Inhibition Effects of Silver Nanoparticles against Powde Pumpkin

Mycobiology 39, 26 DOI: 10.4489/myco.2011.39.1.026

Citation Report

#	Article	IF	CITATIONS
1	Silver Nanoparticles. Advances in Applied Microbiology, 2011, 77, 115-133.	2.4	35
2	Application of Silver Nanoparticles for the Control of <i>Colletotrichum</i> Species <i>In Vitro</i> and Pepper Anthracnose Disease in Field. Mycobiology, 2011, 39, 194-199.	1.7	232
3	Nanomaterials in Plant Protection and Fertilization: Current State, Foreseen Applications, and Research Priorities. Journal of Agricultural and Food Chemistry, 2012, 60, 9781-9792.	5.2	629
4	Bioactivity and Biomodification of Ag, ZnO, and CuO Nanoparticles with Relevance to Plant Performance in Agriculture. Industrial Biotechnology, 2012, 8, 344-357.	0.8	74
5	Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. BioMetals, 2013, 26, 913-924.	4.1	192
6	Biosynthesis of Silver Nanoparticles by <i>Septoria apii</i> and <i>Trichoderma koningii</i> . Chinese Journal of Chemistry, 2013, 31, 529-533.	4.9	17
7	Biogenic silver nanoparticles by Aspergillus terreus as a powerful nanoweapon against Aspergillus fumigatus. African Journal of Microbiology Research, 2013, 7, 5645-5651.	0.4	20
8	Antifungal activity of chitosan-silver nanoparticle composite against Colletotrichum gloeosporioides associated with mango anthracnose. African Journal of Microbiology Research, 2014, 8, 1803-1812.	0.4	64
10	Study on the Bacteriostasis of Nano-Silver against the <i>Aspergillus</i> from Illed Plants. Advanced Materials Research, 0, 1051, 410-418.	0.3	0
11	Study on the Bactriostasis of Nano-Silver against <i>Penicillium</i> . Advanced Materials Research, 0, 1051, 62-69.	0.3	0
12	Studies on the Bacteriostasis of Nano-Silver on the Pathogenic Fungus <i>Botrytis cinerea</i> from Illed Plants. Applied Mechanics and Materials, 0, 651-653, 352-361.	0.2	0
13	Interactions of Nanoparticles with Plants. , 2014, , 159-180.		72
14	Particle-Size Dependent Accumulation and Trophic Transfer of Cerium Oxide through a Terrestrial Food Chain. Environmental Science & Technology, 2014, 48, 13102-13109.	10.0	143
15	Exploring the mechanism for mycobiosynthesis of silver nanoparticles from Aspergillus spp. and optimisation of synthesis parameters. Micro and Nano Letters, 2014, 9, 600-604.	1.3	1
17	Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life?. Journal of Basic Microbiology, 2014, 54, 889-904.	3.3	110
18	Antimicrobial activity of metal based nanoparticles against microbes associated with diseases in aquaculture. World Journal of Microbiology and Biotechnology, 2014, 30, 2491-2502.	3.6	106
19	Nanotechnology in agri-food production: an overview. Nanotechnology, Science and Applications, 2014, 7, 31.	4.6	733
20	Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: exploring their scope and potential in agriculture. Applied Microbiology and Biotechnology, 2015, 99, 1097-1107.	3.6	170

TION RE

#	Article	IF	CITATIONS
21	A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	501
22	Nanotechnology and Plant Sciences. , 2015, , .		79
23	Inhibition of <i>Phytophthora parasitica</i> and <i>P. capsici</i> by Silver Nanoparticles Synthesized Using Aqueous Extract of <i>Artemisia absinthium</i> . Phytopathology, 2015, 105, 1183-1190.	2.2	86
25	Plant-Based Synthesis of Silver Nanoparticles and Their Characterization. , 2015, , 271-288.		17
