10513-10529.	1.9	10
531	Measurement report: Comparison of airborne, in situ measured, lidar-based, and modeled aerosol optical properties in the central European background – identifying sources of deviations. Atmospheric Chemistry and Physics, 2021, 21, 16745-16773.	1.9	7
532	Response of atmospheric composition to COVID-19 lockdown measures during spring in the Paris region (France). Atmospheric Chemistry and Physics, 2021, 21, 17167-17183.	1.9	20
533	Influence of Particle Composition and Size on the Accuracy of Low Cost PM Sensors: Findings From Field Campaigns. Frontiers in Environmental Science, 2021, 9, .	1.5	6
534	Identifying source regions of air masses sampled at the tropical high-altitude site of Chacaltaya using WRF-FLEXPART and cluster analysis. Atmospheric Chemistry and Physics, 2021, 21, 16453-16477.	1.9	13
535	Planetary Boundary Layer Height Modulates Aerosol—Water Vapor Interactions During Winter in the Megacity of Delhi. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035681.	1.2	4

#	Article	IF	CITATIONS
536	Seasonal observation and source apportionment of carbonaceous aerosol from forested rural site (Lithuania). Atmospheric Environment, 2022, 272, 118934.	1.9	3
537	A systematic re-evaluation of methods for quantification of bulk particle-phase organic nitrates using real-time aerosol mass spectrometry. Atmospheric Measurement Techniques, 2022, 15, 459-483.	1.2	15
538	Real-time chemical composition of ambient fine aerosols and related cytotoxic effects in human lung epithelial cells in an urban area. Environmental Research, 2022, 209, 112792.	3.7	3
539	Unexpected Increases of Severe Haze Pollution During the Post COVIDâ€19 Period: Effects of Emissions, Meteorology, and Secondary Production. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	18
540	Highly oxidized organic aerosols in Beijing: Possible contribution of aqueous-phase chemistry. Atmospheric Environment, 2022, 273, 118971.	1.9	3
541	Characterization of particulate organic nitrates in the Yangtze River Delta, East China, using the time-of-flight aerosol chemical speciation monitor. Atmospheric Environment, 2022, 272, 118927.	1.9	8
542	Effect of Biomass Burning on PM _{2.5} Composition and Secondary Aerosol Formation During Postâ€Monsoon and Winter Haze Episodes in Delhi. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	21
543	Secondary organic aerosol association with cardiorespiratory disease mortality in the United States. Nature Communications, 2021, 12, 7215.	5.8	76
544	Online Chemical Characterization and Sources of Submicron Aerosol in the Major Mediterranean Port City of Piraeus, Greece. Atmosphere, 2021, 12, 1686.	1.0	7
545	Aerosol optical properties and brown carbon in Mexico City. Environmental Science Atmospheres, 2022, 2, 315-334.	0.9	10
546	Secondary organic aerosol formation from straw burning using an oxidation flow reactor. Journal of Environmental Sciences, 2022, 114, 249-258.	3.2	4
547	Bimodal distribution of size-resolved particle effective density: results from a short campaign in a rural environment over the North China Plain. Atmospheric Chemistry and Physics, 2022, 22, 2029-2047.	1.9	7
548	The impact of chlorine chemistry combined with heterogeneous N ₂ O ₅ reactions on air quality in China. Atmospheric Chemistry and Physics, 2022, 22, 3743-3762.	1.9	2
549	Formation and Evolution of Catechol-Derived SOA Mass, Composition, Volatility, and Light Absorption. ACS Earth and Space Chemistry, 0, , .	1.2	3
550	Investigating the Sources of Urban Air Pollution Using Low-Cost Air Quality Sensors at an Urban Atlanta Site. Environmental Science & Technology, 2022, 56, 7063-7073.	4.6	2
551	Formation of secondary organic aerosols from anthropogenic precursors in laboratory studies. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	51
552	Seasonality of Aerosol Sources Calls for Distinct Air Quality Mitigation Strategies. Toxics, 2022, 10, 121.	1.6	2
