Biofortification: A New Tool to Reduce Micronutrient M

Food and Nutrition Bulletin 32, S31-S40 DOI: 10.1177/15648265110321s105

Citation Report

#	Article	IF	CITATIONS
1	Genetic Modification of <i>Low Phytic Acid 1-1</i> Maize to Enhance Iron Content and Bioavailability. Journal of Agricultural and Food Chemistry, 2011, 59, 12954-12962.	2.4	54
2	Ethnopharmacology, food production, nutrition and biodiversity conservation: Towards a sustainable future for indigenous peoples. Journal of Ethnopharmacology, 2011, 137, 1-15.	2.0	104
3	Econutrition and Utilization of Food-Based Approaches for Nutritional Health. Food and Nutrition Bulletin, 2011, 32, S4-S13.	0.5	25
4	Multiple Micronutrient Interventions Are Efficacious, but Research on Adequacy, Plausibility, and Implementation Needs Attention ,. Journal of Nutrition, 2012, 142, 205S-209S.	1.3	19
5	Daily Consumption of Orange-Fleshed Sweet Potato for 60 Days Increased Plasma β-Carotene Concentration but Did Not Increase Total Body Vitamin A Pool Size in Bangladeshi Women. Journal of Nutrition, 2012, 142, 1896-1902.	1.3	31
6	Introduction of β-Carotene–Rich Orange Sweet Potato in Rural Uganda Resulted in Increased Vitamin A Intakes among Children and Women and Improved Vitamin A Status among Children3. Journal of Nutrition, 2012, 142, 1871-1880.	1.3	213
7	Cereal Biofortification: Strategies, Challenges, and Benefits. Cereal Foods World, 2012, 57, 165-169.	0.7	9
8	Genetic enhancement of grain iron and zinc content in pearl millet. Quality Assurance and Safety of Crops and Foods, 2012, 4, 119-125.	1.8	96
9	Retention during Processing and Bioaccessibility of β-Carotene in High β-Carotene Transgenic Cassava Root. Journal of Agricultural and Food Chemistry, 2012, 60, 3861-3866.	2.4	57
10	New foods for thought. Trends in Plant Science, 2012, 17, 123-125.	4.3	20
12	Biofortification, Agricultural Technology Adoption, and Nutrition Policy: Some Lessons and Emerging Challenges*. CESifo Economic Studies, 2012, 58, 405-421.	0.3	30
13	Spatial distribution of dry matter in yellow fleshed cassava roots and its influence on carotenoid retention upon boiling. Food Research International, 2012, 45, 52-59.	2.9	35
14	Mitigating zinc deficiency and achieving high grain Zn in rice through integration of soil chemistry and plant physiology research. Plant and Soil, 2012, 361, 3-41.	1.8	121
15	Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant and Soil, 2012, 361, 119-130.	1.8	216
16	Biofortification and estimated human bioavailability of zinc in wheat grains as influenced by methods of zinc application. Plant and Soil, 2012, 361, 279-290.	1.8	129
17	Acceptance and Effect of Ferrous Fumarate Containing Micronutrient Sprinkles on Anemia, Iron Deficiency and Anthropometrics in Honduran Children. , 0, , .		1
18	Vegetable breeding in Africa: constraints, complexity and contributions toward achieving food and nutritional security. Food Security, 2012, 4, 115-127.	2.4	73
19	Potential of nonâ€GMO biofortified pearl millet (<i>Pennisetum glaucum</i>) for increasing iron and zinc content and their estimated bioavailability during abrasive decortication. International Journal of Food Science and Technology, 2012, 47, 1660-1668.	1.3	15

		CITATION RE	PORT	
#	Article		IF	CITATIONS
20	Food system strategies for preventing micronutrient malnutrition. Food Policy, 2013,	42, 115-128.	2.8	249
21	Maize grain concentrations and above-ground shoot acquisition of micronutrients as a intercropping with turnip, faba bean, chickpea, and soybean. Science China Life Science 823-834.	affected by tes, 2013, 56,	2.3	30
22	Biofortification: Progress toward a more nourishing future. Global Food Security, 2013	s, 2, 9-17.	4.0	321
23	Lentil (Lens culinaris L.) as a candidate crop for iron biofortification: Is there genetic po iron bioavailability?. Field Crops Research, 2013, 144, 119-125.	otential for	2.3	40
24	Genetic architecture controlling variation in grain carotenoid composition and concen two maize populations. Theoretical and Applied Genetics, 2013, 126, 2879-2895.	trations in	1.8	54
25	Marker-trait association analysis of functional gene markers for provitamin A levels act tropical yellow maize inbred lines. BMC Plant Biology, 2013, 13, 227.	oss diverse	1.6	93
26	Validation of the effects of molecular marker polymorphisms in LcyE and CrtRB1 on pr concentrations for 26 tropical maize populations. Theoretical and Applied Genetics, 20		1.8	152
28	Soil-type influences human selenium status and underlies widespread selenium deficie Malawi. Scientific Reports, 2013, 3, 1425.	ncy risks in	1.6	104
29	Zinc bioavailability response curvature in wheat grains under incremental zinc applicat of Agronomy and Soil Science, 2013, 59, 1001-1016.	ions. Archives	1.3	18
30	Bioaccessibility of Carotenoids from Transgenic Provitamin A Biofortified Sorghum. Jou Agricultural and Food Chemistry, 2013, 61, 5764-5771.	ırnal of	2.4	103
31	Nutrition-sensitive interventions and programmes: how can they help to accelerate pro improving maternal and child nutrition?. Lancet, The, 2013, 382, 536-551.	ogress in	6.3	1,206
32	Multielement Plant Tissue Analysis Using ICP Spectrometry. Methods in Molecular Bio 121-141.	ogy, 2013, 953,	0.4	42
33	Biofortified cassava increases \hat{l}^2 -carotene and vitamin A concentrations in the TAG-rich American women. British Journal of Nutrition, 2013, 110, 310-320.	ı plasma layer of	1.2	62
34	Abiotic stress growth conditions induce different responses in kernel iron concentratic genotypically distinct maize inbred varieties. Frontiers in Plant Science, 2013, 4, 488.	on across	1.7	5
35	The influence of inorganic nitrogen fertilizer forms on micronutrient retranslocation ar accumulation in grains of winter wheat. Frontiers in Plant Science, 2013, 4, 320.	ıd	1.7	57
36	The Phaseolus vulgaris ZIP gene family: identification, characterization, mapping, and s Frontiers in Plant Science, 2013, 4, 286.	gene expression.	1.7	52
37	Total Iron Absorption by Young Women from Iron-Biofortified Pearl Millet Composite N That from Regular Millet Meals but Less Than That from Post-Harvest Iron-Fortified Mil Journal of Nutrition, 2013, 143, 1376-1382.	Neals Is Double let Meals.	1.3	110
39	Enhancing the chelation capacity of rice to maximise iron and zinc concentrations unc atmospheric carbon dioxide. Functional Plant Biology, 2013, 40, 101.	ler elevated	1.1	13

		Report	
#	Article	IF	CITATIONS
41	Biofortification of Pearl Millet with Iron and Zinc in a Randomized Controlled Trial Increases Absorption of These Minerals above Physiologic Requirements in Young Children. Journal of Nutrition, 2013, 143, 1489-1493.	1.3	108
42	Rapid Cycling Recurrent Selection for Increased Carotenoids Content in Cassava Roots. Crop Science, 2013, 53, 2342-2351.	0.8	80
43	Combining Ability and Heterosis for Grain Iron and Zinc Densities in Pearl Millet. Crop Science, 2013, 53, 507-517.	0.8	65
44	Biofortification. , 2013, , 175-181.		4
45	Nutritional enhancement by biofortification of staple crops. , 2013, , 199-220.		3
46	Cowpeas in Northern Ghana and the Factors that Predict Caregivers' Intention to Give Them to Schoolchildren. PLoS ONE, 2013, 8, e72087.	1.1	11
47	Biofortified Cassava with Pro-Vitamin A Is Sensory and Culturally Acceptable for Consumption by Primary School Children in Kenya. PLoS ONE, 2013, 8, e73433.	1.1	46
48	Effects of S ₁ Recurrent Selection for Provitamin A Carotenoid Content for Three Openâ€Pollinated Maize Cultivars. Crop Science, 2014, 54, 2449-2460.	0.8	35
49	A simple and rapid screening technique for grain carotene content in pearl millet through spectrophotometric method. African Journal of Agricultural Research Vol Pp, 2014, 9, 572-576.	0.2	5
50	Development of β-Carotene Rich Maize Hybrids through Marker-Assisted Introgression of β-carotene hydroxylase Allele. PLoS ONE, 2014, 9, e113583.	1.1	154
51	Prevention and control of micronutrient deficiencies in developing countries: current perspectives. Nutrition and Dietary Supplements, 0, , 41.	0.7	9
53	Making Food Systems Nutritionâ€sensitive: an Economic Policy Perspective. , 2014, 1, 72-93.	0.5	3
54	Biofortification: Trojan horse of corporate food control?. Development, 2014, 57, 201-209.	0.5	3
55	Enhancing Nutritional Quality in Crops Via Genomics Approaches. , 2014, , 417-429.		6
56	Fortification: new findings and implications. Nutrition Reviews, 2014, 72, 127-141.	2.6	47
57	Genetic loci associated with high grain zinc concentration and pleiotropic effect on kernel weight in wheat (Triticum aestivum L.). Molecular Breeding, 2014, 34, 1893-1902.	1.0	56
58	Dietary mineral supplies in Africa. Physiologia Plantarum, 2014, 151, 208-229.	2.6	178
59	Genetic combining ability and heterosis for important vitamins and antioxidant pigments in cauliflower (Brassica oleracea var. botrytis L.). Euphytica, 2014, 195, 169-181.	0.6	45

#	Article	IF	CITATIONS
60	Biofortification strategies to increase grain zinc and iron concentrations in wheat. Journal of Cereal Science, 2014, 59, 365-372.	1.8	339
61	Use of wheat genetic resources to develop biofortified wheat with enhanced grain zinc and iron concentrations and desirable processing quality. Journal of Cereal Science, 2014, 60, 617-622.	1.8	73
62	Iron Bioavailability in Two Commercial Cultivars of Wheat: Comparison between Wholegrain and White Flour and the Effects of Nicotianamine and 2′-Deoxymugineic Acid on Iron Uptake into Caco-2 Cells. Journal of Agricultural and Food Chemistry, 2014, 62, 10320-10325.	2.4	60
63	Quantification of food and nutrient intakes in Zambian children with and without malaria under controlled feeding conditions. Experimental Biology and Medicine, 2014, 239, 45-51.	1.1	10
64	Agronomic Biofortification of Cereal Grains with Iron and Zinc. Advances in Agronomy, 2014, 125, 55-91.	2.4	121
65	Assessment of biofortification with iodine and selenium of lettuce cultivated in the NFT hydroponic system. Scientia Horticulturae, 2014, 166, 9-16.	1.7	118
66	Localization of iron in rice grain using synchrotron X-ray fluorescence microscopy and high resolution secondary ion mass spectrometry. Journal of Cereal Science, 2014, 59, 173-180.	1.8	65
67	Differential expression of structural genes for the late phase of phytic acid biosynthesis in developing seeds of wheat (Triticum aestivum L.). Plant Science, 2014, 224, 74-85.	1.7	68
68	Nutrient and Nontraditional Food Intakes by Zambian Children in a Controlled Feeding Trial. Food and Nutrition Bulletin, 2014, 35, 60-67.	0.5	23
69	Managing the Vitamin A Program Portfolio: A Case Study of Zambia, 2013–2042. Food and Nutrition Bulletin, 2014, 35, 105-125.	0.5	24
70	Constraints and opportunities for implementing nutritionâ€specific, agricultural and marketâ€based approaches to improve nutrient intake adequacy among infants and young children in two regions of rural Kenya. Maternal and Child Nutrition, 2015, 11, 39-54.	1.4	22
71	The Role of Vegetables and Legumes in Assuring Food, Nutrition, and Income Security for Vulnerable Groups in Subâ€Saharan Africa. World Medical and Health Policy, 2015, 7, 187-210.	0.9	28
72	Influence of the moisture at harvest and drying process of the grains on the level of carotenoids in maize (Zea mays). Food Science and Technology, 2015, 35, 481-486.	0.8	7
73	Seed Set and Xenia Effects on Grain Iron and Zinc Density in Pearl Millet. Crop Science, 2015, 55, 821-827.	0.8	13
74	Rice and Bean Targets for Biofortification Combined with High Carotenoid Content Crops Regulate Transcriptional Mechanisms Increasing Iron Bioavailability. Nutrients, 2015, 7, 9683-9696.	1.7	20
75	Closing the Divide between Human Nutrition and Plant Breeding. Crop Science, 2015, 55, 1437-1448.	0.8	36
76	Using Agriculture to Improve Child Health: Promoting Orange Sweet Potatoes Reduces Diarrhea. World Development, 2015, 74, 15-24.	2.6	70
77	Micronutrient Program Costs: Sources of Variations and Noncomparabilities. Food and Nutrition Bulletin, 2015, 36, 43-56.	0.5	17

