Object-based urban detailed land cover classification with imagery

International Journal of Remote Sensing 32, 3285-3308

DOI: 10.1080/01431161003745657

Citation Report

#	Article	IF	CITATIONS
1	Modeling Forest Structural Parameters in the Mediterranean Pines of Central Spain using QuickBird-2 Imagery and Classification and Regression Tree Analysis (CART). Remote Sensing, 2012, 4, 135-159.	1.8	37
2	Mapping land cover in urban residential landscapes using very high spatial resolution aerial photographs. Urban Forestry and Urban Greening, 2012, 11, 291-301.	2.3	30
3	Multi-scale object-based image analysis and feature selection of multi-sensor earth observation imagery using random forests. International Journal of Remote Sensing, 2012, 33, 4502-4526.	1.3	151
4	A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species. Remote Sensing of Environment, 2012, 124, 516-533.	4.6	341
5	Impact of training and validation sample selection on classification accuracy and accuracy assessment when using reference polygons in object-based classification. International Journal of Remote Sensing, 2013, 34, 6914-6930.	1.3	71
6	GeoEye-1 and WorldView-2 pan-sharpened imagery for object-based classification in urban environments. International Journal of Remote Sensing, 2013, 34, 2583-2606.	1.3	103
7	Regionalization of multi-categorical landscapes using machine vision methods. Applied Geography, 2013, 45, 250-258.	1.7	21
8	Non-Parametric Object-Based Approaches to Carry Out ISA Classification From Archival Aerial Orthoimages. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6, 2058-2071.	2.3	11
9	Classification of rural landscapes from low-density lidar data: is it theoretically possible?. International Journal of Remote Sensing, 2013, 34, 5666-5689.	1.3	14
10	Very high-resolution satellite data for improved land cover extraction of Larsemann Hills, Eastern Antarctica. Journal of Applied Remote Sensing, 2013, 7, 073460.	0.6	24
11	Scene classification via latent Dirichlet allocation using a hybrid generative/discriminative strategy for high spatial resolution remote sensing imagery. Remote Sensing Letters, 2013, 4, 1204-1213.	0.6	45
12	Impervious surface extraction from high-resolution satellite image using pixel- and object-based hybrid analysis. International Journal of Remote Sensing, 2013, 34, 4449-4465.	1.3	15
13	Potential of texture-based classification in urban landscapes using multispectral aerial photos. South African Journal of Science, 2013, 109, 8.	0.3	20
14	Spotting East African Mammals in Open Savannah from Space. PLoS ONE, 2014, 9, e115989.	1.1	52
15	Multiscale Water Body Extraction in Urban Environments From Satellite Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7, 4301-4312.	2.3	70
16	A noise removal approach for object-based classification of VHR imagery via post-classification. , 2014, , .		2
17	Tree species classification based on WorldView-2 imagery in complex urban environment. , 2014, , .		2
18	Estimating potential outdoor water consumption in private urban landscapes by coupling high-resolution image analysis, irrigation water needs and evaporation estimation in Spain. Landscape and Urban Planning, 2014, 123, 61-72.	3.4	49

