Pannexin channels are not gap junction hemichannels

Channels 5, 193-197 DOI: 10.4161/chan.5.3.15765

Citation Report

#	Article	IF	CITATIONS
1	Two non-vesicular ATP release pathways in the mouse erythrocyte membrane. FEBS Letters, 2011, 585, 3430-3435.	1.3	55
2	Single Cysteines in the Extracellular and Transmembrane Regions Modulate Pannexin 1 Channel Function. Journal of Membrane Biology, 2011, 244, 21-33.	1.0	31
3	Connexins and pannexins. Spermatogenesis, 2011, 1, 325-338.	0.8	54
4	Pathways Regulating the Trafficking and Turnover of Pannexin1 Protein and the Role of the C-terminal Domain. Journal of Biological Chemistry, 2011, 286, 27639-27653.	1.6	33
5	Intrarenal localization of the plasma membrane ATP channel pannexin1. American Journal of Physiology - Renal Physiology, 2012, 303, F1454-F1459.	1.3	63
6	Cardiomyocyte ATP release through pannexin 1 aids in early fibroblast activation. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H1208-H1218.	1.5	86
7	Loss of Pannexin 1 Attenuates Melanoma Progression by Reversion to a Melanocytic Phenotype. Journal of Biological Chemistry, 2012, 287, 29184-29193.	1.6	88
8	Large Pore Ion and Metabolite-Permeable Channel Regulation of Postnatal Ventricular Zone Neural Stem and Progenitor Cells: Interplay between Aquaporins, Connexins, and Pannexins?. Stem Cells International, 2012, 2012, 1-9.	1.2	7
9	Pannexin1 Drives Multicellular Aggregate Compaction via a Signaling Cascade That Remodels the Actin Cytoskeleton. Journal of Biological Chemistry, 2012, 287, 8407-8416.	1.6	46
10	Connexin and pannexin hemichannels in inflammatory responses of glia and neurons. Brain Research, 2012, 1487, 3-15.	1.1	177
11	Cross talk between cardiac myocytes and fibroblasts: from multiscale investigative approaches to mechanisms and functional consequences. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H1385-H1396.	1.5	114
12	Mechanisms of ATP release and signalling in the blood vessel wall. Cardiovascular Research, 2012, 95, 269-280.	1.8	244
13	Patterns of heterogeneous expression of pannexin 1 and pannexin 2 transcripts in the olfactory epithelium and olfactory bulb. Journal of Molecular Histology, 2012, 43, 651-660.	1.0	19
14	Pannexin 1, an ATP Release Channel, Is Activated by Caspase Cleavage of Its Pore-associated C-terminal Autoinhibitory Region. Journal of Biological Chemistry, 2012, 287, 11303-11311.	1.6	243
15	Nature of plasmalemmal functional "hemichannels― Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1880-1883.	1.4	36
16	Connexin and pannexin as modulators of myocardial injury. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1962-1970.	1.4	20
17	Gap junctional channels are parts of multiprotein complexes. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1844-1865.	1.4	120
18	The cellular life of pannexins. Environmental Sciences Europe, 2012, 1, 621-632.	2.6	10

#	Article	IF	CITATIONS
19	Physiological mechanisms for the modulation of pannexinÂ1 channel activity. Journal of Physiology, 2012, 590, 6257-6266.	1.3	78
20	Mechanisms of Calcium Influx Following Stroke. , 2012, , 15-39.		1
21	The Channel Physiology of the Skin. , 2012, 163, 65-131.		13
22	Connexin- and Pannexin-Based Channels in Normal Skeletal Muscles and Their Possible Role in Muscle Atrophy. Journal of Membrane Biology, 2012, 245, 423-436.	1.0	37
23	Electrically coupled excitatory neurones in cortical regions. Brain Research, 2012, 1487, 192-197.	1.1	19
24	Pannexin: From discovery to bedside in 11±4 years?. Brain Research, 2012, 1487, 150-159.	1.1	98
25	Novel model for the mechanisms of glutamate-dependent excitotoxicity: Role of neuronal gap junctions. Brain Research, 2012, 1487, 123-130.	1.1	34
26	Connexin-based intercellular communication and astrocyte heterogeneity. Brain Research, 2012, 1487, 88-98.	1.1	93
27	Extracellular K+ and Astrocyte Signaling via Connexin and Pannexin Channels. Neurochemical Research, 2012, 37, 2310-2316.	1.6	74
28	The chemopreventive role of dietary phytochemicals through gap junctional intercellular communication. Phytochemistry Reviews, 2012, 11, 285-307.	3.1	31
29	Pannexin 1 Ohnologs in the Teleost Lineage. Journal of Membrane Biology, 2012, 245, 483-493.	1.0	23
30	Connexin43 and Pannexin1 Channels in Osteoblasts: Who Is the "Hemichannel�. Journal of Membrane Biology, 2012, 245, 401-409.	1.0	44
31	Stomatin Inhibits Pannexin-1-Mediated Whole-Cell Currents by Interacting with Its Carboxyl Terminal. PLoS ONE, 2012, 7, e39489.	1.1	18
32	ATP signaling is deficient in cultured pannexin1â€null mouse astrocytes. Glia, 2012, 60, 1106-1116.	2.5	147
33	The medicinal leech genome encodes 21 innexin genes: different combinations are expressed by identified central neurons. Development Genes and Evolution, 2012, 222, 29-44.	0.4	46
34	Regulation of connexin†and pannexinâ€based channels by postâ€translational modifications. Biology of the Cell, 2013, 105, 373-398.	0.7	57
35	Arachidonic acid closes innexin/pannexin channels and thereby inhibits microglia cell movement to a nerve injury. Developmental Neurobiology, 2013, 73, 621-631.	1.5	34
36	IP3, a small molecule with a powerful message. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1772-1786.	1.9	49

