Survey of immune-related, mannose/fucose-binding Cdivergent sugar-binding specificities

Glycobiology 21, 512-520 DOI: 10.1093/glycob/cwq193

Citation Report

#	Article	IF	CITATIONS
1	Topography of binding sites of animal lectins: ligands' view. Pure and Applied Chemistry, 1991, 63, 499-506.	0.9	63
2	Glycomimetic Building Blocks: A Divergent Synthesis of Epimers of Shikimic Acid. Organic Letters, 2011, 13, 3790-3793.	2.4	17
3	Fungal Surface and Innate Immune Recognition of Filamentous Fungi. Frontiers in Microbiology, 2011, 2, 248.	1.5	33
4	CD209/DC-SIGN mediates efficient infection of monocyte-derived dendritic cells by clinical adenovirus 2C isolates in the presence of bovine lactoferrin. Journal of General Virology, 2011, 92, 1754-1759.	1.3	19
5	Real-Time Visualization of Macromolecule Uptake by Epidermal Langerhans Cells in Living Animals. Journal of Investigative Dermatology, 2012, 132, 609-614.	0.3	8
6	Preferences for uptake of carbohydrate-coated liposomes by C-type lectin receptors as antigen-uptake receptors. Glycoconjugate Journal, 2012, 29, 481-490.	1.4	13
7	Schistosoma mansoni egg glycoproteins and C-type lectins of host immune cells: Molecular partners that shape immune responses. Experimental Parasitology, 2012, 132, 14-21.	0.5	43
8	Characterization of functional mannose receptor in a continuous hybridoma cell line. BMC Immunology, 2012, 13, 51.	0.9	22
9	Binding of DC-SIGN to glycoproteins expressed in glycoengineered Pichia pastoris. Journal of Immunological Methods, 2012, 386, 34-42.	0.6	13
10	Signaling by Myeloid C-Type Lectin Receptors in Immunity and Homeostasis. Annual Review of Immunology, 2012, 30, 491-529.	9.5	444
11	Specific glycan elements determine differential binding of individual egg glycoproteins of the human parasite Schistosoma mansoni by host C-type lectin receptors. International Journal for Parasitology, 2012, 42, 269-277.	1.3	43
12	Effects of Single Genetic Damage in Carbohydrateâ€Recognizing Proteins in Mouse Serum <i>N</i> â€Glycan Profile Revealed by Simple Glycotyping Analysis. ChemBioChem, 2012, 13, 451-464.	1.3	15
13	Differential immunogenicity and allergenicity of native and recombinant human lactoferrins: Role of glycosylation. European Journal of Immunology, 2013, 43, 170-181.	1.6	36
14	Structure of a Glycomimetic Ligand in the Carbohydrate Recognition Domain of C-type Lectin DC-SIGN. Structural Requirements for Selectivity and Ligand Design. Journal of the American Chemical Society, 2013, 135, 2518-2529.	6.6	75
15	Recognition of Bisecting N-Acetylglucosamine. Journal of Biological Chemistry, 2013, 288, 33598-33610.	1.6	46
16	The Dectin-2 family of C-type lectin-like receptors: an update. International Immunology, 2013, 25, 271-277.	1.8	156
17	Skin-Resident Antigen-Presenting Cells: Instruction Manual for Vaccine Development. Frontiers in Immunology, 2013, 4, 157.	2.2	57
18	Interaction of the Capsular Polysaccharide A from Bacteroides fragilis with DC-SIGN on Human Dendritic Cells is Necessary for Its Processing and Presentation to T Cells. Frontiers in Immunology,	2.2	32

