Deep bradycardia and heart block caused by inducible of pacemaker channel gene <i>Hcn4</i>

Proceedings of the National Academy of Sciences of the Unite 108, 1705-1710

DOI: 10.1073/pnas.1010122108

Citation Report

#	ARTICLE	IF	CITATIONS
1	HCN2 Ion Channels Play a Central Role in Inflammatory and Neuropathic Pain. Science, 2011, 333, 1462-1466.	6.0	297
2	A full range of mouse sinoatrial node AP firing rates requires protein kinase A-dependent calcium signaling. Journal of Molecular and Cellular Cardiology, 2011, 51, 730-739.	0.9	27
3	Novel insights into the distribution of cardiac HCN channels: An expression study in the mouse heart. Journal of Molecular and Cellular Cardiology, 2011, 51, 997-1006.	0.9	91
4	Sodium Leak Channels in Neuronal Excitability and Rhythmic Behaviors. Neuron, 2011, 72, 899-911.	3.8	128
5	Selective Pharmacological Inhibition of the Pacemaker Channel Isoforms (HCN1-4) as New Possible Therapeutical Targets. Current Medicinal Chemistry, 2011, 18, 3662-3674.	1.2	16
6	Exploring HCN channels as novel drug targets. Nature Reviews Drug Discovery, 2011, 10, 903-914.	21.5	181
7	Not so fast! Sick sinus syndrome is a complex and incompletely understood disease that might prove hard to model in animals. Cardiovascular Research, 2011, 92, 178-178.	1.8	6
8	A mathematical model of action potentials of mouse sinoatrial node cells with molecular bases. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H945-H963.	1.5	77
9	Cardiac Conduction System Anomalies and Sudden Cardiac Death: Insights from Murine Models. Frontiers in Physiology, 2012, 3, 211.	1.3	3
10	Modeling the Chronotropic Effect of Isoprenaline on Rabbit Sinoatrial Node. Frontiers in Physiology, 2012, 3, 241.	1.3	19
11	Cardiac electrophysiology in mice: a matter of size. Frontiers in Physiology, 2012, 3, 345.	1.3	148
12	Adrenergic Regulation of HCN4 Channel Requires Protein Association with β2-Adrenergic Receptor. Journal of Biological Chemistry, 2012, 287, 23690-23697.	1.6	19
13	The HCN4 Channel Mutation D553N Associated With Bradycardia Has a C-linker Mediated Gating Defect. Cellular Physiology and Biochemistry, 2012, 30, 1227-1240.	1.1	11
14	Cardiac ryanodine receptors control heart rate and rhythmicity in adult mice. Cardiovascular Research, 2012, 96, 372-380.	1.8	64
15	Does the 'coupled clock' make the heart tick?. Cardiovascular Research, 2012, 96, 343-344.	1.8	5
16	An updated computational model of rabbit sinoatrial action potential to investigate the mechanisms of heart rate modulation. Journal of Physiology, 2012, 590, 4483-4499.	1.3	97
17	Local and Global Interpretations of a Disease-Causing Mutation near the Ligand Entry Path in Hyperpolarization-Activated cAMP-Gated Channel. Structure, 2012, 20, 2116-2123.	1.6	19
18	The case for the funny current and the calcium clock. Heart Rhythm, 2012, 9, 616-618.	0.3	23

		CITATION R	EPORT	
#	Article		IF	CITATIONS
19	The funny current has a major pacemaking role in the sinus node. Heart Rhythm, 2012,	9, 299-301.	0.3	61
20	Rebuttal: "The funny current in the context of the coupled clock pacemaker cell sys Rhythm, 2012, 9, 457-458.	tem― Heart	0.3	14
21	HCN channels in the heart: lessons from mouse mutants. British Journal of Pharmacolo 501-509.	gy, 2012, 166,	2.7	46
22	Normal and abnormal development of the cardiac conduction system; implications for and rhythm disorders in the child and adult. Differentiation, 2012, 84, 131-148.	conduction	1.0	43
23	Ivabradine. Journal of the American College of Cardiology, 2012, 60, 1330-1332.		1.2	5
24	HCN2 ion channels: an emerging role as the pacemakers of pain. Trends in Pharmacolo 2012, 33, 456-463.	gical Sciences,	4.0	106
25	HCN Channels and Heart Rate. Molecules, 2012, 17, 4225-4235.		1.7	42
26	Funny Current and Cardiac Rhythm: Insights from HCN Knockout and Transgenic Mous Frontiers in Physiology, 2012, 3, 240.	e Models.	1.3	54
27	The Integration and Functional Evaluation of Rabbit Pacing Cells Transplanted into the Ventricular Free Wall. International Journal of Medical Sciences, 2012, 9, 513-520.	Left	1.1	3
28	Shox2 Regulates the Pacemaker Gene Program in Embryoid Bodies. Stem Cells and Dev 22, 2915-2926.	velopment, 2013,	1.1	19
29	Genetic isolation of stem cell-derived pacemaker-nodal cardiac myocytes. Molecular an Biochemistry, 2013, 383, 161-171.	d Cellular	1.4	32
30	High-Speed Atomic Force Microscopy (AFM). , 2013, , 984-987.			2
31	Testosterone induces cardiomyocyte differentiation from embryonic stem cells. Journa and Cellular Cardiology, 2013, 62, 69-71.	of Molecular	0.9	4
32	Molecular and Functional Evidence of HCN4 and Caveolin-3 Interaction During Cardion Differentiation from Human Embryonic Stem Cells. Stem Cells and Development, 2013	1yocyte , 22, 1717-1727.	1.1	34
33	Spatiotemporal regulation of an Hcn4 enhancer defines a role for Mef2c and HDACs in electrical patterning. Developmental Biology, 2013, 373, 149-162.	cardiac	0.9	34
34	Evolution and development of the building plan of the vertebrate heart. Biochimica Et l - Molecular Cell Research, 2013, 1833, 783-794.	Biophysica Acta	1.9	109
35	Genetic Inhibition of Na ⁺ -Ca ²⁺ Exchanger Current Disable Sinoatrial Node Activity Without Affecting Resting Heart Rate. Circulation Research, 20	s Fight or Flight)13, 112, 309-317.	2.0	51
36	Altered HCN4 channel C-linker interaction is associated with familial tachycardia–bra syndrome and atrial fibrillation. European Heart Journal, 2013, 34, 2768-2775.	dycardia	1.0	84

