Controlled vocabularies and semantics in systems biolo

Molecular Systems Biology 7, 543

DOI: 10.1038/msb.2011.77

Citation Report

#	Article	IF	CITATIONS
1	Reproducible computational biology experiments with SED-ML - The Simulation Experiment Description Markup Language. BMC Systems Biology, $2011, 5, 198$.	3.0	211
2	Qualitative translation of relations from BioPAX to SBML qual. Bioinformatics, 2012, 28, 2648-2653.	1.8	20
3	The Input Signal Step Function (ISSF), a Standard Method to Encode Input Signals in SBML Models with Software Support, Applied to Circadian Clock Models. Journal of Biological Rhythms, 2012, 27, 328-332.	1.4	6
4	The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013. Nucleic Acids Research, 2012, 41, D456-D463.	6.5	508
5	SED-ED, a workflow editor for computational biology experiments written in SED-ML. Bioinformatics, 2012, 28, 1180-1181.	1.8	9
6	A Distinct Expression Pattern of the Long 3′-Untranslated Region Dicer mRNA and Its Implications for Posttranscriptional Regulation in Colorectal Cancer. Clinical and Translational Gastroenterology, 2012, 3, e17.	1.3	11
7	CySBML: a Cytoscape plugin for SBML. Bioinformatics, 2012, 28, 2402-2403.	1.8	49
8	<i>i</i> BIRA – integrated bioinformatics information resource access. Reference Services Review, 2012, 40, 326-343.	0.9	7
9	Systems Biology of Fungal Infection. Frontiers in Microbiology, 2012, 3, 108.	1.5	69
10	Nanoinformatics: a new area of research in nanomedicine. International Journal of Nanomedicine, 2012, 7, 3867.	3.3	56
11	Multiscale Modeling and Data Integration in the Virtual Physiological Rat Project. Annals of Biomedical Engineering, 2012, 40, 2365-2378.	1.3	47
12	Successes and failures in modular genetic engineering. Current Opinion in Chemical Biology, 2012, 16, 329-336.	2.8	61
13	Hierarchical Modeling for Synthetic Biology. ACS Synthetic Biology, 2012, 1, 353-364.	1.9	16
14	Tav4SB: integrating tools for analysis of kinetic models of biological systems. BMC Systems Biology, 2012, 6, 25.	3.0	5
15	LibKiSAO: a Java library for Querying KiSAO. BMC Research Notes, 2012, 5, 520.	0.6	1
16	Structure-based classification and ontology in chemistry. Journal of Cheminformatics, 2012, 4, 8.	2.8	40
17	Scientific discovery as a combinatorial optimisation problem: How best to navigate the landscape of possible experiments?. BioEssays, 2012, 34, 236-244.	1.2	44
18	The 3rd DBCLS BioHackathon: improving life science data integration with Semantic Web technologies. Journal of Biomedical Semantics, 2013, 4, 6.	0.9	26

#	Article	IF	Citations
19	The systems biology simulation core algorithm. BMC Systems Biology, 2013, 7, 55.	3.0	27
20	Structure, function, and behaviour of computational models in systems biology. BMC Systems Biology, 2013, 7, 43.	3.0	12
21	Precise generation of systems biology models from KEGG pathways. BMC Systems Biology, 2013, 7, 15.	3.0	58
22	An analysis of a â€~community-driven' reconstruction of the human metabolic network. Metabolomics, 2013, 9, 757-764.	1.4	30
23	Qualitative Modelling of Metabolic Networks. Advances in Botanical Research, 2013, 67, 557-591.	0.5	0
24	A Unifying Ontology to Integrate Histological and Clinical Observations for Drug-Induced Liver Injury. American Journal of Pathology, 2013, 182, 1180-1187.	1.9	23
25	In Silico Modeling of Shear-Stress-Induced Nitric Oxide Production in Endothelial Cells through Systems Biology. Biophysical Journal, 2013, 104, 2295-2306.	0.2	39
26	SPNConverter: a new link between static and dynamic complex network analysis. Bioinformatics, 2013, 29, 2507-2508.	1.8	1
27	Function of dynamic models in systems biology: linking structure to behaviour. Journal of Biomedical Semantics, 2013, 4, 24.	0.9	4
28	SBML qualitative models: a model representation format and infrastructure to foster interactions between qualitative modelling formalisms and tools. BMC Systems Biology, 2013, 7, 135.	3.0	145
29	HuPSON: the human physiology simulation ontology. Journal of Biomedical Semantics, 2013, 4, 35.	0.9	7
30	Path2Models: large-scale generation of computational models from biochemical pathway maps. BMC Systems Biology, 2013, 7, 116.	3.0	145
31	Towards a semantic representation for multi-scale finite element biosimulation experiments., 2013,,.		3
32	From standardized modeling formats to modeling languages and back $\$$ #x2014; An exploration based on SBML and ML-Rules. , 2013, , .		2
33	Semantic Web meets Integrative Biology: a survey. Briefings in Bioinformatics, 2013, 14, 109-125.	3.2	50
34	A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes. FEBS Letters, 2013, 587, 2832-2841.	1.3	113
35	Genome-Scale Model Management and Comparison. Methods in Molecular Biology, 2013, 985, 3-16.	0.4	1
37	Application of 'omics technologies to biomarker discovery in inflammatory lung diseases. European Respiratory Journal, 2013, 42, 802-825.	3.1	234

