Cardiolipin microdomains localize to negatively curved membranes

Proceedings of the National Academy of Sciences of the Unite 108, 6264-6269

DOI: 10.1073/pnas.1015757108

Citation Report

#	Article	IF	CITATIONS
2	Chemical–Biological Studies of Subcellular Organization in Bacteria. Biochemistry, 2011, 50, 7719-7734.	1.2	49
3	Changes of lipid domains in Bacillus subtilis cells with disrupted cell wall peptidoglycan. FEMS Microbiology Letters, 2011, 325, 92-98.	0.7	36
4	The RND-family transporter, HpnN, is required for hopanoid localization to the outer membrane of <i>Rhodopseudomonas palustris</i> TIE-1. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1045-51.	3.3	58
5	Mechanism of Bacterial Signal Transduction Revealed by Molecular Dynamics of Tsr Dimers and Trimers of Dimers in Lipid Vesicles. PLoS Computational Biology, 2012, 8, e1002685.	1.5	37
6	A Dynamic Response Regulator Protein Modulates G-Protein–Dependent Polarity in the Bacterium Myxococcus xanthus. PLoS Genetics, 2012, 8, e1002872.	1.5	58
7	Tafazzin senses curvature. Nature Chemical Biology, 2012, 8, 811-812.	3.9	14
8	Crystal structure and biochemical analyses reveal Beclin 1 as a novel membrane binding protein. Cell Research, 2012, 22, 473-489.	5.7	172
9	Occurrence of a Bacterial Membrane Microdomain at the Cell Division Site Enriched in Phospholipids with Polyunsaturated Hydrocarbon Chains. Journal of Biological Chemistry, 2012, 287, 24113-24121.	1.6	18
10	MinD and MinE Interact with Anionic Phospholipids and Regulate Division Plane Formation in Escherichia coli. Journal of Biological Chemistry, 2012, 287, 38835-38844.	1.6	76
11	Membrane activities of colicin nuclease domains: analogies with antimicrobial peptides. Biochemical Society Transactions, 2012, 40, 1517-1521.	1.6	3
12	GhoSTly bacterial persisters. Nature Chemical Biology, 2012, 8, 812-813.	3.9	1
14	Interaction of α-synuclein with vesicles that mimic mitochondrial membranes. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 512-519.	1.4	85
15	Highly Canalized MinD Transfer and MinE Sequestration Explain the Origin of Robust MinCDE-Protein Dynamics. Cell Reports, 2012, 1, 741-752.	2.9	120
16	Cardiolipin binding in bacterial respiratory complexes: Structural and functional implications. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1937-1949.	0.5	89
17	Cardiolipin synthase is required for <i>Streptomyces coelicolor</i> morphogenesis. Molecular Microbiology, 2012, 84, 181-197.	1.2	20
18	Isolation and identification of new inner membraneâ€associated proteins that localize to cell poles in <i>Escherichia coli</i> . Molecular Microbiology, 2012, 84, 276-295.	1.2	43
19	A growing family: the expanding universe of the bacterial cytoskeleton. FEMS Microbiology Reviews, 2012, 36, 256-266.	3.9	50
20	Hyaluronan synthase mediates dye translocation across liposomal membranes. BMC Biochemistry, 2012, 13, 2.	4.4	13

TION RE

#	Article	IF	CITATIONS
21	Molecular paleontology and complexity in the last eukaryotic common ancestor. Critical Reviews in Biochemistry and Molecular Biology, 2013, 48, 373-396.	2.3	170
22	Visualizing a multidrug resistance protein, EmrE, with major bacterial lipids using Brewster angle microscopy. Chemistry and Physics of Lipids, 2013, 167-168, 33-42.	1.5	18
23	Inhibitors of bacterial tubulin target bacterial membranes <i>in vivo</i> . MedChemComm, 2013, 4, 112-119.	3.5	45
24	Spatial control of the cell division site by the <scp>Min</scp> system in <i><scp>E</scp>scherichia coli</i> . Environmental Microbiology, 2013, 15, 3229-3239.	1.8	27
25	The Discreet Charm of the Curve. Biophysical Journal, 2013, 104, 1215-1216.	0.2	2
26	Generation and sensing of membrane curvature: Where materials science and biophysics meet. Current Opinion in Solid State and Materials Science, 2013, 17, 164-174.	5.6	19
27	Curvature-driven membrane lipid and protein distribution. Current Opinion in Solid State and Materials Science, 2013, 17, 143-150.	5.6	51
28	Mitochondrial inner membrane lipids and proteins as targets for decreasing cardiac ischemia/reperfusion injury. , 2013, 140, 258-266.		43
29	Dynamics of bioenergetic microcompartments. Biological Chemistry, 2013, 394, 163-188.	1.2	26
30	Non classical secretion systems. Research in Microbiology, 2013, 164, 655-663.	1.0	27
31	Call Change Can Madiate the Crastial Organization of the Destantial Cutashelaton. Displayers and Jacumal		
	Cell Shape Can Mediate the Spatial Organization of the Bacterial Cytoskeleton. Biophysical Journal, 2013, 104, 541-552.	0.2	28
32		0.2	28 39
32 33	2013, 104, 541-552. The General Phosphotransferase System Proteins Localize to Sites of Strong Negative Curvature in		
	 2013, 104, 541-552. The General Phosphotransferase System Proteins Localize to Sites of Strong Negative Curvature in Bacterial Cells. MBio, 2013, 4, e00443-13. Crosstalk between DnaA Protein, the Initiator of Escherichia coli Chromosomal Replication, and Acidic Phospholipids Present in Bacterial Membranes. International Journal of Molecular Sciences, 	1.8	39
33	 2013, 104, 541-552. The General Phosphotransferase System Proteins Localize to Sites of Strong Negative Curvature in Bacterial Cells. MBio, 2013, 4, e00443-13. Crosstalk between DnaA Protein, the Initiator of Escherichia coli Chromosomal Replication, and Acidic Phospholipids Present in Bacterial Membranes. International Journal of Molecular Sciences, 2013, 14, 8517-8537. Advances in the understanding of <scp>B</scp>arth syndrome. British Journal of Haematology, 2013, 	1.8 1.8	39 50
33 34	 2013, 104, 541-552. The General Phosphotransferase System Proteins Localize to Sites of Strong Negative Curvature in Bacterial Cells. MBio, 2013, 4, e00443-13. Crosstalk between DnaA Protein, the Initiator of Escherichia coli Chromosomal Replication, and Acidic Phospholipids Present in Bacterial Membranes. International Journal of Molecular Sciences, 2013, 14, 8517-8537. Advances in the understanding of <scp>B</scp>arth syndrome. British Journal of Haematology, 2013, 161, 330-338. Substrate-Dependent Assembly of the Tat Translocase as Observed in Live Escherichia coli Cells. PLoS 	1.8 1.8 1.2	39 50 21
33 34 35	 2013, 104, 541-552. The General Phosphotransferase System Proteins Localize to Sites of Strong Negative Curvature in Bacterial Cells. MBio, 2013, 4, e00443-13. Crosstalk between DnaA Protein, the Initiator of Escherichia coli Chromosomal Replication, and Acidic Phospholipids Present in Bacterial Membranes. International Journal of Molecular Sciences, 2013, 14, 8517-8537. Advances in the understanding of <scp>B</scp>arth syndrome. British Journal of Haematology, 2013, 161, 330-338. Substrate-Dependent Assembly of the Tat Translocase as Observed in Live Escherichia coli Cells. PLoS ONE, 2013, 8, e69488. Probing the Subcellular Localization of Hopanoid Lipids in Bacteria Using NanoSIMS. PLoS ONE, 2014, 9, 	1.8 1.8 1.2 1.1	39 50 21 55