26	Three-Dimensional Coating of Porous Activated Carbons with Silver Nanoparticles and its Scale-up Design for Plant Disease Management in Greenhouses. Journal of Plant Pathology & Microbiology, 2016, 7, .	0.3	0
27	Enhancement of the Antibacterial Activity of Silver Nanoparticles against Phytopathogenic Bacterium <i>Ralstonia solanacearum</i> by Stabilization. Journal of Nanomaterials, 2016, 2016, 1-15.	2.7	51
28	Antimicrobial potential of consolidation polymers loaded with biological copper nanoparticles. BMC Microbiology, 2016, 16, 144.	3.3	27
29	Silver Nanoparticle in Agroecosystem: Applicability on Plant and Risk-Benefit Assessment. , 2016, , 293-305.		2
30	Plant Nanotechnology. , 2016, , .		35
31	The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environmental Science: Nano, 2016, 3, 1072-1079.	4.3	251
32	Chitosan Based Nanomaterials in Plant Growth and Protection. SpringerBriefs in Plant Science, 2016, ,	0.3	23
33	Synthesis Techniques and Evaluation Methods of Nanoparticles as Fungicides. Fungal Biology, 2016, , 141-168.	0.6	0
34	Future Roadmap for Plant Nanotechnology. , 2016, , 367-371.		2
35	Nano-Biofungicides: Emerging Trend in Insect Pest Control. Fungal Biology, 2016, , 307-319.	0.6	134
36	Understanding the Role of Nanomaterials in Agriculture. , 2016, , 271-288.		56
37	Inhibition of microorganisms involved in deterioration of an archaeological site by silver nanoparticles produced by a green synthesis method. Science of the Total Environment, 2016, 565, 872-881.	8.0	36
38	Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, 2016, , .	1.1	13
39	Nanofertilisers, Nanopesticides, Nanosensors of Pest and Nanotoxicity in Agriculture. Sustainable Agriculture Reviews, 2016, , 307-330.	1.1	109

#	Article	IF	CITATIONS
40	Antimicrobial kinetics of Alstonia scholaris bark extract-mediated AgNPs. Applied Nanoscience (Switzerland), 2016, 6, 779-787.	3.1	5
41	Nanoparticle Interaction with Plants. Soil Biology, 2017, , 323-355.	0.8	5
42	Effects of exposure pathways on the accumulation and phytotoxicity of silver nanoparticles in soybean and rice. Nanotoxicology, 2017, 11, 699-709.	3.0	107
45	Biosynthesis of nanosilver using <i>Chaetomium globosum</i> and its application to control <i>Fusarium</i> wilt of tomato in the greenhouse. IET Nanobiotechnology, 2017, 11, 702-708.	3.8	34
46	Antifungal effect of green synthesised silver nanoparticles against <i>Setosphaeria turcica</i> . IET Nanobiotechnology, 2017, 11, 803-808.	3.8	12
47	Biogenic silver nanoparticles from Trichodesma indicum aqueous leaf extract against Mythimna separata and evaluation of its larvicidal efficacy. Journal of Plant Protection Research, 2017, 57, 194-200.	1.0	28
48	Silver nanoparticles deteriorate the mutual interaction between maize (Zea mays L.) and arbuscular mycorrhizal fungi: a soil microcosm study. Applied Soil Ecology, 2017, 119, 307-316.	4.3	40
49	Fungal Nanotechnology: A Pandora to Agricultural Science and Engineering. Fungal Biology, 2017, , 1-33.	0.6	9
50	Trichogenic-selenium nanoparticles enhance disease suppressive ability of Trichoderma against downy mildew disease caused by Sclerospora graminicola in pearl millet. Scientific Reports, 2017, 7, 2612.	3.3	92
51	Biogenic synthesis, characterisation and antifungal activity of gum kondagoguâ€silver nano bio composite construct: assessment of its mode of action. IET Nanobiotechnology, 2017, 11, 866-873.	3.8	11
52	Nanoparticles and their potential application as antimicrobials in the food industry. , 2017, , 567-601.		10
