Upregulation of the 5-Lipoxygenase Pathway in Human Severity of Stenosis and Leads to Leukotriene-Induced

Circulation 123, 1316-1325

DOI: 10.1161/circulationaha.110.966846

Citation Report

#	Article	IF	CITATIONS
1	International Union of Basic and Clinical Pharmacology. LXXXIV: Leukotriene Receptor Nomenclature, Distribution, and Pathophysiological Functions. Pharmacological Reviews, 2011, 63, 539-584.	7.1	134
2	Ryanodine Receptor Oxidation Causes Intracellular Calcium Leak and Muscle Weakness in Aging. Cell Metabolism, 2011, 14, 196-207.	7.2	335
3	Aortic Stenosis - New Insights in Stenosis Progression and in Prevention. , 0, , .		0
5	Almanac 2011: valvular heart disease. The national society journals present selected research that has driven recent advances in clinical cardiology. Heart, 2011, 97, 2007-2017.	1.2	6
6	Role of 5-lipoxygenase pathway in the pathophysiology of the aortic stenosis. Expert Review of Cardiovascular Therapy, 2011, 9, 853-855.	0.6	1
11	Cysteinyl leukotriene signaling through perinuclear CysLT1 receptors on vascular smooth muscle cells transduces nuclear calcium signaling and alterations of gene expression. Journal of Molecular Medicine, 2012, 90, 1223-1231.	1.7	22
12	Almanac 2011: valvular heart disease. The national society journals present selected research that has driven recent advances in clinical cardiology. Revista Portuguesa De Cardiologia (English Edition), 2012, 31, 337-350.	0.2	0
13	Almanac 2011: valvular heart disease. The national society journals present selected research that has driven recent advances in clinical cardiology. Revista Portuguesa De Cardiologia, 2012, 31, 337-350.	0.2	0
14	Increased transcript level of poly(ADP-ribose) polymerase (PARP-1) in human tricuspid compared with bicuspid aortic valves correlates with the stenosis severity. Biochemical and Biophysical Research Communications, 2012, 420, 671-675.	1.0	15
15	Physiopathologie moléculaire et cellulaire du rétrécissement aortique. Archives Des Maladies Du Coeur Et Des Vaisseaux - Pratique, 2012, 2012, 23-26.	0.0	0
16	Pioglitazone attenuates progression of aortic valve calcification via down-regulating receptor for advanced glycation end products. Basic Research in Cardiology, 2012, 107, 306.	2.5	51
17	Deficient Signaling via Alk2 (Acvr1) Leads to Bicuspid Aortic Valve Development. PLoS ONE, 2012, 7, e35539.	1.1	59
18	Leukotrienes as Modifiers of Preclinical Atherosclerosis?. Scientific World Journal, The, 2012, 2012, 1-6.	0.8	23
19	Epigenetic regulation of 5â€lipoxygenase in the phenotypic plasticity of valvular interstitial cells associated with aortic valve stenosis. FEBS Letters, 2012, 586, 1325-1329.	1.3	22
20	Almanac 2011: Valvular heart disease. The national society journals present selected research that has driven recent advances in clinical cardiology. Egyptian Heart Journal, 2012, 64, 3-16.	0.4	0
21	Eicosanoids and Their Drugs in Cardiovascular Diseases: Focus on Atherosclerosis and Stroke. Medicinal Research Reviews, 2013, 33, 364-438.	5.0	93
22	Fibrocalcific Aortic Valve Disease. Circulation Research, 2013, 113, 209-222.	2.0	90
24	Valvular osteoclasts in calcification and aortic valve stenosis severity. International Journal of Cardiology, 2013, 168, 2264-2271.	0.8	37

