Fractional Cattaneo-Type Equations and Generalized Th

Journal of Thermal Stresses 34, 97-114 DOI: 10.1080/01495739.2010.511931

Citation Report

#	Article	IF	CITATIONS
1	Solutions of the space-time fractional Cattaneo diffusion equation. Physica A: Statistical Mechanics and Its Applications, 2011, 390, 1876-1883.	1.2	95
2	Time-fractional boundary optimal control of thermal stresses. , 2012, , .		0
3	Thermal wave model of bioheat transfer with modified Riemann–Liouville fractional derivative. Journal of Physics A: Mathematical and Theoretical, 2012, 45, 485101.	0.7	75
4	Analytical solution to laser short-pulse heating of microsized metal wire: volumetric and surface heat source considerations. Canadian Journal of Physics, 2012, 90, 911-918.	0.4	3
5	Theories of thermal stresses based on space–time-fractional telegraph equations. Computers and Mathematics With Applications, 2012, 64, 3321-3328.	1.4	54
6	Fractional Ultrafast Laser–Induced Thermo-Elastic Behavior In Metal Films. Journal of Thermal Stresses, 2012, 35, 637-651.	1.1	33
7	A High-Order Difference Scheme for the Generalized Cattaneo Equation. East Asian Journal on Applied Mathematics, 2012, 2, 170-184.	0.4	27
8	Nonaxisymmetric solutions of the time-fractional heat conduction equation in a half-space in cylindrical coordinates. Journal of Mathematical Sciences, 2012, 183, 252-260.	0.1	3
9	Fractional order theory in thermoelastic solid with three-phase lag heat transfer. Archive of Applied Mechanics, 2012, 82, 557-572.	1.2	78
10	An inverse problem to estimate relaxation parameter and order of fractionality in fractional single-phase-lag heat equation. International Journal of Heat and Mass Transfer, 2012, 55, 2095-2101.	2.5	66
11	The Neumann boundary problem for axisymmetric fractional heat conduction equation in a solid withÂcylindrical hole and associated thermal stress. Meccanica, 2012, 47, 23-29.	1.2	15
12	Effect of variable thermal conductivity on a half-space under the fractional order theory of thermoelasticity. International Journal of Mechanical Sciences, 2013, 74, 185-189.	3.6	125
13	Reflection and transmission of plane waves at the interface of an elastic half-space and a fractional order thermoelastic half-space. Archive of Applied Mechanics, 2013, 83, 1109-1128.	1.2	11
14	Fundamental Solutions to Robin Boundary-Value Problems for the Time-Fractional Heat-Conduction Equation in a Half Line. Journal of Mathematical Sciences, 2013, 194, 322-329.	0.1	1
15	The Cattaneo-type time fractional heat conduction equation for laser heating. Computers and Mathematics With Applications, 2013, 66, 824-831.	1.4	67
16	Fractional Cattaneo heat equation in a semi-infinite medium. Chinese Physics B, 2013, 22, 014401.	0.7	21
17	Effect of fractional parameter on plane waves of generalized magneto–thermoelastic diffusion with reference temperature-dependent elastic medium. Computers and Mathematics With Applications, 2013, 65, 1103-1118.	1.4	38
18	Fundamental Solutions to the Central Symmetric Space-Time Fractional Heat Conduction Equation and Associated Thermal Stresses. Lecture Notes in Electrical Engineering, 2013, , 123-132.	0.3	2