#	Article	IF	CITATIONS
78	Crop Production and Global Environmental Issues. , 2015, , .		32
79	Introgression of the crtRB1 gene into quality protein maize inbred lines using molecular markers. Molecular Breeding, 2015, 35, 154.	1.0	56
80	Genetic Improvement of Maize in India: Retrospect and Prospects. Agricultural Research, 2015, 4, 325.	0.9	48
81	Fertilizers and Environment: Issues and Challenges. , 2015, , 575-598.		11
82	Cyanobacterial inoculation elicits plant defense response and enhanced Zn mobilization in maize hybrids. Cogent Food and Agriculture, 2015, 1, 998507.	0.6	66
83	Phenotyping Nutritional and Antinutritional Traits. , 2015, , 223-233.		6
84	Nutritionally Enhanced Food Crops; Progress and Perspectives. International Journal of Molecular Sciences, 2015, 16, 3895-3914.	1.8	172
85	Assessing the promise of biofortification: A case study of high provitamin A maize in Zambia. Food Policy, 2015, 54, 65-77.	2.8	41
86	Parent-offspring regression analysis for total carotenoids and some agronomic traits in cassava. Euphytica, 2015, 206, 657-666.	0.6	25
87	Enriching rice with Zn and Fe while minimizing Cd risk. Frontiers in Plant Science, 2015, 6, 121.	1.7	85
88	A Randomized Trial of Iron-Biofortified Pearl Millet in School Children in India ,. Journal of Nutrition, 2015, 145, 1576-1581.	1.3	128
89	Biofortification of sweet potato for food and nutrition security in South Africa. Food Research International, 2015, 76, 962-970.	2.9	74
90	Exploiting natural variation in exotic germplasm for increasing provitamin-A carotenoids in tropical maize. Euphytica, 2015, 205, 203-217.	0.6	26
91	Association Analysis of the Maize Gene ZmYS1 with Kernel Mineral Concentrations. Plant Molecular Biology Reporter, 2015, 33, 1327-1335.	1.0	3
92	Enabling nutrient security and sustainability through systems research. Genes and Nutrition, 2015, 10, 462.	1.2	17
93	Genetic diversity of folate profiles in seeds of common bean, lentil, chickpea and pea. Journal of Food Composition and Analysis, 2015, 42, 134-140.	1.9	77
94	Stakeholder reactions toward iodine biofortified foods. An application of protection motivation theory. Appetite, 2015, 92, 295-302.	1.8	28
95	Allelic variations for lycopene-ε-cyclase and β-carotene hydroxylase genes in maize inbreds and their utilization in β-carotene enrichment programme. Cogent Food and Agriculture, 2015, 1, 1033141.	0.6	26

#	ARTICLE	IF	CITATIONS
96	Red palm oil–supplemented and biofortified cassava gari increase the carotenoid and retinyl palmitate concentrations of triacylglycerol-rich plasma in women. Nutrition Research, 2015, 35, 965-974.	1.3	12
97	Retention of Provitamin A Carotenoids in Staple Crops Targeted for Biofortification in Africa: Cassava, Maize and Sweet Potato. Critical Reviews in Food Science and Nutrition, 2015, 55, 1246-1269.	5.4	127
98	Rice fortification with zinc during parboiling may improve the adequacy of zinc intakes in Bangladesh. Journal of the Science of Food and Agriculture, 2015, 95, 379-385.	1.7	21
99	Selenium in soils under climate change, implication for human health. Environmental Chemistry Letters, 2015, 13, 1-19.	8.3	77
100	Highâ€Throughput Phenotyping and Improvements in Breeding Cassava for Increased Carotenoids in the Roots. Crop Science, 2016, 56, 2916-2925.	0.8	36
101	Food Security of Genetically Modified Foods. , 2016, , .		5
102	Continued Selenium Biofortification of Carrots and Broccoli Grown in Soils Once Amended with Se-enriched S. pinnata. Frontiers in Plant Science, 2016, 7, 1251.	1.7	39
103	The Impact of Carrot Enriched in Iodine through Soil Fertilization on Iodine Concentration and Selected Biochemical Parameters in Wistar Rats. PLoS ONE, 2016, 11, e0152680.	1.1	18
104	Biofortification Techniques to Improve Food Security. , 2016, , .		9
105	13C Natural Abundance of Serum Retinol Is a Novel Biomarker for Evaluating Provitamin A Carotenoid-Biofortified Maize Consumption in Male Mongolian Gerbils. Journal of Nutrition, 2016, 146, 1290-1297.	1.3	7
106	Information and consumer willingness to pay for biofortified yellow cassava: evidence from experimental auctions in Nigeria. Agricultural Economics (United Kingdom), 2016, 47, 215-233.	2.0	39
107	Consuming Iron Biofortified Beans Increases Iron Status in Rwandan Women after 128 Days in a Randomized Controlled Feeding Trial. Journal of Nutrition, 2016, 146, 1586-1592.	1.3	145
108	Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Scientific Reports, 2016, 6, 19792.	1.6	293
109	Zn uptake behavior of rice genotypes and its implication on grain Zn biofortification. Scientific Reports, 2016, 6, 38301.	1.6	29
110	Zinc Deficiency in Childhood and Pregnancy: Evidence for Intervention Effects and Program Responses. World Review of Nutrition and Dietetics, 2016, 115, 125-133.	0.1	19
111	Development of NIRS models for rapid quantification of protein content in sweetpotato [Ipomoea batatas (L.) LAM.]. LWT - Food Science and Technology, 2016, 72, 63-70.	2.5	46
112	Iron biofortification of wheat grains through integrated use of organic and chemical fertilizers in pH affected calcareous soil. Plant Physiology and Biochemistry, 2016, 104, 284-293.	2.8	72
113	Genomic prediction for grain zinc and iron concentrations in spring wheat. Theoretical and Applied Genetics, 2016, 129, 1595-1605.	1.8	93

		CITATION RI	EPORT	
#	Article		IF	CITATIONS
114	Information, branding, certification, and consumer willingness to pay for high-iron pear Evidence from experimental auctions in Maharashtra, India. Food Policy, 2016, 62, 133		2.8	29
115	Whole meal and white flour from Argentine wheat genotypes: Mineral and arabinoxylar Journal of Cereal Science, 2016, 71, 217-223.	n differences.	1.8	37
116	Maize. , 2016, , 67-88.			12
117	Carotenoids in Nature. Sub-Cellular Biochemistry, 2016, , .		1.0	39
118	Manipulation of Carotenoid Content in Plants to Improve Human Health. Sub-Cellular B 2016, 79, 311-343.	iochemistry,	1.0	26
119	Current Knowledge on Genetic Biofortification in Lentil. Journal of Agricultural and Food 2016, 64, 6383-6396.	l Chemistry,	2.4	50
120	Cost of agronomic biofortification of wheat with zinc in China. Agronomy for Sustainab Development, 2016, 36, 1.	le	2.2	49
121	Staple crops biofortified with increased micronutrient content: effects on vitamin and r status, as well as health and cognitive function in the general population. The Cochrane	nineral 2 Library, 0, , .	1.5	20
122	Iron Biofortification of Cereals Grown Under Calcareous Soils: Problems and Solutions. 231-258.	, 2016, ,		8
123	The effectiveness of extension strategies for increasing the adoption of biofortified cro of quality protein maize in East Africa. Food Security, 2016, 8, 1101-1121.	ps: the case	2.4	19
124	Provitamin A Carotenoid–Biofortified Maize Consumption Increases Pupillary Respon Zambian Children in a Randomized Controlled Trial. Journal of Nutrition, 2016, 146, 25		1.3	45
125	A practicable method for zinc enrichment in lettuce leaves by the endophyte fungus Pir indica under increasing zinc supply. Scientia Horticulturae, 2016, 213, 367-372.	iformospora	1.7	32
126	Genetic analyses of kernel carotenoids in novel maize genotypes possessing rare allele hydroxylase gene. Cereal Research Communications, 2016, 44, 669-680.	of <i>β-carotene</i>	0.8	19
127	Microsatellite marker-based genetic diversity analyses of novel maize inbreds possessin β-carotene hydroxylase (crtRB1) for their utilization in β-carotene enrichment. Journal o Biochemistry and Biotechnology, 2016, 25, 12-20.	g rare allele of of Plant	0.9	19
128	Zinc (Zn) concentration of bread wheat grown under Mediterranean conditions as affect genotype and soil/foliar Zn application. Plant and Soil, 2016, 401, 331-346.	cted by	1.8	70
129	NOD promoter-controlled AtIRT1 expression functions synergistically with NAS and FER increase iron in rice grains. Plant Molecular Biology, 2016, 90, 207-215.	RITIN genes to	2.0	72
130	Molecular Marker-Based Selection Tools in Spring Bread Wheat Improvement: CIMMYT Prospects. Sustainable Development and Biodiversity, 2016, , 421-474.	Experience and	1.4	24
131	Mechanism of Zinc absorption in plants: uptake, transport, translocation and accumula in Environmental Science and Biotechnology, 2016, 15, 89-109.	tion. Reviews	3.9	262

#	Article	IF	CITATIONS
132	Micronutrient Fertilizers for Zinc and Iron Enrichment in Major Food Crops: A Practicable Strategy. , 2016, , 229-236.		4
133	Biofortification: Pathway Ahead and Future Challenges. , 2016, , 479-492.		5
134	Biofortification: Introduction, Approaches, Limitations, and Challenges. , 2016, , 3-18.		24
135	Effect of drought and elevated temperature on grain zinc and iron concentrations in CIMMYT spring wheat. Journal of Cereal Science, 2016, 69, 182-186.	1.8	54
136	Zinc Absorption by Adults Is Similar from Intrinsically Labeled Zinc-Biofortified Rice and from Rice Fortified with Labeled Zinc Sulfate. Journal of Nutrition, 2016, 146, 76-80.	1.3	24
137	Biofortified yellow cassava and vitamin A status of Kenyan children: a randomized controlled trial. American Journal of Clinical Nutrition, 2016, 103, 258-267.	2.2	101
138	Soil-Transmitted Helminthiasis and Vitamin A Deficiency: Two Problems, One Policy. Trends in Parasitology, 2016, 32, 10-18.	1.5	17
139	Mapping QTL associated with remobilization of zinc from vegetative tissues into grains of barley (Hordeum vulgare). Plant and Soil, 2016, 399, 193-208.	1.8	28
140	Biofortification: A new approach to eradicate hidden hunger. Food Reviews International, 2017, 33, 1-21.	4.3	69
141	Factors influencing micronutrient bioavailability in biofortified crops. Annals of the New York Academy of Sciences, 2017, 1390, 74-87.	1.8	26
142	Assessing food value chain pathways, linkages and impacts for better nutrition of vulnerable groups. Food Policy, 2017, 68, 31-39.	2.8	90
143	Improving iron bioavailability and nutritional value of maize (<i>Zea mays</i> L.) in sulfur-treated calcareous soil. Archives of Agronomy and Soil Science, 2017, 63, 1255-1266.	1.3	10
144	Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Global Food Security, 2017, 12, 49-58.	4.0	704
145	Women and men farmer perceptions of economic and health benefits of orange fleshed sweet potato (OFSP) in Phalombe and Chikwawa districts in Malawi. Food Security, 2017, 9, 387-400.	2.4	9
146	Genetic variability for iron and zinc as well as antinutrients affecting bioavailability in black gram (Vigna mungo (L.) Hepper). Journal of Food Science and Technology, 2017, 54, 1035-1042.	1.4	15
147	Iron-biofortified staple food crops for improving iron status: a review of the current evidence. Current Opinion in Biotechnology, 2017, 44, 138-145.	3.3	97
148	Beneficial role of endophytes in biofortification of Zn in wheat genotypes varying in nutrient use efficiency grown in soils sufficient and deficient in Zn. Plant and Soil, 2017, 416, 107-116.	1.8	91
149	The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends in Food Science and Technology, 2017, 62, 119-132.	7.8	424