53	Silver Nanoparticles: Technological Advances, Societal Impacts, and Metrological Challenges. Frontiers in Chemistry, 2017, 5, 6.	3.6	241
54	The Effect of Silver and Copper Nanoparticles on the Condition of English Oak (Quercus robur L.) Seedlings in a Container Nursery Experiment. Forests, 2017, 8, 310.	2.1	51
55	Role of Silver Nanoparticles in Treatment of Plant Diseases. , 2018, , 435-454.		5
56	Effects of Zn/B nanofertilizer on biophysical characteristics and growth of coffee seedlings in a greenhouse. Research on Chemical Intermediates, 2018, 44, 4889-4901.	2.7	34
57	Potential Applications of Nanotechnology in Agriculture: Current Status and Future Aspects. , 2018, , 187-209.		2
58	Trophic transfer of citrate, PVP coated silver nanomaterials, and silver ions in a paddy microcosm. Environmental Pollution, 2018, 235, 435-445.	7.5	24
59	Bio-fabrication of silver nanoparticles using the leaf extract of an ancient herbal medicine, dandelion (Taraxacum officinale), evaluation of their antioxidant, anticancer potential, and antimicrobial activity against phytopathogens. Environmental Science and Pollution Research, 2018, 25, 10392-10406.	5.3	147

#	Article	IF	CITATIONS
60	Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities. Journal of the Science of Food and Agriculture, 2018, 98, 849-864.	3.5	167
61	Nanomaterials for water cleaning and desalination, energy production, disinfection, agriculture and green chemistry. Environmental Chemistry Letters, 2018, 16, 11-34.	16.2	63
62	Pesticide Alternatives Use in Egypt: The Concept and Potential. Handbook of Environmental Chemistry, 2018, , 111-143.	0.4	2
63	Nanoparticle Uptake by Plants: Beneficial or Detrimental?. , 2018, , 1-61.		12
64	Nanotechnology in Crop Protection. , 2018, , 345-391.		10
65	Potential Applications and Avenues of Nanotechnology in Sustainable Agriculture. , 2018, , 473-500.		17
66	Antifungal Effects of Silver Phytonanoparticles from <i>Yucca shilerifera</i> Against Strawberry Soil-Borne Pathogens: <i>Fusarium solani</i> and <i>Macrophomina phaseolina</i> . Mycobiology, 2018, 46, 47-51.	1.7	37
68	Nanoparticles for plant disease management. Current Opinion in Environmental Science and Health, 2018, 6, 66-70.	4.1	89
69	The Future of Nanotechnology in Plant Pathology. Annual Review of Phytopathology, 2018, 56, 111-133.	7.8	271
70	Benefits and Potential Risks of Nanotechnology Applications in Crop Protection. Nanotechnology in the Life Sciences, 2018, , 189-246.	0.6	14
71	Plant Response to Engineered Nanoparticles. , 2018, , 103-118.		7
72	Nanobiotechnology Applications in Plant Protection. Nanotechnology in the Life Sciences, 2018, , .	0.6	41
73	Chitosan-Based Nanostructures in Plant Protection Applications. Nanotechnology in the Life Sciences, 2018, , 351-384.	0.6	6
74	Applications of Silver Nanoparticles in Plant Protection. Nanotechnology in the Life Sciences, 2018, , 247-265.	0.6	49
75	The synthesis of thiol-stabilized silver nanoparticles and their application towards the nanomolar-level colorimetric recognition of glutathione. New Journal of Chemistry, 2019, 43, 13480-13490.	2.8	18
76	Nanostructured Colloids in Food Science. , 2019, , .		2
77	Biomolecular assisted synthesis and mechanism of silver and gold nanoparticles. Materials Research Express, 2019, 6, 082009.	1.6	24
78	Effect of Nanoparticles on Plant Pathogens. , 2019, , 215-240.		20

щ	Article	IF	Citations
#	Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action.	IF	CHATIONS
79	Environmental Science: Nano, 2019, 6, 2002-2030.	4.3	314