#	Article	IF	CITATIONS
19	Thermoelasticity of thin shells based on the time-fractional heat conduction equation. Open Physics, 2013, 11, .	0.8	4
20	Effect of hydrostatic initial stress on a fiber-reinforced thermoelastic medium with fractional derivative heat transfer. Multidiscipline Modeling in Materials and Structures, 2013, 9, 410-426.	0.6	18
21	Fractional Heat Conduction in an Infinite Medium with a Spherical Inclusion. Entropy, 2013, 15, 4122-4133.	1.1	31
22	Uniqueness, reciprocity theorem, and plane waves in thermoelastic diffusion with a fractional order derivative. Chinese Physics B, 2013, 22, 074601.	0.7	12
23	Fractional Heat Conduction in Infinite One-Dimensional Composite Medium. Journal of Thermal Stresses, 2013, 36, 351-363.	1.1	35
24	Non-Equilibrium Heating of a Solid Surface by a Short-Pulse Laser: A Closed-Form Solution Including Thermo-Mechanical Coupling. Journal of Thermal Stresses, 2013, 36, 1308-1321.	1.1	6
25	ASYMPTOTIC ANALYSIS OF GENERALIZED THERMOELASTICITY FOR AXISYMMETRIC PLANE STRAIN PROBLEM WITH TEMPERATURE-DEPENDENT MATERIAL PROPERTIES. International Journal of Applied Mechanics, 2013, 05, 1350023.	1.3	14
26	Evolution of the Initial Box-Signal for Fractional Diffusion-Wave Equation: The Second Cauchy and Source Problems. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 36-41.	0.4	0
27	Application of fractional order theory of thermoelasticity to a 2D problem for a half-space. Applied Mathematics and Computation, 2014, 248, 584-592.	1.4	20
28	One-dimensional problem of a fractional order two-temperature generalized thermo-piezoelasticity. Mathematics and Mechanics of Solids, 2014, 19, 672-693.	1.5	18
29	State-space approach for an infinite medium with a spherical cavity based upon two-temperature generalized thermoelasticity theory and fractional heat conduction. Zeitschrift Fur Angewandte Mathematik Und Physik, 2014, 65, 149-164.	0.7	30
30	Time-fractional heat equations and negative absolute temperatures. Computers and Mathematics With Applications, 2014, 67, 164-171.	1.4	59
31	Application of fractional order theory of thermoelasticity to a 1D problem for a halfâ€space. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2014, 94, 509-515.	0.9	41
32	Generalized Fractional Thermoelasticity Associated with Two Relaxation Times. Journal of Thermal Stresses, 2014, 37, 1080-1098.	1.1	29
33	Optimal Boundary Control of Thermal Stresses in a Plate Based on Time-Fractional Heat Conduction Equation. Journal of Thermal Stresses, 2014, 37, 969-980.	1.1	10
34	Generalized thermoelastic infinite medium with voids subjected to a instantaneous heat sources with fractional derivative heat transfer. International Journal of Mechanical Sciences, 2014, 89, 84-91.	3.6	54
35	Transient fractional heat conduction with generalized Cattaneo model. International Journal of Heat and Mass Transfer, 2014, 76, 535-539.	2.5	70
36	Fibre-reinforced Magneto-thermoelastic Rotating Medium with Fractional Heat Conduction. Procedia Engineering, 2015, 127, 605-612.	1.2	30