#	Article	IF	CITATIONS
37	Homology Modeling of Protein Structures. , 2013, , 992-998.		2
38	Hydrodynamics of Macromolecules. , 2013, , 1014-1014.		0
39	Case 18-2013. New England Journal of Medicine, 2013, 368, 2304-2312.	13.9	7
40	Hydrodynamic Modeling of Carbohydrate Polymers. , 2013, , 1006-1014.		1
41	Structure, function and clinical relevance of the cardiac conduction system, including the atrioventricular ring and outflow tract tissues. , 2013, 139, 260-288.		156
42	Hyperpolarizationâ€Activated Cyclic Nucleotideâ€Gated Channels and Ventricular Arrhythmias in Heart Failure: A Novel Target for Therapy?. Journal of the American Heart Association, 2013, 2, e000287.	1.6	12
43	Timing of Myocardial <i>Trpm7</i> Deletion During Cardiogenesis Variably Disrupts Adult Ventricular Function, Conduction, and Repolarization. Circulation, 2013, 128, 101-114.	1.6	94
44	Sick Sinus Syndrome in HCN1-Deficient Mice. Circulation, 2013, 128, 2585-2594.	1.6	80
45	The in vivo regulation of heart rate in the murine sinoatrial node by stimulatory and inhibitory heterotrimeric G proteins. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R435-R442.	0.9	14
46	Embryonic Stem Cell–Derived CD166 ⁺ Precursors Develop Into Fully Functional Sinoatrial-Like Cells. Circulation Research, 2013, 113, 389-398.	2.0	54
47	Upregulation of the Hyperpolarization-Activated Current Increases Pacemaker Activity of the Sinoatrial Node and Heart Rate During Pregnancy in Mice. Circulation, 2013, 127, 2009-2020.	1.6	43
48	New Therapeutic Targets in Cardiology. Circulation, 2013, 127, 1986-1996.	1.6	59
49	Funny channel gene mutations associated with arrhythmias. Journal of Physiology, 2013, 591, 4117-4124.	1.3	47
50	It's a Funny Thing…. Journal of Cardiovascular Electrophysiology, 2013, 24, 1401-1402.	0.8	0
51	Ion channel-kinase TRPM <i>7</i> is required for maintaining cardiac automaticity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3037-46.	3.3	99
52	Increased Expression of HCN Channels in the Ventricular Myocardium Contributes to Enhanced Arrhythmicity in Mouse Failing Hearts. Journal of the American Heart Association, 2013, 2, e000150.	1.6	61
53	Isoprenaline: A Potential Contributor in Sick Sinus Syndrome—Insights from a Mathematical Model of the Rabbit Sinoatrial Node. Scientific World Journal, The, 2014, 2014, 1-11.	0.8	5
54	The Popeye Domain Containing Genes and cAMP Signaling. Journal of Cardiovascular Development and Disease, 2014, 1, 121-133.	0.8	8