#	Article	IF	CITATIONS
150	Sorghum extrusion process combined with biofortified sweet potato contributed for high iron bioavailability in Wistar rats. Journal of Cereal Science, 2017, 75, 213-219.	1.8	10
151	Metal Tolerance Protein 8 Mediates Manganese Homeostasis and Iron Reallocation during Seed Development and Germination. Plant Physiology, 2017, 174, 1633-1647.	2.3	99
152	Approaches to reduce zinc and iron deficits in food systems. Global Food Security, 2017, 15, 1-10.	4.0	106
153	Mineral nutrient composition of vegetables, fruits and grains: The context of reports of apparent historical declines. Journal of Food Composition and Analysis, 2017, 56, 93-103.	1.9	172
154	Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Global Food Security, 2017, 12, 8-14.	4.0	211
156	Acceptance and adoption of biofortified crops in low- and middle-income countries: a systematic review. Nutrition Reviews, 2017, 75, 798-829.	2.6	52
157	Genetic impact of Rht dwarfing genes on grain micronutrients concentration in wheat. Field Crops Research, 2017, 214, 373-377.	2.3	61
158	Provitamin A-biofortified maize consumption increases serum xanthophylls and ¹³ C-natural abundance of retinol in Zambian children. Experimental Biology and Medicine, 2017, 242, 1508-1514.	1.1	15
159	Characterization of grain protein content gene (GPC-B1) introgression lines and its potential use in breeding for enhanced grain zinc and iron concentration in spring wheat. Acta Physiologiae Plantarum, 2017, 39, 1.	1.0	15
160	Single genetic locus improvement of iron, zinc and \hat{I}^2 -carotene content in rice grains. Scientific Reports, 2017, 7, 6883.	1.6	58
161	Harvesting more grain zinc of wheat for human health. Scientific Reports, 2017, 7, 7016.	1.6	78
163	Meat Intake and the Dose of Vitamin B ₃ – Nicotinamide: Cause of the Causes of Disease Transitions, Health Divides, and Health Futures?. International Journal of Tryptophan Research, 2017, 10, 117864691770466.	1.0	17
164	Influence of rare alleles of β <i> arotene hydroxylase</i> and <i>lycopene epsilon cyclase</i> genes on accumulation of provitamin A carotenoids in maize kernels. Plant Breeding, 2017, 136, 872-880.	1.0	34
165	Iron biofortification in the 21st century: setting realistic targets, overcoming obstacles, and new strategies for healthy nutrition. Current Opinion in Biotechnology, 2017, 44, 8-15.	3.3	110
166	Host-status of sweet potato cultivars to South Africa root-knot nematodes. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2017, 67, 62-66.	0.3	1
167	Rice NICOTIANAMINE SYNTHASE 2 expression improves dietary iron and zinc levels in wheat. Theoretical and Applied Genetics, 2017, 130, 283-292.	1.8	95
168	Biofortification in Millets: A Sustainable Approach for Nutritional Security. Frontiers in Plant Science, 2017, 8, 29.	1.7	83
169	Enhanced Grain Iron Levels in Rice Expressing an IRON-REGULATED METAL TRANSPORTER, NICOTIANAMINE SYNTHASE, and FERRITIN Gene Cassette. Frontiers in Plant Science, 2017, 8, 130.	1.7	88

#	Article	IF	CITATIONS
170	Biofortification of Wheat Cultivars to Combat Zinc Deficiency. Frontiers in Plant Science, 2017, 8, 281.	1.7	102
171	Genetic Variability, Genotype × Environment Interaction, Correlation, and GGE Biplot Analysis for Grain Iron and Zinc Concentration and Other Agronomic Traits in RIL Population of Sorghum (Sorghum bicolor L. Moench). Frontiers in Plant Science, 2017, 8, 712.	1.7	77
172	Harnessing Finger Millet to Combat Calcium Deficiency in Humans: Challenges and Prospects. Frontiers in Plant Science, 2017, 8, 1311.	1.7	59
173	The Influence of pH of Extracting Water on the Composition of Seaweed Extracts and Their Beneficial Properties on <i>Lepidium sativum</i> . BioMed Research International, 2017, 2017, 1-11.	0.9	13
174	Will farmers intend to cultivate Provitamin A genetically modified (GM) cassava in Nigeria? Evidence from a k-means segmentation analysis of beliefs and attitudes. PLoS ONE, 2017, 12, e0179427.	1.1	14
175	Biofortified Crops Can Alleviate Micronutrient Deficiencies: Review of Evidence from Randomized Feeding Trials. Vitamins & Minerals, 2017, 06, .	0.2	2
176	Using Fortified Milk as a Vehicle for Nutrients. , 2017, , 145-154.		1
177	Inbreeding Effects on Grain Iron and Zinc Concentrations in Pearl Millet. Crop Science, 2017, 57, 2699-2706.	0.8	4
178	Carotenoids in Cassava Roots. , 0, , .		19
179	Iron absorption from beans with different contents of iron, evaluated by stable isotopes. Clinical Nutrition ESPEN, 2018, 25, 121-125.	0.5	7
180	Identifying sociodemographic, programmatic and dietary drivers of anaemia reduction in pregnant Indian women over 10 years. Public Health Nutrition, 2018, 21, 2424-2433.	1.1	17
181	Micronutrient availability in soils of Northwest Bosnia and Herzegovina in relation to silage maize production. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2018, 68, 301-310.	0.3	4
182	Effect of nitrogen and zinc fertilization on zinc and iron bioavailability and chemical speciation in maize silage. Journal of Trace Elements in Medicine and Biology, 2018, 49, 269-275.	1.5	11
183	Linoleic Acid:Dihomo-γ-Linolenic Acid Ratio Predicts the Efficacy of Zn-Biofortified Wheat in Chicken (<i>Gallus gallus</i>). Journal of Agricultural and Food Chemistry, 2018, 66, 1394-1400.	2.4	23
184	Estimating genetic variation and genetic parameters for grain iron, zinc and protein concentrations in bread wheat genotypes grown in Iran. Journal of Cereal Science, 2018, 80, 16-23.	1.8	23
185	Does long-term application of fertilizers enhance the micronutrient density in soil and crop?—Evidence from a field trial conducted on a 47-year-old rice paddy. Journal of Soils and Sediments, 2018, 18, 49-62.	1.5	12
186	Biofortification: A review of ex-ante models. Global Food Security, 2018, 17, 186-195.	4.0	16
187	Interspecific and intergeneric hybridization as a source of variation for wheat grain quality improvement. Theoretical and Applied Genetics, 2018, 131, 225-251.	1.8	40

#	ARTICLE	IF	CITATIONS
188	Effect of the iron biofortification on enzymes activities and antioxidant properties in germinated brown rice. Journal of Food Measurement and Characterization, 2018, 12, 789-799.	1.6	12
189	How Could Agronomic Biofortification of Rice Be an Alternative Strategy with Higher Cost-Effectiveness for Human Iron and Zinc Deficiency in China?. Food and Nutrition Bulletin, 2018, 39, 246-259.	0.5	29
190	Zinc use efficiency is enhanced in wheat through nanofertilization. Scientific Reports, 2018, 8, 6832.	1.6	91
191	The impact of steeping, germination and hydrothermal processing of wheat (Triticum aestivum L.) grains on phytate hydrolysis and the distribution, speciation and bio-accessibility of iron and zinc elements. Food Chemistry, 2018, 264, 367-376.	4.2	49
192	Characterizing bread wheat genotypes of Pakistani origin for grain zinc biofortification potential. Journal of the Science of Food and Agriculture, 2018, 98, 4824-4836.	1.7	38
193	Carotenoid Stability during Dry Milling, Storage, and Extrusion Processing of Biofortified Maize Genotypes. Journal of Agricultural and Food Chemistry, 2018, 66, 4683-4691.	2.4	27
194	Marker-assisted introgression of opaque2 allele for rapid conversion of elite hybrids into quality protein maize. Journal of Genetics, 2018, 97, 287-298.	0.4	88
195	Facilitated citrate-dependent iron translocation increases rice endosperm iron and zinc concentrations. Plant Science, 2018, 270, 13-22.	1.7	47
196	Advantages and limitations of <i>in vitro</i> and <i>in vivo</i> methods of iron and zinc bioavailability evaluation in the assessment of biofortification program effectiveness. Critical Reviews in Food Science and Nutrition, 2018, 58, 2136-2146.	5.4	25
197	Improving zinc accumulation in cereal endosperm using Hv <scp>MTP</scp> 1, a transition metal transporter. Plant Biotechnology Journal, 2018, 16, 63-71.	4.1	65
198	Effect of vitamin A biofortification on the nutritional composition of cassava flour (gari) and evaluation of its glycemic index in healthy adults. Journal of Food Biochemistry, 2018, 42, e12450.	1.2	14
199	The potential contribution of yellow cassava to dietary nutrient adequacy of primary-school children in Eastern Kenya; the use of linear programming. Public Health Nutrition, 2018, 21, 365-376.	1.1	16
200	The impact of foliar applied zinc fertilizer on zinc and phytate accumulation in dorsal and ventral grain sections of four thai rice varieties with different grain zinc. Journal of Cereal Science, 2018, 79, 6-12.	1.8	22
201	Effects of the Consumption of Milk Biofortified with Selenium, Vitamin E, and Different Fatty Acid Profile on Immune Response in the Elderly. Molecular Nutrition and Food Research, 2018, 62, 1700307.	1.5	7
202	Zinc nutrition in wheat-based cropping systems. Plant and Soil, 2018, 422, 283-315.	1.8	152
203	Alleviation of nickel toxicity and an improvement in zinc bioavailability in sunflower seed with chitosan and biochar application in pH adjusted nickel contaminated soil. Archives of Agronomy and Soil Science, 2018, 64, 1053-1067.	1.3	164
204	Perspectives of folate biofortification of cereal grains. Journal of Plant Nutrition, 2018, 41, 2507-2524.	0.9	8
205	Reduction in nutritional quality and growing area suitability of common bean under climate change induced drought stress in Africa. Scientific Reports, 2018, 8, 16187.	1.6	67

		CITATION RE	PORT	
#	Article		IF	CITATIONS
206	Crops With Improved Nutritional Content Though Agricultural Biotechnology. , 2018,	, 279-294.		4
207	Nutritional composition and glycemic index analyses of vitamin Aâ€biofortified maize subjects. Food Science and Nutrition, 2018, 6, 2285-2292.	in healthy	1.5	12
208	Molecular processes in iron and zinc homeostasis and their modulation for biofortifica Journal of Integrative Plant Biology, 2018, 60, 1181-1198.	tion in rice.	4.1	78
209	Chemical Fractions and Availability of Zinc in Winter Wheat Soil in Response to Nitrog Combinations. Frontiers in Plant Science, 2018, 9, 1489.	en and Zinc	1.7	20
210	A comparison study of five different methods to measure carotenoids in biofortified ye (Manihot esculenta). PLoS ONE, 2018, 13, e0209702.	ellow cassava	1.1	21
211	Impact of Cereal Seed Sprouting on Its Nutritional and Technological Properties: A Crit Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 305-328.	tical Review.	5.9	155
212	Iron Biofortified Carioca Bean (Phaseolus vulgaris L.)—Based Brazilian Diet Delivers № Iron and Affects the Gut Microbiota In Vivo (Gallus gallus). Nutrients, 2018, 10, 1970.	1ore Absorbable	1.7	36
213	Regional Heritability Mapping Provides Insights into Dry Matter Content in African Wh Cassava Populations. Plant Genome, 2018, 11, 170050.	ite and Yellow	1.6	10
214	Impact of phytic acid on nutrient bioaccessibility and antioxidant properties of chickpe Journal of Food Biochemistry, 2018, 42, e12678.	ea genotypes.	1.2	15
215	Efficacy of high zinc biofortified wheat in improvement of micronutrient status, and pr morbidity among preschool children and women - a double masked, randomized, cont Nutrition Journal, 2018, 17, 86.		1.5	54
216	Genetic dissection of grain zinc concentration in spring wheat for mainstreaming biofo CIMMYT wheat breeding. Scientific Reports, 2018, 8, 13526.	ortification in	1.6	109
217	Identifying Candidate Genes for Enhancing Grain Zn Concentration in Wheat. Frontier Science, 2018, 9, 1313.	s in Plant	1.7	56
218	Progress and Prospects for Micronutrient Biofortification in Rice/Wheat. , 2018, , 261-	278.		5
219	Iron and Zinc in Maize in the Developing World: Deficiency, Availability, and Breeding. 2018, 58, 2200-2213.	Crop Science,	0.8	14
220	Molecular Bases of Iron Accumulation Towards the Development of Iron-Enriched Crop	os. , 2018, , 17-54.		6
221	Biofortification. , 2018, , 69-81.			11
222	The Potential of Integrating Provitamin A-Biofortified Maize in Smallholder Farming Sys Reduce Malnourishment in South Africa. International Journal of Environmental Resear Health, 2018, 15, 805.		1.2	24
223	Cognitive Performance in Indian School-Going Adolescents Is Positively Affected by Co Iron-Biofortified Pearl Millet: A 6-Month Randomized Controlled Efficacy Trial. Journal o 2018, 148, 1462-1471.	onsumption of of Nutrition,	1.3	67