#	Article	IF	CITATIONS
37	Generalized Boundary Conditions for the Time-Fractional Advection Diffusion Equation. Entropy, 2015, 17, 4028-4039.	1.1	20
38	Effect of fractional order parameter on thermoelastic behaviors of elastic medium with variable properties. Acta Mechanica Solida Sinica, 2015, 28, 682-692.	1.0	9
39	Eigenvalue approach on fractional order theory of thermoelastic diffusion problem for an infinite elastic medium with a spherical cavity. Applied Mathematical Modelling, 2015, 39, 6196-6206.	2.2	89
40	Application of Fractional Order Theory of Thermoelasticity in a Thick Plate Under Axisymmetric Temperature Distribution. Journal of Thermal Stresses, 2015, 38, 733-743.	1.1	28
41	Fractional model of thermoelasticity for a halfâ€space overlaid by a thick layer. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2015, 95, 511-518.	0.9	19
42	Fractional Order Thermoelasticity Theory for a Half-Space Subjected to an Axisymmetric Heat Distribution. Mechanics of Advanced Materials and Structures, 2015, 22, 925-932.	1.5	17
43	Fractional order thermoelastic interactions in an infinite porous material due to distributed time-dependent heat sources. Meccanica, 2015, 50, 2167-2178.	1.2	40
44	Time fractional dual-phase-lag heat conduction equation. Chinese Physics B, 2015, 24, 034401.	0.7	46
45	A one-dimensional fractional order thermoelastic problem for a spherical cavity. Mathematics and Mechanics of Solids, 2015, 20, 512-521.	1.5	35
46	Fractional Thermoelasticity. Solid Mechanics and Its Applications, 2015, , .	0.1	223
46 47	Fractional Thermoelasticity. Solid Mechanics and Its Applications, 2015, , . Time-fractional thermoelasticity problem for a sphere subjected to the heat flux. Applied Mathematics and Computation, 2015, 257, 327-334.	0.1	223 10
46 47 48	Fractional Thermoelasticity. Solid Mechanics and Its Applications, 2015, , . Time-fractional thermoelasticity problem for a sphere subjected to the heat flux. Applied Mathematics and Computation, 2015, 257, 327-334. Wave propagation at the boundary surface of an elastic and thermoelastic diffusion media with fractional order derivative. Applied Mathematical Modelling, 2015, 39, 1674-1688.	0.1 1.4 2.2	223 10 14
46 47 48 49	Fractional Thermoelasticity. Solid Mechanics and Its Applications, 2015, , . Time-fractional thermoelasticity problem for a sphere subjected to the heat flux. Applied Mathematics and Computation, 2015, 257, 327-334. Wave propagation at the boundary surface of an elastic and thermoelastic diffusion media with fractional order derivative. Applied Mathematical Modelling, 2015, 39, 1674-1688. Fractional Order Thermoelastic Problem for an Infinitely Long Solid Circular Cylinder. Journal of Thermal Stresses, 2015, 38, 133-145.	0.1 1.4 2.2 1.1	223 10 14 28
46 47 48 49 50	Fractional Thermoelasticity. Solid Mechanics and Its Applications, 2015, , .Time-fractional thermoelasticity problem for a sphere subjected to the heat flux. Applied Mathematics and Computation, 2015, 257, 327-334.Wave propagation at the boundary surface of an elastic and thermoelastic diffusion media with fractional order derivative. Applied Mathematical Modelling, 2015, 39, 1674-1688.Fractional Order Thermoelastic Problem for an Infinitely Long Solid Circular Cylinder. Journal of Thermal Stresses, 2015, 38, 133-145.Efficient and stable numerical methods for the two-dimensional fractional Cattaneo equation. Numerical Algorithms, 2015, 69, 795-818.	0.1 1.4 2.2 1.1	223 10 14 28 13
 46 47 48 49 50 51 	Fractional Thermoelasticity. Solid Mechanics and Its Applications, 2015, , .Time-fractional thermoelasticity problem for a sphere subjected to the heat flux. Applied Mathematics and Computation, 2015, 257, 327-334.Wave propagation at the boundary surface of an elastic and thermoelastic diffusion media with fractional order derivative. Applied Mathematical Modelling, 2015, 39, 1674-1688.Fractional Order Thermoelastic Problem for an Infinitely Long Solid Circular Cylinder. Journal of Thermal Stresses, 2015, 38, 133-145.Efficient and stable numerical methods for the two-dimensional fractional Cattaneo equation. Numerical Algorithms, 2015, 69, 795-818.Compact Crank〓Nicolson Schemes for a Class of Fractional Cattaneo Equation in Inhomogeneous Medium. Journal of Scientific Computing, 2015, 62, 747-771.	0.1 1.4 2.2 1.1 1.1 1.1	 223 10 14 28 13 52
 46 47 48 49 50 51 52 	Fractional Thermoelasticity. Solid Mechanics and Its Applications, 2015, , .Time-fractional thermoelasticity problem for a sphere subjected to the heat flux. Applied Mathematics and Computation, 2015, 257, 327-334.Wave propagation at the boundary surface of an elastic and thermoelastic diffusion media with fractional order derivative. Applied Mathematical Modelling, 2015, 39, 1674-1688.Fractional Order Thermoelastic Problem for an Infinitely Long Solid Circular Cylinder. Journal of Thermal Stresses, 2015, 38, 133-145.Efficient and stable numerical methods for the two-dimensional fractional Cattaneo equation. Numerical Algorithms, 2015, 69, 795-818.Compact Crank–Nicolson Schemes for a Class of Fractional Cattaneo Equation in Inhomogeneous Medium. Journal of Scientific Computing, 2015, 62, 747-771.2D Problem for a Long Cylinder in the Fractional Theory of Thermoelasticity. Latin American Journal of Solids and Structures, 2016, 13, 1596-1613.	0.1 1.4 2.2 1.1 1.1 1.1 0.6	223 10 14 28 13 52 8
 46 47 48 49 50 51 52 53 	Fractional Thermoelasticity. Solid Mechanics and Its Applications, 2015, , .Time-fractional thermoelasticity problem for a sphere subjected to the heat flux. Applied Mathematics and Computation, 2015, 257, 327-334.Wave propagation at the boundary surface of an elastic and thermoelastic diffusion media with fractional order derivative. Applied Mathematical Modelling, 2015, 39, 1674-1688.Fractional Order Thermoelastic Problem for an Infinitely Long Solid Circular Cylinder. Journal of Thermal Stresses, 2015, 38, 133-145.Efficient and stable numerical methods for the two-dimensional fractional Cattaneo equation. Numerical Algorithms, 2015, 69, 795-818.Compact Crankã€"Nicolson Schemes for a Class of Fractional Cattaneo Equation in Inhomogeneous Medium. Journal of Scientific Computing, 2015, 62, 747-771.2D Problem for a Long Cylinder in the Fractional Theory of Thermoelasticity. Latin American Journal of Solids and Structures, 2016, 13, 1596-1613.Time-Fractional Heat Conduction in a Half-Line Domain due to Boundary Value of Temperature Varying Harmonically in Time. Mathematical Problems in Engineering, 2016, 2016, 1-7.	0.1 1.4 2.2 1.1 1.1 1.1 0.6 0.6	223 10 14 28 13 52 8 8

