Dysfunction of volume-sensitive chloride channels conhuman lung adenocarcinoma cells

Experimental Biology and Medicine 236, 483-491

DOI: 10.1258/ebm.2011.010297

Citation Report

#	Article	IF	CITATIONS
1	Ion channnels and transporters in cancer. 5. Ion channels in control of cancer and cell apoptosis. American Journal of Physiology - Cell Physiology, 2011, 301, C1281-C1289.	2.1	71
2	New findings concerning vertebrate porin II $\hat{a}\in$ On the relevance of glycine motifs of type-1 VDAC. Molecular Genetics and Metabolism, 2013, 108, 212-224.	0.5	13
3	DCPIB, the Proposed Selective Blocker of Volume-Regulated Anion Channels, Inhibits Several Glutamate Transport Pathways in Glial Cells. Molecular Pharmacology, 2013, 83, 22-32.	1.0	67
4	Cisplatin-induced ototoxicity: Transporters playing a role in cisplatin toxicity. Hearing Research, 2013, 299, 37-45.	0.9	84
5	Capsazepine concentration dependently inhibits currents in HEK 293 cells mediated by human hyperpolarization-activated cyclic nucleotide-gated 2 and 4 channels. Experimental Biology and Medicine, 2013, 238, 1055-1061.	1.1	10
6	The CIC-3 chloride channel associated with microtubules is a target of paclitaxel in its induced-apoptosis. Scientific Reports, 2013, 3, 2615.	1.6	30
7	Cell volume regulation in epithelial physiology and cancer. Frontiers in Physiology, 2013, 4, 233.	1.3	81
8	Acquired cisplatin resistance in human ovarian A2780 cancer cells correlates with shift in taurine homeostasis and ability to volume regulate. American Journal of Physiology - Cell Physiology, 2014, 307, C1071-C1080.	2.1	54
9	Increase in Hypotonic Stress-Induced Endocytic Activity in Macrophages via CIC-3. Molecules and Cells, 2014, 37, 418-425.	1.0	11
10	Ion channels and transporters in the development of drug resistance in cancer cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130109.	1.8	93
11	Functions of volumeâ€sensitive and calciumâ€activated chloride channels. IUBMB Life, 2014, 66, 257-267.	1.5	35
12	Silencing of tripartite motif (<scp>TRIM) 29</scp> inhibits proliferation and invasion and increases chemosensitivity to cisplatin in human lung squamous cancer <scp>NCIâ€H520</scp> cells. Thoracic Cancer, 2015, 6, 31-37.	0.8	30
13	Subunit composition of <scp>VRAC</scp> channels determines substrate specificity and cellular resistance to <scp>P</scp> tâ€based antiâ€cancer drugs. EMBO Journal, 2015, 34, 2993-3008.	3.5	209
14	Volume-sensitive chloride channels are involved in cisplatin treatment of osteosarcoma. Molecular Medicine Reports, 2015, 11, 2465-2470.	1.1	17
15	Role of volume-regulated and calcium-activated anion channels in cell volume homeostasis, cancer and drug resistance. Channels, 2015, 9, 380-396.	1.5	38
16	lon channels in the regulation of apoptosis. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2532-2546.	1.4	152
17	The volume-regulated anion channel is formed by LRRC8 heteromers – molecular identification and roles in membrane transport and physiology. Biological Chemistry, 2015, 396, 975-990.	1.2	49
18	Cisplatin Activates Volume-Sensitive Like Chloride Channels Via Purinergic Receptor Pathways in Nasopharyngeal Carcinoma Cells. Journal of Membrane Biology, 2015, 248, 19-29.	1.0	13