#	Article	IF	Citations
19	Incorporating road and parcel data for object-based classification of detailed urban land covers from NAIP images. GIScience and Remote Sensing, 2014, 51, 498-520.	2.4	18
20	Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery. Remote Sensing, 2014, 6, 964-983.	1.8	299
21	Evaluation of the contribution of LiDAR data and postclassification procedures to object-based classification accuracy. Journal of Applied Remote Sensing, 2014, 8, 083529.	0.6	6
22	Forest Condition Monitoring Using Very-High-Resolution Satellite Imagery in a Remote Mountain Watershed in Nepal. Mountain Research and Development, 2015, 35, 264.	0.4	19
23	Comparing Machine Learning Classifiers for Object-Based Land Cover Classification Using Very High Resolution Imagery. Remote Sensing, 2015, 7, 153-168.	1.8	268
24	Identification of Forested Landslides Using LiDar Data, Object-based Image Analysis, and Machine Learning Algorithms. Remote Sensing, 2015, 7, 9705-9726.	1.8	123
25	Urban tree canopy detection using object-based image analysis for very high resolution satellite images: A literature review. , 2015 , , .		5
26	Synergistic use of RADARSAT-2 Ultra Fine and Fine Quad-Pol data to map oilsands infrastructure land: Object-based approach. International Journal of Applied Earth Observation and Geoinformation, 2015, 38, 193-203.	1.4	2
27	Use of Unmanned Aircraft Systems to Delineate Fine-Scale Wetland Vegetation Communities. Wetlands, 2015, 35, 303-309.	0.7	48
28	Assessing machine-learning algorithms and image- and lidar-derived variables for GEOBIA classification of mining and mine reclamation. International Journal of Remote Sensing, 2015, 36, 954-978.	1.3	64
29	Object-oriented approach to urban canyon analysis and its applications in meteorological modeling. Urban Climate, 2015, 13, 122-139.	2.4	21
30	Recognition of materials and damage on historical buildings using digital image classification. South African Journal of Science, 2015, 111 , 1 -9.	0.3	19
31	A novel spectral index to automatically extract road networks from WorldView-2 satellite imagery. Egyptian Journal of Remote Sensing and Space Science, 2015, 18, 27-33.	1.1	37
32	Developing Hyperspectral Vegetation Indices for Identifying Seagrass Species and Cover Classes. Journal of Coastal Research, 2015, 313, 595-615.	0.1	13
33	Evaluation of state and community/private forests in Punjab, Pakistan using geospatial data and related techniques. Forest Ecosystems, 2015, 2, .	1.3	10
34	Bioenergy Crop Identification at Field Scale Using VHR Airborne CIR Imagery. Photogrammetric Engineering and Remote Sensing, 2015, 81, 669-677.	0.3	0
35	Fine spatial resolution residential land-use data for small-area population mapping: a case study in Riyadh, Saudi Arabia. International Journal of Remote Sensing, 2015, 36, 4315-4331.	1.3	10
36	A new combination classification of pixel- and object-based methods. International Journal of Remote Sensing, 2015, 36, 5842-5868.	1.3	12

#	Article	IF	Citations
37	Analysis of Oblique Aerial Images for Land Cover and Point Cloud Classification in an Urban Environment. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 1304-1319.	2.7	66
38	Urban Land Cover Change Modelling Using Time-Series Satellite Images: A Case Study of Urban Growth in Five Cities of Saudi Arabia. Remote Sensing, 2016, 8, 838.	1.8	57
39	Mapping Complex Urban Land Cover from Spaceborne Imagery: The Influence of Spatial Resolution, Spectral Band Set and Classification Approach. Remote Sensing, 2016, 8, 88.	1.8	89
40	Object-Oriented Method for Rural Residential Land Extraction in the Hilly Areas of Southern China Using RapidEye Data. Journal of Resources and Ecology, 2016, 7, 291-300.	0.2	0
41	An efficient unsupervised index based approach for mapping urban vegetation from IKONOS imagery. International Journal of Applied Earth Observation and Geoinformation, 2016, 50, 211-220.	1.4	34
42	Enhancing the performance of regional land cover mapping. International Journal of Applied Earth Observation and Geoinformation, 2016, 52, 422-432.	1.4	23
43	Mapping <i>Robinia pseudoacacia</i> forest health in the Yellow River delta by using high-resolution IKONOS imagery and object-based image analysis. Journal of Applied Remote Sensing, 2016, 10, 045022.	0.6	8
44	Mapping urban growth of the capital city of Honduras from Landsat data using the impervious surface fraction algorithm. Geocarto International, 2016, 31, 328-341.	1.7	6
45	A new approach for land cover classification and change analysis: Integrating backdating and an object-based method. Remote Sensing of Environment, 2016, 177, 37-47.	4.6	144
46	Urban building extraction through object-based image classification assisted by digital surface model and zoning map. International Journal of Image and Data Fusion, 2016, 7, 63-82.	0.8	10
47	Land-cover classification and analysis of change using machine-learning classifiers and multi-temporal remote sensing imagery. Arabian Journal of Geosciences, 2017, 10, 1.	0.6	78
48	C_AssesSeg Concurrent Computing Version of AssesSeg: A Benchmark Between the New and Previous Version. Lecture Notes in Computer Science, 2017, , 45-56.	1.0	0
49	Mapping and Monitoring Urban Ecosystem Services Using Multitemporal High-Resolution Satellite Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 669-680.	2.3	30
50	Evaluation of Image Classification Algorithms on Hyperion and ASTER Data for Land Cover Classification. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2017, 87, 855-865.	0.8	5
51	An Object-Based Semantic Classification Method for High Resolution Remote Sensing Imagery Using Ontology. Remote Sensing, 2017, 9, 329.	1.8	54
52	Entropy-Based Fusion of Water Indices and DSM Derivatives for Automatic Water Surfaces Extraction and Flood Monitoring. ISPRS International Journal of Geo-Information, 2017, 6, 301.	1.4	9
53	Mapping vegetation functional types in urban areas with WorldView-2 imagery: Integrating object-based classification with phenology. Urban Forestry and Urban Greening, 2018, 31, 230-240.	2.3	49
54	Presenting an Object-Based Approach Using Image Edges to Detect Building Boundaries from High Spatial Resolution Images. Iranian Journal of Science and Technology - Transactions of Electrical Engineering, 2018, 42, 95-105.	1.5	5