#	Article	IF	CITATIONS
55	Berberine attenuates spontaneous action potentials in sinoatrial node cells and the currents of human HCN4 channels expressed in Xenopus laevis oocytes. Molecular Medicine Reports, 2014, 10, 1576-1582.	1.1	16
56	Inhibition of cardiac pacemaker channel hHCN2 depends on intercalation of lipopolysaccharide into channelâ€containing membrane microdomains. Journal of Physiology, 2014, 592, 1199-1211.	1.3	13
57	The Symptom Complex of Familial Sinus Node Dysfunction and Myocardial Noncompaction Is Associated With Mutations in the HCN4 Channel. Journal of the American College of Cardiology, 2014, 64, 757-767.	1.2	128
58	Cellular Pharmacology of Cardiac Automaticity and Conduction: Implications in Antiarrhythmic Drug Assessment. , 2014, , 305-333.		0
59	I h and HCN Channels in Murine Spiral Ganglion Neurons: Tonotopic Variation, Local Heterogeneity, and Kinetic Model. JARO - Journal of the Association for Research in Otolaryngology, 2014, 15, 585-599.	0.9	26
60	Cyclic dinucleotides bind the C-linker of HCN4 to control channel cAMP responsiveness. Nature Chemical Biology, 2014, 10, 457-462.	3.9	50
61	HCN channels: new roles in sinoatrial node function. Current Opinion in Pharmacology, 2014, 15, 83-90.	1.7	44
62	Mechanisms of Atrial Arrhythmias. Springer Theses, 2014, , .	0.0	2
63	Cardiac arrhythmia induced by genetic silencing of â€~funny' (f) channels is rescued by GIRK4 inactivation. Nature Communications, 2014, 5, 4664.	5.8	70
64	State-dependent and site-directed photodynamic transformation of HCN2 channel by singlet oxygen. Journal of General Physiology, 2014, 143, 633-644.	0.9	7
65	Exercise training reduces resting heart rate via downregulation of the funny channel HCN4. Nature Communications, 2014, 5, 3775.	5.8	194
66	Pacemaker Current Inhibition in Experimental Human Cardiac Sympathetic Activation: A Double-Blind, Randomized, Crossover Study. Clinical Pharmacology and Therapeutics, 2014, 95, 601-607.	2.3	6
67	CAP2 in cardiac conduction, sudden cardiac death and eye development. Scientific Reports, 2015, 5, 17256.	1.6	37
68	Ion Channels in the Heart. , 2015, 5, 1423-1464.		135
69	Biology of the Sinus Node and its Disease. Arrhythmia and Electrophysiology Review, 2015, 4, 28.	1.3	79
70	The Short Stature Homeobox 2 (Shox2)-bone Morphogenetic Protein (BMP) Pathway Regulates Dorsal Mesenchymal Protrusion Development and Its Temporary Function as a Pacemaker during Cardiogenesis. Journal of Biological Chemistry, 2015, 290, 2007-2023.	1.6	26
71	A Case of Atrial Tachycardia Treated with Ivabradine as Bridge to Ablation. Journal of Cardiovascular Electrophysiology, 2015, 26, 565-568.	0.8	16
72	New Approaches to Biological Pacemakers: Links to Sinoatrial Node Development. Trends in Molecular Medicine, 2015, 21, 749-761.	3.5	53

#	Article	IF	CITATIONS
73	Familial inappropriate sinus tachycardia: a new chapter in the story of Hcn4 channelopathies. European Heart Journal, 2015, 38, ehv635.	1.0	4
74	Sick sinus syndrome and atrial fibrillation in older persons — A view from the sinoatrial nodal myocyte. Journal of Molecular and Cellular Cardiology, 2015, 83, 88-100.	0.9	91
75	The mitochondrial uniporter controls fight or flight heart rate increases. Nature Communications, 2015, 6, 6081.	5.8	126
76	Burst pacemaker activity of the sinoatrial node in sodium–calcium exchanger knockout mice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9769-9774.	3.3	71
77	HCN Channels—Modulators of Cardiac and Neuronal Excitability. International Journal of Molecular Sciences, 2015, 16, 1429-1447.	1.8	43
78	The genetic basis for inherited forms of sinoatrial dysfunction and atrioventricular node dysfunction. Journal of Interventional Cardiac Electrophysiology, 2015, 43, 121-134.	0.6	26
79	Pacemaker Activity of the Human Sinoatrial Node: An Update on the Effects of Mutations in HCN4 on the Hyperpolarization-Activated Current. International Journal of Molecular Sciences, 2015, 16, 3071-3094.	1.8	89
80	PP2 Prevents Isoproterenol Stimulation of Cardiac Pacemaker Activity. Journal of Cardiovascular Pharmacology, 2015, 65, 193-202.	0.8	9
81	lonic mechanisms underlying the negative chronotropic action of propofol on sinoatrial node automaticity in guinea pig heart. British Journal of Pharmacology, 2015, 172, 799-814.	2.7	18
82	Distinct expression patterns of HCN channels in HL-1 cardiomyocytes. BMC Cell Biology, 2015, 16, 18.	3.0	4
83	Editorial: Ca2+ Signaling and Heart Rhythm. Frontiers in Physiology, 2015, 6, 423.	1.3	5
84	Ca2+-Clock-Dependent Pacemaking in the Sinus Node Is Impaired in Mice with a Cardiac Specific Reduction in SERCA2 Abundance. Frontiers in Physiology, 2016, 7, 197.	1.3	15
85	HCN Channels Modulators: The Need for Selectivity. Current Topics in Medicinal Chemistry, 2016, 16, 1764-1791.	1.0	54
86	Bitopic Sphingosine 1-Phosphate Receptor 3 (S1P3) Antagonist Rescue from Complete Heart Block: Pharmacological and Genetic Evidence for Direct S1P3 Regulation of Mouse Cardiac Conduction. Molecular Pharmacology, 2016, 89, 176-186.	1.0	41
87	Rescuing cardiac automaticity in Lâ€ŧype Cav1.3 channelopathies and beyond. Journal of Physiology, 2016, 594, 5869-5879.	1.3	20
88	Atrioventricular Node Dysfunction and Ion Channel Transcriptome in Pulmonary Hypertension. Circulation: Arrhythmia and Electrophysiology, 2016, 9, .	2.1	22
89	Cardiac disease and arrhythmogenesis: Mechanistic insights from mouse models. IJC Heart and Vasculature, 2016, 12, 1-10.	0.6	62
90	Desmosomal junctions are necessary for adult sinus node function. Cardiovascular Research, 2016, 111, 274-286.	1.8	33