#	Article	IF	CITATIONS
55	One-dimensional problem for infinitely long annular cylinder in the context of fractional order theory of thermoelasticity. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2016, 96, 1482-1489.	0.9	9
56	Anomalous convection diffusion and wave coupling transport of cells on comb frame with fractional Cattaneo–Christov flux. Communications in Nonlinear Science and Numerical Simulation, 2016, 38, 45-58.	1.7	56
57	Effects of variable thermal conductivity and fractional order of heat transfer on a perfect conducting infinitely long hollow cylinder. International Journal of Thermal Sciences, 2016, 108, 62-69.	2.6	72
58	An improved heat conduction model with Riesz fractional Cattaneo–Christov flux. International Journal of Heat and Mass Transfer, 2016, 103, 1191-1197.	2.5	39
59	Application of fractional order theory of thermoelasticity to a bilayered structure with interfacial conditions. Journal of Thermal Stresses, 2016, 39, 1017-1034.	1.1	15
60	Fractional thermoelasticity applications for porous asphaltic materials. Petroleum Science, 2016, 13, 550-560.	2.4	31
61	Problem of axisymmetric plane strain of generalized thermoelastic materials with variable thermal properties. European Journal of Mechanics, A/Solids, 2016, 60, 28-38.	2.1	8
62	Fractional single-phase-lagging heat conduction model for describing anomalous diffusion. Propulsion and Power Research, 2016, 5, 45-54.	2.0	4
63	Thermoelastic behavior of elastic media with temperature-dependent properties under transient thermal shock. Journal of Thermal Stresses, 2016, 39, 460-473.	1.1	19
64	Dynamic response of a generalized piezoelectric-thermoelastic problem under fractional order theory of thermoelasticity. Mechanics of Advanced Materials and Structures, 2016, 23, 1173-1180.	1.5	33
65	Asymptotic analysis of thermoelastic response in functionally graded thin plate subjected to a transient thermal shock. Composite Structures, 2016, 139, 233-242.	3.1	17
66	Numerical solution of FSPL heat conduction equation for analysis of thermal propagation. Applied Mathematics and Computation, 2016, 273, 1006-1017.	1.4	9
67	Plane wave propagation and domain of influence in fractional order thermoelastic materials with three-phase-lag heat transfer. Mechanics of Advanced Materials and Structures, 2016, 23, 896-908.	1.5	14
68	Accurate Padé Global Approximations for the Mittag-Leffler Function, Its Inverse, and Its Partial Derivatives to Efficiently Compute Convergent Power Series. International Journal of Applied and Computational Mathematics, 2017, 3, 347-362.	0.9	16
69	Application of fractional order theory of thermoelasticity to 3D time-dependent thermal shock problem for a half-space. Mechanics of Advanced Materials and Structures, 2017, 24, 27-35.	1.5	11
70	Fractional Heat Conduction in a Thin Circular Plate With Constant Temperature Distribution and Associated Thermal Stresses. Journal of Heat Transfer, 2017, 139, .	1.2	9
71	Unsteady Marangoni convection heat transfer of fractional Maxwell fluid with Cattaneo heat flux. Applied Mathematical Modelling, 2017, 44, 497-507.	2.2	35
72	Fractional order theory to an infinite thermo-viscoelastic body with a cylindrical cavity in the presence of an axial uniform magnetic field. Journal of Electromagnetic Waves and Applications, 2017, 31, 495-513	1.0	11

#	Article	IF	CITATIONS
73	Application of fractional order theory to a functionally graded perfect conducting thermoelastic half space with variable Lamé's Modulii. Microsystem Technologies, 2017, 23, 4891-4902.	1.2	4
74	Response of fractional ordered micropolar thermoviscoelastic half-space with diffusion due to ramp type mechanical load. Applied Mathematical Modelling, 2017, 49, 144-161.	2.2	10
75	Numerical simulation of time fractional dual-phase-lag model of heat transfer within skin tissue during thermal therapy. Journal of Thermal Biology, 2017, 67, 49-58.	1.1	51
76	Fractional phase-lag Green–Naghdi thermoelasticity theories. Journal of Thermal Stresses, 2017, 40, 1063-1078.	1.1	12
77	Thermo-mechanical interactions in a fractional order generalized thermoelastic solid with diffusion. Microsystem Technologies, 2017, 23, 5435-5446.	1.2	9
78	Transient thermal stress intensity factors for a circumferential crack in a hollow cylinder based on generalized fractional heat conduction. International Journal of Thermal Sciences, 2017, 121, 336-347.	2.6	46
79	Generalized solutions of transient thermal shock problem with bounded boundaries. Meccanica, 2017, 52, 1935-1945.	1.2	3
80	Application of fractional order theory of magneto-thermoelasticity to an infinite perfect conducting body with a cylindrical cavity. Microsystem Technologies, 2017, 23, 2447-2458.	1.2	17
81	An alternating direction Galerkin method for a time-fractional partial differential equation with damping in two space dimensions. Advances in Difference Equations, 2017, 2017, .	3.5	6
82	Two-dimensional electromagneto-thermoelastic coupled problem under fractional order theory of thermoelasticity. Journal of Thermal Stresses, 2018, 41, 645-657.	1.1	14
83	Thermoelastic interaction in functionally graded thick hollow cylinder with temperature-dependent properties. Journal of Thermal Stresses, 2018, 41, 399-417.	1.1	14
84	Quasiâ€Relativistic Heat Equation via Lévy Stable Distributions: Exact Solutions. Annalen Der Physik, 2018, 530, 1700374.	0.9	2
85	Unified GN model of electro-thermoelasticity theories with fractional order of heat transfer. Microsystem Technologies, 2018, 24, 4965-4979.	1.2	9
86	Unsteady MHD flow and heat transfer of fractional Maxwell viscoelastic nanofluid with Cattaneo heat flux and different particle shapes. Chinese Journal of Physics, 2018, 56, 1199-1211.	2.0	63
87	Fractional heat conduction in a thin hollow circular disk and associated thermal deflection. Journal of Thermal Stresses, 2018, 41, 262-270.	1.1	14
88	A Fractional Single-Phase-Lag Model of Heat Conduction for Describing Propagation of the Maximum Temperature in a Finite Medium. Entropy, 2018, 20, 876.	1.1	6
89	Fractional thermoelasticity problem for a plane with a line crack under heat flux loading. Journal of Thermal Stresses, 2018, 41, 1313-1328.	1.1	17
90	Simulation of the Heat Conduction Process in the Claydite-Block Construction with Taking into Account the Fractal Structure of the Material. , 2018, , .		9