#	Article	IF	Citations
38	A method for integrating and ranking the evidence for biochemical pathways by mining reactions from text. Bioinformatics, 2013, 29, i44-i52.	1.8	34
39	GRN2SBML: automated encoding and annotation of inferred gene regulatory networks complying with SBML. Bioinformatics, 2013, 29, 2216-2217.	1.8	4
40	Inferring semantic similarity through correlating information contents of gene ontology terms. , 2013, , .		0
41	Platforms for Genetic Design Automation. Methods in Microbiology, 2013, , 177-202.	0.4	6
42	Computational models of the JAK1/2-STAT1 signaling. Jak-stat, 2013, 2, e24672.	2.2	20
43	Ontology of physics for biology: representing physical dependencies as a basis for biological processes. Journal of Biomedical Semantics, 2013, 4, 41.	0.9	26
44	Improving Collaboration by Standardization Efforts in Systems Biology. Frontiers in Bioengineering and Biotechnology, 2014, 2, 61.	2.0	52
46	SESSL. ACM Transactions on Modeling and Computer Simulation, 2014, 24, 1-25.	0.6	70
47	The Reactome pathway knowledgebase. Nucleic Acids Research, 2014, 42, D472-D477.	6.5	1,448
48	Challenges in adapting text mining for full text articles to assist pathway curation. , 2014, , .		3
49	Challenges for an enzymatic reaction kinetics database. FEBS Journal, 2014, 281, 572-582.	2.2	22
50	COMBINE archive and OMEX format: one file to share all information to reproduce a modeling project. BMC Bioinformatics, 2014, 15, 369.	1.2	114
51	Standards, Platforms, and Applications. , 2014, , 133-167.		0
52	Biological Network Modeling and Analysis. , 2014, , 203-244.		0
53	The cell behavior ontology: describing the intrinsic biological behaviors of real and model cells seen as active agents. Bioinformatics, 2014, 30, 2367-2374.	1.8	35
54	Correlating Information Contents of Gene Ontology Terms to Infer Semantic Similarity of Gene Products. Computational and Mathematical Methods in Medicine, 2014, 2014, 1-9.	0.7	10
55	Metabolomics and systems pharmacology: why and how to model the human metabolic network for drug discovery. Drug Discovery Today, 2014, 19, 171-182.	3.2	140
56	Data management strategies for multinational large-scale systems biology projects. Briefings in Bioinformatics, 2014, 15, 65-78.	3.2	28