#	Article	IF	CITATIONS
37	Expression of Pannexin1 in the outer plexiform layer of the mouse retina and physiological impact of its knockout. Journal of Comparative Neurology, 2013, 521, 1119-1135.	0.9	35
38	How do taste cells lacking synapses mediate neurotransmission? <scp>CALHM</scp> 1, a voltageâ€gated <scp>ATP</scp> channel. BioEssays, 2013, 35, 1111-1118.	1.2	66
39	Follicular cells of the amphibian ovary: Origin, structure, and functions. Russian Journal of Developmental Biology, 2013, 44, 232-244.	0.1	8
40	The biochemistry and function of pannexin channels. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 15-22.	1.4	332
41	Neuronal gap junctions: making and breaking connections during development and injury. Trends in Neurosciences, 2013, 36, 227-236.	4.2	123
42	Gap junction proteins on the move: Connexins, the cytoskeleton and migration. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 94-108.	1.4	114
43	Gap-junction-mediated cell-to-cell communication. Cell and Tissue Research, 2013, 352, 21-31.	1.5	178
44	Gap junctions and Bystander effects: Good Samaritans and executioners. Environmental Sciences Europe, 2013, 2, 1-15.	2.6	58
45	Structural and Functional Similarities of Calcium Homeostasis Modulator 1 (CALHM1) Ion Channel with Connexins, Pannexins, and Innexins*. Journal of Biological Chemistry, 2013, 288, 6140-6153.	1.6	101
46	Gap junction channels and hemichannels in the CNS: Regulation by signaling molecules. Neuropharmacology, 2013, 75, 567-582.	2.0	78
47	The bizarre pharmacology of the ATP release channel pannexin1. Neuropharmacology, 2013, 75, 583-593.	2.0	111
48	Gap Junctions, Electric Synapses. , 2013, , 439-473.		0
49	Peptides and peptide-derived molecules targeting the intracellular domains of Cx43: Gap junctions versus hemichannels. Neuropharmacology, 2013, 75, 491-505.	2.0	78
50	Gap Junction-Mediated Neuroprotection. , 2013, , 231-246.		2
51	The role of connexins in ear and skin physiology — Functional insights from disease-associated mutations. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 167-178.	1.4	106
52	Paracrine signaling through plasma membrane hemichannels. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 35-50.	1.4	177
53	Stem Cells and Ion Channels. Stem Cells International, 2013, 2013, 1-3.	1.2	9
54	Role of Gap Junctions and Hemichannels in Parasitic Infections. BioMed Research International, 2013, 2013, 1-17.	0.9	11

ARTICLE IF CITATIONS Pannexins after stroke. Channels, 2013, 7, 59-59. 1.5 0 Identification of Pannexins in Rat Nasal Mucosa. Allergy and Rhinology, 2013, 4, ar.2013.4.0052. A Comparative Antibody Analysis of Pannexin1 Expression in Four Rat Brain Regions Reveals Varying 35 1.6 Subcellular Localizations. Frontiers in Pharmacology, 2013, 4, 6. Distribution of the gap junction protein connexin 35 in the central nervous system of developing zebrafish larvae. Frontiers in Neural Circuits, 2013, 7, 91. Pannexin-1 Is Blocked by Its C-Terminus through a Delocalized Non-Specific Interaction Surface. PLoS 1.1 $\mathbf{31}$ ONE, 2014, 9, e99596. Connexin hemichannels in the lens. Frontiers in Physiology, 2014, 5, 20. 1.3 The emerging Pannexin 1 signalome: a new nexus revealed?. Frontiers in Cellular Neuroscience, 2014, 7, 1.8 20 287. Cxs and Panx- hemichannels in peripheral and central chemosensing in mammals. Frontiers in Cellular 1.8 Neuroscience, 2014, 8, 123. Emerging functions of pannexin 1 in the eye. Frontiers in Cellular Neuroscience, 2014, 8, 263. 1.8 17 Investigation of olfactory function in a Panx1 knock out mouse model. Frontiers in Cellular 1.8 Neuroscience, 2014, 8, 266. Pore positioning. Channels, 2014, 8, 110-117. 9 1.5 Mechanosensitive unpaired innexin channels in <i>C. elegans</i>touch neurons. American Journal of 2.1 Physiology - Cell Physiology, 2014, 307, C966-C977. Gap junctional communication in health and disease. Frontiers in Physiology, 2014, 5, 442. 1.3 2 Connexin and Pannexin hemichannels are regulated by redox potential. Frontiers in Physiology, 2014, 1.3 5,80. Possible role of hemichannels in cancer. Frontiers in Physiology, 2014, 5, 237. 1.3 36 The pannexins: past and present. Frontiers in Physiology, 2014, 5, 58. Regulation of Hemichannels and Gap Junction Channels by Cytokines in Antigen-Presenting Cells. 59 1.4 Mediators of Inflammation, 2014, 2014, 1-23.