\sim			<u> </u>	
('T	ТΔТ	ON	RED	NDT
\sim	171		IVEL V	

#	Article	IF	CITATIONS
91	Therapeutic effect of astragaloside-IV on bradycardia is involved in up-regulating klotho expression. Life Sciences, 2016, 144, 94-102.	2.0	14
92	Mutation in S6 domain of HCN4 channel in patient with suspected Brugada syndrome modifies channel function. Pflugers Archiv European Journal of Physiology, 2016, 468, 1663-1671.	1.3	25
93	The pathophysiology of cardiac dysfunction in epilepsy. Epilepsy Research, 2016, 127, 19-29.	0.8	81
94	HCN2 ion channels: basic science opens up possibilities for therapeutic intervention in neuropathic pain. Biochemical Journal, 2016, 473, 2717-2736.	1.7	48
95	Etiology and Morphogenesis of Congenital Heart Disease. , 2016, , .		19
96	Current understanding of the pathophysiological mechanisms responsible for inappropriate sinus tachycardia: role of the If "funny―current. Journal of Interventional Cardiac Electrophysiology, 2016, 46, 19-28.	0.6	27
97	Age-associated expression of HCN channel isoforms in rat sinoatrial node. Experimental Biology and Medicine, 2016, 241, 331-339.	1.1	22
98	Cyclic AMP reverses the effects of aging on pacemaker activity and If in sinoatrial node myocytes. Journal of General Physiology, 2017, 149, 237-247.	0.9	25
99	Tachycardia-bradycardia syndrome: Electrophysiological mechanisms and future therapeutic approaches (Review). International Journal of Molecular Medicine, 2017, 39, 519-526.	1.8	28
100	Quantitative Assessment of Sialoâ€Glycoproteins and Nâ€Glycans during Cardiomyogenic Differentiation of Human Induced Pluripotent Stem Cells. ChemBioChem, 2017, 18, 1317-1331.	1.3	44
101	Genetic loci associated with heart rate variability and their effects on cardiac disease risk. Nature Communications, 2017, 8, 15805.	5.8	95
102	Genetic Determinants of Hereditary Bradyarrhythmias: A Contemporary Review of a Diverse Group of Disorders. Canadian Journal of Cardiology, 2017, 33, 758-767.	0.8	11
103	Reduced expression of HCN channels in the sinoatrial node of streptozotocin-induced diabetic rats. Canadian Journal of Physiology and Pharmacology, 2017, 95, 586-594.	0.7	13
104	Murine Electrophysiological Models of Cardiac Arrhythmogenesis. Physiological Reviews, 2017, 97, 283-409.	13.1	96
105	Hyperpolarization-activated cyclic nucleotide–gated 2 (HCN2) ion channels drive pain in mouse models of diabetic neuropathy. Science Translational Medicine, 2017, 9, eaam6072.	5.8	90
106	Novel Pathways for Regulation of Sinoatrial Node Plasticity and Heart Rate. Circulation Research, 2017, 121, 1027-1028.	2.0	2
107	Small functional <i>I</i> _f current in sinoatrial pacemaker cells of the brown trout (<i>Salmo trutta fario</i>) heart despite strong expression of HCN channel transcripts. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 313, R711-R722.	0.9	9
108	CaV1.3 L-type Ca2+ channel contributes to the heartbeat by generating a dihydropyridine-sensitive persistent Na+ current. Scientific Reports, 2017, 7, 7869.	1.6	32