ARTICLE IF CITATIONS Antinutritional factors in pearl millet grains: Phytate and goitrogens content variability and 224 1.1 38 molecular characterization of genes involved in their pathways. PLoS ONE, 2018, 13, e0198394. Micronutrient seed priming improves stand establishment, grain yield and biofortification of bread wheat. Crop and Pasture Science, 2018, 69, 479. Pro-vitamin A carotenoids stability and bioaccessibility from elite selection of biofortified cassava 226 roots (<i>Manihot esculenta</i>, Crantz) processed to traditional flours and porridges. Food and 2.1 17 Function, 2018, 9, 4822-4835. Alterations in the Gut (<i>Gallus gallus</i>) Microbiota Following the Consumption of Zinc Biofortified Wheat (<i>Triticum aestivum (i>)-Based Diet. Journal of Agricultural and Food Chemistry, 2.4 2018, 66, 6291-6299. Physical losses could partially explain modest carotenoid retention in dried food products from 228 1.1 20 biófortified cassava. PLoS ONE, 2018, 13, e0194402. Scalingâ€up biofortified beans high in iron and zinc through the schoolâ€feeding program: A sensory acceptance study with schoolchildren from two departments in southwest Colombia. Food Science 1.5 and Nutrition, 2018, 6, 1138-1145. Targeting intracellular transport combined with efficient uptake and storage significantly increases 230 4.1 77 grain iron and zinc levels in rice. Plant Biotechnology Journal, 2019, 17, 9-20. Potential of cassava clones enriched with $\hat{l}^2 \hat{a} \in carotene$ and lycopene for zinc biofortification under 1.7 different soil Zn conditions. Journal of the Science of Food and Agriculture, 2019, 99, 666-674. Micronutrient productivity: a comprehensive parameter for biofortification in rice (<scp><i>Oryza) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 232 Recent advances in banana (<i>musa</i> spp.) biofortification to alleviate vitamin A deficiency. Critical 5.4 24 Reviews in Food Science and Nutrition, 2019, 59, 3498-3510. Are consumers at the base of the pyramid willing to pay for nutritious foods?. Food Policy, 2019, 87, 22/ 2 0 20

204	101745.	2.0	20
235	A Vacuolar Phytosiderophore Transporter Alters Iron and Zinc Accumulation in Polished Rice Grains. Plant Physiology, 2019, 181, 276-288.	2.3	67
236	Mycorrhizal Mediated Micronutrients Transportation in Food Based Plants: A Biofortification Strategy. , 2019, , 1-24.		6
237	Genetic Biofortification to Enrich Rice and Wheat Grain Iron: From Genes to Product. Frontiers in Plant Science, 2019, 10, 833.	1.7	92
238	Which Choice of Delivery Model(s) Works Best to Deliver Fortified Foods?. Nutrients, 2019, 11, 1594.	1.7	22
239	Bioaccessibility and bioavailability of iron in biofortified germinated cowpea. Journal of the Science of Food and Agriculture, 2019, 99, 6287-6295.	1.7	7
240	Application of Micronutrients in Rice-Wheat Cropping System of South Asia. Rice Science, 2019, 26, 356-371.	1.7	82
241	Biofortified Zn and Fe Rice: Potential Contribution for Dietary Mineral and Human Health. Concepts and Strategies in Plant Sciences, 2019, , 1-24.	0.6	6

#	Article	IF	CITATIONS
242	Biofortification of Maize for Protein Quality and Provitamin-A Content. Concepts and Strategies in Plant Sciences, 2019, , 115-136.	0.6	10
243	Vegetal Sources of Iron. , 2019, , .		1
244	Effects of Drought and Low Nitrogen Stress on Provitamin A Carotenoid Content of Biofortified Maize Hybrids. Crop Science, 2019, 59, 2521-2532.	0.8	23
245	A Randomized Crossover Study to Evaluate Recipe Acceptability in Breastfeeding Mothers and Young Children in India Targeted for a Multiple Biofortified Food Crop Intervention. Food and Nutrition Bulletin, 2019, 40, 460-470.	0.5	4
246	Challenges to Quantify Total Vitamin Activity: How to Combine the Contribution of Diverse Vitamers?. Current Developments in Nutrition, 2019, 3, nzz086.	0.1	17
247	Enhancing Zinc Accumulation and Bioavailability in Wheat Grains by Integrated Zinc and Pesticide Application. Agronomy, 2019, 9, 530.	1.3	9
248	Nitrogen supply enhances zinc uptake and root-to-shoot translocation via up-regulating the expression of TaZIP3 and TaZIP7 in winter wheat (Triticum aestivum). Plant and Soil, 2019, 444, 501-517.	1.8	17
249	Seed priming in field crops: potential benefits, adoption and challenges. Crop and Pasture Science, 2019, 70, 731.	0.7	141
250	Biotechnological Approaches for Generating Zinc-Enriched Crops to Combat Malnutrition. Nutrients, 2019, 11, 253.	1.7	54
251	Sorghum Hybrids Development for Important Traits: Progress and Way Forward. Agronomy, 2019, , .	0.2	1
252	The Role of Nanotechnology in the Fortification of Plant Nutrients and Improvement of Crop Production. Applied Sciences (Switzerland), 2019, 9, 499.	1.3	238
253	Comparative transcriptomic profiling of High- and Low- grain Zinc and Iron containing Indian wheat genotypes. Current Plant Biology, 2019, 18, 100105.	2.3	18
254	Comparative effect of elicitors on the physiology and secondary metabolites in broccoli plants. Journal of Plant Physiology, 2019, 239, 1-9.	1.6	34
255	Retention of Pro-Vitamin A Content in Products from New Biofortified Cassava Varieties. Foods, 2019, 8, 177.	1.9	22
256	Poor consumers' preferences for nutritionally enhanced foods. British Food Journal, 2019, 121, 755-770.	1.6	17
257	Iron Biofortification of Staple Crops: Lessons and Challenges in Plant Genetics. Plant and Cell Physiology, 2019, 60, 1447-1456.	1.5	120
258	Genetic dissection of grain elements predicted by hyperspectral imaging associated with yield-related traits in a wild barley NAM population. Plant Science, 2019, 285, 151-164.	1.7	24
259	Zinc Absorption From Agronomically Biofortified Wheat Is Similar to Post-Harvest Fortified Wheat and Is a Substantial Source of Bioavailable Zinc in Humans. Journal of Nutrition, 2019, 149, 840-846.	1.3	32

	CITATION RE	PORT	
# 260	ARTICLE Value of Nutrition: A Synthesis of Willingness to Pay Studies for Biofortified Foods. , 2019, , 197-205.	IF	CITATIONS
261	Advocacy for scaling up biofortified crops for improved micronutrient status in Africa: approaches, achievements, challenges and lessons. Proceedings of the Nutrition Society, 2019, 78, 567-575.	0.4	8
262	Iron biofortification interventions to improve iron status and functional outcomes. Proceedings of the Nutrition Society, 2019, 78, 197-207.	0.4	42
263	Policies for Sustainable Food Systems. , 2019, , 509-521.		3
264	Banana and Plantains: Improvement, Nutrition, and Health. Reference Series in Phytochemistry, 2019, , 1755-1774.	0.2	3
265	Gender-based constraints affecting biofortified cassava production, processing and marketing among men and women adopters in Oyo and Benue States, Nigeria. Physiological and Molecular Plant Pathology, 2019, 105, 17-27.	1.3	19
266	Sorghum Hybrids Development for Important Traits: Progress and Way Forward. Agronomy, 2019, , 97-117.	0.2	3
267	Genetic Correlation, Genome-Wide Association and Genomic Prediction of Portable NIRS Predicted Carotenoids in Cassava Roots. Frontiers in Plant Science, 2019, 10, 1570.	1.7	24
268	Sorghum Grain in Food and Brewing Industry. , 2019, , 209-228.		7
269	Assessing Genetic Diversity to Breed Competitive Biofortified Wheat With Enhanced Grain Zn and Fe Concentrations. Frontiers in Plant Science, 2018, 9, 1971.	1.7	79
270	Potential of advanced breeding lines of breadâ€making wheat to accumulate grain minerals (Ca, Fe, Mg) Tj ETQq 2019, 205, 341-352.	0 0 0 rgB ⁻ 1.7	Г /Overlock 10 15
271	Role of healthy extruded snacks to mitigate malnutrition. Food Reviews International, 2019, 35, 299-323.	4.3	16
272	Metabolic engineering of bread wheat improves grain iron concentration and bioavailability. Plant Biotechnology Journal, 2019, 17, 1514-1526.	4.1	73
273	Preservation of Micronutrients in Biofortified Foods. , 2019, , 523-529.		1
274	Nutrition-Sensitive Value Chain Development in a Changing Climate. , 2019, , 247-256.		3
275	VARIETAL IDENTIFICATION IN HOUSEHOLD SURVEYS: RESULTS FROM THREE HOUSEHOLD-BASED METHODS AGAINST THE BENCHMARK OF DNA FINGERPRINTING IN SOUTHERN ETHIOPIA. Experimental Agriculture, 2019, 55, 371-385.	0.4	42
276	Genetic variability and diversity in okra landraces using agromorphological traits and seed elemental minerals. International Journal of Vegetable Science, 2020, 26, 127-149.	0.6	8
277	Folate profile diversity and associated SNPs using genome wide association study in pea. Euphytica, 2020, 216, 1.	0.6	16

ARTICLE IF CITATIONS # Host-status of 20 sweet potato lines to <i>Meloidogyne</i> species in South Africa. Acta Agriculturae 278 0.3 0 Scandinavica - Section B Soil and Plant Science, 2020, 70, 135-139. Polyphenolic Profiles of Yellow Bean Seed Coats and Their Relationship with Iron Bioavailability. 279 2.4 Journal of Agricultural and Food Chemistry, 2020, 68, 769-778. Genetic dissection of zinc, iron, copper, manganese and phosphorus in wheat (Triticum aestivum L.) 280 1.7 55 grain and rachis at two developmental stages. Plant Science, 2020, 291, 110338. The Molecular Mechanisms Underlying Iron Deficiency Responses in Rice. International Journal of 1.8 Molecular Sciences, 2020, 21, 43. The Link between the Consumer and the Innovations in Food Product Development. Foods, 2020, 9, 1317. 282 1.9 110 Grain Fe and Zn contents linked SSR markers based genetic diversity in rice. PLoS ONE, 2020, 15, 1.1 e0239739. Carrots (Daucus carota L.) Biofortified with lodine and Selenium as a Raw Material for the 284 1.3 9 Production of Juice with Additional Nutritional Functions. Agronomy, 2020, 10, 1360. Discovery and validation of candidate genes for grain iron and zinc metabolism in pearl millet 1.6 [Pennisetum glaucumÂ(L.) R. Br.]. Scientific Reports, 2020, 10, 16562. 286 Biofortification Under Climate Change: The Fight Between Quality and Quantity., 2020, , 173-227. 16 Vitamin A Requirements in Pregnancy and Lactation. Current Developments in Nutrition, 2020, 4, 0.1 nzaa142. Increasing zinc concentration in maize grown under contrasting soil types in Malawi through agronomic biofortification: Trial protocol for a field experiment to detect small effect sizes. Plant 288 0.8 9 Direct, 2020, 4, e00277. European landrace diversity for common bean biofortification: a genome-wide association study. 1.6 Scientific Reports, 2020, 10, 19775. Zinc nutrition in chickpea (Cicer arietinum): a review. Crop and Pasture Science, 2020, 71, 199. 290 0.7 41 Agronomic Biofortification with Selenium in Tomato Crops (Solanum lycopersicon L. Mill). 1.4 Agriculture (Switzerland), 2020, 10, 486. Low Phytate Peas (Pisum sativum L.) Improve Iron Status, Gut Microbiome, and Brush Border Membrane 292 1.7 24 Functionality In Vivo (Gallus gallus). Nutrients, 2020, 12, 2563. Maize-alfalfa intercropping induced changes in plant and soil nutrient status under nitrogen application. Archives of Agronomy and Soil Science, 2022, 68, 151-165. Elucidating the sourceâ€"sink relationships of zinc biofortification in wheat grains: A review. Food and 294 2.0 23 Energy Security, 2020, 9, e243. Fighting Iron-Deficiency Anemia: Innovations in Food Fortificants and Biofortification Strategies. 295 Foods, 2020, 9, 1871.