#	Article	IF	CITATIONS
57	A dedicated database system for handling multi-level data in systems biology. Source Code for Biology and Medicine, 2014, 9, 17.	1.7	2
58	CSEO – the Cigarette Smoke Exposure Ontology. Journal of Biomedical Semantics, 2014, 5, 31.	0.9	7
59	A case study: semantic integration of gene–disease associations for type 2 diabetes mellitus from literature and biomedical data resources. Drug Discovery Today, 2014, 19, 882-889.	3.2	10
60	Controlled vocabularies and ontologies in proteomics: Overview, principles and practice. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 98-107.	1.1	36
61	Meeting report from the fourth meeting of the Computational Modeling in Biology Network (COMBINE). Standards in Genomic Sciences, 2014, 9, 1285-1301.	1.5	21
62	A linked data platform for finite element biosimulations. , 2015, , .		3
63	Extending inner-ear anatomical concepts in the Foundational Model of Anatomy (FMA) ontology. , 2015, , .		0
64	libSBOLj 2.0: A Java Library to Support SBOL 2.0. IEEE Life Sciences Letters, 2015, 1, 34-37.	1.2	24
65	Streamlining metadata for economic time series data: A project report. Proceedings of the Association for Information Science and Technology, 2015, 52, 1-4.	0.3	0
66	Combining computational models, semantic annotations and simulation experiments in a graph database. Database: the Journal of Biological Databases and Curation, 2015, 2015, .	1.4	42
67	Overview of the Cancer Genetics and Pathway Curation tasks of BioNLP Shared Task 2013. BMC Bioinformatics, 2015, 16, S2.	1.2	44
68	Automatising the analysis of stochastic biochemical time-series. BMC Bioinformatics, 2015, 16, S8.	1.2	1
69	SBMLsqueezer 2: context-sensitive creation of kinetic equations in biochemical networks. BMC Systems Biology, 2015, 9, 68.	3.0	27
70	The evolution of standards and data management practices in systems biology. Molecular Systems Biology, 2015, 11, 851.	3.2	35
71	Promoting Coordinated Development of Community-Based Information Standards for Modeling in Biology: The COMBINE Initiative. Frontiers in Bioengineering and Biotechnology, 2015, 3, 19.	2.0	72
72	Linking gene expression to phenotypes via pathway information. Journal of Biomedical Semantics, 2015, 6, 17.	0.9	26
73	Annotation-based feature extraction from sets of SBML models. Journal of Biomedical Semantics, 2015, 6, 20.	0.9	13
74	BioModels: Content, Features, Functionality, and Use. CPT: Pharmacometrics and Systems Pharmacology, 2015, 4, 55-68.	1.3	56

#	ARTICLE	IF	CITATIONS
75	Pantograph: A template-based method for genome-scale metabolic model reconstruction. Journal of Bioinformatics and Computational Biology, 2015, 13, 1550006.	0.3	29
76	Cooperative development of logical modelling standards and tools with CoLoMoTo. Bioinformatics, 2015, 31, 1154-1159.	1.8	98
77	Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chemical Society Reviews, 2015, 44, 1172-1239.	18.7	316
78	Generating Systems Biology Markup Language Models from the Synthetic Biology Open Language. ACS Synthetic Biology, 2015, 4, 873-879.	1.9	81
79	JSBML 1.0: providing a smorgasbord of options to encode systems biology models. Bioinformatics, 2015, 31, 3383-3386.	1.8	37
80	Qualitative dynamics semantics for SBGN process description. BMC Systems Biology, 2016, 10, 42.	3.0	5
81	How Modeling Standards, Software, and Initiatives Support Reproducibility in Systems Biology and Systems Medicine. IEEE Transactions on Biomedical Engineering, 2016, 63, 1999-2006.	2.5	43
82	From cell to silicon: Translation of a genetic circuit to finite state machine implementation. , 2016, , .		1
83	phraSED-ML: A paraphrased, human-readable adaptation of SED-ML. Journal of Bioinformatics and Computational Biology, 2016, 14, 1650035.	0.3	12
84	Data Integration and Mining for Synthetic Biology Design. ACS Synthetic Biology, 2016, 5, 1086-1097.	1.9	23
85	Reusing simulation experiment specifications to support developing models by successive extension. Simulation Modelling Practice and Theory, 2016, 68, 33-53.	2.2	11
86	Guidelines for Reproducibly Building and Simulating Systems Biology Models. IEEE Transactions on Biomedical Engineering, 2016, 63, 2015-2020.	2.5	29
87	Notions of similarity for systems biology models. Briefings in Bioinformatics, 2018, 19, bbw090.	3.2	17
88	COMODI: an ontology to characterise differences in versions of computational models in biology. Journal of Biomedical Semantics, 2016, 7, 46.	0.9	15
89	A Linked Data Visualiser for Finite Element Biosimulations. International Journal of Semantic Computing, 2016, 10, 219-245.	0.4	2
90	Challenges in horizontal model integration. BMC Systems Biology, 2016, 10, 28.	3.0	0
91	A Linked Data Visualiser for Finite Element Biosimulations. , 2016, , .		1
92	Annotation of rule-based models with formal semantics to enable creation, analysis, reuse and visualization. Bioinformatics, 2016, 32, 908-917.	1.8	18