#	Article	IF	CITATIONS
109	The Hyperpolarization-Activated Cyclic Nucleotide–Gated Channels: from Biophysics to Pharmacology of a Unique Family of Ion Channels. Pharmacological Reviews, 2017, 69, 354-395.	7.1	103
110	A Functional Assay for Sick Sinus Syndrome Genetic Variants. Cellular Physiology and Biochemistry, 2017, 42, 2021-2029.	1.1	12
111	Mammalian Î ³ 2 AMPK regulates intrinsic heart rate. Nature Communications, 2017, 8, 1258.	5.8	43
112	Crizotinib inhibits hyperpolarization-activated cyclic nucleotide-gated channel 4 activity. Cardio-Oncology, 2017, 3, .	0.8	14
113	Nanodomain Regulation of Cardiac Cyclic Nucleotide Signaling by Phosphodiesterases. Annual Review of Pharmacology and Toxicology, 2017, 57, 455-479.	4.2	79
114	Drosophila Heart Development and Function â~†. , 2017, , .		1
115	The Ih Channel Gene Promotes Synaptic Transmission and Coordinated Movement in Drosophila melanogaster. Frontiers in Molecular Neuroscience, 2017, 10, 41.	1.4	4
116	Subtype-specific differentiation of cardiac pacemaker cell clusters from human induced pluripotent stem cells. Stem Cell Research and Therapy, 2017, 8, 229.	2.4	46
117	The expression of the rare caveolin-3 variant T78M alters cardiac ion channels function and membrane excitability. Cardiovascular Research, 2017, 113, 1256-1265.	1.8	19
118	Phenotypic Spectrum of <i>HCN4</i> Mutations. Circulation Genomic and Precision Medicine, 2018, 11, e002033.	1.6	18
119	Ivabradine does not acutely affect open-loop baroreflex static characteristics and spares sympathetic heart rate control in rats. International Journal of Cardiology, 2018, 257, 255-261.	0.8	9
120	HCN4 pacemaker channels attenuate the parasympathetic response and stabilize the spontaneous firing of the sinoatrial node. Journal of Physiology, 2018, 596, 809-825.	1.3	30
121	Sinus Node Abnormalities. , 2018, , 674-680.		1
122	OBSOLETE: Cellular Sinoatrial Node and Atrioventricular Node Activity in the Heart. , 2018, , .		0
123	<i>HCN4</i> Gene Polymorphisms Are Associated With Occurrence of Tachycardia-Induced Cardiomyopathy in Patients With Atrial Fibrillation. Circulation Genomic and Precision Medicine, 2018, 11, e001980.	1.6	10
124	Selective Blockade of HCN1/HCN2 Channels as a Potential Pharmacological Strategy Against Pain. Frontiers in Pharmacology, 2018, 9, 1252.	1.6	40
125	HCN4 Gene Polymorphisms and Tachycardia-Induced Cardiomyopathy. Circulation Genomic and Precision Medicine, 2018, 11, e002223.	1.6	0
126	Cellular Sinoatrial Node and Atrioventricular Node Activity in the Heart. , 2018, , 576-592.		3

# 127	ARTICLE TBX18 overexpression enhances pacemaker function in a rat subsidiary atrial pacemaker model of sick sinus syndrome. Journal of Physiology, 2018, 596, 6141-6155.	IF 1.3	CITATIONS 20
128	HCN Channels and Cardiac Pacemaking. Cardiac and Vascular Biology, 2018, , 97-126.	0.2	1
129	Cardiac pacemaker channel (HCN4) inhibition and atrial arrhythmogenesis after releasing cardiac sympathetic activation. Scientific Reports, 2018, 8, 7748.	1.6	6
130	Realâ€ŧime optical manipulation of cardiac conduction in intact hearts. Journal of Physiology, 2018, 596, 3841-3858.	1.3	42
131	HCN Channels: New Therapeutic Targets for Pain Treatment. Molecules, 2018, 23, 2094.	1.7	26
132	A Loss-of-Function HCN4 Mutation Associated With Familial Benign Myoclonic Epilepsy in Infancy Causes Increased Neuronal Excitability. Frontiers in Molecular Neuroscience, 2018, 11, 269.	1.4	25
133	Supraventricular Arrhythmias in Athletes: Basic Mechanisms and New Directions. Physiology, 2019, 34, 314-326.	1.6	11
134	Membrane and calcium clock mechanisms contribute variably as a function of temperature to setting cardiac pacemaker rate in zebrafish <i>Danio rerio</i> . Journal of Fish Biology, 2019, 95, 1265-1274.	0.7	8
135	Sinus node-like pacemaker mechanisms regulate ectopic pacemaker activity in the adult rat atrioventricular ring. Scientific Reports, 2019, 9, 11781.	1.6	10
136	HCN3 ion channels: roles in sensory neuronal excitability and pain. Journal of Physiology, 2019, 597, 4661-4675.	1.3	31
137	Intravenous ivabradine augments the dynamic heart rate response to moderate vagal nerve stimulation in anesthetized rats. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H597-H606.	1.5	5
138	Disease-linked mutations alter the stoichiometries of HCN-KCNE2 complexes. Scientific Reports, 2019, 9, 9113.	1.6	11
139	Characterization of drug binding within the HCN1 channel pore. Scientific Reports, 2019, 9, 465.	1.6	23
140	Pathophysiological Mechanisms in Migraine and the Identification of New Therapeutic Targets. CNS Drugs, 2019, 33, 525-537.	2.7	74
141	HCN4 knockdown in dorsal hippocampus promotes anxietyâ€ ŀ ike behavior in mice. Genes, Brain and Behavior, 2019, 18, e12550.	1.1	18
142	The Hyperpolarization-Activated Cyclic Nucleotide-Gated Ion Channels in the Rewarding Effects of Ethanol. , 2019, , 171-178.		1
143	Genetically Modified Porcine Mesenchymal Stem Cells by Lentiviral Tbx18 Create a Biological Pacemaker. Stem Cells International, 2019, 2019, 1-9.	1.2	6
144	Identification and characterization of a series of novel HCN channel inhibitors. Acta Pharmacologica Sinica, 2019, 40, 746-754.	2.8	7