c		Repo	D.T.
		17 F D()	121
\sim			IX I

#	Article	IF	CITATIONS
39	Anionic lipids and the cytoskeletal proteins MreB and RodZ define the spatio-temporal distribution and function of membrane stress controller PspA in Escherichia coli. Microbiology (United Kingdom), 2014, 160, 2374-2386.	0.7	21
40	Bistable Forespore Engulfment in Bacillus subtilis by a Zipper Mechanism in Absence of the Cell Wall. PLoS Computational Biology, 2014, 10, e1003912.	1.5	20
41	Cardiolipin-Mediated Mitochondrial Dynamics and Stress Response in <i>Arabidopsis</i> Â Â. Plant Cell, 2014, 26, 391-409.	3.1	73
42	Zooming in to see the bigger picture: Microfluidic and nanofabrication tools to study bacteria. Science, 2014, 346, 1251821.	6.0	165
43	Emerging Roles for Anionic Non-Bilayer Phospholipids in Fortifying the Outer Membrane Permeability Barrier. Journal of Bacteriology, 2014, 196, 3209-3213.	1.0	19
44	Model cell membranes: Discerning lipid and protein contributions in shaping the cell. Advances in Colloid and Interface Science, 2014, 205, 207-220.	7.0	50
45	Cardiolipin Is Dispensable for Oxidative Phosphorylation and Non-fermentative Growth of Alkaliphilic Bacillus pseudofirmus OF4. Journal of Biological Chemistry, 2014, 289, 2960-2971.	1.6	12
46	Discovery of a bifunctional cardiolipin/phosphatidylethanolamine synthase in bacteria. Molecular Microbiology, 2014, 92, 959-972.	1.2	23
47	Polar localization of <scp><i>E</i></scp> <i>scherichia coli</i> chemoreceptors requires an intact <scp>Tol</scp> – <scp>Pal</scp> complex. Molecular Microbiology, 2014, 92, 985-1004.	1.2	61
48	Structural biology of the macroautophagy machinery. Frontiers in Biology, 2014, 9, 18-34.	0.7	5
49	Physical Properties of Escherichia coli Spheroplast Membranes. Biophysical Journal, 2014, 107, 2082-2090.	0.2	51
50	Differential affinities of <scp>MinD</scp> and <scp>MinE</scp> to anionic phospholipid influence <scp>Min</scp> patterning dynamics <i>in vitro</i> . Molecular Microbiology, 2014, 93, 453-463.	1.2	95
51	Free Energy Calculations for the Peripheral Binding of Proteins/Peptides to an Anionic Membrane. 1. Implicit Membrane Models. Journal of Chemical Theory and Computation, 2014, 10, 2845-2859.	2.3	25
52	Moraxella catarrhalis Expresses a Cardiolipin Synthase That Impacts Adherence to Human Epithelial Cells. Journal of Bacteriology, 2014, 196, 107-120.	1.0	9
53	Salmonellae PhoPQ regulation of the outer membrane to resist innate immunity. Current Opinion in Microbiology, 2014, 17, 106-113.	2.3	178
54	Metabolism and function of mitochondrial cardiolipin. Progress in Lipid Research, 2014, 55, 1-16.	5.3	251
55	How do bacteria localize proteins to the cell pole?. Journal of Cell Science, 2014, 127, 11-9.	1.2	157
56	Increasing levels of cardiolipin differentially influence packing of phospholipids found in the mitochondrial inner membrane. Biochemical and Biophysical Research Communications, 2014, 450, 366-371.	1.0	30