CITATION REPORT

Regulation of the Pannexin-1 Promoter in the Rat Epididymis1. Biology of Reproduction, 2014, 91, 143. 1.2 15

#

55

57

59

61

63

64

65

67

69

#	Article	IF	CITATIONS
73	Possible contribution of pannexin-1 to ATP release in human upper airway epithelia. Physiological Reports, 2014, 2, e00227.	0.7	21
74	Cell-Cell Communication in the Tumor Microenvironment, Carcinogenesis, and Anticancer Treatment. Cellular Physiology and Biochemistry, 2014, 34, 213-243.	1.1	170
75	Intrinsic properties and regulation of Pannexin 1 channel. Channels, 2014, 8, 103-109.	1.5	53
76	Connexons and pannexons: newcomers in neurophysiology. Frontiers in Cellular Neuroscience, 2014, 8, 348.	1.8	72
77	Regulation of pannexin channels by postâ€ŧranslational modifications. FEBS Letters, 2014, 588, 1411-1415.	1.3	34
78	Connexin a check-point component of cell apoptosis in normal and physiopathological conditions. Biochimie, 2014, 101, 1-9.	1.3	50
79	Molecular Mechanisms of Osteoblast/Osteocyte Regulation by Connexin43. Calcified Tissue International, 2014, 94, 55-67.	1.5	52
80	Osteocytes: Master Orchestrators of Bone. Calcified Tissue International, 2014, 94, 5-24.	1.5	373
81	Neuronal gap junction coupling as the primary determinant of the extent of glutamate-mediated excitotoxicity. Journal of Neural Transmission, 2014, 121, 837-846.	1.4	14
82	Unexpected link between an antibiotic, pannexin channels and apoptosis. Nature, 2014, 507, 329-334.	13.7	221
83	The dual face of connexin-based astroglial Ca2+ communication: A key player in brain physiology and a prime target in pathology. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2211-2232.	1.9	74
84	Regulation of Cellular Communication by Signaling Microdomains in the Blood Vessel Wall. Pharmacological Reviews, 2014, 66, 513-569.	7.1	95
85	The "Sweet―Side of Ion Channels. Reviews of Physiology, Biochemistry and Pharmacology, 2014, 167, 67-114.	0.9	23
86	Gap Junction Intercellular Communication Mediated by Connexin43 in Astrocytes Is Essential for Their Resistance to Oxidative Stress. Journal of Biological Chemistry, 2014, 289, 1345-1354.	1.6	94
87	Inhibitors of the 5-lipoxygenase pathway activate pannexin1 channels in macrophages via the thromboxane receptor. American Journal of Physiology - Cell Physiology, 2014, 307, C571-C579.	2.1	14
88	Innexin and pannexin channels and their signaling. FEBS Letters, 2014, 588, 1396-1402.	1.3	66
89	Pannexin channels and their links to human disease. Biochemical Journal, 2014, 461, 371-381.	1.7	109
90	Endothelial function is impaired in conduit arteries of pannexin1 knockout mice. Biology Direct, 2014, 9, 8.	1.9	14

#	Article	IF	Citations
91	Connexin hemichannel and pannexin channel electrophysiology: How do they differ?. FEBS Letters, 2014, 588, 1372-1378.	1.3	47
92	Connexins in respiratory and gastrointestinal mucosal immunity. FEBS Letters, 2014, 588, 1288-1296.	1.3	24
93	The role of pannexin1 in the induction and resolution of inflammation. FEBS Letters, 2014, 588, 1416-1422.	1.3	84
94	Differentiating connexin hemichannels and pannexin channels in cellular ATP release. FEBS Letters, 2014, 588, 1379-1388.	1.3	157
95	Pannexin 2 protein expression is not restricted to the CNS. Frontiers in Cellular Neuroscience, 2014, 8, 392.	1.8	70
96	Pannexin 1 channels mediate the release of ATP into the lumen of the rat urinary bladder. Journal of Physiology, 2015, 593, 1857-1871.	1.3	75
97	Role of Connexins and Pannexins in the Pancreas. Pancreas, 2015, 44, 1234-1244.	0.5	21
98	Restraint stress increases hemichannel activity in hippocampal glial cells and neurons. Frontiers in Cellular Neuroscience, 2015, 9, 102.	1.8	80
99	Cellular and Deafness Mechanisms Underlying Connexin Mutation-Induced Hearing Loss ââ,¬â€œ A Common Hereditary Deafness. Frontiers in Cellular Neuroscience, 2015, 9, 202.	1.8	114
100	Regulation of Pannexin-1 channel activity. Biochemical Society Transactions, 2015, 43, 502-507.	1.6	19
101	Pannexin1 channels dominate ATP release in the cochlea ensuring endocochlear potential and auditory receptor potential generation and hearing. Scientific Reports, 2015, 5, 10762.	1.6	33
102	Pannexin-1 Up-regulation in the Dorsal Root Ganglion Contributes to Neuropathic Pain Development. Journal of Biological Chemistry, 2015, 290, 14647-14655.	1.6	83
103	A molecular signature in the pannexin1 intracellular loop confers channel activation by the $\hat{I}\pm 1$ adrenoreceptor in smooth muscle cells. Science Signaling, 2015, 8, ra17.	1.6	109
104	Functional role of a polymorphism in the Pannexin1 gene in collageninduced platelet aggregation. Thrombosis and Haemostasis, 2015, 114, 325-336.	1.8	34
105	Innexin7a forms junctions that stabilize the basal membrane during cellularization of the blastoderm in <i>Tribolium castaneum</i> . Development (Cambridge), 2015, 142, 2173-2183.	1.2	20
106	Pannexin channels and ischaemia. Journal of Physiology, 2015, 593, 3463-3470.	1.3	40
107	Interdependence of ATP signalling and pannexin channels; the servant was really the master all along?. Biochemical Journal, 2015, 472, e27-e30.	1.7	6
108	Electroporation Loading and Flash Photolysis to Investigate Intra- and Intercellular Ca2+Signaling. Cold Spring Harbor Protocols, 2015, 2015, pdb.top066068.	0.2	5