# 91	ARTICLE Time fractional derivative model with Mittag-Leffler function kernel for describing anomalous diffusion: Analytical solution in bounded-domain and model comparison. Chaos, Solitons and Fractals, 2018, 115, 306-312.	IF 2.5	CITATIONS
92	Fractional Diffusion–Telegraph Equations and Their Associated Stochastic Solutions. Theory of Probability and Its Applications, 2018, 62, 552-574.	0.1	28
93	Analytical solution of time fractional Cattaneo heat equation for finite slab under pulse heat flux. Applied Mathematics and Mechanics (English Edition), 2018, 39, 1465-1476.	1.9	15
94	A renovated Buongiorno's model for unsteady Sisko nanofluid with fractional Cattaneo heat flux. International Journal of Heat and Mass Transfer, 2018, 126, 277-286.	2.5	22
95	A Crank-Nicolson-type compact difference method and its extrapolation for time fractional Cattaneo convection-diffusion equations with smooth solutions. Numerical Algorithms, 2019, 81, 489-527.	1.1	5
96	Multiscale RBF-based central high resolution schemes for simulation of generalized thermoelasticity problems. Frontiers of Structural and Civil Engineering, 2019, 13, 429-455.	1.2	7
97	Finite difference spectral approximation for the timeâ€space fractional telegraph equation and its parameter estimation. Mathematical Methods in the Applied Sciences, 2019, 42, 6475-6489.	1.2	2
98	Time-Fractional Heat Conduction in Two Joint Half-Planes. Symmetry, 2019, 11, 800.	1.1	3
99	Dynamic model of fractional thermoelasticity due to ramp-type heating with two relaxation times. Sadhana - Academy Proceedings in Engineering Sciences, 2019, 44, 1.	0.8	1
100	Effects of fractional and two-temperature parameters on stress distributions for an unbounded generalized thermoelastic medium with spherical cavity. Arab Journal of Basic and Applied Sciences, 2019, 26, 302-310.	1.0	7
101	Time-Fractional Heat Conduction in a Plane with Two External Half-Infinite Line Slits under Heat Flux Loading. Symmetry, 2019, 11, 689.	1.1	8
102	Numerical simulation of fractional non-Fourier heat conduction in skin tissue. Journal of Thermal Biology, 2019, 84, 274-284.	1.1	23
103	Fractional thermoelasticity problem for an infinite solid with a cylindrical hole under harmonic heat flux boundary condition. Acta Mechanica, 2019, 230, 2137-2144.	1.1	7
104	A new time and spatial fractional heat conduction model for Maxwell nanofluid in porous medium. Computers and Mathematics With Applications, 2019, 78, 1621-1636.	1.4	21
105	Time-fractional heat conduction in an infinite plane containing an external crack under heat flux loading. Computers and Mathematics With Applications, 2019, 78, 1386-1395.	1.4	7
106	Fundamental solution for a line source of heat in the fractional order theory of thermoelasticity using the new Caputo definition. Journal of Thermal Stresses, 2019, 42, 18-28.	1.1	22
107	Investigations on the thermal behavior and associated thermal stresses for short pulse laser heating. IOP Conference Series: Materials Science and Engineering, 2019, 657, 012054.	0.3	1
108	Heat conduction in porcine muscle and blood: experiments and time-fractional telegraph equation model. Journal of the Royal Society Interface, 2019, 16, 20190726.	1.5	25