#	Article	IF	CITATIONS
93	A physiome interoperability roadmap for personalized drug development. Interface Focus, 2016, 6, 20150094.	1.5	8
94	Reproducibility in Computational Neuroscience Models and Simulations. IEEE Transactions on Biomedical Engineering, 2016, 63, 2021-2035.	2.5	43
95	Harnessing QbD, Programming Languages, and Automation for Reproducible Biology. Trends in Biotechnology, 2016, 34, 214-227.	4.9	44
96	Kinetic modeling of cell metabolism for microbial production. Journal of Biotechnology, 2016, 219, 126-141.	1.9	43
97	A Converter from the Systems Biology Markup Language to the Synthetic Biology Open Language. ACS Synthetic Biology, 2016, 5, 479-486.	1.9	20
98	BiGG Models: A platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Research, 2016, 44, D515-D522.	6.5	746
99	Ontologies in Chemoinformatics. , 2017, , 2163-2181.		0
100	Global open data management in metabolomics. Current Opinion in Chemical Biology, 2017, 36, 58-63.	2.8	39
101	A standard-enabled workflow for synthetic biology. Biochemical Society Transactions, 2017, 45, 793-803.	1.6	38
102	Data management and data enrichment for systems biology projects. Journal of Biotechnology, 2017, 261, 229-237.	1.9	23
103	Reusing simulation experiment specifications in developing models by successive composition — a case study of the Wnt/l²-catenin signaling pathway. Simulation, 2017, 93, 659-677.	1.1	11
104	From word models to executable models of signaling networks using automated assembly. Molecular Systems Biology, 2017, 13, 954.	3.2	137
105	A brief history of COMBINE. , 2017, , .		6
106	The bacterial interlocked process ONtology (BiPON): a systemic multi-scale unified representation of biological processes in prokaryotes. Journal of Biomedical Semantics, 2017, 8, 53.	0.9	5
107	SABIO-RK: an updated resource for manually curated biochemical reaction kinetics. Nucleic Acids Research, 2018, 46, D656-D660.	6.5	92
108	JigCell Model Connector: building large molecular network models from components. Simulation, 2018, 94, 993-1008.	1.1	2
109	Control of primary metabolism by a virulence regulatory network promotes robustness in a plant pathogen. Nature Communications, 2018, 9, 418.	5.8	32
110	Specifications of Standards in Systems and Synthetic Biology: Status and Developments in 2017. Journal of Integrative Bioinformatics, 2018, 15, .	1.0	7

#	Article	IF	CITATIONS
111	BioLQM: A Java Toolkit for the Manipulation and Conversion of Logical Qualitative Models of Biological Networks. Frontiers in Physiology, 2018, 9, 1605.	1.3	40
112	Identifying frequent patterns in biochemical reaction networks: a workflow. Database: the Journal of Biological Databases and Curation, 2018, 2018, .	1.4	8
113	Tellurium notebooksâ€"An environment for reproducible dynamical modeling in systems biology. PLoS Computational Biology, 2018, 14, e1006220.	1.5	41
114	A Computational Workflow for the Automated Generation of Models of Genetic Designs. ACS Synthetic Biology, 2019, 8, 1548-1559.	1.9	27
115	Data Formats for Systems Biology and Quantitative Modeling. , 2019, , 884-893.		3
116	Biological and Medical Ontologies: Systems Biology Ontology (SBO). , 2019, , 858-866.		5
117	Specifications of Standards in Systems and Synthetic Biology: Status and Developments in 2019. Journal of Integrative Bioinformatics, 2019, 16, .	1.0	7
118	ToxRefDB version 2.0: Improved utility for predictive and retrospective toxicology analyses. Reproductive Toxicology, 2019, 89, 145-158.	1.3	56
119	Communicating Structure and Function in Synthetic Biology Diagrams. ACS Synthetic Biology, 2019, 8, 1818-1825.	1.9	30
120	ModelBricksâ€"modules for reproducible modeling improving model annotation and provenance. Npj Systems Biology and Applications, 2019, 5, 37.	1.4	13
122	Annotations for Rule-Based Models. Methods in Molecular Biology, 2019, 1945, 271-296.	0.4	0
123	Understanding characteristics of semantic associations in health consumer generated knowledge representation in social media. Journal of the Association for Information Science and Technology, 2019, 70, 1210-1222.	1.5	4
124	Quantitative evaluation of ontology design patterns for combining pathology and anatomy ontologies. Scientific Reports, 2019, 9, 4025.	1.6	13
125	Harmonizing semantic annotations for computational models in biology. Briefings in Bioinformatics, 2019, 20, 540-550.	3.2	52
126	Towards reusable process-based models of dynamical systems: A case study in the domain of aquatic ecosystems. , 2019, , .		0
127	LePrimAlign: local entropy-based alignment of PPI networks to predict conserved modules. BMC Genomics, 2019, 20, 964.	1.2	4
128	Closing the gap between formats for storing layout information in systems biology. Briefings in Bioinformatics, 2020, 21, 1249-1260.	3.2	12
129	The Synthetic Biology Open Language (SBOL) Version 3: Simplified Data Exchange for Bioengineering. Frontiers in Bioengineering and Biotechnology, 2020, 8, 1009.	2.0	40