80	Nanomaterials as therapeutic and diagnostic tool for controlling plant diseases. Comprehensive Analytical Chemistry, 2019, 84, 225-261.	1.3	7
81	Silver nanoparticles: Potential as insecticidal and microbial biopesticides. , 2019, , 281-302.		6
82	Discerning the Sources of Silver Nanoparticle in a Terrestrial Food Chain by Stable Isotope Tracer Technique. Environmental Science & Technology, 2019, 53, 3802-3810.	10.0	42
83	Nanotechnology in sustainable agriculture: studies from seed priming to post-harvest management. Nanotechnology for Environmental Engineering, 2019, 4, 1.	3.3	99
84	Biosynthesis of silver nanoparticles using endophytic bacteria and their role in inhibition of rice pathogenic bacteria and plant growth promotion. RSC Advances, 2019, 9, 29293-29299.	3.6	138
85	Prospects of nanotechnology for crop improvement and production. Acta Horticulturae, 2019, , 247-254.	0.2	0
86	Uptake and Transformation of Silver Nanoparticles and Ions by Rice Plants Revealed by Dual Stable Isotope Tracing. Environmental Science & Technology, 2019, 53, 625-633.	10.0	52
87	Effects of PGPR (Pseudomonas sp.) and Ag-nanoparticles on Enzymatic Activity and Physiology of Cucumber. Recent Patents on Food, Nutrition & Agriculture, 2020, 11, 124-136.	0.9	33
88	Nanotechnology as a new sustainable approach for controlling crop diseases and increasing agricultural production. Journal of Experimental Botany, 2020, 71, 507-519.	4.8	81
89	Nanomaterials: new weapons in a crusade against phytopathogens. Applied Microbiology and Biotechnology, 2020, 104, 1437-1461.	3.6	51
90	Metalloid and Metal Oxide Nanoparticles Suppress Sudden Death Syndrome of Soybean. Journal of Agricultural and Food Chemistry, 2020, 68, 77-87.	5.2	34
91	Ecofriendly Synthesis of Silver Nanoparticles and Their Effects on Early Growth and Cell Division in Roots of Green Pea (Pisum sativumÂL.). Gesunde Pflanzen, 2020, 72, 113-127.	3.0	15
92	Zinc-Based Nanomaterials for Diagnosis and Management of Plant Diseases: Ecological Safety and Future Prospects. Journal of Fungi (Basel, Switzerland), 2020, 6, 222.	3.5	54
93	The potential use of Titanium, Silver and Selenium nanoparticles in controlling leaf blight of tomato caused by Alternaria alternata. Biocatalysis and Agricultural Biotechnology, 2020, 27, 101708.	3.1	59
94	Uptake kinetics of silver nanoparticles by plant: relative importance of particles and dissolved ions. Nanotoxicology, 2020, 14, 654-666.	3.0	26
95	The effect of cobalt and silver nanoparticles on overcoming leaf abscission and enhanced growth of rose (Rosa hybrida L. â€Baby Love') plantlets cultured in vitro. Plant Cell, Tissue and Organ Culture, 2020, 141, 393-405.	2.3	34
96	Nutritional Status of Tomato (<i>Solanum lycopersicum</i>) Fruit Grown in <i>Fusarium</i> -Infested Soil: Impact of Cerium Oxide Nanoparticles. Journal of Agricultural and Food Chemistry, 2020, 68, 1986-1997.	5.2	51

#	Article	IF	CITATIONS
97	Alteration of Crop Yield and Quality of Three Vegetables upon Exposure to Silver Nanoparticles in Sludge-Amended Soil. ACS Sustainable Chemistry and Engineering, 2020, 8, 2472-2480.	6.7	31
98	Chitosan-Based Agronanofungicides as a Sustainable Alternative in the Basal Stem Rot Disease Management. Journal of Agricultural and Food Chemistry, 2020, 68, 4305-4314.	5.2	24
99	Rice leaf extract synthesized silver nanoparticles: An inÂvitro fungicidal evaluation against Rhizoctonia solani, the causative agent of sheath blight disease in rice. Fungal Biology, 2020, 124, 671-681.	2.5	34