#		IC	CITATIONS
#	Control of sinus venous valve and sinoatrial node development by endocardial NOTCH1.	IF	CHATIONS
145	Cardiovascular Research, 2020, 116, 1473-1486.	1.8	9
146	Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels as Drug Targets for Neurological Disorders. Annual Review of Pharmacology and Toxicology, 2020, 60, 109-131.	4.2	71
147	Cardiac Pacemaker Activity and Aging. Annual Review of Physiology, 2020, 82, 21-43.	5.6	59
148	Mitochondrial thioredoxin-2 maintains HCN4 expression and prevents oxidative stress-mediated sick sinus syndrome. Journal of Molecular and Cellular Cardiology, 2020, 138, 291-303.	0.9	14
149	Enhancing induced pluripotent stem cell toward differentiation into functional cardiomyocytes. Journal of the Chinese Medical Association, 2020, 83, 657-660.	0.6	1
150	Overexpression of TBX3 in human induced pluripotent stem cells (hiPSCs) increases their differentiation into cardiac pacemaker-like cells. Biomedicine and Pharmacotherapy, 2020, 130, 110612.	2.5	17
151	cyclic AMP Regulation and Its Command in the Pacemaker Channel HCN4. Frontiers in Physiology, 2020, 11, 771.	1.3	9
152	cAMP-dependent regulation of HCN4 controls the tonic entrainment process in sinoatrial node pacemaker cells. Nature Communications, 2020, 11, 5555.	5.8	63
153	ZO-1 Regulates Intercalated Disc Composition and Atrioventricular Node Conduction. Circulation Research, 2020, 127, e28-e43.	2.0	13
154	Cardiac and neuronal HCN channelopathies. Pflugers Archiv European Journal of Physiology, 2020, 472, 931-951.	1.3	58
155	The Cardiac Pacemaker Story—Fundamental Role of the Na+/Ca2+ Exchanger in Spontaneous Automaticity. Frontiers in Pharmacology, 2020, 11, 516.	1.6	13
156	Analysis of L-arginine:glycine amidinotransferase-, creatine- and homoarginine-dependent gene regulation in the murine heart. Scientific Reports, 2020, 10, 4821.	1.6	6
157	Regulation of NCX1 by palmitoylation. Cell Calcium, 2020, 86, 102158.	1.1	14
158	Inhibitory Effects of Cyclopiazonic Acid on the Pacemaker Current in Sinoatrial Nodal Cells. Neuroscience, 2020, 433, 230-240.	1.1	1
159	Brugada syndrome: A comprehensive review of pathophysiological mechanisms and risk stratification strategies. IJC Heart and Vasculature, 2020, 26, 100468.	0.6	32
160	Pharmacologic Approach to Sinoatrial Node Dysfunction. Annual Review of Pharmacology and Toxicology, 2021, 61, 757-778.	4.2	29
161	The bradycardic agent ivabradine decreases conduction velocity in the AV node and in the ventricles in-vivo. European Journal of Pharmacology, 2021, 893, 173818.	1.7	5
162	Atrial and Sinoatrial Node Development in the Zebrafish Heart. Journal of Cardiovascular Development and Disease, 2021, 8, 15.	0.8	10