#	Article	IF	CITATIONS
19	Mincle, the receptor for mycobacterial cord factor, forms a functional receptor complex with <scp>MCL</scp> and <scp>F</scp> cl̂µ <scp>RI</scp> â€i³. European Journal of Immunology, 2013, 43, 3167-317	74. ^{1.6}	98
20	The mannan of <i>Candida albicans</i> lacking β-1,2-linked oligomannosides increases the production of inflammatory cytokines by dendritic cells. Medical Mycology, 2013, 51, 385-395.	0.3	24
21	Ligand Binding and Signaling of Dendritic Cell Immunoreceptor (DCIR) Is Modulated by the Glycosylation of the Carbohydrate Recognition Domain. PLoS ONE, 2013, 8, e66266.	1.1	39
22	Dendritic Cell Immunoreceptor Is a New Target for Anti-AIDS Drug Development: Identification of DCIR/HIV-1 Inhibitors. PLoS ONE, 2013, 8, e67873.	1.1	9
23	Novel Poly(Ethylene Oxide)- <i>b</i> -Poly(Propylene Oxide) Copolymer-Glucose Conjugate by the Microwave-Assisted Ring Opening of a Sugar Lactone. Macromolecular Bioscience, 2014, 14, 1639-1651.	2.1	28
24	A role for polyglucans in a model sea urchin embryo cellular interaction. Zygote, 2014, 22, 419-429.	0.5	4
25	MCL and Mincle: C-Type Lectin Receptors That Sense Damaged Self and Pathogen-Associated Molecular Patterns. Frontiers in Immunology, 2014, 5, 288.	2.2	109
26	On One Leg: Trehalose Monoesters Activate Macrophages in a Mincleâ€Dependent Manner. ChemBioChem, 2014, 15, 382-388.	1.3	55
27	Altered Glycosylation in Donor Mice Causes Rejection of Strain-Matched Skin and Heart Grafts. American Journal of Transplantation, 2014, 14, 797-805.	2.6	8
28	Structural Characterization of the DC-SIGN–Lewis ^X Complex. Biochemistry, 2014, 53, 5700-5709.	1.2	51
29	Optimal structural design of mannosylated nanocarriers for macrophage targeting. Journal of Controlled Release, 2014, 194, 341-349.	4.8	40
30	DCIR interacts with ligands from both endogenous and pathogenic origin. Immunology Letters, 2014, 158, 33-41.	1.1	47
31	DC-SIGN plays a stronger role than DCIR in mediating HIV-1 capture and transfer. Virology, 2014, 458-459, 83-92.	1.1	22
32	Galactofuranose-Coated Gold Nanoparticles Elicit a Pro-inflammatory Response in Human Monocyte-Derived Dendritic Cells and Are Recognized by DC-SIGN. ACS Chemical Biology, 2014, 9, 383-389.	1.6	56
33	Protective Role of Mincle in Bacterial Pneumonia by Regulation of Neutrophil Mediated Phagocytosis and Extracellular Trap Formation. Journal of Infectious Diseases, 2014, 209, 1837-1846.	1.9	75
34	Fungal glycans and the innate immune recognition. Frontiers in Cellular and Infection Microbiology, 2014, 4, 145.	1.8	84
35	Calcitonin geneâ€related peptide: key regulator of cutaneous immunity. Acta Physiologica, 2015, 213, 586-594.	1.8	65
36	Cross-presentation through langerin and DC-SIGN targeting requires different formulations of glycan-modified antigens. Journal of Controlled Release, 2015, 203, 67-76.	4.8	68

#	Article	IF	CITATIONS
37	Glycoclusters as lectin inhibitors: comparative analysis on two plant agglutinins with different folding as a step towards rules for selectivity. Tetrahedron, 2015, 71, 6867-6880.	1.0	5
38	Is fucose the answer to the immunomodulatory paradox of Quillaja saponins?. International Immunopharmacology, 2015, 29, 908-913.	1.7	22
39	A Novel Mechanism for Binding of Galactose-terminated Glycans by the C-type Carbohydrate Recognition Domain in Blood Dendritic Cell Antigen 2. Journal of Biological Chemistry, 2015, 290, 16759-16771.	1.6	36
40	Borrelia- induced cytokine production is mediated by spleen tyrosine kinase (Syk) but is Dectin-1 and Dectin-2 independent. Cytokine, 2015, 76, 465-472.	1.4	14
41	Classification and Comparison of Fucose-Binding Lectins Based on Their Structures. Trends in Glycoscience and Glycotechnology, 2016, 28, E25-E37.	0.0	3
42	Crystal structure of human dendritic cell inhibitory receptor Câ€type lectin domain reveals the binding mode with <i>N</i> â€glycan. FEBS Letters, 2016, 590, 1280-1288.	1.3	20
43	Lectin Receptors Expressed on Myeloid Cells. Microbiology Spectrum, 2016, 4, .	1.2	48
44	The Ligands of C-Type Lectins. , 2016, , 191-215.		10
45	C-Type Lectin Receptors in Immunity. , 2016, , .		5
46	Emerging roles of protein mannosylation in inflammation and infection. Molecular Aspects of Medicine, 2016, 51, 31-55.	2.7	74
47	Structural Aspects of C-Type Lectin Receptors. , 2016, , 179-190.		0
48	Immune recruitment or suppression by glycan engineering of endogenous and therapeutic antibodies. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 1655-1668.	1.1	47
49	Supramolecular metalloglycodendrimers selectively modulate lectin binding and delivery of Ru(ii) complexes into mammalian cells. Organic and Biomolecular Chemistry, 2016, 14, 10816-10821.	1.5	4
50	Nonhydrolyzable C-disaccharides, a new class of DC-SIGN ligands. Carbohydrate Research, 2016, 435, 7-18.	1.1	12
51	C-type lectin (MrCTL) from the giant freshwater prawn Macrobrachium rosenbergii participates in innate immunity. Fish and Shellfish Immunology, 2016, 58, 136-144.	1.6	21
52	C-type lectin receptors in tuberculosis: what we know. Medical Microbiology and Immunology, 2016, 205, 513-535.	2.6	36
53	DC-SIGN promotes allergen uptake and activation of dendritic cells in patients with atopic dermatitis. Journal of Dermatological Science, 2016, 84, 128-136.	1.0	23
54	Understanding carbohydrate–protein interactions using homologous supramolecular chiral Ru(<scp>ii</scp>)-glyconanoclusters. Nanoscale, 2016, 8, 19696-19702.	2.8	9