#	Article	IF	CITATIONS
109	The Temporal Second Order Difference Schemes Based on the Interpolation Approximation for the Time Multi-term Fractional Wave Equation. Journal of Scientific Computing, 2019, 78, 467-498.	1.1	26
110	Study of wave propagation in a half-space in the fractional-order theory of thermoelasticity using the new Caputo definition. Mathematics and Mechanics of Solids, 2019, 24, 2083-2095.	1.5	4
111	A fast secondâ€order difference scheme for the space–time fractional equation. Numerical Methods for Partial Differential Equations, 2019, 35, 1326-1342.	2.0	4
112	On the time-fractional Cattaneo equation of distributed order. Physica A: Statistical Mechanics and Its Applications, 2019, 518, 210-233.	1.2	25
113	On dual-phase-lag magneto-thermo-viscoelasticity theory with memory-dependent derivative. Microsystem Technologies, 2019, 25, 2915-2929.	1.2	20
114	Transient response in a thermoelastic half-space solid due to a laser pulse under three theories with memory-dependent derivative. Acta Mechanica, 2019, 230, 179-199.	1.1	52
115	Generalized theory of diffusive stresses associated with the time-fractional diffusion equation and nonlocal constitutive equations for the stress tensor. Computers and Mathematics With Applications, 2019, 78, 1819-1825.	1.4	9
116	Asymptotic approach to transient thermal shock problem with variable material properties. Mechanics of Advanced Materials and Structures, 2019, 26, 350-358.	1.5	4
117	Nonlocal theory of thermoelastic materials with voids and fractional derivative heat transfer. Waves in Random and Complex Media, 2019, 29, 595-613.	1.6	111
118	Investigation on a thermo-piezoelectric problem with temperature-dependent properties under fractional order theory of thermoelasticity. Mechanics of Advanced Materials and Structures, 2019, 26, 552-558.	1.5	13
119	Fractional order theory of thermo-viscoelasticity and application. Mechanics of Time-Dependent Materials, 2020, 24, 179-195.	2.3	32
120	Modified Green–Lindsay model on the reflection and propagation of thermoelastic plane waves at an isothermal stress-free surface. Indian Journal of Physics, 2020, 94, 1215-1225.	0.9	12
121	On fractional Cattaneo equation with partially reflecting boundaries. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 085204.	0.7	9
122	New insights on microscale transient thermoelastic responses for metals with electron-lattice coupling mechanism. European Journal of Mechanics, A/Solids, 2020, 80, 103887.	2.1	17
123	Twoâ€layer flows of generalized immiscible second grade fluids in a rectangular channel. Mathematical Methods in the Applied Sciences, 2020, 43, 1337-1348.	1.2	10
124	Thermo-hydro-mechanical dynamic response of a cylindrical lined tunnel in a poroelastic medium with fractional thermoelastic theory. Soil Dynamics and Earthquake Engineering, 2020, 130, 105960.	1.9	11
125	A Discrete Grönwall Inequality and Energy Estimates in the Analysis of a Discrete Model for a Nonlinear Time-Fractional Heat Equation. Mathematics, 2020, 8, 1539.	1.1	10
126	From the Chemical Potential Tensor and Concentration Tensor to Nonlocal Continuum Theories. Journal of Mathematical Sciences, 2020, 249, 389-403.	0.1	2

#	Article	IF	CITATIONS
127	Fractional-order heat conduction models from generalized Boltzmann transport equation. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190280.	1.6	13
128	Fractional thermoelasticity problem for an infinite solid with a penny-shaped crack under prescribed heat flux across its surfaces. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190289.	1.6	9
129	Fractional thermo-viscoelastic response of biological tissue with variable thermal material properties. Journal of Thermal Stresses, 2020, 43, 1120-1137.	1.1	30
130	Two dimensional spherical regions problem in the context of the theory of generalized thermoelastic diffusion. Journal of Thermal Stresses, 2020, 43, 1150-1164.	1.1	11
131	Fractional thermoelasticity revisited with new definitions of fractional derivative. European Journal of Mechanics, A/Solids, 2020, 84, 104043.	2.1	33
132	The Super-Diffusive Singular Perturbation Problem. Mathematics, 2020, 8, 403.	1.1	0
133	Fractional order theory of Cattaneo-type thermoelasticity using new fractional derivatives. Applied Mathematical Modelling, 2020, 87, 731-751.	2.2	21
134	The effect of fractional thermoelasticity on two-dimensional problems in spherical regions under axisymmetric distributions. Journal of Thermal Stresses, 2020, 43, 440-455.	1.1	20
135	Theoretical analysis of a model of fluid flow in a reservoir with the Caputo–Fabrizio operator. Communications in Nonlinear Science and Numerical Simulation, 2020, 84, 105186.	1.7	5
136	Waves in generalized thermo-viscoelastic infinite continuum with cylindrical cavity due to three-phase-lag time-nonlocal heat transfer. Journal of Thermal Stresses, 2020, 43, 784-800.	1.1	8
137	A fast temporal secondâ€order difference scheme for the timeâ€fractional subdiffusion equation. Numerical Methods for Partial Differential Equations, 2021, 37, 1825-1846.	2.0	10
138	Thermal shock fracture associated with a unified fractional heat conduction. European Journal of Mechanics, A/Solids, 2021, 85, 104129.	2.1	14
139	On a two-dimensional fractional thermoelastic system with nonlocal constraints describing a fractional Kirchhoff plate. Advances in Difference Equations, 2021, 2021, .	3.5	4
140	Time fractional thermoelastic problem of a thick cylinder with non homogeneous material properties. IOP Conference Series: Materials Science and Engineering, 0, 1033, 012077.	0.3	2
141	Boundary Integral Equation Formulation for Fractional Order Theory of Thermo-Viscoelasticity. Studies in Systems, Decision and Control, 2021, , 149-168.	0.8	0
142	Fractional thermoelastic diffusion problem for an infinitely long hollow cylinder using the Caputo–Fabrizio definition. Journal of Thermal Stresses, 0, , 1-42.	1.1	2
143	Using asymptotic expansions technique for solving the point heat source problem in the fractional theory of thermoelasticity with the Caputo Fabrizio derivative. Journal of Thermal Stresses, 2021, 44, 456-468.	1.1	5
144	Numerical study of fast transient non-diffusive heat conduction in a porous medium composed of solid-glass spheres and air using fractional Cattaneo subdiffusion model. International Communications in Heat and Mass Transfer, 2021, 122, 105192.	2.9	14