#	Article	IF	Citations
25	The Effect of Montelukast and Antiadhesion Barrier Solution on the Capsule Formation after Insertion of Silicone Implants in a White Rat Model. European Surgical Research, 2013, 51, 146-155.	0.6	12
26	The leukotriene receptor antagonist montelukast and aortic stenosis. British Journal of Clinical Pharmacology, 2013, 75, 280-281.	1.1	5
27	Inflammatory mediators in saliva associated with arterial stiffness and subclinical atherosclerosis. Journal of Hypertension, 2013, 31, 2251-2258.	0.3	54
28	Biomechanical factors in the biology of aortic wall and aortic valve diseases. Cardiovascular Research, 2013, 99, 232-241.	1.8	195
29	Synergy between Sphingosine 1-Phosphate and Lipopolysaccharide Signaling Promotes an Inflammatory, Angiogenic and Osteogenic Response in Human Aortic Valve Interstitial Cells. PLoS ONE, 2014, 9, e109081.	1.1	23
30	The Expression of Groups IIE and V Phospholipase A2 is Associated with an Increased Expression of Osteogenic Molecules in Human Calcified Aortic Valves. Journal of Atherosclerosis and Thrombosis, 2014, 21, 1308-1325.	0.9	10
31	Update on leukotriene, lipoxin and oxoeicosanoid receptors: IUPHAR Review 7. British Journal of Pharmacology, 2014, 171, 3551-3574.	2.7	173
32	Innate and Adaptive Immunity in Calcific Aortic Valve Disease. Journal of Immunology Research, 2015, 2015, 1-11.	0.9	81
34	Anti-inflammatory therapies for atherosclerosis. Nature Reviews Cardiology, 2015, 12, 199-211.	6.1	315
35	The role of the FPR2/ALX receptor in atherosclerosis development and plaque stability. Cardiovascular Research, 2015, 105, 65-74.	1.8	102
36	Comparative transcriptome profiling in human bicuspid aortic valve disease using RNA sequencing. Physiological Genomics, 2015, 47, 75-87.	1.0	28
37	Regulation of atherosclerotic plaque inflammation. Journal of Internal Medicine, 2015, 278, 462-482.	2.7	70
38	Differential regulation of monocytic expression of leukotriene and lipoxin receptors. Prostaglandins and Other Lipid Mediators, 2015, 121, 138-143.	1.0	11
39	Obstructive sleep apnoea and cardiovascular calcification. Thorax, 2015, 70, 815-816.	2.7	2
40	Lipoxygenases in Inflammation. , 2016, , .		5
41	Chronic adventitial inflammation, vasa vasorum expansion, and 5â€ŀipoxygenase upâ€regulation in irradiated arteries from cancer survivors. FASEB Journal, 2016, 30, 3845-3852.	0.2	17
42	Calcific aortic stenosis. Nature Reviews Disease Primers, 2016, 2, 16006.	18.1	568
43	Selection of reference genes is critical for miRNA expression analysis in human cardiac tissue. A focus on atrial fibrillation. Scientific Reports, 2017, 7, 41127.	1.6	74

CITATION REPORT

#	Article	IF	CITATIONS
44	The leukotriene receptor antagonist montelukast and its possible role in the cardiovascular field. European Journal of Clinical Pharmacology, 2017, 73, 799-809.	0.8	49
45	Inflammatory activation of human cardiac fibroblasts leads to altered calcium signaling, decreased connexin 43 expression and increased glutamate secretion. Heliyon, 2017, 3, e00406.	1.4	12
46	Bioactive lipids in aortic valve stenosis—a possible link to atherosclerosis?. Cardiovascular Research, 2017, 113, 1276-1278.	1.8	4
47	Epigenome alterations in aortic valve stenosis and its related left ventricular hypertrophy. Clinical Epigenetics, 2017, 9, 106.	1.8	23
48	Modeling Tissue Polarity in Context. Journal of Molecular Biology, 2018, 430, 3613-3628.	2.0	16
49	Conditional deletion of RB1 in the Tie2 lineage leads to aortic valve regurgitation. PLoS ONE, 2018, 13, e0190623.	1.1	4
50	Transcatheter aortic valve replacements alter circulating serum factors to mediate myofibroblast deactivation. Science Translational Medicine, 2019, 11, .	5.8	41
51	Caspase-1 induces smooth muscle cell growth in hypoxia-induced pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L999-L1012.	1.3	35
52	Upregulated Autophagy in Calcific Aortic Valve Stenosis Confers Protection of Valvular Interstitial Cells. International Journal of Molecular Sciences, 2019, 20, 1486.	1.8	16
53	Prevalence and risk factors of aortic stenosis and aortic sclerosis: a 21-year follow-up of middle-aged men. Scandinavian Cardiovascular Journal, 2020, 54, 115-123.	0.4	13
54	Identification of key genes in calcific aortic valve disease by integrated bioinformatics analysis. Medicine (United States), 2020, 99, e21286.	0.4	11
55	Oxyphospholipids in Cardiovascular Calcification. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 11-19.	1.1	3
56	COX-2 Is Downregulated in Human Stenotic Aortic Valves and Its Inhibition Promotes Dystrophic Calcification. International Journal of Molecular Sciences, 2020, 21, 8917.	1.8	8
57	TLR7 Expression Is Associated with M2 Macrophage Subset in Calcific Aortic Valve Stenosis. Cells, 2020, 9, 1710.	1.8	13
58	Critical Involvement of Calcium-Dependent Cytosolic Phospholipase A2α in Aortic Valve Interstitial Cell Calcification. International Journal of Molecular Sciences, 2020, 21, 6398.	1.8	7
59	Omega-3 Polyunsaturated Fatty Acids and the Resolution of Inflammation: Novel Therapeutic Opportunities for Aortic Valve Stenosis?. Frontiers in Cell and Developmental Biology, 2020, 8, 584128.	1.8	5
60	FADS1 (Fatty Acid Desaturase 1) Genotype Associates With Aortic Valve FADS mRNA Expression, Fatty Acid Content and Calcification. Circulation Genomic and Precision Medicine, 2020, 13, e002710.	1.6	11
61	Omega-3 Polyunsaturated Fatty Acids Decrease Aortic Valve Disease Through the Resolvin E1 and ChemR23 Axis. Circulation, 2020, 142, 776-789.	1.6	44