#	Article	IF	CITATIONS
130	Computer-Aided Whole-Cell Design: Taking a Holistic Approach by Integrating Synthetic With Systems Biology. Frontiers in Bioengineering and Biotechnology, 2020, 8, 942.	2.0	25
131	Best Practices for Making Reproducible Biochemical Models. Cell Systems, 2020, 11, 109-120.	2.9	25
132	Genome-scale metabolic reconstruction of the non-model yeast Issatchenkia orientalis SD108 and its application to organic acids production. Metabolic Engineering Communications, 2020, 11, e00148.	1.9	20
133	Hypothesis-driven quantitative fluorescence microscopy – the importance of reverse-thinking in experimental design. Journal of Cell Science, 2020, 133, .	1.2	28
134	BpForms and BcForms: a toolkit for concretely describing non-canonical polymers and complexes to facilitate global biochemical networks. Genome Biology, 2020, 21, 117.	3.8	8
135	SBOL Visual 2 Ontology. ACS Synthetic Biology, 2020, 9, 972-977.	1.9	3
136	Knowledge representation and data sharing to unlock crop variation for nutritional food security. Crop Science, 2020, 60, 516-529.	0.8	7
137	Organizing genome engineering for the gigabase scale. Nature Communications, 2020, $11,689$.	5.8	14
138	MEMOTE for standardized genome-scale metabolic model testing. Nature Biotechnology, 2020, 38, 272-276.	9.4	314
139	Status and Challenges of Reproducibility in Computational Systems and Synthetic Biology. , 2021, , 406-412.		0
140	Overview: Standards for Modeling in Systems Medicine. , 2021, , 345-353.		4
141	Biomedical Ontologies: Coverage, Access and Use. , 2021, , 382-395.		4
142	Clinical Applications of Metabolic Models in SBML Format. , 2021, , 362-371.		8
143	OUP accepted manuscript. Database: the Journal of Biological Databases and Curation, 2021, 2021, .	1.4	0
144	Evaluating accessibility, usability and interoperability of genome-scale metabolic models for diverse yeasts species. FEMS Yeast Research, 2021, 21, .	1.1	6
145	Representation of behaviour change interventions and their evaluation: Development of the Upper Level of the Behaviour Change Intervention Ontology. Wellcome Open Research, 2020, 5, 123.	0.9	41
147	Nanoinformatics: Opportunities and challenges in the development and delivery of healthcare products in developing countries. IOP Conference Series: Earth and Environmental Science, 2021, 655, 012018.	0.2	4
149	Why and how to engage expert stakeholders in ontology development: insights from social and behavioural sciences. Journal of Biomedical Semantics, 2021, 12, 4.	0.9	12