#	Article	IF	Citations
109	Connexin and pannexin signaling pathways, an architectural blueprint for CNS physiology and pathology?. Cellular and Molecular Life Sciences, 2015, 72, 2823-2851.	2.4	61
110	Role of connexins and pannexins in cardiovascular physiology. Cellular and Molecular Life Sciences, 2015, 72, 2779-2792.	2.4	37
111	Hemichannels Are Required for Amyloid Â-Peptide-Induced Degranulation and Are Activated in Brain Mast Cells of APPswe/PS1dE9 Mice. Journal of Neuroscience, 2015, 35, 9526-9538.	1.7	51
112	Connexins and pannexins in the skeleton: gap junctions, hemichannels and more. Cellular and Molecular Life Sciences, 2015, 72, 2853-2867.	2.4	48
113	Interactions of pannexin 1 with NMDA and P2X7 receptors in central nervous system pathologies: Possible role on chronic pain. Pharmacological Research, 2015, 101, 86-93.	3.1	55
114	Regulation of pannexin and connexin channels and their functional role in skeletal muscles. Cellular and Molecular Life Sciences, 2015, 72, 2929-2935.	2.4	13
115	Effects on Channel Properties and Induction of Cell Death Induced by C-terminal Truncations of Pannexin1 Depend on Domain Length. Journal of Membrane Biology, 2015, 248, 285-294.	1.0	11
116	Mechanisms linking connexin mutations to human diseases. Cell and Tissue Research, 2015, 360, 701-721.	1.5	73
117	The lung communication network. Cellular and Molecular Life Sciences, 2015, 72, 2793-2808.	2.4	19
118	Pannexins form gap junctions with electrophysiological and pharmacological properties distinct from connexins. Scientific Reports, 2014, 4, 4955.	1.6	62
119	Hemichannels: New pathways for gliotransmitter release. Neuroscience, 2015, 286, 45-59.	1.1	78
120	Role of Astroglial Hemichannels and Pannexons in Memory and Neurodegenerative Diseases. Frontiers in Integrative Neuroscience, 2016, 10, 26.	1.0	34
121	Connexins and Pannexins: New Insights into Microglial Functions and Dysfunctions. Frontiers in Molecular Neuroscience, 2016, 9, 86.	1.4	46
122	Loss of Panx1 Impairs Mammary Gland Development at Lactation: Implications for Breast Tumorigenesis. PLoS ONE, 2016, 11, e0154162.	1.1	15
123	Pannexin 3 is required for late stage bone growth but not for initiation of ossification in avian embryos. Developmental Dynamics, 2016, 245, 913-924.	0.8	7
124	Expression and function of pannexins in the inner ear and hearing. BMC Cell Biology, 2016, 17, 16.	3.0	21
125	Connexins and pannexins in neuronal development and adult neurogenesis. BMC Cell Biology, 2016, 17, 10.	3.0	47
126	Connexin Hemichannels: Methods for Dye Uptake and Leakage. Journal of Membrane Biology, 2016, 249, 713-741.	1.0	36

#	Article	IF	Citations
127	Physiological Functions of Glial Cell Hemichannels. Advances in Experimental Medicine and Biology, 2016, 949, 93-108.	0.8	20
128	Regulation of Skeletal Muscle Myoblast Differentiation and Proliferation by Pannexins. Advances in Experimental Medicine and Biology, 2016, 925, 57-73.	0.8	30
129	Gap Junctions and Electric Synapses. , 2016, , 511-546.		0
130	Connexin and pannexin channels in cancer. BMC Cell Biology, 2016, 17, 12.	3.0	51
131	Transcriptomic analysis of the ion channelome of human platelets and megakaryocytic cell lines. Thrombosis and Haemostasis, 2016, 116, 272-284.	1.8	28
132	Global deletion of <i>Panx3</i> produces multiple phenotypic effects in mouse humeri and femora. Journal of Anatomy, 2016, 228, 746-756.	0.9	30
133	A Germline Variant in the PANX1 Gene Has Reduced Channel Function and Is Associated with Multisystem Dysfunction. Journal of Biological Chemistry, 2016, 291, 12432-12443.	1.6	73
134	Next-Generation Connexin and Pannexin Cell Biology. Trends in Cell Biology, 2016, 26, 944-955.	3.6	105
135	Central Role of P2Y ₆ UDP Receptor in Arteriolar Myogenic Tone. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1598-1606.	1.1	64
136	Hexadecameric structure of an invertebrate gap junction channel. Journal of Molecular Biology, 2016, 428, 1227-1236.	2.0	32
137	Pannexin-1 channels show distinct morphology and no gap junction characteristics in mammalian cells. Cell and Tissue Research, 2016, 363, 751-763.	1.5	16
138	Pannexin 1 Differentially Affects Neural Precursor Cell Maintenance in the Ventricular Zone and Peri-Infarct Cortex. Journal of Neuroscience, 2016, 36, 1203-1210.	1.7	40
139	Dual Oxidase 2 (Duox2) Regulates Pannexin 1-mediated ATP Release in Primary Human Airway Epithelial Cells via Changes in Intracellular pH and Not H2O2 Production. Journal of Biological Chemistry, 2016, 291, 6423-6432.	1.6	21
140	Functional implications of axon initial segment cytoskeletal disruption in stroke. Acta Pharmacologica Sinica, 2016, 37, 75-81.	2.8	13
141	Connexins in skeletal muscle development and disease. Seminars in Cell and Developmental Biology, 2016, 50, 67-73.	2.3	23
142	Pannexin1 Single Nucleotide Polymorphism and Platelet Reactivity in a Cohort of Cardiovascular Patients. Cell Communication and Adhesion, 2017, 23, 11-15.	1.0	10
143	Pannexin-2-deficiency sensitizes pancreatic β-cells to cytokine-induced apoptosis inÂvitro and impairs glucose tolerance inÂvivo. Molecular and Cellular Endocrinology, 2017, 448, 108-121.	1.6	10
144	Gap junctions and hemichannels: communicating cell death in neurodevelopment and disease. BMC Cell Biology, 2017, 18, 4.	3.0	68