#	ARTICLE	IF	Citations
55	Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series. Remote Sensing of Environment, 2018, 210, 12-24.	4.6	163
56	A Random Forests classification method for urban land-use mapping integrating spatial metrics and texture analysis. International Journal of Remote Sensing, 2018, 39, 1175-1198.	1.3	46
57	Extraction of Buildings from Multiple-View Aerial Images Using a Feature-Level-Fusion Strategy. Remote Sensing, 2018, 10, 1947.	1.8	13
58	Urban Land Use and Land Cover Classification Using Novel Deep Learning Models Based on High Spatial Resolution Satellite Imagery. Sensors, 2018, 18, 3717.	2.1	120
59	Land use mapping based on composite regions in aerial images. International Journal of Remote Sensing, 2018, 39, 8885-8904.	1.3	3
60	An Efficient Parallel Multi-Scale Segmentation Method for Remote Sensing Imagery. Remote Sensing, 2018, 10, 590.	1.8	40
61	Assessing the potential of multi-seasonal high resolution PIéiades satellite imagery for mapping urban tree species. International Journal of Applied Earth Observation and Geoinformation, 2018, 71, 144-158.	1.4	56
62	Tracking the removal of buildings in rust belt cities with open-source geospatial data. International Journal of Applied Earth Observation and Geoinformation, 2018, 73, 471-481.	1.4	10
63	An Object Similarity-Based Thresholding Method for Urban Area Mapping from Visible Infrared Imaging Radiometer Suite Day/Night Band (VIIRS DNB) Data. Remote Sensing, 2018, 10, 263.	1.8	9
64	Spatial non-stationarity analysis to estimate dwelling units in Riyadh, Saudi Arabia. European Journal of Remote Sensing, 2018, 51, 558-571.	1.7	2
65	Effects of Training Samples and Classifiers on Classification of Landsat-8 Imagery. Journal of the Indian Society of Remote Sensing, 2018, 46, 1333-1340.	1.2	11
66	Object-based image analysis of suburban landscapes using Landsat-8 imagery. International Journal of Digital Earth, 2019, 12, 720-736.	1.6	7
67	Modelling relational contexts in GEOBIA framework for improving urban land-cover mapping. GIScience and Remote Sensing, 2019, 56, 184-209.	2.4	7
68	Transferable Object-Based Framework Based on Deep Convolutional Neural Networks for Building Extraction. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 2627-2635.	2.3	24
69	Quantitative assessment of urbanization and impacts in the complex of HuᲿ Monuments, Vietnam. Applied Geography, 2019, 112, 102096.	1.7	14
70	Optimal Methodology for Detecting Land Cover Change in a Forestry, Lakeside Environment Using NAIP Imagery. International Journal of Applied Geospatial Research, 2019, 10, 31-53.	0.2	1
71	City-wide canopy cover decline due to residential property redevelopment in Christchurch, New Zealand. Science of the Total Environment, 2019, 681, 202-210.	3.9	22
72	Forecasting near-future impacts of land use and climate change on the Zilbier river hydrological regime, northwestern Iran. Environmental Earth Sciences, 2019, 78, 1.	1.3	15