#	Article	IF	CITATIONS
150	SBGN Bricks Ontology as a tool to describe recurring concepts in molecular networks. Briefings in Bioinformatics, 2021, 22, .	3.2	4
152	First Genome-Scale Metabolic Model of Dolosigranulum pigrum Confirms Multiple Auxotrophies. Metabolites, 2021, 11, 232.	1.3	8
153	Philosophy in Science: Can philosophers of science permeate through science and produce scientific knowledge?. British Journal for the Philosophy of Science, 0, , .	1.4	19
154	Curating and comparing 114 strain-specific genome-scale metabolic models of Staphylococcus aureus. Npj Systems Biology and Applications, 2021, 7, 30.	1.4	10
155	A large-scale assessment of exact lumping of quantitative models in the BioModels repository. Theoretical Computer Science, 2021, 893, 41-59.	0.5	3
156	Countering reproducibility issues in mathematical models with software engineering techniques: A case study using a one-dimensional mathematical model of the atrioventricular node. PLoS ONE, 2021, 16, e0254749.	1.1	3
157	Ten simple rules for creating reusable pathway models for computational analysis and visualization. PLoS Computational Biology, 2021, 17, e1009226.	1.5	13
158	Relating simulation studies by provenance—Developing a family of Wnt signaling models. PLoS Computational Biology, 2021, 17, e1009227.	1.5	7
159	Practical resources for enhancing the reproducibility of mechanistic modeling in systems biology. Current Opinion in Systems Biology, 2021, 27, 100350.	1.3	3
161	From knowledge to models: Automated modeling in systems and synthetic biology. Current Opinion in Systems Biology, 2021, 28, 100362.	1.3	4
162	The Systems Biology Graphical Notation: Current Status and Applications in Systems Medicine. , 2021, , 372-381.		6
163	Systems Biology Ontology. , 2013, , 2063-2063.		13
164	The Synthetic Biology Open Language. Methods in Molecular Biology, 2015, 1244, 323-336.	0.4	1
165	Controlled Annotations for Systems Biology. Methods in Molecular Biology, 2013, 1021, 227-245.	0.4	4
166	A Large-Scale Assessment of Exact Model Reduction in the BioModels Repository. Lecture Notes in Computer Science, 2019, , 248-265.	1.0	5
167	Musculoskeletal Modelling and the Physiome Project. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2018, , 123-174.	0.3	10
168	Semantic Data and Models Sharing in Systems Biology: The Just Enough Results Model and the SEEK Platform. Lecture Notes in Computer Science, 2013, , 212-227.	1.0	6
169	Reproducibility of Model-Based Results in Systems Biology. , 2013, , 301-320.		7

#	Article	IF	CITATIONS
171	Computational Infrastructures for Data and Knowledge Management in Systems Biology. , 2013, , 377-397.		2
172	Thinking Ontologies. Computer Aided Chemical Engineering, 2012, 31, 1682-1686.	0.3	3
180	Representation of behaviour change interventions and their evaluation: Development of the Upper Level of the Behaviour Change Intervention Ontology. Wellcome Open Research, 2020, 5, 123.	0.9	41
181	ZBIT Bioinformatics Toolbox: A Web-Platform for Systems Biology and Expression Data Analysis. PLoS ONE, 2016, 11, e0149263.	1.1	25
182	A Resource Allocation Trade-Off between Virulence and Proliferation Drives Metabolic Versatility in the Plant Pathogen Ralstonia solanacearum. PLoS Pathogens, 2016, 12, e1005939.	2.1	117
183	Specifications of standards in systems and synthetic biology: status and developments in 2020. Journal of Integrative Bioinformatics, 2020, 17, .	1.0	10
184	<scp>SBML</scp> Level 3: an extensible format for the exchange and reuse of biological models. Molecular Systems Biology, 2020, 16, e9110.	3.2	178
185	In Silico Cell: Challenges and Perspectives. Mathematical Biology and Bioinformatics, 2013, 8, 295-315.	0.1	7
186	Systems Biology Markup Language (SBML) Level 2 Version 5: Structures and Facilities for Model Definitions. Journal of Integrative Bioinformatics, 2015, 12, 271.	1.0	42
187	Towards Automation of IoT Analytics. , 2018, , 947-971.		1
189	Specifications of standards in systems and synthetic biology: status and developments in 2021. Journal of Integrative Bioinformatics, 2021, 18, .	1.0	2
190	COVID19 Disease Map, a computational knowledge repository of virus–host interaction mechanisms. Molecular Systems Biology, 2021, 17, e10387.	3.2	53
191	An updated genome-scale metabolic network reconstruction of Pseudomonas aeruginosa PA14 to characterize mucin-driven shifts in bacterial metabolism. Npj Systems Biology and Applications, 2021, 7, 37.	1.4	12
192	Computational Tools and Resources for Integrative Modeling in Systems Biology., 2013,, 399-428.		0
193	Semantic Web, Interoperability. , 2013, , 1921-1925.		2
194	Annotation-Based Feature Extraction from Sets of SBML Models. Lecture Notes in Computer Science, 2014, , 81-95.	1.0	1
195	Getting Science to Scale. , 2015, , 137-145.		0
197	Ontologies in Cheminformatics. , 2016, , 1-19.		0