#	Article	IF	CITATIONS
296	Effect of Rice GDP-L-Galactose Phosphorylase Constitutive Overexpression on Ascorbate Concentration, Stress Tolerance, and Iron Bioavailability in Rice. Frontiers in Plant Science, 2020, 11, 595439.	1.7	18
297	A decade of progress on genetic enhancement of grain zinc and iron in CIMMYT wheat germplasm. , 2020, , 129-138.		9
298	Genomics-Integrated Breeding for Carotenoids and Folates in Staple Cereal Grains to Reduce Malnutrition. Frontiers in Genetics, 2020, 11, 414.	1.1	29
299	The unacceptable status quo: malnutrition challenges of the developed and developing world. , 2020, , 1-25.		0
300	Getting more micronutrients from wheat and barley through agronomic biofortification. , 2020, , 53-99.		4
301	Transcriptional dynamics of Zn-accumulation in developing kernels of maize reveals important Zn-uptake mechanisms. Genomics, 2020, 112, 3435-3447.	1.3	9
302	Success to iron biofortification of wheat grain by combining both plant and microbial genetics. Rhizosphere, 2020, 15, 100218.	1.4	14
303	Zinc nutrition for high productivity and human health in intensive production of wheat. Advances in Agronomy, 2020, , 179-217.	2.4	9
304	Bargaining power, decision making, and biofortification: The role of gender in adoption of orange sweet potato in Uganda. Food Policy, 2020, 95, 101909.	2.8	15
305	An Evaluation of Kernel Zinc in Hybrids of Elite Quality Protein Maize (QPM) and Non-QPM Inbred Lines Adapted to the Tropics Based on a Mating Design. Agronomy, 2020, 10, 695.	1.3	11
306	Cassava breeding and agronomy in Asia: 50 years of history and future directions. Breeding Science, 2020, 70, 145-166.	0.9	67
307	Molecular Breeding for Nutritionally Enriched Maize: Status and Prospects. Frontiers in Genetics, 2019, 10, 1392.	1.1	131
308	Identification of Novel Genomic Regions and Superior Alleles Associated with Zn Accumulation in Wheat Using a Genome-Wide Association Analysis Method. International Journal of Molecular Sciences, 2020, 21, 1928.	1.8	28
309	Identifying key drivers for geospatial variation of grain micronutrient concentrations in major maize production regions of China. Environmental Pollution, 2020, 266, 115114.	3.7	14
310	Estimating the nutritional loss and the feeding potential derived from food losses worldwide. World Development, 2020, 134, 105038.	2.6	25
311	Microbe-mediated biofortification for micronutrients: Present status and future challenges. , 2020, , 1-17.		51
312	Farmer demand for clean planting material of biofortified and non-biofortified vegetatively propagated crop varieties: The case of sweetpotato. Scientific African, 2020, 8, e00400.	0.7	6
313	Anti-nutritional factors and bioavailability: approaches, challenges, and opportunities. , 2020, , 101-128.		20

#	Article	IF	CITATIONS
314	Barley biofortification: present status and future prospects. , 2020, , 275-294.		4
315	Genomeâ€wide association study to identify single nucleotide polymorphisms associated with Fe, Zn, and Se concentration in field pea. Crop Science, 2020, 60, 2070-2084.	0.8	15
316	Reactive oxygen species (ROS) management in engineered plants for abiotic stress tolerance. , 2020, , 241-262.		5
317	Perspective of Microbe-based Minerals Fortification in Nutrition Security. Food Reviews International, 2020, , 1-14.	4.3	2
318	Nicotianamine-chelated iron positively affects iron status, intestinal morphology and microbial populations in vivo (Gallus gallus). Scientific Reports, 2020, 10, 2297.	1.6	24
319	Cultivars of biofortified cowpea and sweet potato: Bioavailability of iron and interaction with vitamin A in vivo and in vitro. Journal of Food Science, 2020, 85, 816-823.	1.5	7
320	Biofortification of Pulse Crops: Status and Future Perspectives. Plants, 2020, 9, 73.	1.6	121
321	Performance of low and high Fe accumulator wheat genotypes grown on soils with low or high available Fe and endophyte inoculation. Acta Physiologiae Plantarum, 2020, 42, 1.	1.0	15
322	Mining maize diversity and improving its nutritional aspects within agroâ€food systems. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 1809-1834.	5.9	55
323	Characterization of chickpea genotypes of Pakistani origin for genetic diversity and zinc grain biofortification. Journal of the Science of Food and Agriculture, 2020, 100, 4139-4149.	1.7	6
324	High uptake and inward diffusion of iron fortificant in ultrasonicated milled rice. LWT - Food Science and Technology, 2020, 128, 109459.	2.5	8
325	Identifying transcripts associated with efficient transport and accumulation of Fe and Zn in hexaploid wheat (T. aestivum L.). Journal of Biotechnology, 2020, 316, 46-55.	1.9	19
326	Seed Mineral Composition and Protein Content of Faba Beans (Vicia faba L.) with Contrasting Tannin Contents. Agronomy, 2020, 10, 511.	1.3	45
327	Cytological and yield-related analyses in offspring of primed bread wheat (Triticum aestivum L.) seeds. Genetic Resources and Crop Evolution, 2021, 68, 359-370.	0.8	3
328	Delineating the future of iron biofortification studies in rice: challenges and future perspectives. Journal of Experimental Botany, 2021, 72, 2099-2113.	2.4	16
329	Building a resilient and sustainable food system in a changing world – A case for climate-smart and nutrient dense crops. Global Food Security, 2021, 28, 100477.	4.0	29
330	Breeding for Enhanced Nutrition in Common Bean. , 2021, , 181-209.		1
331	Quality Improvement in Chickpea. , 2021, , 17-45.		2

		CITATION REPORT	
#	ARTICLE	IF	Citations
332	Metabolomics-Assisted Breeding for Crop Improvement: An Emerging Approach. , 2021, , 241-279	<i>'</i> .	3
333	Genomics-Assisted Improvement of Grain Quality and Nutraceutical Properties in Millets. , 2021, , 333-343.		1
334	Enhancing the accumulation and bioavailability of iron in rice grains via agronomic interventions. Crop and Pasture Science, 2022, 73, 32-43.	0.7	8
335	Potential of Field Pea as a Nutritionally Rich Food Legume Crop. , 2021, , 47-82.		2
336	Stability of Carotenoids. , 2021, , 251-315.		1
337	Genetic Potential of Lentil as a Nutritionally Rich Food Legume Crop. , 2021, , 83-98.		1
338	Agronomic Biofortification in Se of Oryza sativa L.: Food Quality Control for Baby Food Products. 2021, , 155-163.	,	0
339	Crop Response to Iron Deficiency is Guided by Cross-Talk Between Phytohormones and their Regulation of the Root System Architecture. Agricultural Research, 2021, 10, 347-360.	0.9	6
340	Biofortification of Rice Grains for Increased Iron Content. , 2021, , 471-486.		6
341	Effects of Natural Variations on Biofortification. , 2021, , 115-138.		2
342	Scaling Up Delivery of Biofortified Staple Food Crops Globally: Paths to Nourishing Millions. Food and Nutrition Bulletin, 2021, 42, 116-132.	0.5	28
343	Biofortification of Silage Maize with Zinc, Iron and Selenium as Affected by Nitrogen Fertilization. Plants, 2021, 10, 391.	1.6	18
344	Manganese Supply Improves Bread Wheat Productivity, Economic Returns and Grain Biofortificat under Conventional and No Tillage Systems. Agriculture (Switzerland), 2021, 11, 142.	ion 1.4	16
345	An overview on mechanism, cause, prevention and multi-nation policy level interventions of dieta iron deficiency. Critical Reviews in Food Science and Nutrition, 2022, 62, 4893-4907.	^{гу} 5.4	9
346	The effects of zinc biofortification of seeds and NPK fertilizer application on the growth and yield sesame (Sesamum indicum L.). Acta Agriculturae Slovenica, 2021, 117, 1.	of 0.2	0
347	Interaction of Genetic and Zn Fertilizer Application on Rice Yield and Grain Zinc Content. IOP Conference Series: Earth and Environmental Science, 2021, 715, 012043.	0.2	1
348	Bio-fortified maize: Cornerstone in plant breeding to combat hidden hunger in developing countri Archives of Agriculture and Environmental Science, 2021, 6, 100-107.	es. 0.2	1
349	Zinc biofortification of bread winter wheat grain by single zinc foliar application. Cereal Research Communications, 2021, 49, 673-679.	0.8	3

#	Article	IF	CITATIONS
350	Microorganisms as a Sustainable Alternative to Traditional Biofortification of Iron and Zinc: Status and Prospect to Combat Hidden Hunger. Journal of Soil Science and Plant Nutrition, 2021, 21, 1700-1717.	1.7	9
351	Fe and Zn content of various genetic background of released rice varieties in Indonesia. IOP Conference Series: Earth and Environmental Science, 2021, 752, 012057.	0.2	1
352	Soil zinc, serum zinc, and the potential for agronomic biofortification to reduce human zinc deficiency in Ethiopia. Scientific Reports, 2021, 11, 8770.	1.6	21
354	Examining Heterogeneity of Food Fortification and Biofortification Business Models: Emerging Evidence for a Typology. Nutrients, 2021, 13, 1233.	1.7	1
355	Use of Wild Progenitor Teosinte in Maize (Zea mays subsp. mays) Improvement: Present Status and Future Prospects. Tropical Plant Biology, 2021, 14, 156-179.	1.0	11
356	Genetic control of iron bioavailability is independent from iron concentration in a diverse winter wheat mapping population. BMC Plant Biology, 2021, 21, 212.	1.6	7
357	Effect of different cooking methods on loss of iron and zinc micronutrients in fortified and non-fortified rice. Saudi Journal of Biological Sciences, 2021, 28, 2886-2894.	1.8	9
358	Novel application of biofortified crops: consumer acceptance of pasta from yellow cassava and leafy vegetables. Journal of the Science of Food and Agriculture, 2021, 101, 6027-6035.	1.7	11
359	Zn Ferti-fortification of Wheat (<i>Triticum Aestivum</i> L.) Using Zinc Enriched Compost and Biochar in Rainfed Area. Communications in Soil Science and Plant Analysis, 2021, 52, 2191-2206.	0.6	3
360	Effectiveness of genomic selection for improving provitamin A carotenoid content and associated traits in cassava. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	9
361	Enhancing health benefits of milled rice: current status and future perspectives. Critical Reviews in Food Science and Nutrition, 2022, 62, 8099-8119.	5.4	9
362	Iron biofortification of crop food by symbiosis with beneficial microorganisms. Journal of Plant Nutrition, 2021, 44, 2793-2810.	0.9	6
363	Expanding information on the bioaccessibility and bioavailability of iron and zinc in biofortified cowpea seeds. Food Chemistry, 2021, 347, 129027.	4.2	21
364	Prevalence and approaches to manage iron deficiency anemia (IDA). Critical Reviews in Food Science and Nutrition, 2022, 62, 8815-8828.	5.4	16
365	Assessment of sorghum production constraints and farmer preferences for sorghum variety in Uganda: implications for nutritional quality breeding. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2021, 71, 620-632.	0.3	6
366	Marker based enrichment of provitamin A content in two tropical maize synthetics. Scientific Reports, 2021, 11, 14998.	1.6	7
367	Knowledge, perception and utilization of biofortified cassava and orange-fleshed sweet potato (OFSP) in selected rural areas in Nigeria. African Journal of Food, Agriculture, Nutrition and Development, 2021, 21, 18019-18034.	0.1	1
368	Foliar Zinc-Selenium and Nitrogen Fertilization Affects Content of Zn, Fe, Se, P, and Cd in Wheat Grain. Plants, 2021, 10, 1549.	1.6	9