#	Article	IF	CITATIONS
57	A biophysical study on molecular physiology of the uncoupling proteins of the central nervous system. Bioscience Reports, 2015, 35, .	1.1	12
58	Lipid remodeling in <i>Rhodopseudomonas palustris <scp>TIE</scp>â€1</i> upon loss of hopanoids and hopanoid methylation. Geobiology, 2015, 13, 443-453.	1.1	20
59	The membrane: transertion as an organizing principle in membrane heterogeneity. Frontiers in Microbiology, 2015, 6, 572.	1.5	52
60	Cytoplasmic Domain of MscS Interacts with Cell Division Protein FtsZ: A Possible Non-Channel Function of the Mechanosensitive Channel in Escherichia Coli. PLoS ONE, 2015, 10, e0127029.	1.1	17
61	N-3 Polyunsaturated Fatty Acids,ÂLipid Microclusters, andÂVitaminÂE. Current Topics in Membranes, 2015, 75, 209-231.	0.5	22
62	Unconventional membrane lipid biosynthesis in <scp><i>X</i></scp> <i>anthomonas campestris</i> . Environmental Microbiology, 2015, 17, 3116-3124.	1.8	12
63	Molecular Dynamics Simulations of the Bacterial UraA H+-Uracil Symporter in Lipid Bilayers Reveal a Closed State and a Selective Interaction with Cardiolipin. PLoS Computational Biology, 2015, 11, e1004123.	1.5	40
64	Symmetry and scale orient Min protein patterns in shaped bacterial sculptures. Nature Nanotechnology, 2015, 10, 719-726.	15.6	90
65	Patch clamp characterization of the effect of cardiolipin on MscS of E. coli. European Biophysics Journal, 2015, 44, 567-576.	1.2	21
66	Role of Positively Charged Residues of the Second Transmembrane Domain in the Ion Transport Activity and Conformation of Human Uncoupling Protein-2. Biochemistry, 2015, 54, 2303-2313.	1.2	8
67	Lipid–protein interactions: Lessons learned from stress. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1744-1756.	1.4	43
68	Biogenesis of <i>Lysobacter</i> sp. XL1 vesicles. FEMS Microbiology Letters, 2015, 362, fnv137.	0.7	8
69	Cardiolipin's propensity for phase transition and its reorganization by dynamin-related protein 1 form a basis for mitochondrial membrane fission. Molecular Biology of the Cell, 2015, 26, 3104-3116.	0.9	129
70	Electrophysiology of Unconventional Channels and Pores. Springer Series in Biophysics, 2015, , .	0.4	9
71	Anionic Phospholipids Stabilize RecA Filament Bundles in Escherichia coli. Molecular Cell, 2015, 60, 374-384.	4.5	45
72	Physics of Intracellular Organization in Bacteria. Annual Review of Microbiology, 2015, 69, 361-379.	2.9	24
73	<i>E. coli</i> MG1655 modulates its phospholipid composition through the cell cycle. FEBS Letters, 2015, 589, 2726-2730.	1.3	28
74	A Cardiolipin-Deficient Mutant of Rhodobacter sphaeroides Has an Altered Cell Shape and Is Impaired in Biofilm Formation. Journal of Bacteriology, 2015, 197, 3446-3455.	1.0	26

#	Article	IF	CITATIONS
75	Minimalist Model Systems Reveal Similarities and Differences between Membrane Interaction Modes of MCL1 and BAK. Journal of Biological Chemistry, 2015, 290, 17004-17019.	1.6	10
76	Bacterial membrane vesicles, an overlooked environmental colloid: Biology, environmental perspectives and applications. Advances in Colloid and Interface Science, 2015, 226, 65-77.	7.0	76
77	On the miscibility of cardiolipin with 1,2-diacyl phosphoglycerides: Binary mixtures of dimyristoylphosphatidylglycerol and tetramyristoylcardiolipin. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2878-2888.	1.4	10
78	Membraneâ€binding mechanism of a bacterial phospholipid <scp>N</scp> â€methyltransferase. Molecular Microbiology, 2015, 95, 313-331.	1.2	21
79	Laser surface modification of polymeric surfaces for microbiological applications. , 2016, , 197-220.		4
80	Antimicrobial Peptides Targeting Gram-Positive Bacteria. Pharmaceuticals, 2016, 9, 59.	1.7	270
81	Mode of Action of Antimicrobial Peptides on E.Âcoli Spheroplasts. Biophysical Journal, 2016, 111, 132-139.	0.2	25
82	Revisiting the cell biology of the acylâ€ACP:phosphate transacylase PlsX suggests that the phospholipid synthesis and cell division machineries are not coupled in <scp><i>B</i></scp> <i>acillus subtilis</i> . Molecular Microbiology, 2016, 100, 621-634.	1.2	13
83	Negatively Charged Lipids as a Potential Target for New Amphiphilic Aminoglycoside Antibiotics. Journal of Biological Chemistry, 2016, 291, 13864-13874.	1.6	33
84	Adaptation of Escherichia Coli Spheroplasts to the Characterization of Antimicrobial Peptides. Biophysical Journal, 2016, 110, 416a.	0.2	0
85	Septal localization by membrane targeting sequences and a conserved sequence essential for activity at the COOH-terminus of Bacillus subtilis cardiolipin synthase. Research in Microbiology, 2016, 167, 202-214.	1.0	11
86	The role of Her2 and other oncogenes of the PI3K/AKT pathway in mitochondria. Biological Chemistry, 2016, 397, 607-615.	1.2	26
87	The ionization properties of cardiolipin and its variants in model bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1362-1372.	1.4	79
88	Straining soft colloids in aqueous nematic liquid crystals. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5564-5569.	3.3	17
89	Organization and function of anionic phospholipids in bacteria. Applied Microbiology and Biotechnology, 2016, 100, 4255-4267.	1.7	86
90	Biosynthesis of oxidized lipid mediators via lipoprotein-associated phospholipase A ₂ hydrolysis of extracellular cardiolipin induces endothelial toxicity. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L303-L316.	1.3	20
91	New Broad-Spectrum Antibacterial Amphiphilic Aminoglycosides Active against Resistant Bacteria: From Neamine Derivatives to Smaller Neosamine Analogues. Journal of Medicinal Chemistry, 2016, 59, 9350-9369.	2.9	34
92	Measuring the Viscosity of the Escherichia coli Plasma Membrane Using Molecular Rotors. Biophysical Journal, 2016, 111, 1528-1540.	0.2	75