#	Article	IF	CITATIONS
55	Dectin-2-dependent host defense in mice infected with serotype 3 Streptococcus pneumoniae. BMC Immunology, 2016, 17, 1.	0.9	20
56	Immune sensing of microbial glycolipids and related conjugates by T cells and the pattern recognition receptors MCL and Mincle. Carbohydrate Research, 2016, 420, 32-45.	1.1	18
57	Specific and Differential Binding of <i>N</i> -Acetylgalactosamine Glycopolymers to the Human Macrophage Galactose Lectin and Asialoglycoprotein Receptor. Biomacromolecules, 2017, 18, 1624-1633.	2.6	32
58	Pathogen recognition of a novel C-type lectin from Marsupenaeus japonicus reveals the divergent sugar-binding specificity of QAP motif. Scientific Reports, 2017, 7, 45818.	1.6	29
59	Limitations in the description of conformational preferences of C-disaccharides: The (1Â→Â3)-C-mannobiose case. Carbohydrate Research, 2017, 451, 42-50.	1.1	7
60	Targeting C-type lectin receptors: a high-carbohydrate diet for dendritic cells to improve cancer vaccines. Journal of Leukocyte Biology, 2017, 102, 1017-1034.	1.5	67
61	Mechanism of pathogen recognition by human dectin-2. Journal of Biological Chemistry, 2017, 292, 13402-13414.	1.6	65
62	The Mannose Receptor in Regulation of Helminth-Mediated Host Immunity. Frontiers in Immunology, 2017, 8, 1677.	2.2	36
63	A Simple Glycolipid Mimic of the Phosphatidylinositol Mannoside Core from Mycobacterium tuberculosis Inhibits Macrophage Cytokine Production. ChemBioChem, 2018, 19, 1476-1481.	1.3	4
64	Engineering Glucose Responsiveness Into Insulin. Diabetes, 2018, 67, 299-308.	0.3	54
65	Mannosylated Constructs as a Platform for Cell-Specific Delivery of Bioactive Agents. Critical Reviews in Therapeutic Drug Carrier Systems, 2018, 35, 157-194.	1.2	18
66	Role of Dendritic Cells in Parasitic Infections. , 0, , .		3
67	Molecular basis for intestinal mucin recognition by galectinâ€3 and Câ€ŧype lectins. FASEB Journal, 2018, 32, 3301-3320.	0.2	21
68	Identification and Biological Activity of Synthetic Macrophage Inducible C-Type Lectin Ligands. Frontiers in Immunology, 2017, 8, 1940.	2.2	35
69	Application of glycosylation in targeted drug delivery. European Journal of Medicinal Chemistry, 2019, 182, 111612.	2.6	41
70	Microbe-focused glycan array screening platform. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1958-1967.	3.3	71
71	The Mechanistic Impact of N-Glycosylation on Stability, Pharmacokinetics, and Immunogenicity of Therapeutic Proteins. Journal of Pharmaceutical Sciences, 2019, 108, 1366-1377.	1.6	83
72	Fungal keratitis: Pathogenesis, diagnosis and prevention. Microbial Pathogenesis, 2020, 138, 103802.	1.3	77