553	Source identification of the elemental fraction of particulate matter using size segregated, highly time-resolved data and an optimized source apportionment approach. Atmospheric Environment: X, 2022, 14, 100165.	0.8	4

#		IF	CITATIONS
π	Influence of aerosol physico-chemical properties on cloud microphysical parameters perceived using	1.0	-
554	in-situ high altitude observations. Atmospheric Research, 2022, 271, 106111.	1.8	7
555	Response of aerosol composition to the clean air actions in Baoji city of Fen-Wei River Basin. Environmental Research, 2022, 210, 112936.	3.7	2
556	Advanced instrumental approaches for chemical characterization of indoor particulate matter. Applied Spectroscopy Reviews, 2022, 57, 705-745.	3.4	13
557	Influence of biogenic emissions from boreal forests on aerosol–cloud interactions. Nature Geoscience, 2022, 15, 42-47.	5.4	25
558	Ground-based investigation of HO _{<i>x</i>} and ozone chemistry in biomass burning plumes in rural Idaho. Atmospheric Chemistry and Physics, 2022, 22, 4909-4928.	1.9	4
559	Sources and uncertainties of health risks for PM2.5-bound heavy metals based on synchronous online and offline filter-based measurements in a Chinese megacity. Environment International, 2022, 164, 107236.	4.8	9
562	Organic aerosol source apportionment by using rolling positive matrix factorization: Application to a Mediterranean coastal city. Atmospheric Environment: X, 2022, 14, 100176.	0.8	4
563	Molecular Characterization of Organosulfate-Dominated Aerosols over Agricultural Fields from the Southern Great Plains by High-Resolution Mass Spectrometry. ACS Earth and Space Chemistry, 2022, 6, 1733-1741.	1.2	5
564	Variations of PM2.5 sources in the context of meteorology and seasonality at an urban street canyon in Southwest Germany. Atmospheric Environment, 2022, 282, 119147.	1.9	7
565	Seasonal variability and source apportionment of non-methane VOCs using PTR-TOF-MS measurements in Delhi, India. Atmospheric Environment, 2022, 283, 119163.	1.9	12
566	Role of Aerosol Physicochemical Properties on Aerosol Hygroscopicity and Cloud Condensation Nuclei Activity in a Tropical Coastal Atmosphere. ACS Earth and Space Chemistry, 2022, 6, 1527-1542.	1.2	4
567	Machine learning elucidates the impact of short-term emission changes on air pollution in Beijing. Atmospheric Environment, 2022, 283, 119192.	1.9	4
568	Sources and processes of organic aerosol in non-refractory PM1 and PM2.5 during foggy and haze episodes in an urban environment of the Yangtze River Delta, China. Environmental Research, 2022, 212, 113557.	3.7	7
569	European aerosol phenomenology â~ 8: Harmonised source apportionment of organic aerosol using 22 Year-long ACSM/AMS datasets. Environment International, 2022, 166, 107325.	4.8	41
570	Time dependence of heterogeneous ice nucleation by ambient aerosols: laboratory observations and a formulation for models. Atmospheric Chemistry and Physics, 2022, 22, 6717-6748.	1.9	1
572	Real-time single particle characterization of oxidized organic aerosols in the East China Sea. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	4
573	Isoprene–Chlorine Oxidation in the Presence of NO <i>_x</i> and Implications for Urban Atmospheric Chemistry. Environmental Science & Technology, 2022, 56, 9251-9264.	4.6	3
574	Ice-nucleating particles from multiple aerosol sources in the urban environment of Beijing under mixed-phase cloud conditions. Atmospheric Chemistry and Physics, 2022, 22, 7539-7556.	1.9	4

#	Article	IF	CITATIONS
575	Strong light scattering of highly oxygenated organic aerosols impacts significantly on visibility degradation. Atmospheric Chemistry and Physics, 2022, 22, 7713-7726.	1.9	10
576	A local marine source of atmospheric particles in the High Arctic. Atmospheric Environment, 2022, 285, 119241.	1.9	3
577	Measurement report: The importance of biomass burning in light extinction and direct radiative effect of urban aerosol during the COVID-19 lockdown in Xi'an, China. Atmospheric Chemistry and Physics, 2022, 22, 8369-8384.	1.9	3