#	Article	IF	CITATIONS
202	Converting Alzheimer's Disease Map into a Heavyweight Ontology: A Formal Network to Integrate Data. Lecture Notes in Computer Science, 2019, , 207-215.	1.0	4
203	Data Management in Computational Systems Biology: Exploring Standards, Tools, Databases, and Packaging Best Practices. Methods in Molecular Biology, 2019, 2049, 285-314.	0.4	3
205	Towards Automation of IoT Analytics. Advances in Computational Intelligence and Robotics Book Series, 0, , 27-51.	0.4	0
207	Specifications of Standards in Systems and Synthetic Biology: Status and Developments in 2016. Journal of Integrative Bioinformatics, 2016, 13, 289.	1.0	7
208	How Sustainable are Biomedical Ontologies?. AMIA Annual Symposium proceedings, 2018, 2018, 470-479.	0.2	1
209	High-Quality Genome-Scale Reconstruction of Corynebacterium glutamicum ATCC 13032. Frontiers in Microbiology, 2021, 12, 750206.	1.5	13
210	Synthetic Biology Curation Tools (SYNBICT). ACS Synthetic Biology, 2021, 10, 3200-3204.	1.9	2
212	Tyto: A Python Tool Enabling Better Annotation Practices for Synthetic Biology Data-Sharing. ACS Synthetic Biology, 2022, 11, 1373-1376.	1.9	1
213	Model Integration in Computational Biology: The Role of Reproducibility, Credibility and Utility. Frontiers in Systems Biology, 2022, 2, .	0.5	7
214	Exploring the evolution of biochemical models at the network level. PLoS ONE, 2022, 17, e0265735.	1.1	0
215	EnzymeMLâ€"a data exchange format for biocatalysis and enzymology. FEBS Journal, 2022, 289, 5864-5874.	2.2	14
216	BioSimulators: a central registry of simulation engines and services for recommending specific tools. Nucleic Acids Research, 2022, 50, W108-W114.	6.5	11
219	Exploiting the Potential of Nature for Sustainable Building Designs: A Novel Bioinspired Framework Based on a Characterization of Living Envelopes. Environmental Footprints and Eco-design of Products and Processes, 2022, , 289-331.	0.7	1
220	Examining organic acid production potential and growthâ€coupled strategies in <i>lssatchenkia orientalis</i> using constraintâ€based modeling. Biotechnology Progress, 2022, 38, .	1.3	4
221	A semantics, energy-based approach to automate biomodel composition. PLoS ONE, 2022, 17, e0269497.	1.1	4
222	Simulation Experiment Description Markup Language (SED-ML). , 2022, , 3134-3137.		0
223	Combining hypothesis- and data-driven neuroscience modeling in FAIR workflows. ELife, 0, 11 , .	2.8	15
224	Design considerations for representing systems biology information with the Systems Biology Graphical Notation. Journal of Integrative Bioinformatics, 2022, .	1.0	1

#	Article	IF	CITATIONS
226	Automatic Reuse, Adaption, and Execution of Simulation Experiments via Provenance Patterns. ACM Transactions on Modeling and Computer Simulation, 2023, 33, 1-27.	0.6	2
227	The Bambara Groundnut Genome. Compendium of Plant Genomes, 2022, , 189-215.	0.3	1
228	From quantitative SBML models to Boolean networks. Applied Network Science, 2022, 7, .	0.8	1
231	EnzymeML: seamless data flow and modeling of enzymatic data. Nature Methods, 2023, 20, 400-402.	9.0	13
232	New workflow predicts drug targets against SARS-CoV-2 via metabolic changes in infected cells. PLoS Computational Biology, 2023, 19, e1010903.	1.5	3
233	A Practical Guide to Reproducible Modeling for Biochemical Networks. Methods in Molecular Biology, 2023, , 107-138.	0.4	0