		CITATION R	EPORT	
#	Article		IF	CITATIONS
145	Novel Therapeutic Targets Against Spreading Depression. Headache, 2017, 57, 1340-1	358.	1.8	18
146	Connexins in Cardiovascular and Neurovascular Health and Disease: Pharmacological I Pharmacological Reviews, 2017, 69, 396-478.	mplications.	7.1	191
147	Current-direction/amplitude-dependent single channel gating kinetics of mouse panne new concept for gating kinetics. Scientific Reports, 2017, 7, 10512.	xin 1 channel: a	1.6	14
148	Neuronal P2X7 Receptors Revisited: Do They Really Exist?. Journal of Neuroscience, 20	17, 37, 7049-7062.	1.7	135
149	Connexins and Pannexins in Bone and Skeletal Muscle. Current Osteoporosis Reports,	2017, 15, 326-334.	1.5	41
150	Pannexin1 as mediator of inflammation and cell death. Biochimica Et Biophysica Acta - Research, 2017, 1864, 51-61.	Molecular Cell	1.9	85
151	A structural and functional comparison of gap junction channels composed of connex innexins. Developmental Neurobiology, 2017, 77, 522-547.	ns and	1.5	71
152	Expression of pannexin-1 in the trigeminal ganglion after chronic constriction injury of infraorbital nerve in a rat model. NeuroReport, 2017, Publish Ahead of Print, .	the	0.6	1
153	Involvement of Gap Junction Proteins in Infectious Diseases Caused by Parasites. , 201	7,,.		1
154	Pannexin- and Connexin-Mediated Intercellular Communication in Platelet Function. In Journal of Molecular Sciences, 2017, 18, 850.	ternational	1.8	16
155	New Implications for the Melanocortin System in Alcohol Drinking Behavior in Adolesc Dysfunction Hypothesis. Frontiers in Cellular Neuroscience, 2017, 11, 90.	ents: The Glial	1.8	17
156	Regulation of Pannexin 1 Surface Expression by Extracellular ATP: Potential Implication System Function in Health and Disease. Frontiers in Cellular Neuroscience, 2017, 11, 2	s for Nervous 30.	1.8	10
157	Roles of Pannexin-1 Channels in Inflammatory Response through the TLRs/NF-Kappa B Following Experimental Subarachnoid Hemorrhage in Rats. Frontiers in Molecular Neur 2017, 10, 175.	Signaling Pathway oscience,	1.4	46
158	Connexin43 Hemichannels in Satellite Glial Cells, Can They Influence Sensory Neuron A Frontiers in Molecular Neuroscience, 2017, 10, 374.	Activity?.	1.4	25
159	Mouse Panx1 Is Dispensable for Hearing Acquisition and Auditory Function. Frontiers i Neuroscience, 2017, 10, 379.	n Molecular	1.4	13
160	Gina Sosinsky - Excellence in Science, Scholarship, and Humanity. Microscopy and Mic 23, 1100-1101.	roanalysis, 2017,	0.2	0
161	Synchronized roles of pannexin and connexin in nasal mucosal epithelia. European Arc Oto-Rhino-Laryngology, 2018, 275, 1657-1661.	hives of	0.8	4
162	Revisiting multimodal activation and channel properties of Pannexin 1. Journal of Gene 2018, 150, 19-39.	ral Physiology,	0.9	94

#	Article	IF	CITATIONS
163	Transcriptional and post-translational regulation of pannexins. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 72-82.	1.4	53
164	Cap junction gene and protein families: Connexins, innexins, and pannexins. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 5-8.	1.4	138
165	Mechanisms of pannexin1 channel gating and regulation. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 65-71.	1.4	52
166	Role of astrocyte connexin hemichannels in cortical spreading depression. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 216-223.	1.4	24
167	Heavy Alcohol Exposure Activates Astroglial Hemichannels and Pannexons in the Hippocampus of Adolescent Rats: Effects on Neuroinflammation and Astrocyte Arborization. Frontiers in Cellular Neuroscience, 2018, 12, 472.	1.8	34
168	Synaptic Functions of Hemichannels and Pannexons: A Double-Edged Sword. Frontiers in Molecular Neuroscience, 2018, 11, 435.	1.4	42
169	Gap Junctions in the Nervous System: Probing Functional Connections Using New Imaging Approaches. Frontiers in Cellular Neuroscience, 2018, 12, 320.	1.8	26
170	The Pannexin1 membrane channel: distinct conformations and functions. FEBS Letters, 2018, 592, 3201-3209.	1.3	62
171	Calcium, a pivotal player in photodynamic therapy?. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1805-1814.	1.9	15
172	Haploinsufficient TNAP Mice Display Decreased Extracellular ATP Levels and Expression of Pannexin-1 Channels. Frontiers in Pharmacology, 2018, 9, 170.	1.6	14
173	Dendritic Cell Migration Toward CCL21 Gradient Requires Functional Cx43. Frontiers in Physiology, 2018, 9, 288.	1.3	11
174	Physiology of Astroglia. Physiological Reviews, 2018, 98, 239-389.	13.1	1,044
175	Connexin 43 Plays a Role in Pulmonary Vascular Reactivity in Mice. International Journal of Molecular Sciences, 2018, 19, 1891.	1.8	14
176	Angiotensin II-Induced Mesangial Cell Damage Is Preceded by Cell Membrane Permeabilization Due to Upregulation of Non-Selective Channels. International Journal of Molecular Sciences, 2018, 19, 957.	1.8	15
177	Mechanisms of ATP Release by Inflammatory Cells. International Journal of Molecular Sciences, 2018, 19, 1222.	1.8	179
178	Pannexin-1 in Human Lymphatic Endothelial Cells Regulates Lymphangiogenesis. International Journal of Molecular Sciences, 2018, 19, 1558.	1.8	7
179	N-Glycosylation Regulates Pannexin 2 Localization but Is Not Required for Interacting with Pannexin 1. International Journal of Molecular Sciences, 2018, 19, 1837.	1.8	15
180	Characterization of the retina-induced relaxation in mice. Graefe's Archive for Clinical and Experimental Ophthalmology, 2018, 256, 1905-1912.	1.0	1