#	Article	IF	CITATIONS
369	Biofortification of Sweetcorn with lodine: Interaction of Organic and Inorganic Forms of lodine Combined with Vanadium. Agronomy, 2021, 11, 1720.	1.3	4
370	Nutritional properties and phenolic acid profile of selected Philippine pigmented maize with high antioxidant activity. Journal of Food Composition and Analysis, 2021, 101, 103954.	1.9	9
371	Microbial-Assisted Wheat Iron Biofortification Using Endophytic Bacillus altitudinis WR10. Frontiers in Nutrition, 2021, 8, 704030.	1.6	18
372	Identification of High-Yielding Iron-Biofortified Open-Pollinated Varieties of Pearl Millet in West Africa. Frontiers in Plant Science, 2021, 12, 688937.	1.7	6
373	The injection of zinc sulfate into banana tree pseudostem can triple the zinc content and it is an effective method for fruit biofortification. Journal of Food Composition and Analysis, 2021, 102, 104020.	1.9	5
374	Overexpression of <i>METAL TOLERANCE PROTEIN8</i> reveals new aspects of metal transport in <i>Arabidopsis thaliana</i> seeds. Plant Biology, 2022, 24, 23-29.	1.8	13
375	Identification of genomic loci regulating grain iron content in <i>aus</i> rice under two irrigation management systems. Food and Energy Security, 2022, 11, e329.	2.0	6
376	Improvement of small seed for big nutritional feed. Physiology and Molecular Biology of Plants, 2021, 27, 2433-2446.	1.4	3
377	Genetic Analysis of Yield and Quality Characteristics in Provitamin A Hybrid Cassava Families in Ghana. Agronomy, 2021, 11, 1911.	1.3	0
378	Climbing bean breeding for disease resistance and grain quality traits. , 2022, 4, e122.		4
379	Pearl Millet: A Climate-Resilient Nutricereal for Mitigating Hidden Hunger and Provide Nutritional Security. Frontiers in Plant Science, 2021, 12, 659938.	1.7	60
380	Iron Bioavailability from Multiple Biofortified Foods Using an In Vitro Digestion, Caco-2 Assay for Optimizing a Cyclical Menu for a Randomized Efficacy Trial. Current Developments in Nutrition, 2021, 5, nzab111.	0.1	1
381	Genotypic and ecological variability of zinc content in the grain of spring bread wheat varieties in the international nursery KASIB. Vavilovskii Zhurnal Genetiki I Selektsii, 2021, 25, 543-551.	0.4	2
382	Nitrogen and cultivars as field strategies to improve the nutritional status of wheat grain and flour. Journal of Cereal Science, 2021, 102, 103290.	1.8	5
383	Biotechnological approaches for generating iron-rich crops. , 2022, , 437-451.		0
384	Trends in production and consumption of selected biofortified crops by rural communities in Zimbabwe. Cogent Food and Agriculture, 2021, 7, .	0.6	5
385	Ancient wheats role in sustainable wheat cultivation. , 2021, , 29-66.		1
386	Zinc biofortified wheat—addressing micronutrient malnutrition in South Asia. , 2021, , 81-90.		1

#	Article	IF	CITATIONS
387	Bioentrepreneurship in Agricultural Biotechnology. Advances in Business Strategy and Competitive Advantage Book Series, 2021, , 183-200.	0.2	2
388	Thiamine fortification strategies in low―and middleâ€income settings: a review. Annals of the New York Academy of Sciences, 2021, 1498, 29-45.	1.8	19
389	Germinated millet flour (Pennisetum glaucum (L.) R. BR.) improves adipogenesis and glucose metabolism and maintains thyroid function in vivo. Food and Function, 2021, 12, 6083-6090.	2.1	2
390	Biofortified Crops with a Visible Trait: The Example of Orange-Fleshed Sweet Potato in Sub-Saharan Africa. , 2013, , 371-384.		10
391	Improving Wheat Nutritional Quality through Biofortification. , 2020, , 205-224.		11
392	Selenium Agronomic Biofortification in Rice: Improving Crop Quality Against Malnutrition. , 2020, , 179-203.		15
393	Biofortification Technologies Used in Agriculture in Relation to Micronutrients. , 2020, , 225-239.		5
395	Vitamin A Deficiency. , 2017, , 181-234.		8
396	Human Food Trial of a Transgenic Fruit. SpringerBriefs in Research and Innovation Governance, 2018, , 91-98.	1.1	4
397	Biofortification of Vegetables. , 2020, , 105-129.		23
398	Biofortification of Rice with Iron and Zinc: Progress and Prospects. , 2020, , 605-627.		6
399	Biofortification of Iron, Zinc, and Selenium in Rice for Better Quality. , 2020, , 669-686.		2
400	Biofortification of Cereals with Zinc and Iron: Recent Advances and Future Perspectives. , 2020, , 615-646.		6
401	Genetic variability, stability and heritability for quality and yield characteristics in provitamin A cassava varieties. Euphytica, 2020, 216, 31.	0.6	14
402	Dietary safety assessment of genetically modified rice EH rich in β-carotene. Regulatory Toxicology and Pharmacology, 2017, 88, 66-71.	1.3	6
403	The Poor, Malnutrition, Biofortification, and Biotechnology. , 0, , 149-180.		3
405	Molecular basis of Iron Biofortification in crop plants; A step towards sustainability. Plant Breeding, 2021, 140, 12-22.	1.0	22
406	A high activity zinc transporter OsZIP9 mediates zinc uptake in rice. Plant Journal, 2020, 103, 1695-1709.	2.8	81

#	Article	IF	CITATIONS
407	Yield and Zn content of biofortified rice genotypes in an Indonesian rice agro-ecosystem. Nusantara Bioscience, 2017, 9, 288-294.	0.2	5
408	Transcriptome Characterization of Developing Bean (Phaseolus vulgaris L.) Pods from Two Genotypes with Contrasting Seed Zinc Concentrations. PLoS ONE, 2015, 10, e0137157.	1.1	14
409	Characterizing the gut (Gallus gallus) microbiota following the consumption of an iron biofortified Rwandan cream seeded carioca (Phaseolus Vulgaris L.) bean-based diet. PLoS ONE, 2017, 12, e0182431.	1.1	32
410	The acceptance of zinc biofortified rice in Latin America: A consumer sensory study and grain quality characterization. PLoS ONE, 2020, 15, e0242202.	1.1	9
411	Genetic improvement of wheat grain quality at CIMMYT. Frontiers of Agricultural Science and Engineering, 2019, 6, 265.	0.9	19
412	GENETIC DIVERSITY IN TRADITIONAL GENOTYPES FOR GRAIN IRON, ZINC AND Î ² -CAROTENE CONTENTS REVEAL POTENTIAL FOR BREEDING MICRONUTRIENT DENSE RICE. Journal of Experimental Biology and Agricultural Sciences, 2019, 7, 194-203.	0.1	7
413	An Overview of the landscape and approach for Biofortification in Africa. African Journal of Food, Agriculture, Nutrition and Development, 2017, 17, 11848-11864.	0.1	25
414	Progress update: Crop development of biofortified staple food crops under HarvestPlus. African Journal of Food, Agriculture, Nutrition and Development, 2017, 17, 11905-11935.	0.1	119
415	Cassava cultivation in sub-Saharan Africa. Burleigh Dodds Series in Agricultural Science, 2017, , 123-148.	0.1	18
416	Dealing with Zinc and Iron Deficiency in Rice: Combine Strategies to Fight Hidden Hunger in Developing Countries. International Journal of Current Microbiology and Applied Sciences, 2018, 7, 1887-1895.	0.0	6
417	INTEGRATING THE ORGANIC AMENDMENT WITH IRON FERTILIZATION FOR IMPROVING PRODUCTIVITY AND Fe BIOFORTIFICATION IN RICE UNDER ACIDIFIED CALCAREOUS SOIL. Pakistan Journal of Agricultural Sciences, 2016, 53, 407-417.	0.1	3
418	Bargaining Power and Biofortification: The Role of Gender in Adoption of Orange Sweet Potato in Uganda. SSRN Electronic Journal, 0, , .	0.4	23
419	Biofortifcation of Wheat Grain with Copper Through Soil Fertilization. Ochrona Srodowiska I Zasobow Naturalnych, 2014, 25, 23-27.	0.4	2
420	Folate Content in Legumes. Biomedical Journal of Scientific & Technical Research, 2018, 3, .	0.0	16
422	Zinco no solo, na planta e a saúde humana: uma revisão. Research, Society and Development, 2020, 9, e827973544.	0.0	1
423	Recent Advances in Sorghum Genetic Enhancement Research at ICRISAT. American Journal of Plant Sciences, 2011, 02, 589-600.	0.3	73
424	Microsatellite marker-based genetic diversity among quality protein maize (QPM) inbreds differing for kernel iron and zinc. Molecular Plant Breeding, 0, , .	0.0	4
425	Biofortification - promising approach to increasing the content of iron and zinc in staple food crops. Journal of Elementology, 2014, , .	0.0	12

		Сітатіс	on Report	
#	Article		IF	CITATIONS
426	ÂÂÂÂ Biofortification and the involved modern approaches. Journal of Elementology, 2	020,,.	0.0	3
427	Paddy Soil Properties in Nangarhar Province, East Afghanistan. Japan Agricultural Resea 2014, 48, 299-306.	arch Quarterly,	0.1	5
428	Millets Can Have a Major Impact on Improving Iron Status, Hemoglobin Level, and in R Deficiency Anemia–A Systematic Review and Meta-Analysis. Frontiers in Nutrition, 20	educing Iron 021, 8, 725529.	1.6	23
429	Plant-Based Dietary Practices and Socioeconomic Factors That Influence Anemia in Ind 2021, 13, 3538.	ia. Nutrients,	1.7	12
430	Strategies for Iron Biofortification of Crop Plants. , 0, , .			2
431	Introduction: Biotechnological Interventions for Crop Improvement: Answers to Global 2014, , 1-10.	Challenges. ,		0
433	Importance of Sorghum Bicolor in African's Cultures. Journal of Agriculture and En Sciences, 2017, 6, .	vironmental	0.0	3
434	Role of Chelated Micronutrient and their Salts for Improving Crop Production of Whea	t (Triticum) Tj ETQq1	1 0.784314 rgE 0.0	3T /Overlock
435	Banana and Plantains: Improvement, Nutrition, and Health. Reference Series in Phytocl 1-20.	nemistry, 2018, ,	0.2	1
436	Application of pearl millet in functional food. International Journal of Agricultural Engin 2018, 11, 90-94.	eering,	0.0	3
437	Effects of different foliar iron applications on activity of ferric chelate reductase and co of iron in sweet potato (Ipomoea batatas). Crop and Pasture Science, 2019, 70, 359.	ncentration	0.7	3
438	Biofortification in Pearl Millet: From Conception to Dissemination. Concepts and Strate Sciences, 2019, , 413-428.	egies in Plant	0.6	0
439	Farm Women's willingness to pay for bio fortified rice variety-a micro level study. Oryz 236-241.	a, 2019, ,	0.2	0
440	Content of inorganic elements in winter wheat grain when controlling fusarium. Fiziolo Genetika, 2019, 51, 399-414.	ogia Rastenij I	0.1	0
441	Selenium biofortification in grain crops in Brazil. , 2019, , 109-110.			0
442	GENETIC DISSIMILARITY BETWEEN LETTUCE GENOTYPES WITH DIFFERENT LEVELS OF BIOFORTIFICATION. Nativa, 2019, 7, 656.	CAROTENOIDS	0.2	7
443	Biofortification in Fruits. , 2020, , 131-151.			0
444	Transgenic Biofortified Crops: Applicability and Challenges. , 2020, , 153-172.			3