100	Genetics and Resistance Mechanism of the Cucumber (Cucumis sativus L.) Against Powdery Mildew. Journal of Plant Growth Regulation, 2021, 40, 147-153.	5.1	14
101	Copper nanoparticles: Green synthesis and managing fruit rot disease of chilli caused by Colletotrichum capsici. Saudi Journal of Biological Sciences, 2021, 28, 1477-1486.	3.8	51
102	Nanotechnology in Agriculture, the Food Sector, and Remediation: Prospects, Relations, and Constraints. Environmental and Microbial Biotechnology, 2021, , 1-34.	0.7	5
103	A handbook guide to better use of nanoparticles in plants. Communications in Soil Science and Plant Analysis, 2021, 52, 287-321.	1.4	9
104	Nano-enabled Approaches for the Suitable Delivery of Fertilizer and Pesticide for Plant Growth. , 2021, , 355-394.		0
105	Nematicidal activity of silver nanomaterials against plant-parasitic nematodes. , 2021, , 527-548.		4
106	Go green to protect plants: repurposing the antimicrobial activity of biosynthesized silver nanoparticles to combat phytopathogens. Nanotechnology for Environmental Engineering, 2021, 6, 1.	3.3	34
107	Potential antifungal effects of silver nanoparticles (AgNPs) of different sizes against phytopathogenic Fusarium oxysporum f. sp. radicis-lycopersici (FORL) strains. SN Applied Sciences, 2021, 3, 1.	2.9	45
108	Nanotechnology: A cutting-edge technology in vegetable production. Journal of Horticultural Science and Biotechnology, 2021, 96, 682-695.	1.9	5
109	Green Synthesized Silver Nanoparticles Mitigate Biotic Stress Induced by <i>Meloidogyne incognita</i> in <i>Trachyspermum ammi</i> (L.) by Improving Growth, Biochemical, and Antioxidant Enzyme Activities. ACS Omega, 2021, 6, 11389-11403.	3.5	32
110	The use of biological selenium nanoparticles to suppress Triticum aestivum L. crown and root rot diseases induced by Fusarium species and improve yield under drought and heat stress. Saudi Journal of Biological Sciences, 2021, 28, 4461-4471.	3.8	119
111	Current trends and challenges in the synthesis and applications of chitosan-based nanocomposites for plants: A review. Carbohydrate Polymers, 2021, 261, 117904.	10.2	106
112	Differential response of cowpea towards the CuO nanoparticles under Meloidogyne incognita stress. South African Journal of Botany, 2021, 139, 175-182.	2.5	11
113	Nano/microparticles in conjunction with microalgae extract as novel insecticides against Mealworm beetles, Tenebrio molitor. Scientific Reports, 2021, 11, 17125.	3.3	7
114	Growth inhibition of tropical fungi by silver nanoparticles incorporated polyurethane coating. IOP Conference Series: Materials Science and Engineering, 2021, 1173, 012034.	0.6	0

ARTICLE IF CITATIONS # Insights into Shape-Based Silver Nanoparticles: A Weapon to Cope with Pathogenic Attacks. ACS 115 6.7 28 Sustainable Chemistry and Engineering, 2021, 9, 12476-12507. Nano-based pesticides: challenges for pest and disease management. Euro-Mediterranean Journal for 1.3 Environmential Integration, 2021, 6, 1. Cross-examination of engineered nanomaterials in crop production: Application and related 117 12.4 13 implications. Journal of Hazardous Materials, 2022, 424, 127374. Silver Nanoparticles as a Fungicide against Soil-Borne Sclerotium rolfsii: A Case Study for Wheat 118 Plants. Nanotechnology in the Life Sciences, 2021, , 513-542. The multifaceted dimensions of potent nanostructures: a comprehensive review. Materials Chemistry 119 5.9 6 Frontiers, 2021, 5, 2967-2995. Nanoagrotechnology for Soil Quality, Crop Performance and Environmental Management., 2017, 73-97. 