#	Article	IF	Citations
19	VRACs and other ion channels and transporters in the regulation of cell volume and beyond. Nature Reviews Molecular Cell Biology, 2016, 17, 293-307.	16.1	251
20	In silico analysis of the transportome in human pancreatic ductal adenocarcinoma. European Biophysics Journal, 2016, 45, 749-763.	1.2	14
21	Downregulation of LRRC8A protects human ovarian and alveolar carcinoma cells against Cisplatin-induced expression of p53, MDM2, p21 ^{Waf1/Cip1} , and Caspase-9/-3 activation. American Journal of Physiology - Cell Physiology, 2016, 310, C857-C873.	2.1	53
22	Cellular defects by deletion of ANO10 are due to deregulated local calcium signaling. Cellular Signalling, 2017, 30, 41-49.	1.7	45
23	Stress-induced modulation of volume-regulated anions channels in human alveolar carcinoma cells. Physiological Reports, 2018, 6, e13869.	0.7	12
24	Molecular Biology and Physiology of Volume-Regulated Anion Channel (VRAC). Current Topics in Membranes, 2018, 81, 177-203.	0.5	80
25	Ion Channels in Cancer: Are Cancer Hallmarks Oncochannelopathies?. Physiological Reviews, 2018, 98, 559-621.	13.1	303
26	Facilitating the Cellular Accumulation of Pt-Based Chemotherapeutic Drugs. International Journal of Molecular Sciences, 2018, 19, 2249.	1.8	11
27	TTYH1 and TTYH2 Serve as LRRC8A-Independent Volume-Regulated Anion Channels in Cancer Cells. Cells, 2019, 8, 562.	1.8	22
28	More than just a pressure relief valve: physiological roles of volume-regulated LRRC8 anion channels. Biological Chemistry, 2019, 400, 1481-1496.	1.2	39
29	Somatic Mutations Profile of a Young Patient With Metastatic Urothelial Carcinoma Reveals Mutations in Genes Involved in Ion Channels. Frontiers in Oncology, 2019, 9, 435.	1.3	11
30	Roles of volume-regulatory anion channels, VSOR and Maxi-Cl, in apoptosis, cisplatin resistance, necrosis, ischemic cell death, stroke and myocardial infarction. Current Topics in Membranes, 2019, 83, 205-283.	0.5	34
31	Unexpected therapeutic effects of cisplatin. Metallomics, 2019, 11, 1182-1199.	1.0	67
32	Ion Channels: New Actors Playing in Chemotherapeutic Resistance. Cancers, 2019, 11, 376.	1.7	50
33	The Volume-Regulated Anion Channel in Glioblastoma. Cancers, 2019, 11, 307.	1.7	14
34	Exploring the relationship between cytoplasmic ion content variation and multidrug resistance in cancer cells via ion-release based impedance spectroscopy. Sensors and Actuators B: Chemical, 2019, 290, 180-187.	4.0	7
35	<p>The Role of the Reactive Oxygen Species Scavenger Agent, Astaxanthin, in the Protection of Cisplatin-Treated Patients Against Hearing Loss</p> . Drug Design, Development and Therapy, 2019, Volume 13, 4291-4303.	2.0	12
36	Impact of the histone deacetylase inhibitor trichostatin A on active uptake, volume-sensitive release of taurine, and cell fate in human ovarian cancer cells. American Journal of Physiology - Cell Physiology, 2020, 318, C581-C597.	2.1	5

3

#	Article	IF	CITATIONS
37	The Relationship Between Actin Cytoskeleton and Membrane Transporters in Cisplatin Resistance of Cancer Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 597835.	1.8	13
38	Ion Channels in Lung Cancer. Reviews of Physiology, Biochemistry and Pharmacology, 2020, , 57-79.	0.9	9
39	Ion Channels in Glioma Malignancy. Reviews of Physiology, Biochemistry and Pharmacology, 2020, , 223-267.	0.9	17
40	Impaired actin filaments decrease cisplatin sensitivity via dysfunction of volumeâ€sensitive Cl â^' channels in human epidermoid carcinoma cells. Journal of Cellular Physiology, 2020, 235, 9589-9600.	2.0	5
41	Cell Death Induction and Protection by Activation of Ubiquitously Expressed Anion/Cation Channels. Part 1: Roles of VSOR/VRAC in Cell Volume Regulation, Release of Double-Edged Signals and Apoptotic/Necrotic Cell Death. Frontiers in Cell and Developmental Biology, 2020, 8, 614040.	1.8	18
42	LRRC8A influences the growth of gastric cancer cells via the p53 signaling pathway. Gastric Cancer, 2021, 24, 1063-1075.	2.7	17
43	Volume-regulated anion channel as a novel cancer therapeutic target. International Journal of Biological Macromolecules, 2020, 159, 570-576.	3.6	22
44	Chloride Channels and Transporters: Roles beyond Classical Cellular Homeostatic pH or Ion Balance in Cancers. Cancers, 2022, 14, 856.	1.7	11
45	Ion Channel Involvement in Tumor Drug Resistance. Journal of Personalized Medicine, 2022, 12, 210.	1.1	13
50	Physiological Functions of the Volume-Regulated Anion Channel VRAC/LRRC8 and the Proton-Activated Chloride Channel ASOR/TMEM206. Handbook of Experimental Pharmacology, 2023, , .	0.9	0