CIT	A T 1		DED	<u>орт</u>
CH.	AH	ON	KEP	URI

#	Article	IF	CITATIONS
145	Simultaneous Flow of n-Immiscible Fractional Maxwell Fluids with Generalized Thermal Flux and Robin Boundary Conditions. Advances in Mathematical Physics, 2021, 2021, 1-20.	0.4	2
146	Thermoelastic response of a nonhomogeneous elliptic plate in the framework of fractional order theory. Archive of Applied Mechanics, 2021, 91, 3223-3246.	1.2	3
147	Optimal control of the Cattaneo–Hristov heat diffusion model. Acta Mechanica, 2021, 232, 3529-3538.	1.1	2
148	Fractional order thermo-viscoelastic theory of biological tissue with dual phase lag heat conduction model. Applied Mathematical Modelling, 2021, 95, 612-622.	2.2	16
149	Fractional thermoelastic diffusion problem for an infinite medium with a spherical cavity using Modified Caputo-Fabrizio's definition. Waves in Random and Complex Media, 0, , 1-22.	1.6	3
150	Fast and high-order difference schemes for the fourth-order fractional sub-diffusion equations with spatially variable coefficient under the first Dirichlet boundary conditions. Mathematics and Computers in Simulation, 2021, 187, 110-133.	2.4	6
151	Bio-heat transfer analysis based on fractional derivative and memory-dependent derivative heat conduction models. Case Studies in Thermal Engineering, 2021, 27, 101211.	2.8	15
152	Numerical approach for modeling fractional heat conduction in porous medium with the generalized Cattaneo model. Applied Mathematical Modelling, 2021, 100, 107-124.	2.2	45
153	On viscoelastic fluid in a vertical porous media channel with Soret and Dufour effects. Applied Mathematics Letters, 2022, 124, 107656.	1.5	8
154	Fractional telegraph equation under moving time-harmonic impact. International Journal of Heat and Mass Transfer, 2022, 182, 121958.	2.5	9
155	Some Applications of the Wright Function in Continuum Physics: A Survey. Mathematics, 2021, 9, 198.	1.1	3
156	Fractional Heat Conduction and Related Theories of Thermoelasticity. Solid Mechanics and Its Applications, 2015, , 13-33.	0.1	3
158	Numerical simulation of electromagnetic heating process of biological tissue via time-fractional Cattaneo transfer equation. Journal of Thermal Biology, 2020, 94, 102789.	1.1	6
159	Efficient Galerkin finite element methods for a time-fractional Cattaneo equation. Advances in Difference Equations, 2020, 2020, .	3.5	5
160	Application of fractional order theory of thermoelasticity to a 1D problem for a spherical shell. Journal of Theoretical and Applied Mechanics, 0, , 295.	0.2	18
162	UNSTEADY BOUNDARY LAYER FLOW AND HEAT TRANSFER OF MAXWELL VISCOELASTIC FLUID WITH TIME FRACTIONAL CATTANEO-CHRISTOV HEAT FLUX MODEL. Frontiers in Heat and Mass Transfer, 0, 11, .	0.1	1
163	Parameters estimation for a one-dimensional time fractional thermal wave equation with fractional heat flux conditions. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 140202.	0.2	11
164	Fractional thermoelasticity of thin shells. , 2013, , 141-144.		1