#	Article	IF	CITATIONS
445	Determining grain seed micronutrient contents (iron and zinc) and cooking time for selected dry bean cultivars. African Journal of Food, Agriculture, Nutrition and Development, 2020, 20, 15415-15430.	0.1	1
448	Zinc transport in rice: how to balance optimal plant requirements and human nutrition. Journal of Experimental Botany, 2022, 73, 1800-1808.	2.4	19
449	Combined lodine, Iron and Zinc Biofortification of Tomato Fruit. Journal of the Institute of Science and Technology, 2020, 10, 2242-2251.	0.3	3
450	Research and Progress on the Mechanism of Iron Transfer and Accumulation in Rice Grains. Plants, 2021, 10, 2610.	1.6	7
451	Effect of preâ€treatment on the functional properties of germinated whole grains: A review. Cereal Chemistry, 2022, 99, 253-269.	1.1	8
452	Combined foliar application of zinc sulphate and selenite affects the magnitude of selenium biofortification in wheat (<i>Triticum aestivum</i> L.). Food and Energy Security, 2022, 11, e342.	2.0	5
453	Addressing Iron and Zinc Micronutrient Malnutrition Through Nutrigenomics in Pearl Millet: Advances and Prospects. Frontiers in Genetics, 2021, 12, 723472.	1.1	6
454	TmNAS3 from Triticum monococum directly regulated by TmbHLH47 increases Fe content of wheat grain. Gene, 2022, 811, 146096.	1.0	5
455	Zinc-biofortified staple food crops to improve zinc status in humans: a systematic review. Critical Reviews in Food Science and Nutrition, 2023, 63, 4966-4978.	5.4	7
457	Agronomic Strategies for Improving Micronutrient Use Efficiency in Crops for Nutritional and Food Security. , 2021, , 123-156.		0
458	Characterization of cassava ORANGE proteins and their capability to increase provitamin A carotenoids accumulation. PLoS ONE, 2022, 17, e0262412.	1.1	10
459	Stage specific comparative transcriptomic analysis to reveal gene networks regulating iron and zinc content in pearl millet [Pennisetum glaucum (L.) R. Br.]. Scientific Reports, 2022, 12, 276.	1.6	11
460	Đ'Đ»Ð,ÑĐ¼Đ,Đμ Đ¿Ñ€Đ¾Ñ†ĐμÑÑа Đ¿Ñ€Đ¾Ñ€Đ°Ñ‰Đ,Đ²Đ°Đ½Đ,Ñ•Đ∙ĐμÑ€ĐμĐ½ Đ·Đ»Đ°ĐºĐ¾Đ2Ñ‹Ñ Đ	₽Ñ (f:Ð »ÑŒ	EÑ,ÑſÑ€Đ½
461	Phytosiderophores and absorption of iron and other cations by plants. , 2022, , 385-399.		0
463	Biofortified legumes: Present scenario, possibilities and challenges. Field Crops Research, 2022, 279, 108467.	2.3	11
464	Quality parameters in orange flesh sweetpotato grown in different Brazilian states. Journal of Food Composition and Analysis, 2022, 107, 104406.	1.9	1
466	Marker-assisted introgression of opaque2 allele for rapid conversion of elite hybrids into quality protein maize. Journal of Genetics, 2018, 97, 287-298.	0.4	24
467	Historical Overview of Biofortification in Crop Plants and Its Implications. , 2022, , 31-61.		3

#	Article	IF	CITATIONS
468	Barley Biofortification. , 2022, , 119-146.		2
469	Soil and phytomanagement for adaptive phytoremediation practices. , 2022, , 135-179.		0
470	Vegetable Biofortification: An Underexploited Silver Lining for Malnutrition Management. , 2022, , 379-416.		0
471	A genome-wide association study revealed the genetic variation and candidate genes for grain copper content in bread wheat (<i>Triticum aestivum</i> L.). Food and Function, 2022, 13, 5177-5188.	2.1	6
472	Combined use of foliar zinc fertilisation, thiamethoxam and propiconazole does not reduce their effectiveness for enriching zinc in wheat grains and controlling insects and disease. Crop and Pasture Science, 2022, 73, 427-436.	0.7	4
473	Agronomic Approaches for Biofortification of Staple Food Crops. , 2022, , 483-517.		3
476	Stage Specific Comparative Transcriptomic Analysis to Reveal Gene Networks Regulating Iron and Zinc Content in Pearl Millet [Pennisetum Glaucum (L.) R. Br.]. SSRN Electronic Journal, 0, , .	0.4	0
477	Iron fortification of food crops through nanofertilisation. Crop and Pasture Science, 2022, 73, 736-748.	0.7	8
479	Vitamin B9 in Dark Green Vegetables: Deficiency Disorders, Bio-Availability, and Fortification Issues. , 0,		5
480	Biofortification of Staple Crops to Alleviate Human Malnutrition: Contributions and Potential in Developing Countries. Agronomy, 2022, 12, 452.	1.3	34
481	Optimizing zinc fertilization technology in wheat for its sustainable production and improved human nutrition. Environmental Technology (United Kingdom), 2022, , 1-10.	1.2	0
482	High Resolution Genome Wide Association Studies Reveal Rich Genetic Architectures of Grain Zinc and Iron in Common Wheat (Triticum aestivum L.). Frontiers in Plant Science, 2022, 13, 840614.	1.7	15
483	Orangeâ€fleshed sweetpotato production: Progress and perspectives for value chain development in West Africa. JSFA Reports, 2022, 2, 198-207.	0.2	4
484	Biofortification of iron and zinc in rice and wheat. Journal of Integrative Plant Biology, 2022, 64, 1157-1167.	4.1	13
485	Cooking quality, nutritional and antioxidant properties of gluten-free maize – Orange-fleshed sweet potato pasta produced by extrusion. LWT - Food Science and Technology, 2022, 162, 113415.	2.5	14
486	Global analysis of nitrogen fertilization effects on grain zinc and iron of major cereal crops Global Food Security, 2022, 33, 100631.	4.0	13
487	A review on the trends of maize biofortification in alleviating hidden hunger in sub-Sahara Africa. Scientia Horticulturae, 2022, 299, 111029.	1.7	10
488	Spanish Spelt Wheat: From an Endangered Genetic Resource to a Trendy Crop. Plants, 2021, 10, 2748.	1.6	7

		CITATION RE	PORT	
#	Article		IF	CITATIONS
489	Transcriptomics View over the Germination Landscape in Biofortified Rice. Genes, 202	1, 12, 2013.	1.0	1
490	Multiâ€year field evaluation of nicotianamine biofortified bread wheat. Plant Journal, 2 1168-1182.	022, 109,	2.8	5
491	Bioactive Nutrient Fortified Fertilizer: A Novel Hybrid Approach for the Enrichment of V With Zinc. Frontiers in Plant Science, 2021, 12, 743378.	Vheat Grains	1.7	2
492	Metabolic engineering of cassava to improve carotenoids. Methods in Enzymology, 20	22, , 31-62.	0.4	0
504	Groundnut Breeding. , 2022, , 837-906.			0
505	Genome-wide association study identifies loci and candidate genes for grain micronutiquality traits in wheat (Triticum aestivum L.). Scientific Reports, 2022, 12, 7037.	ients and	1.6	37
506	Fight Hidden Hunger through National Programs and Food Based Approaches. , 0, , .			2
507	Baseline hydroponicÂstudy for biofortification of bread wheat genotypes with iron and salinity: growth, ionic, physiological and biochemical adjustments. Journal of Plant Nut 46, 743-764.	l zinc under rition, 2023,	0.9	2
508	Agronomic zinc biofortification and its impact on mineral composition of eight okra ge [<i>Abelmoschus esculentus</i> (L.) Moench] in an acid Alfisol. Journal of Plant Nutrit	notypes ion, 0, , 1-13.	0.9	0
509	Variation in the Content and Composition of Tocols in a Wheat Population. Foods, 20	22, 11, 1343.	1.9	2
510	A copula-based approach for creating an index of micronutrient intakes at household l Pakistan. Economics and Human Biology, 2022, 46, 101148.	evel in	0.7	3
511	Iron and Zinc at a cross-road: A trade-off between micronutrients and anti-nutritional f pearl millet flour for enhancing the bioavailability. Journal of Food Composition and An 111, 104591.		1.9	13
512	Genomic prediction of zinc-biofortification potential in rice gene bank accessions. The Applied Genetics, 2022, 135, 2265-2278.	oretical and	1.8	9
513	Variation in Grain Zinc and Iron Concentrations, Grain Yield and Associated Traits of Bi Bread Wheat Genotypes in Nepal. Frontiers in Plant Science, 0, 13, .	ofortified	1.7	4
514	Systems seed biology to understand and manipulate rice grain quality and nutrition. C in Biotechnology, 2023, 43, 716-733.	ritical Reviews	5.1	1
515	In silico characterization of Thinopyrum elongatum-derived PsyE1 gene and validation wheat introgression lines open avenues for carotenoid biofortification in wheat. Cerea Communications, 0, , .		0.8	3
516	Genome-Wide Association Mapping Identifies Key Genomic Regions for Grain Zinc and Biofortification in Bread Wheat. Frontiers in Plant Science, 0, 13, .	Iron	1.7	3
517	Agronomic Biofortification of Zinc in Rice for Diminishing Malnutrition in South Asia. S 2022, 14, 7747.	ustainability,	1.6	6

#	Article	IF	CITATIONS
518	Enhancing Zinc Biofortification of Wheat through Integration of Zinc, Compost, and Zinc-Solubilizing Bacteria. Agriculture (Switzerland), 2022, 12, 968.	1.4	4
519	Effects of selenium fertilizer application and tomato varieties on tomato fruit quality: A meta-analysis. Scientia Horticulturae, 2022, 304, 111242.	1.7	13
520	Iron Biofortification of Wheat Grains by Foliar Application of Nano Zero-valent Iron (nZVI) and Other Iron Sources with Urea. Journal of Soil Science and Plant Nutrition, 2022, 22, 4642-4652.	1.7	10
521	Alleviation of zinc deficiency in plants and humans through an effective technique; biofortification: A detailed review. Acta Ecologica Sinica, 2023, 43, 419-425.	0.9	13
522	Investigation of folate composition and influence of processing on folate stability in pulse accessions developed in China. Journal of Food Composition and Analysis, 2022, 114, 104785.	1.9	0
523	Integrating machine learning interpretation methods for investigating nanoparticle uptake during seed priming and its biological effects. Nanoscale, 2022, 14, 15305-15315.	2.8	6
524	Alterations in Intestinal Brush Border Membrane Functionality and Bacterial Populations Following Intra-Amniotic Administration (Gallus gallus) of Nicotinamide Riboside and Its Derivatives. Nutrients, 2022, 14, 3130.	1.7	10
525	The Role of Sulfur in Agronomic Biofortification with Essential Micronutrients. Plants, 2022, 11, 1979.	1.6	6
526	Response Wheat to Spray Some of Synthetic Nano Fertilizers. IOP Conference Series: Earth and Environmental Science, 2022, 1060, 012030.	0.2	2
527	Iron biofortification through genetic modification in rice, wheat, and cassava and its potential contribution to nutritional security. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , .	0.6	1
528	Estimates of Dietary Mineral Micronutrient Supply from Staple Cereals in Ethiopia at a District Level. Nutrients, 2022, 14, 3469.	1.7	4
529	Nano-biofertilizers on soil health, chemistry, and microbial community: benefits and risks. Proceedings of the Indian National Science Academy, 2022, 88, 357-368.	0.5	5
530	Agronomic Biofortification of Wheat Through Proper Fertilizer Management to Alleviate Zinc Malnutrition: A Review. Communications in Soil Science and Plant Analysis, 2023, 54, 154-177.	0.6	6
531	Fortification of fruit products - A review. Czech Journal of Food Sciences, 2022, 40, 259-272.	0.6	0
532	Perspective Chapter: Crop Biofortification - A Key Determinant towards Fighting Micronutrient Malnutrition in Northern Ghana. , 0, , .		0
533	Genetic parameters and selection of common bean lines with high nutritional and agronomic quality. Crop Science, 0, , .	0.8	0
534	Improvement of Genetic Variation for Nutrients and Bioactive Food Components in Cereal Crops. , 2022, , 51-80.		0
536	Biofortification—Present Scenario, Possibilities and Challenges: A Scientometric Approach. Sustainability, 2022, 14, 11632.	1.6	9