#	Article	IF	CITATIONS
73	Inhibitory effect of serotype a of Aggregatibacter actinomycetemcomitans on the increased destructive potential of serotype b. Oral Diseases, 2020, 26, 409-418.	1.5	1
74	Exploiting Manipulated Small Extracellular Vesicles to Subvert Immunosuppression at the Tumor Microenvironment through Mannose Receptor/CD206 Targeting. International Journal of Molecular Sciences, 2020, 21, 6318.	1.8	17
75	Pivotal role of the carbohydrate recognition domain in self-interaction of CLEC4A to elicit the ITIM-mediated inhibitory function in murine conventional dendritic cells in vitro. International Immunology, 2020, 32, 673-682.	1.8	7
76	Molecular Recognition in Câ€Type Lectins: The Cases of DCâ€SIGN, Langerin, MGL, and Lâ€Sectin. ChemBioChem, 2020, 21, 2999-3025.	1.3	49
77	Dendritic Cells in Anticancer Vaccination: Rationale for Ex Vivo Loading or In Vivo Targeting. Cancers, 2020, 12, 590.	1.7	56
78	The Formidable Challenge of Controlling High Mannose-Type N-Glycans in Therapeutic mAbs. Trends in Biotechnology, 2020, 38, 1154-1168.	4.9	29
79	C-type lectin 5, a novel pattern recognition receptor for the JAK/STAT signaling pathway in Bombyx mori. Journal of Invertebrate Pathology, 2021, 179, 107473.	1.5	13
80	Structural analysis of carbohydrate binding by the macrophage mannose receptor CD206. Journal of Biological Chemistry, 2021, 296, 100368.	1.6	58
81	Can SARS-CoV-2 Virus Use Multiple Receptors to Enter Host Cells?. International Journal of Molecular Sciences, 2021, 22, 992.	1.8	106
82	Microbial Glycan Arrays. , 2021, , 168-179.		0
83	Dependence on Mincle and Dectin-2 Varies With Multiple Candida Species During Systemic Infection. Frontiers in Microbiology, 2021, 12, 633229.	1.5	6
84	Acceptive Immunity: The Role of Fucosylated Glycans in Human Host–Microbiome Interactions. International Journal of Molecular Sciences, 2021, 22, 3854.	1.8	15
86	Twenty Years of Research on Cyclodextrin Conjugates with PAMAM Dendrimers. Pharmaceutics, 2021, 13, 697.	2.0	8
87	Fucosylated lipid nanocarriers loaded with antibiotics efficiently inhibit mycobacterial propagation in human myeloid cells. Journal of Controlled Release, 2021, 334, 201-212.	4.8	10
88	A Machine-Generated View of the Role of Blood Glucose Levels in the Severity of COVID-19. Frontiers in Public Health, 2021, 9, 695139.	1.3	32
90	Lineage-specific gene evolution of innate immunity in Bombyx mori to adapt to challenge by pathogens, especially entomopathogenic fungi. Developmental and Comparative Immunology, 2021, 123, 104171.	1.0	3
91	Dendritic Cell Immunoreceptor (DCIR): An ITIM-Harboring C-Type Lectin Receptor. , 2016, , 101-113.		5
92	Roles of C-Type Lectin Receptors in Inflammatory Responses. , 2016, , 333-344.		1