121 Nanoparticles and Their Fate in Soil Ecosystem., 2020, , 221-245. 13 Nanomaterials: Emerging Trends and Future Prospects for Economical Agricultural System., 2020, , 199 281-305. 123 Current Status of Biologically Produced Nanoparticles in Agriculture., 2020, , 393-406. 3 Potential of Nanotechnology for Rural Applications. Arabian Journal for Science and Engineering, 124 2020, 45, 5011-5042. Inhibition of Fusarium oxysporum by AgNPs biosynthesised using Cinnamomum camphora fruit extract. 125 3.8 5 IET Nanobiotechnology, 2019, 13, 42-45. Phytogenic silver nanoparticles (Alstonia scholaris) incorporated with epoxy coating on PVC 0.9 materials and their biofilm degradation studies. Advances in Nano Research, 2016, 4, 281-294. Nanocentric Plant Health Management with Special Reference to Silver. International Journal of 128 0.1 8 Current Microbiology and Applied Sciences, 2017, 6, 2821-2830. SILVER NANOPARTICLES AND RESISTANCE INDUCERS IN THE CONTROL OF BANANA ANTHRACNOSIS. Revista 129 0.1 Ciência AgrÃeola, 2020, 18, 49. Efficacy of Some Nanoparticles to Control Damping-off and Root Rot of Sugar Beet in El-Behiera 130 0.3 43 Governorate. Asian Journal of Plant Pathology, 2016, 11, 35-47. Antifungal Activity of Silver and Copper Nanoparticles on Two Plant Pathogens, Alternaria alternata 180 and Botrytis cinerea. Research Journal of Microbiology, 2014, 9, 34-42. Antifungal activity of organically synthesized silver nanoparticles against<i>Fusarium 132 0.2 2 incarnatum</i>(Desm.) Sacc., incitant of wilt in Crossandra. Applied Biological Research, 2015, 17, 150. INHIBITION EFFECTS OF SILVER NANOPARTICLES AGAINST RICE BLAST DISEASE CAUSED BY MAGNAPORTHE 0.1 GRISEA. Egyptian Journal of Agricultural Research, 2013, 91, 1271-1283.

#	Article	IF	Citations
134	Nanoparticles as Alternative Pesticides: Concept, Manufacturing and Activities. Korean Journal of Mycology, 2015, 43, .	0.3	1
135	Management of phytopathogens by application of green nanobiotechnology: Emerging trends and challenges. Agrártudományi Közlemények, 2015, , 15-22.	0.3	3
137	Environmental Toxicity of Nanomaterials. , 0, , .		3
138	Recent Advances in Plant Pathogen Control by Nanocides. , 2019, , 101-137.		0
139	Use of Bio-Based Nanoparticles in Agriculture. , 2019, , 89-100.		1
140	Pot Culture Studies on Integrated Effect of Bio agents, Organic Amendments, Nanoparticles and Chemicals on Crossandra (Crossandra infundibuliformis L. Nees) Wilt Incited by Fusarium incarnatum (Desm.) Sacc. International Journal of Current Microbiology and Applied Sciences, 2020, 9, 3986-3995.	0.1	0
141	Green Nanotechnology and Its Application in Plant Disease Management. , 2021, , 591-609.		3
142	Microbial Interactions in the Rhizosphere Contributing Crop Resilience to Biotic and Abiotic Stresses. Microorganisms for Sustainability, 2020, , 1-33.	0.7	3
143	Nanobiotechnology and its Application in Agriculture and Food Production. Nanotechnology in the Life Sciences, 2020, , 105-134.	0.6	4
144	Green Synthesis of Silver Nanoparticles Using Annona diversifolia Leaf Extract and Their Antimicrobial Application. Journal of Renewable Materials, 2020, 8, 1129-1137.	2.2	3
145	The Impact of Climate Change on Changing Pattern of Maize Diseases in Indian Subcontinent: A Review. , 0, , .		4
146	Nanotechnology Mediated Detection and Control of Phytopathogens. , 2022, , 109-125.		1