#	Article	IF	CITATIONS
163	Sinoatrial node pacemaker cells share dominant biological properties with glutamatergic neurons. Protein and Cell, 2021, 12, 545-556.	4.8	12
165	Beyond pacemaking: HCN channels in sinoatrial node function. Progress in Biophysics and Molecular Biology, 2021, 166, 51-60.	1.4	17
166	Shenxian-Shengmai Oral Liquid Improves Sinoatrial Node Dysfunction through the PKC/NOX-2 Signaling Pathway. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-10.	0.5	4
167	The role of resistance to inhibitors of cholinesterase 8b in the control of heart rate. Physiological Genomics, 2021, 53, 150-159.	1.0	1
168	Genetic Complexity of Sinoatrial Node Dysfunction. Frontiers in Genetics, 2021, 12, 654925.	1.1	25
169	Intrinsic Electrical Remodeling Underlies Atrioventricular Block in Athletes. Circulation Research, 2021, 129, e1-e20.	2.0	23
170	A detailed characterization of the hyperpolarization-activated "funny―current (If) in human-induced pluripotent stem cell (iPSC)–derived cardiomyocytes with pacemaker activity. Pflugers Archiv European Journal of Physiology, 2021, 473, 1009-1021.	1.3	18
171	Cohesin-protein Shugoshin-1 controls cardiac automaticity via HCN4 pacemaker channel. Nature Communications, 2021, 12, 2551.	5.8	7
172	Speeding Up the Heart? Traditional and New Perspectives on HCN4 Function. Frontiers in Physiology, 2021, 12, 669029.	1.3	14
173	HCN4 current during human sinoatrial node-like action potentials. Progress in Biophysics and Molecular Biology, 2021, 166, 105-118.	1.4	11
174	Regulation of sinus node pacemaking and atrioventricular node conduction by HCN channels in health and disease. Progress in Biophysics and Molecular Biology, 2021, 166, 61-85.	1.4	16
175	The funny current in genetically modified mice. Progress in Biophysics and Molecular Biology, 2021, 166, 39-50.	1.4	7
176	Bidirectional flow of the funny current (I _f) during the pacemaking cycle in murine sinoatrial node myocytes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
177	Investigating LMNA-Related Dilated Cardiomyopathy Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. International Journal of Molecular Sciences, 2021, 22, 7874.	1.8	7
178	Cyclic nucleotide signaling and pacemaker activity. Progress in Biophysics and Molecular Biology, 2021, 166, 29-38.	1.4	6
180	The Functional Role of Hyperpolarization Activated Current (If) on Cardiac Pacemaking in Human vs. in the Rabbit Sinoatrial Node: A Simulation and Theoretical Study. Frontiers in Physiology, 2021, 12, 582037.	1.3	1
181	Yixin-Fumai granules improve sick sinus syndrome in aging mice through Nrf-2/HO-1 pathway: A new target for sick sinus syndrome. Journal of Ethnopharmacology, 2021, 277, 114254.	2.0	9
182	Cellular and molecular landscape of mammalian sinoatrial node revealed by single-cell RNA sequencing. Nature Communications, 2021, 12, 287.	5.8	55

		CITATION R	EPORT	
# 183	ARTICLE Molecular Basis of Arrhythmias Associated with the Cardiac Conduction System. , 2014	ł, , 19-34.	IF	Citations 3
184	Effect of Ginkgo biloba extract onÂpacemaker channels encoded byÂHCN gene. Herz, 2	2021, 46, 255-261.	0.4	4
185	Direct Negative Chronotropic Action of Desflurane on Sinoatrial Node Pacemaker Activ Guinea Pig Heart. Anesthesiology, 2014, 120, 1400-1413.	ity in the	1.3	8
186	Popeye domain containing proteins are essential for stress-mediated modulation of car pacemaking in mice. Journal of Clinical Investigation, 2012, 122, 1119-1130.	diac	3.9	129
187	Identification and Functional Characterization of Cardiac Pacemaker Cells in Zebrafish. 2012, 7, e47644.	PLoS ONE,	1.1	154
188	Congestive Heart Failure Leads to Prolongation of the PR Interval and Atrioventricular Ju Enlargement and Ion Channel Remodelling in the Rabbit. PLoS ONE, 2015, 10, e014145	unction 52.	1.1	26
189	Transcriptome of interstitial cells of Cajal reveals unique and selective gene signatures. 2017, 12, e0176031.	PLoS ONE,	1.1	74
190	HCN4, Sinus Bradycardia and Atrial Fibrillation. Arrhythmia and Electrophysiology Revie	w, 2015, 4, 9.	1.3	40
191	Heart Block in the Athlete – Role of Ion Channel Remodelling as Studied Using a One Computational Model of the Atrioventricular Node. , 0, , .	-Dimensional		1
192	A Heart too Drunk to Drive; AV Block following Acute Alcohol Intoxication. Chinese Jour Physiology, 2016, 59, 1-8.	rnal of	0.4	14
193	Transcriptional profiles of genes related to electrophysiological function in <i>Scn5a</i> ^{+/â^'} murine hearts. Physiological Reports, 2021, 9, e15043.		0.7	2
198	Regulation of Vertebrate Conduction System Development. , 2016, , 269-280.			1
200	Nanodiamond-based microRNA delivery system promotes pluripotent stem cells toward myocardiogenic reprogramming. Journal of the Chinese Medical Association, 2021, 84,	ł 177-182.	0.6	6
201	Morphology of mouse sinoatrial node and its expression of NF-160 and HCN4. Internat Clinical and Experimental Medicine, 2015, 8, 13383-7.	onal Journal of	1.3	2
202	Cardiomyocyte specific deletion of PP2A causes cardiac hypertrophy. American Journal Translational Research (discontinued), 2016, 8, 1769-79.	of	0.0	12
203	The Role of POPDC Proteins in Cardiac Pacemaking and Conduction. Journal of Cardiov Development and Disease, 2021, 8, 160.	ascular	0.8	5
204	Mechanisms of Sinoatrial Node Dysfunction in Heart Failure With Preserved Ejection Fra Circulation, 2022, 145, 45-60.	action.	1.6	23
205	Review: HCN Channels in the Heart. Current Cardiology Reviews, 2022, 18, .		0.6	5