#	Article	IF	CITATIONS
93	Cardiolipin deficiency causes a dissociation of the b 6 c:caa 3 megacomplex in B. subtilis membranes. Journal of Bioenergetics and Biomembranes, 2016, 48, 451-467.	1.0	11
94	Three-Dimensional Distribution of Phospholipids in Gram Negative Bacteria. Biochemistry, 2016, 55, 4742-4747.	1.2	20
95	Biophysical study of resin acid effects on phospholipid membrane structure and properties. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2827-2838.	1.4	13
96	Content of cardiolipin of the membrane and sensitivity to cationic surfactants in <i>Pseudomonas putida</i> . Journal of Applied Microbiology, 2016, 121, 1004-1014.	1.4	12
97	RepA-WH1, the agent of an amyloid proteinopathy in bacteria, builds oligomeric pores through lipid vesicles. Scientific Reports, 2016, 6, 23144.	1.6	20
98	Mechanism for Remodeling of the Acyl Chain Composition of Cardiolipin Catalyzed by Saccharomyces cerevisiae Tafazzin. Journal of Biological Chemistry, 2016, 291, 15491-15502.	1.6	24
99	GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7858-7863.	3.3	677
100	In Vivo study of naturally deformed Escherichia coli bacteria. Journal of Bioenergetics and Biomembranes, 2016, 48, 281-291.	1.0	4
101	Ionic Hydrogen Bonds and Lipid Packing Defects Determine the Binding Orientation and Insertion Depth of RecA on Multicomponent Lipid Bilayers. Journal of Physical Chemistry B, 2016, 120, 8424-8437.	1.2	20
102	Minicells, Back in Fashion. Journal of Bacteriology, 2016, 198, 1186-1195.	1.0	82
103	Bacterial lipid membranes as promising targets to fight antimicrobial resistance, molecular foundations and illustration through the renewal of aminoglycoside antibiotics and emergence of amphiphilic aminoglycosides. MedChemComm, 2016, 7, 586-611.	3.5	110
104	MreB-Dependent Organization of the E.Âcoli Cytoplasmic Membrane Controls Membrane Protein Diffusion. Biophysical Journal, 2016, 110, 1139-1149.	0.2	72
105	Antibacterial Property of Graphene Quantum Dots (Both Source Material and Bacterial Shape Matter). ACS Applied Materials & Interfaces, 2016, 8, 20-25.	4.0	135
106	Nanofabricated structures and microfluidic devices for bacteria: from techniques to biology. Chemical Society Reviews, 2016, 45, 268-280.	18.7	71
107	Global Profiling of Metabolite and Lipid Soluble Microbial Products in Anaerobic Wastewater Reactor Supernatant Using UPLC–MS ^E . Journal of Proteome Research, 2017, 16, 559-570.	1.8	27
108	Geometric protein localization cues in bacterial cells. Current Opinion in Microbiology, 2017, 36, 7-13.	2.3	12
109	Antimicrobial Nanoplexes meet Model Bacterial Membranes: the key role of Cardiolipin. Scientific Reports, 2017, 7, 41242.	1.6	41
110	Barth Syndrome: Connecting Cardiolipin to Cardiomyopathy. Lipids, 2017, 52, 99-108.	0.7	72

ARTICLE IF CITATIONS # Exclusion of assembled $\langle scp \rangle M \langle scp \rangle re \langle scp \rangle by anionic phospholipids at cell poles confers$ 111 1.2 60 cell polarity for bidirectional growth. Molecular Microbiology, 2017, 104, 472-486. Prokaryotic Cytoskeletons. Sub-Cellular Biochemistry, 2017, , . 1.0 Reconstitution of Protein Dynamics Involved in Bacterial Cell Division. Sub-Cellular Biochemistry, 113 1.0 7 2017, 84, 419-444. Origins of chemoreceptor curvature sorting in Escherichia coli. Nature Communications, 2017, 8, 114 5.8 14838. Action of Antimicrobial Peptides on Bacterial and Lipid Membranes: A Direct Comparison. Biophysical 115 0.2 47 Journal, 2017, 112, 1663-1672. Murine diet-induced obesity remodels cardiac and liver mitochondrial phospholipid acyl chains with differential effects on respiratory enzyme activity. Journal of Nutritional Biochemistry, 2017, 45, 94-103. Distinct membrane properties are differentially influenced by cardiolipin content and acyl chain 117 1.4 25 composition in biomimetic membranes. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 257-267. Non-lamellar lipid assembly at interfaces: controlling layer structure by responsive nanogel 1.5 particles. Interface Focus, 2017, 7, 20160150. Reduced Iron-Containing Clay Minerals as Antibacterial Agents. Environmental Science & amp; 119 4.6 64 Technology, 2017, 51, 7639-7647. Cationic liposomal vectors incorporating a bolaamphiphile for oligonucleotide antimicrobials. 1.4 Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1767-1777. Cardiolipin and mitochondrial cristae organization. Biochimica Et Biophysica Acta - Biomembranes, 121 221 1.4 2017, 1859, 1156-1163. Cardiolipin plays an essential role in the formation of intracellular membranes in Escherichia coli. 1.4 Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1124-1132. Relationship between Structure and Fluctuations of Lipid Nonlamellar Phases Deposited at the 123 1.2 15 Solid–Liquid Interface. Journal of Physical Chemistry B, 2017, 121, 2705-2711. Using transposition to introduce eGFP fusions in Sinorhizobium meliloti : A tool to analyze protein 124 1.9 localization patterns in bacteria. Journal of Biotechnology, 2017, 257, 139-149. The Biophysics of Cell Membranes. Springer Series in Biophysics, 2017, , . 125 9 0.4 Role of cardiolipin in stability of integral membrane proteins. Biochimie, 2017, 142, 102-111. Tat transport in <i>Escherichia coli</i> requires zwitterionic phosphatidylethanolamine but no 127 1.39 specific negatively charged phospholipid. FEBS Letters, 2017, 591, 2848-2858. Cardiolipin Synthesis and Outer Membrane Localization Are Required for <i>Shigella flexneri</i> 1.8 Virulence. MBio, 2017, 8, .