# 538	ARTICLE Biofortification for Crop Quality Enhancement. , 2022, , 55-71.	IF	Citations 0
539	The role of zinc to mitigate heavy metals toxicity in crops. Frontiers in Environmental Science, 0, 10, .	1.5	12
540	Plant Metal Tolerance Proteins: Insight into Their Roles in Metal Transport and Homeostasis for Future Biotechnological Applications. , 2022, , 289-304.		1
541	Heavy Metal Transporters, Phytoremediation Potential, and Biofortification. , 2022, , 387-405.		1
542	The Association between Fruit and Vegetable Intake and Socioeconomic Factors in the Households of Pakistan Using Quantile Regression Model. Social Work in Public Health, 0, , 1-11.	0.7	1
543	Validation of KASP-SNP markers in cassava germplasm for marker-assisted selection of increased carotenoid content and dry matter content. Frontiers in Plant Science, 0, 13, .	1.7	2
544	Critical review of indicators, metrics, methods, and tools for monitoring and evaluation of biofortification programs at scale. Frontiers in Nutrition, 0, 9, .	1.6	3
545	A two-gene strategy increases iron and zinc concentrations in wheat flour, improving mineral bioaccessibility. Plant Physiology, 2023, 191, 528-541.	2.3	12
546	Identification of genomic regions of wheat associated with grain Fe and Zn content under drought and heat stress using genome-wide association study. Frontiers in Genetics, 0, 13, .	1.1	6
547	Biofortification Techniques to Improve Food Security. , 2023, , .		0
549	A tale of two metals: Biofortification of rice grains with iron and zinc. Frontiers in Plant Science, 0, 13, .	1.7	8
550	Genomic approaches for improving grain zinc and iron content in wheat. Frontiers in Genetics, 0, 13, .	1.1	4
551	Zinc agronomic biofortification of staple crops may be a cost-effective strategy to alleviate zinc deficiency in Ethiopia. Frontiers in Nutrition, 0, 9, .	1.6	3
552	Effect of zinc uptake on alcohol dehydrogenase, protein and mineral contents of hydroponically grown chickpea (<i>Cicer arietinum</i>). Journal of Plant Nutrition, 2023, 46, 867-876.	0.9	3
553	Effect of different zinc fertilizer on green bean nutraceutical values. Journal of Crop Science and Biotechnology, 2023, 26, 301-315.	0.7	1
554	The GZnC1 variant from common wild rice influences grain Zn content. Plant Molecular Biology, 0, , .	2.0	0
555	Micronutrients and heavy metals in rice farms: the case of Ahvaz and Bawie Counties, Khuzestan Province, Iran. Environmental Monitoring and Assessment, 2023, 195, .	1.3	5
556	Breeding and adoption of biofortified crops and their nutritional impact on human health. Annals of the New York Academy of Sciences, 2023, 1520, 5-19.	1.8	7

#	Article	IF	CITATIONS
557	Agronomic biofortification of food crops: An emerging opportunity for global food and nutritional security. Frontiers in Plant Science, 0, 13, .	1.7	13
558	Genome Editing and Protein Energy Malnutrition. Advances in Experimental Medicine and Biology, 2023, , 215-232.	0.8	0
560	Biofortification of Iron in Wheat Varieties Using Different Methods of Application. Gesunde Pflanzen, 0, , .	1.7	1
561	Effects of fermentation period and soybean flour supplementation on the glycemic indices and starch digestibility of biofortified provitamin A cassava meal. Najfnr, 2022, 6, 178-185.	0.1	0
562	Genetic dissection of marker trait associations for grain micro-nutrients and thousand grain weight under heat and drought stress conditions in wheat. Frontiers in Plant Science, 0, 13, .	1.7	2
563	Iron pulsing, a cost effective and affordable seed invigoration technique for iron bio-fortification and nutritional enrichment of rice grains. Plant Growth Regulation, 0, , .	1.8	0
564	Proof of concept and early development stage of market-oriented high iron and zinc rice expressing dicot ferritin and rice nicotianamine synthase genes. Scientific Reports, 2023, 13, .	1.6	4
565	Hydropriming and Nutripriming of Bread Wheat Seeds Improved the Flour's Nutritional Value of the First Unprimed Offspring. Plants, 2023, 12, 240.	1.6	3
566	Assessment of gene action for morpho-physiological and biochemical trait in bread wheat (Triticum) Tj ETQq0 0 C) rgBT /Ov 9.1	erlock 10 Tf 5
567	Heterosis and combining ability of iron, zinc and their bioavailability in maize inbred lines under low nitrogen and optimal environments. Heliyon, 2023, 9, e14177.	1.4	0
568	Biofortification to avoid malnutrition in humans in a changing climate: Enhancing micronutrient bioavailability in seed, tuber, and storage roots. Frontiers in Plant Science, 0, 14, .	1.7	7
569	Identification of subspecies-divergent genetic loci responsible for mineral accumulation in rice grains. Frontiers in Genetics, 0, 14, .	1.1	0
570	Genetic bio-fortification of cereals from a plant breeding perspective. Journal of Plant Breeding and Crop Science, 2023, 15, 42-56.	0.8	0
571	A Review of Sustainable Use of Biogenic Nanoscale Agro-Materials to Enhance Stress Tolerance and Nutritional Value of Plants. Plants, 2023, 12, 815.	1.6	9
572	Biofortification of Barley for Nutritional Security. , 2023, , 235-258.		0
573	Nanotechnological Approaches for Biofortification Concept and Concern in Cereal Crops. , 2023, , 367-384.		0
574	Biofortification of Rice (Oryza sativa L.). , 2023, , 149-172.		1
575	Nutritional quality of <scp><i>Onobrychis viciifolia</i></scp> (Scop.) seeds: A potentially novel perennial pulse crop for human use. , 2023, 5, .		4

	CITATION	tion Report		
#	ARTICLE	IF	CITATIONS	
576	Insights into the recent approaches for rice (Oryza sativa L.) biofortification. Oryza, 2023, 60, 97-104.	0.2	0	
577	Yield stability and agronomic performances of provitamin A maize (<i>Zea mays</i> L.) genotypes in South-East of DR Congo. Open Agriculture, 2023, 8, .	0.7	0	

Nanoâ€Biofortification of Zinc in Potato (<i>Solanum tuberosum </i> L.) and Tomato (<i>Solanum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

579	The road toward Cd-safe rice: From mass selection to marker-assisted selection and genetic manipulation. Crop Journal, 2023, , .	2.3	2
580	Improving zinc and iron density and estimated human bioavailability in rice grain through fertilization. Arabian Journal of Geosciences, 2023, 16, .	0.6	0
581	Bio-fortification of Two Wheat Cultivars with Iron and Zinc Through Their Soil and Foliar Application in Salt-Factored Soil: Growth, Ionic, Physiological, and Biochemical Modifications. Journal of Plant Growth Regulation, 2023, 42, 5727-5745.	2.8	4
582	Metaâ \in QTL s and haplotypes for efficient zinc biofortification of rice. Plant Genome, 2023, 16, .	1.6	4
583	Pigmented Cereals as a Source of Carotenoids. , 2023, , 305-338.		0
584	Relative grain zinc loading ability of cereals (rice, wheat, maize) and a grain legume (chickpea). , 2018, 88, 307-313.		2
585	Haplotypes of recessive opaque2 allele in exotic- and indigenous-quality protein maize inbreds. , 2018, 88, 253-259.		1
586	Molecular dissection of connected rice populations revealed important genomic regions for agronomic and biofortification traits. Frontiers in Plant Science, 0, 14, .	1.7	0
587	Characterization of grain carotenoids in global sorghum germplasm to guide genomics-assisted breeding strategies. BMC Plant Biology, 2023, 23, .	1.6	1
588	Cooking properties and nutrient retention of biofortified common bean (Phaseolus vulgaris) varieties: The case of Burundi. Frontiers in Sustainable Food Systems, 0, 7, .	1.8	3
589	Genome-wide association study for grain zinc concentration in bread wheat (Triticum aestivum L.). Frontiers in Plant Science, 0, 14, .	1.7	1
590	Pearl Millet. , 2023, , 1-24.		0
591	Screening and use of nutritional and health-related benefits of the main crops. , 2023, , 25-55.		0
596	Comparison of durum with ancient tetraploid wheats from an agronomical, chemical, nutritional, and genetic standpoints: a review. Euphytica, 2023, 219, .	0.6	4
604	Agronomic Biofortification of Millets: New Way to Alleviate Malnutrition. , 0, , .		1

#	Article	IF	CITATIONS
605	Agronomic biofortification through nano-fertilizers: technological updates and progress. , 2023, ,		0
605	177-196.		0
607	Nicotianamine enhances zinc transport to seeds for biofortification. , 2023, , 77-96.		Ο
608	Molecular links between iron and zinc biofortification in rice. , 2023, , 15-30.		0
609	Zinc biofortification of rice by engineering metal transporter genes. , 2023, , 97-114.		Ο
610	Role of biotechnology in creating sustainable agriculture. , 2023, 2, e0000069.		5
613	Lentils (Lens culinaris Medik): Nutritional Profile and Biofortification Prospects. , 2023, , 1-27.		0
616	Nano-Biofortified Crop Plants with Zinc for Human Health. , 2023, , 53-76.		0
617	Nano-Enabled Approaches for Biofortification Strategies to Enhance Crop Production with Micronutrient Enrichment. , 2023, , 1-14.		0
625	Population and food systems: what does the future hold?. Population and Environment, 2023, 45, .	1.3	3
626	Genome-edited foods. , 2023, 1, 799-816.		5
628	Nano-Biofortification: An Environmental Health Overview. , 2023, , 77-98.		0
630	Conventional and Molecular Breeding for Genetic Improvement of Maize (Zea mays L.). , 2023, , 317-350.		0
631	Abiotic Stress Tolerance and Nutritional Improvement in Chickpeas Through Recombination, Mutation, and Molecular Breeding. , 2023, , 257-303.		0
640	Role of Nanoparticles in Improving Biofortification. , 2023, , 203-217.		0
641	Variability in the Biofortification Properties of Fenugreek (Trigonella foenum-graecum L.). , 2023, , 507-520.		0
642	Micronutrients Enrichments in Legumes Through Agronomic and Cultural Practices. , 2023, , 47-71.		0
643	Nutritional Security Approaches for Legume Biofortification—A Major Challenge. , 2023, , 17-45.		0
644	Biofertilizers and Biofortification in Future Agriculture. , 2023, , 363-377.		0

#	Article	IF	Citations
650	Lentils (Lens culinaris Medik): Nutritional Profile and Biofortification Prospects. , 2023, , 719-745.		0
652	Breeding Efforts on Grain Micronutrient Enhancement in Pearl Millet. , 2023, , 227-250.		0
653	Biofortification of Millets: A Way to Ensure Nutritional Security. , 0, , .		0
654	Biofortification versus diversification to fight micronutrient deficiencies: an interdisciplinary review. Food Security, 0, , .	2.4	0
655	Biofortification's contribution to mitigating micronutrient deficiencies. Nature Food, 2024, 5, 19-27.	6.2	1
657	Biofortified sorghum: a prospectus of combating malnutrition. , 2024, , 115-138.		0
659	Agronomic and genetic biofortification of wheat: progress and limitations. , 2024, , 81-95.		0
660	Cassava: a potential candidate for biofortification exploration. , 2024, , 255-265.		0
661	Biofortified sweet potato—an ideal source of mitigating hidden hunger. , 2024, , 239-253.		0
665	Zn content of biofortified rice variety is consistently higher than popular variety under various fertilizers applications. AIP Conference Proceedings, 2024, , .	0.3	0
666	Agronomic Biofortification: An Ideal Option for Ensuring Nutritional Security. World Sustainability Series, 2024, , 389-400.	0.3	0