578	Practical approach for an easy determination of the limit of detection and uncertainty budget associated with on-line measurements of gas and aerosols by ion chromatography. Atmospheric Environment, 2022, 287, 119285.	1.9	1
579	Chemical composition of NR-PM1 in a coastal city of Southeast China: Temporal variations and formation pathways. Atmospheric Environment, 2022, 285, 119243.	1.9	2
580	Measurements of ambient aerosol properties. , 2022, , 343-393.		0
581	Combined organic and inorganic source apportionment on yearlong ToF-ACSM dataset at a suburban station in Athens. Atmospheric Measurement Techniques, 2022, 15, 4675-4692.	1.2	8
582	Aerosol composition, sources, and secondary processing during autumn at a regional site in the Beijing–Tianjin–Hebei region. Particuology, 2023, 75, 177-184.	2.0	1
583	The effect of clouds and precipitation on the aerosol concentrations and composition in a boreal forest environment. Atmospheric Chemistry and Physics, 2022, 22, 11823-11843.	1.9	5
584	Organic aerosol sources in Krakow, Poland, before implementation of a solid fuel residential heating ban. Science of the Total Environment, 2023, 855, 158655.	3.9	2
585	Indoor-outdoor relationship of submicron particulate matter in mechanically ventilated building: Chemical composition, sources and infiltration factor. Building and Environment, 2022, 222, 109429.	3.0	7
586	Compositional Constraints are Vital for Atmospheric PM _{2.5} Source Attribution over India. ACS Earth and Space Chemistry, 2022, 6, 2432-2445.	1.2	2
587	Aerosol–stratocumulus interactions: towards a better process understanding using closures between observations and large eddy simulations. Atmospheric Chemistry and Physics, 2022, 22, 12417-12441.	1.9	0
588	<i>Rolling</i> vs. <i>seasonal</i> PMF: real-world multi-site and synthetic dataset comparison. Atmospheric Measurement Techniques, 2022, 15, 5479-5495.	1.2	2
589	PM2.5 bound species variation and source characterization in the post-lockdown period of the Covid-19 pandemic in Delhi. Urban Climate, 2022, 46, 101290.	2.4	3
590	Contributions of primary sources to submicron organic aerosols in Delhi, India. Atmospheric Chemistry and Physics, 2022, 22, 13631-13657.	1.9	2
591	Source apportionment resolved by time of day for improved deconvolution of primary source contributions to air pollution. Atmospheric Measurement Techniques, 2022, 15, 6051-6074.	1.2	5
592	Real-Time Source Apportionment of Organic Aerosols in Three European Cities. Environmental Science & Technology, 2022, 56, 15290-15297.	4.6	2

#	Article	IF	CITATIONS
593	Intercomparison of airborne and surface-based measurements during the CLARIFY, ORACLES and LASIC field experiments. Atmospheric Measurement Techniques, 2022, 15, 6329-6371.	1.2	2
594	Chemical characterization of aerosols in the South Asian outflow over the northern Indian Ocean: latitudinal gradients and ultrafine particle events. Environmental Science Atmospheres, 2023, 3, 374-386.	0.9	4
595	The importance of ammonia for springtime atmospheric new particle formation and aerosol number abundance over the United States. Science of the Total Environment, 2023, 863, 160756.	3.9	3
596	Organosulfate Formation in Proxies for Aged Sea Spray Aerosol: Reactive Uptake of Isoprene Epoxydiols to Acidic Sodium Sulfate. ACS Earth and Space Chemistry, 2022, 6, 2790-2800.	1.2	2
597	Aerosol activation characteristics and prediction at the central European ACTRIS research station of Melpitz, Germany. Atmospheric Chemistry and Physics, 2022, 22, 15943-15962.	1.9	25
598	Detecting and Characterizing Particulate Organic Nitrates with an Aerodyne Long-ToF Aerosol Mass Spectrometer. ACS Earth and Space Chemistry, 0, , .	1.2	0
599	Towards reliable retrievals of cloud droplet number for non-precipitating planetary boundary layer clouds and their susceptibility to aerosol. Frontiers in Remote Sensing, 0, 3, .	1.3	1