		CITATION R	EPORT	
#	ARTICLE		IF	CITATIONS
165	Fractional Thermoelasticity of Thin Shells. Solid Mechanics and Its Applications, 2015,	, 211-225.	0.1	2
166	Thermal stresses in a long cylinder under Gaussian-distributed heating in the framework fractional thermoelasticity. Mathematical Modeling and Computing, 2015, 2, 77-87.	'k of	0.4	0
167	Analysis of Time-Fractional Heat Transfer and its Thermal Deflection in a Circular Plate Heat Source. International Journal of Applied Mechanics and Engineering, 2020, 25, 15	by a Moving 58-168.	0.3	1
168	Fractional heat conduction in a rectangular plate with bending moments. Journal of Ap Mathematics and Computational Mechanics, 2020, 19, 115-126.	pplied	0.3	1
169	A Study on Fractional Order Thermoelastic Half Space. International Journal of Applied Engineering, 2020, 25, 191-202.	Mechanics and	0.3	1
170	Dynamic response of a cracked thermopiezoelectric strip under thermoelectric loading fractional heat conduction. Applied Mathematical Modelling, 2022, 103, 580-603.	g using	2.2	5
171	Hall current effect in double poro-thermoelastic material with fractional-order Moore–Gibson–Thompson heat equation subjected to Eringen's nonlocal theory. and Complex Media, 0, , 1-36.	Waves in Random	1.6	14
172	A problem in fractional order thermoelasticity theory for an infinitely long cylinder con layers of different materials. Journal of Thermal Stresses, 0, , 1-11.	posed of 3	1.1	0
173	A fractional-order thermoviscoelastic analysis of a micro-rod heated by an ultrashort la heating. Acta Mechanica, 2022, 233, 383-397.	ser pulse	1.1	2
174	Numerical analysis of fractional viscoelastic fluid problem solved by finite difference sc Computers and Mathematics With Applications, 2022, 113, 225-242.	heme.	1.4	2
175	An External Circular Crack in an Infinite Solid under Axisymmetric Heat Flux Loading in Framework of Fractional Thermoelasticity. Entropy, 2022, 24, 70.	the	1.1	2
176	Time-fractional Moore–Gibson–Thompson equations. Mathematical Models and № Sciences, 2022, 32, 965-1013.	1ethods in Applied	1.7	13
177	Fractional order triple-phase-lag thermoelasticity in the context of two-temperature th Differential Equations in Applied Mathematics, 2022, 5, 100372.	eory. Partial	1.3	2
178	New Insights on Fractional GN II Thermoelasticity Theory. Journal of Engineering Mech 2022, 148, .	anics - ASCE,	1.6	0
179	Fourier and time-phase-lag heat conduction analysis of the functionally graded porosit International Communications in Heat and Mass Transfer, 2022, 136, 106183.	y media.	2.9	6
180	New Fractional Application on A homogenous Isotropic Thermo-Poroelastic Half-Space Solids, 2022, 57, 921-936.	. Mechanics of	0.3	2
181	Solving generalized fractional problem on a funnel-shaped domain depicting viscoelast porous medium. Applied Mathematics Letters, 2022, 134, 108335.	tic fluid in	1.5	2
182	Coupled thermoelastic fracture analysis of a cracked fiber reinforced composite hollov fractional Cattaneo-Vernotte models. Theoretical and Applied Fracture Mechanics, 202	v cylinder by 22, 121, 103538.	2.1	3

#	Article	IF	CITATIONS
183	Objective equations of heat conduction in deformable bodies. Mechanics Research Communications, 2022, 125, 103979.	1.0	6
184	Shape-factor and radiative flux impacts on unsteady graphene–copper hybrid nanofluid with entropy optimisation: Cattaneo–Christov heat flux theory. Pramana - Journal of Physics, 2022, 96, .	0.6	10
185	Memory response of thermo-electromagnetic waves in functionally graded materials with variables material properties. Indian Journal of Physics, 2023, 97, 855-867.	0.9	3
186	A modified fractional-order thermo-viscoelastic model and its application in thermal-induced nonlocal response analysis of a microscale plate. Archive of Applied Mechanics, 2023, 93, 687-705.	1.2	1
187	The tempered space-fractional Cattaneo equation. Probabilistic Engineering Mechanics, 2022, 70, 103374.	1.3	2
188	Computational study on 2D space-time fractional single-phase-lag bioheat model using RBF and Chebyshev polynomial based space-time collocation method. Waves in Random and Complex Media, 0, , 1-28.	1.6	1
189	Photothermal excitation of an initially stressed nonlocal semiconducting double porous thermoelastic material under fractional order triple-phase-lag theory. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 3697-3725.	1.6	11
190	Fractional order model of micropolar thermoelasticity and 2D half-space problem. Acta Mechanica, 2023, 234, 535-552.	1.1	4
191	Effective difference methods for solving the variable coefficient fourth-order fractional sub-diffusion equations. Networks and Heterogeneous Media, 2022, 18, 291-309.	0.5	0
193	Time-Fractional Cattaneo-Type Thermoelastic Interior-Boundary Value Problem Within A Rigid Ball. International Journal of Thermodynamics, 0, , 1-10.	0.4	0
194	Invariant subspaces and exact solutions: \$\$(1+1)\$\$ and \$\$(2+1)\$\$-dimensional generalized time-fractional thin-film equations. Computational and Applied Mathematics, 2023, 42, .	1.0	3
195	Dynamic response of a oneâ€dimensional hexagonal quasicrystal rod in the framework of fractionalâ€order thermoelasticity. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2023, 103, .	0.9	0
196	Thermoelastic Analysis For A Thick Plate Under The Radiation Boundary Conditions. International Journal of Thermodynamics, 0, , 1-10.	0.4	0
198	Fractional Derivative Models. , 2023, , 205-223.		0

Fractional Order Thermoelastic Model with Voids in Three-Phase-Lag Thermoelasticity. , 0, , .