147	Nano-enabled agrochemicals/materials: Potential human health impact, risk assessment, management strategies and future prospects. Environmental Pollution, 2022, 295, 118722.	7.5	20
148	Nanotechnology and Robotics: The Twin Drivers of Agriculture in Future. , 2021, , 553-571.		1
149	Bio-Fabricated Silver Nanoparticles: A Sustainable Approach for Augmentation of Plant Growth and Pathogen Control. Sustainable Agriculture Reviews, 2021, , 345-371.	1.1	29
150	Climate Change Mitigation and Nanotechnology: An Overview. Sustainable Agriculture Reviews, 2021, , 33-60.	1.1	1
151	Inorganic nanomaterials usable in plant protection strategies. , 2022, , 211-231.		1
152	Biogenic synthesis: a sustainable approach for nanoparticles synthesis mediated by fungi. Inorganic and Nano-Metal Chemistry, 2023, 53, 460-473.	1.6	15

# 154	ARTICLE A comprehensive review on nanopesticides and nanofertilizers—A boon for agriculture. , 2022, , 273-290.	IF	CITATIONS 8
156	Efficacy of silver nanoparticles-based foliar spray application to control plant diseases, its effect on productivity, and risk assessment. Arabian Journal of Geosciences, 2022, 15, 1.	1.3	1
157	Application of silver nanoparticles in in-vitro plant growth and metabolite production: revisiting its scope and feasibility. Plant Cell, Tissue and Organ Culture, 2022, 150, 15-39.	2.3	19
158	Current progress in genetic and genomics-aided breeding for stress resistance in cucumber (Cucumis) Tj ETQq1	1 0,78431 3.6	4 rgBT /Ove
159	Potential of metal and metal oxide nanoparticles in plant disease diagnostics and management: Recent advances and challenges. Chemosphere, 2022, 297, 134114.	8.2	11
160	Effective Inhibition of Invasive Pulmonary Aspergillosis by Silver Nanoparticles Biosynthesized with Artemisia sieberi Leaf Extract. Nanomaterials, 2022, 12, 51.	4.1	6
161	QTL Mapping for Disease Resistance in Cucumber. Compendium of Plant Genomes, 2022, , 81-92.	0.5	1
162	Nanoparticles in the management of brown eye spot in coffee. European Journal of Plant Pathology, 2022, 163, 767-774.	1.7	5
163	Nanotechnology: its scope in agriculture. Journal of Physics: Conference Series, 2022, 2267, 012112.	0.4	7
164	The Biogenically Efficient Synthesis of Silver Nanoparticles Using the Fungus Trichoderma harzianum and Their Antifungal Efficacy against Sclerotinia sclerotiorum and Sclerotium rolfsii. Journal of Fungi (Basel, Switzerland), 2022, 8, 597.	3.5	9
165	Impact of silver nanoparticles on multiplication, rooting of shoots and biochemical analyses of date palm Hayani cv. by in vitro. Biocatalysis and Agricultural Biotechnology, 2022, , 102400.	3.1	2
166	Comparative Effect of Commercially Available Nanoparticles on Soil Bacterial Community and "Botrytis fabae―Caused Brown Spot: In vitro and in vivo Experiment. Frontiers in Microbiology, 0, 13, .	3.5	4
167	Chitosan and chitosan-based nanoparticles in horticulture: past, present and future prospects. , 2022, , 453-474.		1
168	The antifungal activity and mechanism of silver nanoparticles against four pathogens causing kiwifruit post-harvest rot. Frontiers in Microbiology, 0, 13, .	3.5	12
169	Surface properties-dependent antifungal activity of silver nanoparticles. Scientific Reports, 2022, 12, .	3.3	20
171	A review of nanoparticle synthesis and application in the suppression of diseases in fruits and vegetables. Critical Reviews in Food Science and Nutrition, 0, , 1-23.	10.3	4