#	Article	IF	CITATIONS
181	Cationic control of Panx1 channel function. American Journal of Physiology - Cell Physiology, 2018, 315, C279-C289.	2.1	18
182	Pannexin1: a multifunction and multiconductance and/or permeability membrane channel. American Journal of Physiology - Cell Physiology, 2018, 315, C290-C299.	2.1	57
183	Facilitating the Cellular Accumulation of Pt-Based Chemotherapeutic Drugs. International Journal of Molecular Sciences, 2018, 19, 2249.	1.8	11
184	Knockout of Pannexin-1 Induces Hearing Loss. International Journal of Molecular Sciences, 2018, 19, 1332.	1.8	9
185	Cellular junctions in the epididymis, a critical parameter for understanding male reproductive toxicology. Reproductive Toxicology, 2018, 81, 207-219.	1.3	27
186	Age- and sex-dependent role of osteocytic pannexin1 on bone and muscle mass and strength. Scientific Reports, 2019, 9, 13903.	1.6	12
187	Inhibition of Pannexin 1 Reduces the Tumorigenic Properties of Human Melanoma Cells. Cancers, 2019, 11, 102.	1.7	36
188	The role of oligodendrocyte gap junctions in neuroinflammation. Channels, 2019, 13, 247-263.	1.5	25
189	A2bR-dependent signaling alters immune cell composition and enhances IL-6 formation in the ischemic heart. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H190-H200.	1.5	11
190	Facets of Communication: Gap Junction Ultrastructure and Function in Cancer Stem Cells and Tumor Cells. Cancers, 2019, 11, 288.	1.7	22
191	Pannexin 2 Localizes at ER-Mitochondria Contact Sites. Cancers, 2019, 11, 343.	1.7	18
192	Overview of the Components of Cardiac Metabolism. Drug Metabolism and Disposition, 2019, 47, 673-688.	1.7	19
193	Double deletion of Panx1 and Panx3 affects skin and bone but not hearing. Journal of Molecular Medicine, 2019, 97, 723-736.	1.7	26
194	Pannexin-3 Deficiency Delays Skin Wound Healing in Mice due to Defects in Channel Functionality. Journal of Investigative Dermatology, 2019, 139, 909-918.	0.3	19
195	Connexin and Pannexin-Based Channels in Oligodendrocytes: Implications in Brain Health and Disease. Frontiers in Cellular Neuroscience, 2019, 13, 3.	1.8	24
196	Structurally defined signaling in neuroâ€glia units in the enteric nervous system. Glia, 2019, 67, 1167-1178.	2.5	43
197	ATP signaling and NTPDase in Systemic Lupus Erythematosus (SLE). Immunobiology, 2019, 224, 419-426.	0.8	15
198	Extracellular nucleotides and nucleosides as signalling molecules. Immunology Letters, 2019, 205, 16-24.	1.1	154

#	Article	IF	CITATIONS
199	Cap junctions, pannexins and pain. Neuroscience Letters, 2019, 695, 46-52.	1.0	62
200	Pannexin-1 channels in epilepsy. Neuroscience Letters, 2019, 695, 71-75.	1.0	36
201	Connexins and pannexins in Alzheimer's disease. Neuroscience Letters, 2019, 695, 100-105.	1.0	28
202	Role of Connexin and Pannexin containing channels in HIV infection and NeuroAIDS. Neuroscience Letters, 2019, 695, 86-90.	1.0	26
203	Regulation of pannexin channels in the central nervous system by Src family kinases. Neuroscience Letters, 2019, 695, 65-70.	1.0	15
204	Dispelling myths about connexins, pannexins and P2X7 in hypoxic-ischemic central nervous system. Neuroscience Letters, 2019, 695, 76-85.	1.0	4
205	Exciting and not so exciting roles of pannexins. Neuroscience Letters, 2019, 695, 25-31.	1.0	23
206	Therapeutic implications of cortical spreading depression models in migraine. Progress in Brain Research, 2020, 255, 29-67.	0.9	6
207	Extracellular ATP: A Feasible Target for Cancer Therapy. Cells, 2020, 9, 2496.	1.8	126
208	Structural and Functional Basis for Understanding the Biological Significance of P2X7 Receptor. International Journal of Molecular Sciences, 2020, 21, 8454.	1.8	29
209	Cross-Talk Between Alveolar Macrophages and Lung Epithelial Cells is Essential to Maintain Lung Homeostasis. Frontiers in Immunology, 2020, 11, 583042.	2.2	108
210	The role of connexins and pannexins in orofacial pain. Life Sciences, 2020, 258, 118198.	2.0	1
211	Emerging importance of satellite glia in nervous system function and dysfunction. Nature Reviews Neuroscience, 2020, 21, 485-498.	4.9	189
212	The Role of Purinergic Signaling in the Pathophysiology of Perinatal Hypoxic-Ischemic Encephalopathy. , 2020, , .		0
213	Pannexin 1 inhibition delays maturation and improves development of Bos taurus oocytes. Journal of Ovarian Research, 2020, 13, 98.	1.3	3
214	The Relevance of Aquaporins for the Physiology, Pathology, and Aging of the Female Reproductive System in Mammals. Cells, 2020, 9, 2570.	1.8	12
215	Structures of human pannexin 1 reveal ion pathways and mechanism of gating. Nature, 2020, 584, 646-651.	13.7	121
216	Peptide-based targeting of connexins and pannexins for therapeutic purposes. Expert Opinion on Drug Discovery, 2020, 15, 1213-1222.	2.5	14