		Citation Report	
#	Article	IF	CITATIONS
93	A glucose-responsive insulin therapy protects animals against hypoglycemia. JCI Insight, 2018, 3	,. 2.3	31
94	Dengue Virus Infection Is through a Cooperative Interaction between a Mannose Receptor and C on Macrophage as a Multivalent Hetero-Complex. PLoS ONE, 2016, 11, e0166474.	LEC5A 1.1	45
95	Macrophage inducible C-type lectin (Mincle) recognizes glycosylated surface (S)-layer of the periodontal pathogen Tannerella forsythia. PLoS ONE, 2017, 12, e0173394.	1.1	28
96	Core Functional Sequence of C-terminal GAG-binding Domain Directs Cellular Uptake of IGFBP-3-derived Peptides. Protein and Peptide Letters, 2013, 21, 124-131.	0.4	3
97	Innate Immune Pattern Recognition Receptors of Mycobacterium tuberculosis: Nature and Consequences for Pathogenesis of Tuberculosis. Advances in Experimental Medicine and Biology 1313, 179-215.	v, 2021, 0.8	4
98	CHâ^'ï€ Interactions in Glycan Recognition. ACS Chemical Biology, 2021, 16, 1884-1893.	1.6	33
99	Polymeric micelles and nanomedicines: Shaping the future of next generation therapeutic strate for infectious diseases. Journal of Drug Delivery Science and Technology, 2021, 66, 102927.	gies 1.4	9
100	Classification and Comparison of Fucose-Binding Lectins Based on Their Structures. Trends in Glycoscience and Glycotechnology, 2016, 28, J25-J38.	0.0	0
101	Lectin Receptors Expressed on Myeloid Cells. , 0, , 455-483.		2
102	Immune-triggering effect of the foodborne parasite <i>Kudoa septempunctata</i> through the Clectin Mincle in HT29 cells. BMB Reports, 2020, 53, 478-483.	C-type 1.1	3
103	A Review of Human Coronaviruses' Receptors: The Host-Cell Targets for the Crown Bearing \ Molecules, 2021, 26, 6455.	/iruses. 1.7	36
104	Fc onjugated Câ€ŧype lectin receptors: Tools for understanding host–pathogen interaction Molecular Microbiology, 2022, 117, 632-660.	S. 1.2	14
105	Transcriptome analysis of Giant grouper (Epinephelus lanceolatus) kidney and spleen in response spotted knifejaw iridovirus (SKIV) infection. Aquaculture Research, 2021, 52, 1954-1964.	se to 0.9	2
107	DCIR and its ligand asialo-biantennary N-glycan regulate DC function and osteoclastogenesis. Jo of Experimental Medicine, 2021, 218, .	urnal 4.2	14
108	Recent understanding of human milk oligosaccharides in establishing infant gut microbiome and roles in immune system. Food Research International, 2022, 151, 110884.	2.9	34
109	C-Type Lectin (C-Type Lectin Receptor). , 2022, , 497-555.		0
111	Full-Length Transcriptome Analysis Provides New Insights Into the Diversity of Immune-Related C in Portunus trituberculatus. Frontiers in Immunology, 2022, 13, 843347.	ienes 2.2	1
112	Current State of Carbohydrate Recognition and C-Type Lectin Receptors in Pneumocystis Innate Immunity. Frontiers in Immunology, 2021, 12, 798214.	2.2	2

#	Article	IF	CITATIONS
113	Glycan Activation of Clec4b Induces Reactive Oxygen Species Protecting against Neutrophilia and Arthritis. Antioxidants, 2022, 11, 12.	2.2	0
114	Therapeutic antibody glycosylation impacts antigen recognition and immunogenicity. Immunology, 2022, 166, 380-407.	2.0	6
115	The Role of C-Type Lectin Receptor Signaling in the Intestinal Microbiota-Inflammation-Cancer Axis. Frontiers in Immunology, 2022, 13, .	2.2	13
116	Identification, expression patterns, evolutionary characteristics and recombinant protein activities analysis of CD209 gene from Megalobrama amblycephala. Fish and Shellfish Immunology, 2022, , .	1.6	8
118	Immunostimulatory Polymers as Adjuvants, Immunotherapies, and Delivery Systems. Macromolecules, 2022, 55, 6913-6937.	2.2	20
119	From structure to function – Ligand recognition by myeloid C-type lectin receptors. Computational and Structural Biotechnology Journal, 2022, 20, 5790-5812.	1.9	13
120	Ascaris suum excretory/secretory products differentially modulate porcine dendritic cell subsets. Frontiers in Immunology, 0, 13, .	2.2	1
121	Human Milk Oligosaccharide 2′-Fucosyllactose Inhibits Ligand Binding to C-Type Lectin DC-SIGN but Not to Langerin. International Journal of Molecular Sciences, 2022, 23, 14745.	1.8	1
122	Uptake of Levilactobacillus brevis JCM 1059 by THP-1 Cells via Interaction between SlpB and CAP-1 Promotes Cytokine Production. Microorganisms, 2023, 11, 247.	1.6	2
123	LRRC15 mediates an accessory interaction with the SARS-CoV-2 spike protein. PLoS Biology, 2023, 21, e3001959.	2.6	8