600	Staggered-peak production is a mixed blessing in the control of particulate matter pollution. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	0
601	Differentiating the Contributions of Particle Concentration, Humidity, and Hygroscopicity to Aerosol Light Scattering at Three Sites in China. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	1
602	Mass Absorption Efficiency of PM1 in Mexico City during ACU15. Atmosphere, 2023, 14, 100.	1.0	0
603	Fire Influence on Regional to Global Environments and Air Quality (FIREXâ€AQ). Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	24
604	Look Up: Probing the Vertical Profile of New Particle Formation and Growth in the Planetary Boundary Layer With Models and Observations. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	3
605	Measurement report: Intensive biomass burning emissions and rapid nitrate formation drive severe haze formation in the Sichuan Basin, China – insights from aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2023, 23, 1147-1167.	1.9	3
606	Current air quality monitoring methods. , 2023, , 13-103.		0
607	Measurement report: Long-range transport and the fate of dimethyl sulfide oxidation products in the free troposphere derived from observations at the high-altitude research station Chacaltaya (5240 m a.s.l.) in the Bolivian Andes. Atmospheric Chemistry and Physics, 2023, 23, 895-920.	1.9	6
608	Long-range transported continental aerosol in the eastern North Atlantic: three multiday event regimes influence cloud condensation nuclei. Atmospheric Chemistry and Physics, 2023, 23, 4221-4246.	1.9	1
609	Factors influencing ambient particulate matter in Delhi, India: Insights from machine learning. Aerosol Science and Technology, 2023, 57, 546-561.	1.5	4
610	Variations of chemical composition of NR-PM1 under the influence of sea land breeze in a coastal city of Southeast China. Atmospheric Research, 2023, 285, 106626.	1.8	2

#	Article	IF	CITATIONS
611	Ionic Strength Enhances the Multiphase Oxidation Rate of Sulfur Dioxide by Ozone in Aqueous Aerosols: Implications for Sulfate Production in the Marine Atmosphere. Environmental Science & Technology, 2023, 57, 6609-6615.	4.6	8
612	Secondary aerosol formation drives atmospheric particulate matter pollution over megacities (Beijing and Seoul) in East Asia. Atmospheric Environment, 2023, 301, 119702.	1.9	2
613	PPWD-SDEP-IC monitoring system for atmospheric precursor inorganic gases and PM2.5 water-soluble ions. Journal of Aerosol Science, 2023, 170, 106160.	1.8	3
614	In-situ measurement of secondary aerosol formation potential using a flow reactor: Livestock agricultural area. Atmospheric Environment, 2023, 301, 119695.	1.9	0
616	Characteristics of fine particle matter at the top of Shanghai Tower. Atmospheric Chemistry and Physics, 2023, 23, 1329-1343.	1.9	5
617	Impacts of biomass burning and photochemical processing on the light absorption of brown carbon in the southeastern Tibetan Plateau. Atmospheric Chemistry and Physics, 2023, 23, 1879-1892.	1.9	0
618	Estimation of Carbonaceous Aerosol Sources under Extremely Cold Weather Conditions in an Urban Environment. Atmosphere, 2023, 14, 310.	1.0	1
619	Source apportionment of ambient PM2.5 in an industrialized city using dispersion-normalized, multi-time resolution factor analyses. Environmental Pollution, 2023, 323, 121281.	3.7	6
620	How much urban air quality is affected by local emissions: A unique case study from a megacity in the Pearl River Delta, China. Atmospheric Environment, 2023, 299, 119666.	1.9	2
622	Aerosol optical properties calculated from size distribution measurements: An uncertainty study. Aerosol Science and Technology, 2023, 57, 597-607.	1.5	0
624	Introduction to Atmospheric Simulation Chambers and Their Applications. , 2023, , 1-72.		0
644	History of Mediterranean Aerosol Observations. , 2023, , 145-252.		2