#	Article	IF	CITATIONS
206	Effect of Shenfu Injection on Differentiation of Bone Marrow Mesenchymal Stem Cells into Pacemaker-Like Cells and Improvement of Pacing Function of Sinoatrial Node. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-15.	1.9	2
207	L-Type Cav1.3 Calcium Channels Are Required for Beta-Adrenergic Triggered Automaticity in Dormant Mouse Sinoatrial Pacemaker Cells. Cells, 2022, 11, 1114.	1.8	22
208	The zebrafish cohesin protein Sgo1 is required for cardiac function and eye development. Developmental Dynamics, 2022, , .	0.8	3
209	The Cardiac Na ⁺ a ²⁺ Exchanger: From Structure to Function. , 2021, 12, 2681-2717.		11
210	Propofol, an Anesthetic Agent, Inhibits HCN Channels through the Allosteric Modulation of the cAMP-Dependent Gating Mechanism. Biomolecules, 2022, 12, 570.	1.8	6
212	Paradigm shift: new concepts for HCN4 function in cardiac pacemaking. Pflugers Archiv European Journal of Physiology, 2022, 474, 649-663.	1.3	11
214	Animal Models to Study Cardiac Arrhythmias. Circulation Research, 2022, 130, 1926-1964.	2.0	14
215	Two HCN4 Channels Play Functional Roles in the Zebrafish Heart. Frontiers in Physiology, 0, 13, .	1.3	1
216	Identification of HCN1 as a 14-3-3 client. PLoS ONE, 2022, 17, e0268335.	1.1	0
217	Improved Generation of Human Induced Pluripotent Stem Cell-Derived Cardiac Pacemaker Cells Using Novel Differentiation Protocols. International Journal of Molecular Sciences, 2022, 23, 7318.	1.8	4
218	Virus-induced inhibition of cardiac pacemaker channel HCN4 triggers bradycardia in human-induced stem cell system. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	11
219	The funny current If is essential for the fight-or-flight response in cardiac pacemaker cells. Journal of General Physiology, 2022, 154, .	0.9	1
221	Pacemaker activity and ion channels in the sinoatrial node cells: MicroRNAs and arrhythmia. Progress in Biophysics and Molecular Biology, 2022, , .	1.4	3
222	Depressed HCN4 function in the type 2 diabetic sinoatrial node. Molecular and Cellular Biochemistry, 2023, 478, 1825-1833.	1.4	4
223	Effects of Diabetes Mellitus on the Conduction System of the Heart: Mini-Review. , 0, , .		0
224	Efeitos do Treinamento Intervalado de Alta Intensidade e do Treinamento ContÃnuo na Capacidade de ExercÃcio, Variabilidade da Frequência CardÃaca e em Corações Isolados em Ratos Diabéticos. Arquivos Brasileiros De Cardiologia, 2023, 120, .	0.3	1
225	Mitochondrial Dysfunction in Cardiac Arrhythmias. Cells, 2023, 12, 679.	1.8	7
226	Emergent activity, heterogeneity, and robustness in a calcium feedback model of the sinoatrial node. Biophysical Journal 2023, 122, 1613-1632	0.2	6

#	Article	IF	CITATIONS
227	Local tissue mechanics control cardiac pacemaker cell embryonic patterning. Life Science Alliance, 2023, 6, e202201799.	1.3	1
228	Palmitoylation regulates the magnitude of HCN4-mediated currents in mammalian cells. Frontiers in Physiology, 0, 14, .	1.3	0
229	Conduction delays across the specialized conduction system of the heart: Revisiting atrioventricular node (AVN) and Purkinje-ventricular junction (PVJ) delays. Frontiers in Cardiovascular Medicine, 0, 10, .	1.1	1
230	The role of P21-activated kinase (Pak1) in sinus node function. Journal of Molecular and Cellular Cardiology, 2023, 179, 90-101.	0.9	1
231	Cardiac PDGFRα ⁺ interstitial cells generate spontaneous inward currents that contribute to excitability in the heart. FASEB Journal, 2023, 37, .	0.2	0
239	The cardiac conduction system: History, development, and disease. Current Topics in Developmental Biology, 2024, , 157-200.	1.0	0