#	Article	IF	CITATIONS
62	Proteoglycan 4 is Increased in Human Calcified Aortic Valves and Enhances Valvular Interstitial Cell Calcification. Cells, 2020, 9, 684.	1.8	17
63	Transcatheter Aortic Valve Implantation Represents an Anti-Inflammatory Therapy Via Reduction of Shear Stress–Induced, Piezo-1–Mediated Monocyte Activation. Circulation, 2020, 142, 1092-1105.	1.6	70
64	Disease Severity-Associated Gene Expression in Canine Myxomatous Mitral Valve Disease Is Dominated by TGFβ Signaling. Frontiers in Genetics, 2020, 11, 372.	1.1	14
65	Semicarbazide-Sensitive Amine Oxidase Increases in Calcific Aortic Valve Stenosis and Contributes to Valvular Interstitial Cell Calcification. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-9.	1.9	21
66	Association of <i>FADS1/2</i> Locus Variants and Polyunsaturated Fatty Acids With Aortic Stenosis. JAMA Cardiology, 2020, 5, 694.	3.0	32
67	Inhibition of 5-Lipoxygenase in Hepatic Stellate Cells Alleviates Liver Fibrosis. Frontiers in Pharmacology, 2021, 12, 628583.	1.6	11
68	Telomere Length in Valve Tissue Is Shorter in Individuals With Aortic Stenosis and in Calcified Valve Areas. Frontiers in Cell and Developmental Biology, 2021, 9, 618335.	1.8	5
69	Role of oxidative stress in calcific aortic valve disease and its therapeutic implications. Cardiovascular Research, 2022, 118, 1433-1451.	1.8	33
70	Fatty acids and aortic valve stenosis. Kardiologia Polska, 2021, 79, 614-621.	0.3	7
71	Artificial Intelligence Models Reveal Sex-Specific Gene Expression in Aortic Valve Calcification. JACC Basic To Translational Science, 2021, 6, 403-412.	1.9	24
72	Valve Calcification (Aortic and Mitral). , 2022, , 45-63.		0
73	Leukotriene receptors as potential therapeutic targets. Journal of Clinical Investigation, 2018, 128, 2691-2701.	3.9	129
74	Circulating CD14(+) monocytes in patients with aortic stenosis. Journal of Geriatric Cardiology, 2016, 13, 81-7.	0.2	10
75	Epigenetics: a new warrior against cardiovascular calcification, a forerunner in modern lifestyle diseases. Environmental Science and Pollution Research, 2022, 29, 62093-62110.	2.7	3
76	Palmdelphin Regulates Nuclear Resilience to Mechanical Stress in the Endothelium. Circulation, 2021, 144, 1629-1645.	1.6	13
78	Leukotrienes. , 2014, , 1-10.		0
79	Leukotrienes as Biomarkers of Cardiovascular Disease. , 2016, , 449-466.		0
80	Leukotrienes. , 2016, , 849-857.		Ο

CITATION	REPORT
CHATON	REI ORI

#	Article	IF	CITATIONS
81	Lipoxygenases and Cardiovascular Diseases. , 2016, , 101-130.		1
82	Bioinformatic-based Identification of Genes Associated with Aortic Valve Stenosis. Heart Surgery Forum, 2022, 25, E069-E078.	0.2	1
83	Lipoprotein(a), a Lethal Player in Calcific Aortic Valve Disease. Frontiers in Cell and Developmental Biology, 2022, 10, 812368.	1.8	5
86	Calcific aortic valve stenosis and COVID-19: clinical management, valvular damage, and pathophysiological mechanisms. Cardiology Plus, 2022, 7, 3-11.	0.2	0
87	The tyrosine kinase inhibitor nilotinib targets discoidin domain receptor 2 in calcific aortic valve stenosis British Journal of Pharmacology, 0, , .	2.7	5
88	Arachidonate 5-lipoxygenase is essential for biosynthesis of specialized pro-resolving mediators and cardiac repair in heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 323, H721-H737.	1.5	13
89	Sex-dependent expression of neutrophil gelatinase-associated lipocalin in aortic stenosis. Biology of Sex Differences, 2022, 13, .	1.8	4
90	Calcific aortic valve disease: mechanisms, prevention and treatment. Nature Reviews Cardiology, 2023, 20, 546-559.	6.1	22