#	Article	IF	CITATIONS
129	Targeting Bacterial Cardiolipin Enriched Microdomains: An Antimicrobial Strategy Used by Amphiphilic Aminoglycoside Antibiotics. Scientific Reports, 2017, 7, 10697.	1.6	59
130	Inclusion of oligonucleotide antimicrobials in biocompatible cationic liposomes: A structural study. Journal of Colloid and Interface Science, 2017, 508, 476-487.	5.0	9
131	Mechanical strain sensing implicated in cell shape recovery in Escherichia coli. Nature Microbiology, 2017, 2, 17115.	5.9	52
132	Identification of unique cardiolipin and monolysocardiolipin species in Acinetobacter baumannii. Scientific Reports, 2017, 7, 2972.	1.6	37
133	Bacterial Membranes: Structure, Domains, and Function. Annual Review of Microbiology, 2017, 71, 519-538.	2.9	178
134	Isolation of detergent-resistant membranes (DRMs) from Escherichia coli. Analytical Biochemistry, 2017, 518, 1-8.	1.1	14
135	ProPâ€ProP and ProPâ€phospholipid interactions determine the subcellular distribution of osmosensing transporter ProP inEscherichia coli. Molecular Microbiology, 2017, 103, 469-482.	1.2	13
136	Modeling the Mechanics of Cell Division: Influence of Spontaneous Membrane Curvature, Surface Tension, and Osmotic Pressure. Frontiers in Physiology, 2017, 8, 312.	1.3	18
137	A Spatial Control for Correct Timing of Gene Expression during the Escherichia coli Cell Cycle. Genes, 2017, 8, 1.	1.0	109
138	Subcellular Organization: A Critical Feature of Bacterial Cell Replication. Cell, 2018, 172, 1271-1293.	13.5	157
138 139		13.5 1.2	157 26
	Subcellular Organization: A Critical Feature of Bacterial Cell Replication. Cell, 2018, 172, 1271-1293. Cardiolipin synthase A colocalizes with cardiolipin and osmosensing transporter ProP at the poles of		
139	Subcellular Organization: A Critical Feature of Bacterial Cell Replication. Cell, 2018, 172, 1271-1293. Cardiolipin synthase A colocalizes with cardiolipin and osmosensing transporter ProP at the poles of <i>Escherichia coli</i> cells. Molecular Microbiology, 2018, 107, 623-638. Biophysical evaluation of cardiolipin content as a regulator of the membrane lytic effect of	1.2	26
139 140	Subcellular Organization: A Critical Feature of Bacterial Cell Replication. Cell, 2018, 172, 1271-1293. Cardiolipin synthase A colocalizes with cardiolipin and osmosensing transporter ProP at the poles of <i>Escherichia coli</i> cells. Molecular Microbiology, 2018, 107, 623-638. Biophysical evaluation of cardiolipin content as a regulator of the membrane lytic effect of antimicrobial peptides. Biophysical Chemistry, 2018, 238, 8-15. The Min-protein oscillations in <i>Escherichia coli</i> : an example of self-organized cellular protein	1.2 1.5	26 31
139 140 141	Subcellular Organization: A Critical Feature of Bacterial Cell Replication. Cell, 2018, 172, 1271-1293. Cardiolipin synthase A colocalizes with cardiolipin and osmosensing transporter ProP at the poles of <i>Escherichia coli</i> cells. Molecular Microbiology, 2018, 107, 623-638. Biophysical evaluation of cardiolipin content as a regulator of the membrane lytic effect of antimicrobial peptides. Biophysical Chemistry, 2018, 238, 8-15. The Min-protein oscillations in <i>Escherichia coli</i> secorety B: Biological Sciences, 2018, 373, 20170111. Perspective: challenges and opportunities for the study of cardiolipin, a key player in bacterial cell	1.2 1.5 1.8	26 31 39
139 140 141 142	Subcellular Organization: A Critical Feature of Bacterial Cell Replication. Cell, 2018, 172, 1271-1293. Cardiolipin synthase A colocalizes with cardiolipin and osmosensing transporter ProP at the poles of <i>> Escherichia coli</i> > cells. Molecular Microbiology, 2018, 107, 623-638. Biophysical evaluation of cardiolipin content as a regulator of the membrane lytic effect of antimicrobial peptides. Biophysical Chemistry, 2018, 238, 8-15. The Min-protein oscillations in <i>> Escherichia coli</i> > is an example of self-organized cellular protein waves. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170111. Perspective: challenges and opportunities for the study of cardiolipin, a key player in bacterial cell structure and function. Current Genetics, 2018, 64, 795-798. Computing Curvature Sensitivity of Biomolecules in Membranes by Simulated Buckling. Journal of	1.2 1.5 1.8 0.8	26 31 39 9
139 140 141 142 143	Subcellular Organization: A Critical Feature of Bacterial Cell Replication. Cell, 2018, 172, 1271-1293. Cardiolipin synthase A colocalizes with cardiolipin and osmosensing transporter ProP at the poles of >ischerichia coli cells. Molecular Microbiology, 2018, 107, 623-638. Biophysical evaluation of cardiolipin content as a regulator of the membrane lytic effect of antimicrobial peptides. Biophysical Chemistry, 2018, 238, 8-15. The Min-protein oscillations in <i>Escherichia coli</i> is an example of self-organized cellular protein waves. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170111. Perspective: challenges and opportunities for the study of cardiolipin, a key player in bacterial cell structure and function. Current Genetics, 2018, 64, 795-798. Computing Curvature Sensitivity of Biomolecules in Membranes by Simulated Buckling. Journal of Chemical Theory and Computation, 2018, 14, 1643-1655. Structural characterization of cardiolipin-driven activation of cytochrome c into a peroxidase and	1.2 1.5 1.8 0.8 2.3	26 31 39 9 19

#	Article	IF	CITATIONS
147	Selective pairing and fusion of vesicles using dielectrophoretic tweezers. , 2018, , .		0
148	Engineering Bacterial Shape Using Soft Matter Microchambers. Current Protocols in Chemical Biology, 2019, 11, e59.	1.7	2
149	Plasmonic Nanosensors Reveal a Height Dependence of MinDE Protein Oscillations on Membrane Features. Journal of the American Chemical Society, 2018, 140, 17901-17906.	6.6	26
150	Switching protein patterns on membranes. Current Opinion in Colloid and Interface Science, 2018, 38, 100-107.	3.4	3
151	Microdomain formation is a general property of bacterial membrane proteins and induces heterogeneity of diffusion patterns. BMC Biology, 2018, 16, 97.	1.7	45
152	Ectopic Neo-Formed Intracellular Membranes in Escherichia coli: A Response to Membrane Protein-Induced Stress Involving Membrane Curvature and Domains. Biomolecules, 2018, 8, 88.	1.8	13
153	In Vitro Reconstitution of Self-Organizing Protein Patterns on Supported Lipid Bilayers. Journal of Visualized Experiments, 2018, , .	0.2	20
154	Proteolipid domains form in biomimetic and cardiac mitochondrial vesicles and are regulated by cardiolipin concentration but not monolyso-cardiolipin. Journal of Biological Chemistry, 2018, 293, 15933-15946.	1.6	12
155	Supramolecular zippers elicit interbilayer adhesion of membranes producing cell death. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2824-2834.	1.1	6
156	Mechanisms by Which Dietary Fatty Acids Regulate Mitochondrial Structure-Function in Health and Disease. Advances in Nutrition, 2018, 9, 247-262.	2.9	59
157	Enhanced Tubulation of Liposome Containing Cardiolipin by MamY Protein from Magnetotactic Bacteria. Biotechnology Journal, 2018, 13, 1800087.	1.8	12
158	Nutrient depletion-induced production of tri-acylated glycerophospholipids in Acinetobacter radioresistens. Scientific Reports, 2018, 8, 7470.	1.6	9
159	Phosphatidylglycerol Incorporates into Cardiolipin to Improve Mitochondrial Activity and Inhibits Inflammation. Scientific Reports, 2018, 8, 4919.	1.6	36
160	The E. coli MinCDE system in the regulation of protein patterns and gradients. Cellular and Molecular Life Sciences, 2019, 76, 4245-4273.	2.4	81
161	Exploring the links between lipid geometry and mitochondrial fission: Emerging concepts. Mitochondrion, 2019, 49, 305-313.	1.6	18
162	Helix N-Cap Residues Drive the Acid Unfolding That Is Essential in the Action of the Toxin Colicin A. Biochemistry, 2019, 58, 4882-4892.	1.2	1
163	Cardiolipin Preferentially Partitions to the Inner Leaflet of Mixed Lipid Large Unilamellar Vesicles. Journal of Physical Chemistry B, 2019, 123, 9111-9122.	1.2	15
164	Cell morphology and nucleoid dynamics in dividing Deinococcus radiodurans. Nature Communications, 2019, 10, 3815.	5.8	31