#	Article	IF	CITATIONS
217	Pannexinâ€l in the CNS: Emerging concepts in health and disease. Journal of Neurochemistry, 2020, 154, 468-485.	2.1	41
219	Role of an Aromatic–Aromatic Interaction in the Assembly and Trafficking of the Zebrafish Panx1a Membrane Channel. Biomolecules, 2020, 10, 272.	1.8	4
220	Connexins: Key Players in the Control of Vascular Plasticity and Function. Physiological Reviews, 2020, 100, 525-572.	13.1	51
221	Glial Connexins and Pannexins in the Healthy and Diseased Brain. Physiological Reviews, 2021, 101, 93-145.	13.1	79
222	Involvement of Pannexin-1 in the Mechanism of Deprivation Potentiation of Population Spikes of Neurons in Rat Hippocampal Field CA1. Neuroscience and Behavioral Physiology, 2021, 51, 48-58.	0.2	0
224	Ectonucleotidases in Acute and Chronic Inflammation. Frontiers in Pharmacology, 2020, 11, 619458.	1.6	32
225	Absence of Pannexin 1 Stabilizes Hippocampal Excitability After Intracerebral Treatment With Aβ (1-42) and Prevents LTP Deficits in Middle-Aged Mice. Frontiers in Aging Neuroscience, 2021, 13, 591735.	1.7	7
226	Identification and classification of innexin gene transcripts in the central nervous system of the terrestrial slug Limax valentianus. PLoS ONE, 2021, 16, e0244902.	1.1	2
227	Mind the gap: connexins and pannexins in platelet function. Platelets, 2021, 32, 888-894.	1.1	5
228	PANX2 and brain lower grade glioma genesis: A bioinformatic analysis. Science Progress, 2021, 104, 003685042110118.	1.0	8
229	Structure versus function: Are new conformations of pannexin 1 yet to be resolved?. Journal of General Physiology, 2021, 153, .	0.9	22
230	Analysis of Hemichannels and Gap Junctions: Application and Extension of the Passive Transmembrane Ion Transport Model. Frontiers in Cellular Neuroscience, 2021, 15, 596953.	1.8	3
231	Lymphatic Connexins and Pannexins in Health and Disease. International Journal of Molecular Sciences, 2021, 22, 5734.	1.8	6
232	Astroglial Connexins in Neurodegenerative Diseases. Frontiers in Molecular Neuroscience, 2021, 14, 657514.	1.4	20
233	Presynaptic coupling by electrical synapses coordinates a rhythmic behavior by synchronizing the activities of a neuron pair. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11
234	Functional Coupling between the P2X7 Receptor and Pannexin-1 Channel in Rat Trigeminal Ganglion Neurons. International Journal of Molecular Sciences, 2021, 22, 5978.	1.8	5
235	Altered Expression of Ion Channels in White Matter Lesions of Progressive Multiple Sclerosis: What Do We Know About Their Function?. Frontiers in Cellular Neuroscience, 2021, 15, 685703.	1.8	18
236	Pannexin 1 as a driver of inflammation and ischemia–reperfusion injury. Purinergic Signalling, 2021, 17, 521-531.	1.1	22

#	Article	IF	CITATIONS
237	Adipose-Derived Mesenchymal Stem Cell Transplantation in Chemotherapy-Induced Premature Ovarian Insufficiency: the Role of Connexin and Pannexin. Reproductive Sciences, 2022, 29, 1316-1331.	1.1	9
238	ATP transporters in the joints. Purinergic Signalling, 2021, 17, 591-605.	1.1	7
239	On the molecular nature of large-pore channels. Journal of Molecular Biology, 2021, 433, 166994.	2.0	44
240	Purinergic signaling in nervous system health and disease: Focus on pannexin 1. , 2021, 225, 107840.		13
241	Design and synthesis of the first indole-based blockers of Panx-1 channel. European Journal of Medicinal Chemistry, 2021, 223, 113650.	2.6	8
242	Purinergic signaling in the modulation of redox biology. Redox Biology, 2021, 47, 102137.	3.9	36
243	Human digital merkel cells display pannexin1 immunoreactivity. Annals of Anatomy, 2022, 239, 151813.	1.0	2
244	Pannexin 1 binds β-catenin to modulate melanoma cell growth and metabolism. Journal of Biological Chemistry, 2021, 296, 100478.	1.6	17
245	Connexins and pannexins: At the junction of neuroâ€glial homeostasis & disease. Journal of Neuroscience Research, 2018, 96, 31-44.	1.3	65
246	Physiologic and Metabolic Regulation of Adenosine: Mechanisms. , 2013, , 87-107.		6
247	Gap Junctions and Hemichannels. , 2013, , .		10
248	Pannexin1 Channel Proteins in the Zebrafish Retina Have Shared and Unique Properties. PLoS ONE, 2013, 8, e77722.	1.1	41
249	Simvastatin Sodium Salt and Fluvastatin Interact with Human Gap Junction Gamma-3 Protein. PLoS ONE, 2016, 11, e0148266.	1.1	3
250	Up-regulation of gap junction in peripheral blood T lymphocytes contributes to the inflammatory response in essential hypertension. PLoS ONE, 2017, 12, e0184773.	1.1	23
251	New horizons in mitochondrial contact site research. Biological Chemistry, 2020, 401, 793-809.	1.2	24
252	Endothelial connexins in vascular function. Vascular Biology (Bristol, England), 2019, 1, H117-H124.	1.2	20
253	Mechanisms of HIV Neuropathogenesis: Role of Cellular Communication Systems. Current HIV Research, 2016, 14, 400-411.	0.2	40
254	Perspectives on the role of Pannexin 1 in neural precursor cell biology. Neural Regeneration Research, 2016, 11, 1540.	1.6	2