172	Re-exploring silver nanoparticles and its potential applications. Nanotechnology for Environmental Engineering, 0, , .	3.3	2
173	Interaction Between Nanoparticles and Phytopathogens. , 2023, , 169-220.		1

#	Article	IF	CITATIONS
174	Using inorganic nanoparticles to fight fungal infections in the antimicrobial resistant era. Acta Biomaterialia, 2023, 158, 56-79.	8.3	14
175	Impact of palladium nanoparticles on plant and its fungal pathogen. A case study: <i>Brassica napus–Plenodomus lingam</i> . AoB PLANTS, 2023, 15, .	2.3	0
176	Silver nanoparticles affect wheat (Triticum aestivum L.) germination, seedling blight and yield. Functional Plant Biology, 2023, 50, 390-406.	2.1	2
177	Multifactorial role of nanoparticles in alleviating environmental stresses for sustainable crop production and protection. Plant Physiology and Biochemistry, 2023, 201, 107831.	5.8	3
178	Preparation of <i>Trichoderma asperellum</i> Microcapsules and Biocontrol of Cucumber Powdery Mildew. Microbiology Spectrum, 2023, 11, .	3.0	3
179	Nanoengineered particles for sustainable crop production: potentials and challenges. 3 Biotech, 2023, 13, .	2.2	0
180	Essential oil-grafted copper nanoparticles as a potential next-generation fungicide for holistic disease management in maize. Frontiers in Microbiology, 0, 14, .	3.5	3
181	Innovations in Modern Nanotechnology for the Sustainable Production of Agriculture. ChemEngineering, 2023, 7, 61.	2.4	4
182	Copper and silver nanoparticles control coffee rust: decrease the quantity of sprayed active ingredients and is an alternative for sustainable coffee production. European Journal of Plant Pathology, 2024, 168, 39-51.	1.7	0
183	Myconanotechnology in agricultural and veterinary sector. , 2023, , 35-53.		0
184	Potential ecotoxicological effects of silver nanoparticles and silver sulphide on the endogeic earthworm Aporrectodea caliginosa (Savigny 1826). Ecotoxicology, 0, , .	2.4	0
186	Nanomaterials in plant management: functions, mechanisms and prospects. Environmental Science: Nano, 0, , .	4.3	0
187	Bioinspired silver nanoparticle-based nanocomposites for effective control of plant pathogens: A review. Science of the Total Environment, 2023, , 168318.	8.0	4
188	Application of nanopesticides and its toxicity evaluation through Drosophila model. Bioprocess and Biosystems Engineering, 0, , .	3.4	1
189	Enhanced efficient micropropagation and reduced abnormal phenomena in Phyllanthus amarus plantlets cultured on medium containing silver nanoparticles. South African Journal of Botany, 2023, 163, 217-225.	2.5	1
190	Nanotechnology, a frontier in agricultural science, a novel approach in abiotic stress management and convergence with new age medicine-A review. Science of the Total Environment, 2024, 912, 169097.	8.0	7
191	Effectiveness of Epicoccum nigrum and Silver Nanoparticles in Controlling Chocolate Spot Disease and Enhancing Growth and Yield of Faba Bean (Vicia fabaÂL.). , 2024, 76, 411-424.		0
192	Current status and future scope of nanomaterials in food production: toxicological and risk assessment. , 2024, , 391-415.		0

#	Article	IF	CITATIONS
193	Applications of smart nanostructures in crop production and protection. , 2024, , 125-150.		0
194	Physiological and molecular responses of nanoparticle application to plants grown under abiotic and biotic stress. Studies in Natural Products Chemistry, 2024, , 113-145.	1.8	0
197	Nanotechnology in agriculture: A solution to global food insecurity in a changing climate?. NanoImpact, 2024, 34, 100502.	4.5	0