#	Article	IF	CITATIONS
165	Metallohelices that kill Gram-negative pathogens using intracellular antimicrobial peptide pathways. Chemical Science, 2019, 10, 9708-9720.	3.7	22
166	Cardiolipin depletion–induced changes in theTrypanosoma bruceiproteome. FASEB Journal, 2019, 33, 13161-13175.	0.2	11
167	Curvature sensing by cardiolipin in simulated buckled membranes. Soft Matter, 2019, 15, 792-802.	1.2	54
168	Minimal <i>in vitro</i> systems shed light on cell polarity. Journal of Cell Science, 2019, 132, .	1.2	22
169	Membrane potential is vital for rapid permeabilization of plasma membranes and lipid bilayers by the antimicrobial peptide lactoferricin B. Journal of Biological Chemistry, 2019, 294, 10449-10462.	1.6	24
170	Membrane curvature induces cardiolipin sorting. Communications Biology, 2019, 2, 225.	2.0	95
171	Cardiolipin-Based Lipopolyplex Platform for the Delivery of Diverse Nucleic Acids into Gram-Negative Bacteria. Pharmaceuticals, 2019, 12, 81.	1.7	8
172	Inhibition of <i>Pseudomonas aeruginosa</i> biofilm formation and expression of virulence genes by selective epimerization in the peptide Esculentinâ€la(1â€21) <scp>NH</scp> ₂ . FEBS Journal, 2019, 286, 3874-3891.	2.2	45
173	The Influence of Calcium Traces in Ultrapure Water on the Lateral Organization in Tetramyristoyl Cardiolipin Monolayers. ChemPhysChem, 2019, 20, 1521-1526.	1.0	6
174	Tetra-linoleoyl cardiolipin depletion plays a major role in the pathogenesis of sarcopenia. Medical Hypotheses, 2019, 127, 142-149.	0.8	24
175	Calcium-induced transformation of cardiolipin nanodisks. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 1030-1036.	1.4	11
176	Bacterial Lipid Domains and Their Role in Cell Processes. , 2019, , 575-592.		2
177	Expanding lipidomics coverage: effective ultra performance liquid chromatography-high resolution mass spectrometer methods for detection and quantitation of cardiolipin, phosphatidylglycerol, and lysyl-phosphatidylglycerol. Metabolomics, 2019, 15, 53.	1.4	18
178	Selective antibacterial activity of the cationic peptide PaDBS1R6 against Gram-negative bacteria. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 1375-1387.	1.4	38
179	Selectivity of Antimicrobial Peptides: A Complex Interplay of Multiple Equilibria. Advances in Experimental Medicine and Biology, 2019, 1117, 175-214.	0.8	44
180	Antimicrobial Peptides. Advances in Experimental Medicine and Biology, 2019, , .	0.8	26
181	The role of cardiolipin concentration and acyl chain composition on mitochondrial inner membrane molecular organization and function. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 1039-1052.	1.2	55
182	Cell geometry and leaflet bilayer asymmetry regulate domain formation in plasma membranes. Physical Review E, 2019, 99, 012401.	0.8	0

#	Article	IF	CITATIONS
183	Clustering as a Means To Control Nitrate Respiration Efficiency and Toxicity in Escherichia coli. MBio, 2019, 10, .	1.8	16
184	Lipidomic signature of Bacillus licheniformis 189 during the different growth phases unravelled by high-resolution liquid chromatography-mass spectrometry. Archives of Biochemistry and Biophysics, 2019, 663, 83-94.	1.4	10
185	Geometric instability catalyzes mitochondrial fission. Molecular Biology of the Cell, 2019, 30, 160-168.	0.9	10
186	Contributions of Membrane Lipids to Bacterial Cell Homeostasis upon Osmotic Challenge. , 2019, , 801-822.		0
187	Atomic Force Microscopy. Methods in Molecular Biology, 2019, , .	0.4	7
188	Antimicrobial Peptides: Effect on Bacterial Cells. Methods in Molecular Biology, 2019, 1886, 233-242.	0.4	7
189	TAZ encodes tafazzin, a transacylase essential for cardiolipin formation and central to the etiology of Barth syndrome. Gene, 2020, 726, 144148.	1.0	13
190	Explaining leak states in the proton pump of heme-copper oxidases observed in single-molecule experiments. Biophysical Chemistry, 2020, 256, 106276.	1.5	2
191	Complement C5a Induces Renal Injury in Diabetic Kidney Disease by Disrupting Mitochondrial Metabolic Agility. Diabetes, 2020, 69, 83-98.	0.3	48
192	Effect of membrane composition on DivIVA-membrane interaction. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183144.	1.4	3
193	Divide and conquer: How phase separation contributes to lateral transport and organization of membrane proteins and lipids. Chemistry and Physics of Lipids, 2020, 233, 104985.	1.5	7
194	Divalent cations are antagonistic to survivability of freeze-dried probiotics encapsulated in cross-linked alginate. Food and Bioproducts Processing, 2020, 124, 369-377.	1.8	13
195	The essential inner membrane protein YejM is a metalloenzyme. Scientific Reports, 2020, 10, 17794.	1.6	14
196	Dynamic and reversible shape response of red blood cells in synthetic liquid crystals. Proceedings of the United States of America, 2020, 117, 26083-26090.	3.3	14
197	Clusters of bacterial RNA polymerase are biomolecular condensates that assemble through liquid–liquid phase separation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18540-18549.	3.3	150
198	Modulation of Host Lipid Pathways by Pathogenic Intracellular Bacteria. Pathogens, 2020, 9, 614.	1.2	15
199	Bacteria-derived minicells for cancer therapy. Cancer Letters, 2020, 491, 11-21.	3.2	24
200	Bringing rafts to life: Lessons learned from lipid organization across diverse biological membranes. Chemistry and Physics of Lipids, 2020, 233, 104984.	1.5	8