#	Article	IF	CITATIONS
255	Distinct roles for innexin gap junctions and hemichannels in mechanosensation. ELife, 2020, 9, .	2.8	19
258	Gap Junctions in the Nervous System. , 2014, , 402-408.		1
260	Role of Connexins and Pannexins in Bone and Muscle Mass and Function. , 2019, , 99-121.		0
261	Gap Junction Proteins (Connexins, Pannexins, and Innexins). , 2019, , 1-7.		Ο
265	Mechanisms of ATP release in pain: role of pannexin and connexin channels. Purinergic Signalling, 2021, 17, 549-561.	1.1	9
266	Connexins evolved after early chordates lost innexin diversity. ELife, 2022, 11, .	2.8	7
267	Pannexin 1 role in the trigeminal ganglion in infraorbital nerve injuryâ€induced mechanical allodynia. Oral Diseases, 2023, 29, 1770-1781.	1.5	9
268	Connexons Coupling to Gap Junction Channel: Potential Role for Extracellular Protein Stabilization Centers. Biomolecules, 2022, 12, 49.	1.8	7
269	Glucose inhibits glucagon secretion by decreasing [Ca2+]c and by reducing the efficacy of Ca2+ on exocytosis via somatostatin-dependent and independent mechanisms. Molecular Metabolism, 2022, 61, 101495.	3.0	3
273	Endogenous pannexin1 channels form functional intercellular cell–cell channels with characteristic voltage-dependent properties. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2202104119.	3.3	17
274	Connexins, Pannexins and Gap Junctions in Perinatal Brain Injury. Biomedicines, 2022, 10, 1445.	1.4	1
275	Connexins and Pannexins—Similarities and Differences According to the FOD-M Model. Biomedicines, 2022, 10, 1504.	1.4	5
276	Peripheral mechanisms of chronic pain. Medical Review, 2022, 2, 251-270.	0.3	10
277	The Role of Pannexin-1 Channels in HIV and NeuroHIV Pathogenesis. Cells, 2022, 11, 2245.	1.8	3
278	Mechanosensitive Pannexin 1 Activity Is Modulated by Stomatin in Human Red Blood Cells. International Journal of Molecular Sciences, 2022, 23, 9401.	1.8	3
279	Connexins and Pannexins: Important Players in Neurodevelopment, Neurological Diseases, and Potential Therapeutics. Biomedicines, 2022, 10, 2237.	1.4	2
280	Insect Gap Junctions Could Be a Potential Target for Pest Management. Annals of the Entomological Society of America, 0, , .	1.3	1
281	Gap Junctions and Electric Synapses. , 2022, , 789-824.		0

#	Article	IF	CITATIONS
282	A2A receptor-induced overexpression of pannexin-1 channels indirectly mediates adenosine fibrogenic actions by favouring ATP release from human subcutaneous fibroblasts. Life Sciences, 2022, 310, 121080.	2.0	3
283	Pannexin1 channels—a potential therapeutic target in inflammation. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	12
284	Alternative neural systems: What is a neuron? (Ctenophores, sponges and placozoans). Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	10
285	Physiology and pharmacology of ATP-releasing pannexin 1 channels. AIP Conference Proceedings, 2023,	0.3	0
286	Design, Synthesis and Pharmacological Evaluation of New Quinoline-Based Panx-1 Channel Blockers. International Journal of Molecular Sciences, 2023, 24, 2022.	1.8	2
287	Pannexin1 Channel-Mediated Inflammation in Acute Ischemic Stroke. , 2023, .		0
288	Independent Innexin Radiation Shaped Signaling in Ctenophores. Molecular Biology and Evolution, 2023, 40, .	3.5	2
289	Cryo-EM structure of human heptameric pannexin 2 channel. Nature Communications, 2023, 14, .	5.8	6
290	Astroglial physiology. , 2023, , 89-197.		0
291	Pancreatic \hat{l}^2 -cell heterogeneity in adult human islets and stem cell-derived islets. Cellular and Molecular Life Sciences, 2023, 80, .	2.4	1
296	P2X7 receptors and pannexin1 hemichannels shape presynaptic transmission. Purinergic Signalling, 0, , .	1.1	1
303	Neurodegeneration and Neuroinflammation: The Role of Pannexin 1. Neurochemical Journal, 2023, 17, 727-739.	0.2	1