ARTICLE IF CITATIONS # Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings 201 2.9 17 of Bacteria. Microbiology and Molecular Biology Reviews, 2020, 84, . Inducible intracellular membranes: molecular aspects and emerging applications. Microbial Cell 1.9 9 Factories, 2020, 19, 176. Interactions of a Bacterial RND Transporter with a Transmembrane Small Protein in a Lipid 203 1.6 47 Environment. Structure, 2020, 28, 625-634.e6. Analyzing plant mechanosensitive ion channels expressed in giant E. coli spheroplasts by 204 0.5 single-channel patch-clamp electrophysiology. Methods in Cell Biology, 2020, 160, 61-82. Lipid analysis of CO2-rich subsurface aquifers suggests an autotrophy-based deep biosphere with 205 4.4 29 lysolipids enriched in CPR bacteria. ISME Journal, 2020, 14, 1547-1560. Phylogenetic Distribution, Ultrastructure, and Function of Bacterial Flagellar Sheaths. 1.8 Biomolecules, 2020, 10, 363. Mechanisms of Enhanced Antibacterial Activity by Reduced Chitosan-Intercalated Nontronite. 207 4.6 23 Environmental Science & amp; Technology, 2020, 54, 5207-5217. Outer Membrane Lipid Secretion and the Innate Immune Response to Gram-Negative Bacteria. Infection 208 1.0 56 and Immunity, 2020, 88, . Depletion of cardiolipin induces major changes in energy metabolism in <i>Trypanosoma brucei</i> 209 0.2 8 bloodstream forms. FASEB Journal, 2021, 35, e21176. Mycolic acid-containing bacteria trigger distinct types of membrane vesicles through different routes. IScience, 2021, 24, 102015 Influence of Sensor Coating and Topography on Protein and Nanoparticle Interaction with Supported 211 2 1.6 Lipid Bilayers. Langmuir, 2021, 37, 2256-2267. Cardiolipin Selectively Binds to the Interface of <i>Vs</i>SemiSWEET and Regulates Its Dimerization. 2.1 Journal of Physical Chemistry Letters, 2021, 12, 1940-1946. Insights into the structure of Escherichia coli outer membrane as the target for engineering 213 1.9 32 microbial cell factories. Microbial Cell Factories, 2021, 20, 73. Branched-chain amino acids and l-carnitine attenuate lipotoxic hepatocellular damage in rat cirrhotic 214 2.5 liver. Biomedicine and Pharmacotherapy, 2021, 135, 111181. Switchable positioning of plate-like inclusions in lipid membranes: Elastically mediated interactions 215 4.7 4 of planar colloids in 2D fluids. Science Advances, 2021, 7, . FtsZ induces membrane deformations via torsional stress upon GTP hydrolysis. Nature 5.8 Communications, 2021, 12, 3310. Mitochondrial Cristae Architecture and Functions: Lessons from Minimal Model Systems. Membranes, 219 1.4 40 2021, 11, 465. Understanding Beta-Lactam-Induced Lysis at the Single-Cell Level. Frontiers in Microbiology, 2021, 12, 220 1.5 712007.

#	Article	IF	CITATIONS
221	Nanostructural Characterization of Cardiolipin-Containing Tethered Lipid Bilayers Adsorbed on Gold and Silicon Substrates for Protein Incorporation. Langmuir, 2021, 37, 8908-8923.	1.6	5
222	DivIVA Regulates Its Expression and the Orientation of New Septum Growth in Deinococcus radiodurans. Journal of Bacteriology, 2021, 203, e0016321.	1.0	4
223	Promiscuous phospholipid biosynthesis enzymes in the plant pathogen Pseudomonas syringae. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158926.	1.2	6
224	Identification of Two Variants of Acinetobacter baumannii Strain ATCC 17978 with Distinct Genotypes and Phenotypes. Infection and Immunity, 2021, 89, e0045421.	1.0	17
225	Erylysin A inhibits cytokinesis in Escherichia coli by binding with cardiolipin. Journal of Biochemistry, 2021, 170, 369-377.	0.9	4
226	Calcium-induced release of cytochrome c from cardiolipin nanodisks: Implications for apoptosis. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183722.	1.4	10
227	Molecular interactions and their predictive roles in cell pole determination in bacteria. Critical Reviews in Microbiology, 2021, 47, 141-161.	2.7	5
228	Barth syndrome: cardiolipin, cellular pathophysiology, management, and novel therapeutic targets. Molecular and Cellular Biochemistry, 2021, 476, 1605-1629.	1.4	34
229	Lipids Biosynthesis, Remodeling, and Turnover of Cardiolipin. , 2021, , 684-694.		1
230	Contributions of Membrane Lipids to Bacterial Cell Homeostasis upon Osmotic Challenge. , 2016, , 1-22.		2
231	Lipid Domains and Membrane (Re)Shaping: From Biophysics to Biology. Springer Series in Biophysics, 2017, , 121-175.	0.4	7
232	Geodesic curvature driven surface microdomain formation. Journal of Computational Physics, 2017, 345, 260-274.	1.9	8
233	Plasmonic Nanosensors for the Label-Free Imaging of Dynamic Protein Patterns. Journal of Physical Chemistry Letters, 2020, 11, 4554-4558.	2.1	11
234	Improved method for the preparation of nonyl acridine orange analogues and utilization in detection of cardiolipin. New Journal of Chemistry, 2020, 44, 9626-9633.	1.4	7
235	The Gram-positive model organism Bacillus subtilis does not form microscopically detectable cardiolipin-specific lipid domains. Microbiology (United Kingdom), 2018, 164, 475-482.	0.7	15
239	Studying Biomolecule Localization by Engineering Bacterial Cell Wall Curvature. PLoS ONE, 2013, 8, e84143.	1.1	35
240	Evidence for a Novel Mechanism of Antimicrobial Action of a Cyclic R-,W-Rich Hexapeptide. PLoS ONE, 2015, 10, e0125056.	1.1	40
241	Formation and Characterization of Supported Lipid Bilayers Composed of Hydrogenated and Deuterated Escherichia coli Lipids. PLoS ONE, 2015, 10, e0144671.	1.1	47

		CITATION REPORT		
#	Article		IF	CITATIONS
242	Two Distinct Cardiolipin Synthases Operate in Agrobacterium tumefaciens. PLoS ONE, 2	2016, 11, e0160373.	1.1	13
243	Methylation at the C-2 position of hopanoids increases rigidity in native bacterial memb 2015, 4, .	oranes. ELife,	2.8	38
244	The magnesium transporter A is activated by cardiolipin and is highly sensitive to free m vitro. ELife, 2016, 5, .	agnesium in	2.8	40
245	Mechanics and dynamics of translocating MreB filaments on curved membranes. ELife,	2019, 8, .	2.8	31
246	Initiation of chromosome replication controls both division and replication cycles in E. c a double-adder mechanism. ELife, 2019, 8, .	oli through	2.8	50
247	Structure of dual BON-domain protein DolP identifies phospholipid binding as a new me protein localisation. ELife, 2020, 9, .	echanism for	2.8	25
248	Mitochondrial Phospholipid Homeostasis Is Regulated by the i-AAA Protease PaIAP and A Organismic Aging. Cells, 2021, 10, 2775.	Affects	1.8	8
249	Evolutionarily conserved mechanism for membrane recognition from bacteria to mitoch Letters, 2021, 595, 2805-2815.	ondria. FEBS	1.3	2
250	Force from Lipids: A Multidisciplinary Approach to Study Bacterial Mechanosensitive lor 2012, , 1-33.	ו Channels. ,		2
251	Clustered Conserved Cysteines in Hyaluronan Synthase Mediate Cooperative Activatior and Severe Inhibitory Effects of Divalent Cations. Journal of Glycomics & Lipidomics, 20	n by Mg2+ lons 12, 02, 001.	0.4	1
252	Pore-Forming Colicins: Unusual Ion Channels – Unusually Regulated. Springer Series i 2015, , 185-208.	n Biophysics,	0.4	0
253	Contributions of Membrane Lipids to Bacterial Cell Homeostasis upon Osmotic Challen	ge. , 2017, , 1-23.		0
258	Bacterial Cell Wall Material Properties Determine E. Coli Resistance to Sonolysis. SSRN I Journal, 0, , .	Electronic	0.4	1
260	Preparation of Giant Escherichia coli spheroplasts for Electrophysiological Recordings. Bio-protocol, 2021, 11, e4261.		0.2	0
261	Mitochondrial Membrane Remodeling. Frontiers in Bioengineering and Biotechnology, 2	2021, 9, 786806.	2.0	10
262	Revealing spatio-temporal dynamics with long-term trypanosomatid live-cell imaging. Pl 2022, 18, e1010218.	LoS Pathogens,	2.1	4
264	Bacterial cell wall material properties determine E. coli resistance to sonolysis. Ultrasoni Sonochemistry, 2022, 83, 105919.	ics	3.8	9
266	Lipid-mediated antimicrobial resistance: a phantom menace or a new hope?. Biophysica 14, 145-162.	Reviews, 2022,	1.5	10

#	Article	IF	CITATIONS
267	Pathological cardiolipin-promoted membrane hemifusion stiffens pulmonary surfactant membranes. Biophysical Journal, 2022, 121, 886-896.	0.2	7
268	Phosphatidylglycerol Supplementation Alters Mitochondrial Morphology and Cardiolipin Composition. Membranes, 2022, 12, 383.	1.4	1
269	StaR-related lipid transfer-like domain-containing protein CLDP43 affects cardiolipin synthesis and mitochondrial function in Trypanosoma brucei. PLoS ONE, 2022, 17, e0259752.	1.1	0
270	An evolutionary conserved detoxification system for membrane lipid–derived peroxyl radicals in Gram-negative bacteria. PLoS Biology, 2022, 20, e3001610.	2.6	6
272	In Search of the Holy Grail: Toward a Unified Hypothesis on Mitochondrial Dysfunction in Age-Related Diseases. Cells, 2022, 11, 1906.	1.8	10
273	Determinants, maintenance, and function of organellar pH. Physiological Reviews, 2023, 103, 515-606.	13.1	21
274	Escherichia coli minicells with targeted enzymes as bioreactors for producing toxic compounds. Metabolic Engineering, 2022, 73, 214-224.	3.6	5
275	The AAA+ÂATPase RavA and its binding partner ViaA modulate E. coli aminoglycoside sensitivity through interaction with the inner membrane. Nature Communications, 2022, 13, .	5.8	6
277	Studies of the cardiolipin interactome. Progress in Lipid Research, 2022, 88, 101195.	5.3	5
278	A Tripartite Efflux System Affects Flagellum Stability in Helicobacter pylori. International Journal of Molecular Sciences, 2022, 23, 11609.	1.8	3
279	A bacterial secretosome for regulated envelope biogenesis and quality control?. Microbiology (United Kingdom), 2022, 168, .	0.7	4
280	Distinct Antibacterial Activities of Nanosized Cationic Liposomes against Gram-Negative Bacteria Correlate with Their Heterogeneous Fusion Interactions. ACS Applied Nano Materials, 2022, 5, 15201-15210.	2.4	4
281	Alkaline State of the Domain-Swapped Dimer of Human Cytochrome <i>c</i> : A Conformational Switch for Apoptotic Peroxidase Activity. Journal of the American Chemical Society, 2022, 144, 21184-21195.	6.6	2
282	Formation of intracellular vesicles within the Gram+ Lactococcus lactis induced by the overexpression of Caveolin-11². Microbial Cell Factories, 2022, 21, .	1.9	1
283	Inner mitochondrial membrane structure and fusion dynamics are altered in senescent human iPSC-derived and primary rat cardiomyocytes. Biochimica Et Biophysica Acta - Bioenergetics, 2023, 1864, 148949.	0.5	4
284	Structural Characterization of Nanoparticle-Supported Lipid Bilayer Arrays by Grazing Incidence X-ray and Neutron Scattering. ACS Applied Materials & Interfaces, 2023, 15, 3772-3780.	4.0	5
286	Bacterial lipid biophysics and membrane organization. Current Opinion in Microbiology, 2023, 74, 102315.	2.3	8
287	DivIVA Phosphorylation Affects Its Dynamics and Cell Cycle in Radioresistant Deinococcus radiodurans. Microbiology Spectrum, 2023, 11, .	1.2	1