#	Article	IF	Citations
73	Multisource Hyperspectral and LiDAR Data Fusion for Urban Land-Use Mapping based on a Modified Two-Branch Convolutional Neural Network. ISPRS International Journal of Geo-Information, 2019, 8, 28.	1.4	68
74	Integration of Convolutional Neural Networks and Object-Based Post-Classification Refinement for Land Use and Land Cover Mapping with Optical and SAR Data. Remote Sensing, 2019, 11, 690.	1.8	88
75	Large-scale urban mapping using integrated geographic object-based image analysis and artificial bee colony optimization from worldview-3 data. International Journal of Remote Sensing, 2019, 40, 6796-6821.	1.3	19
76	Segmentation for Object-Based Image Analysis (OBIA): A review of algorithms and challenges from remote sensing perspective. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150, 115-134.	4.9	361
77	WorldView-2 Data for Hierarchical Object-Based Urban Land Cover Classification in Kigali: Integrating Rule-Based Approach with Urban Density and Greenness Indices. Remote Sensing, 2019, 11, 2128.	1.8	20
78	Artificial neural networks and deep learning in urban geography: A systematic review and meta-analysis. Computers, Environment and Urban Systems, 2019, 74, 244-256.	3.3	94
79	How up-scaling of remote-sensing images affects land-cover classification by comparison with multiscale satellite images. International Journal of Remote Sensing, 2019, 40, 2784-2810.	1.3	21
80	Detecting urban ecological land-cover structure using remotely sensed imagery: A multi-area study focusing on metropolitan inner cities. International Journal of Applied Earth Observation and Geoinformation, 2019, 75, 106-117.	1.4	9
81	An assessment of the impact of urbanization and land use changes in the fast-growing cities of Saudi Arabia. Geocarto International, 2019, 34, 78-97.	1.7	32
82	Spatio-temporal analysis of urban growth in selected small, medium and large Indian cities. Geocarto International, 2019, 34, 887-908.	1.7	13
83	Urban road classification in geometrically integrated high-resolution RGB aerial and laser-derived images using the artificial neural network classification method. International Journal of Image and Data Fusion, 2019, 10, 58-78.	0.8	2
84	Urban mapping needs up-to-date approaches to provide diverse perspectives of current urbanization: A novel attempt to map urban areas with nighttime light data. Landscape and Urban Planning, 2020, 195, 103709.	3.4	58
85	Updating of Land Cover Maps and Change Analysis Using GlobeLand30 Product: A Case Study in Shanghai Metropolitan Area, China. Remote Sensing, 2020, 12, 3147.	1.8	10
86	Uncertainty Analysis for Object-Based Change Detection in Very High-Resolution Satellite Images Using Deep Learning Network. Remote Sensing, 2020, 12, 2345.	1.8	13
87	Optimizing the Achievable Information Content Extraction from WorldView-4 Stereo Imagery. PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2020, 88, 449-461.	0.7	0
88	Coastal Oyster Aquaculture Area Extraction and Nutrient Loading Estimation Using a GF-2 Satellite Image. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 4934-4946.	2.3	13
89	Integrating Backdating and Transfer Learning in an Object-Based Framework for High Resolution Image Classification and Change Analysis. Remote Sensing, 2020, 12, 4094.	1.8	10
90	A new index to differentiate tree and grass based on high resolution image and object-based methods. Urban Forestry and Urban Greening, 2020, 53, 126661.	2.3	14

#	Article	IF	CITATIONS
91	The Impact of Spatial Resolution on the Classification of Vegetation Types in Highly Fragmented Planting Areas Based on Unmanned Aerial Vehicle Hyperspectral Images. Remote Sensing, 2020, 12, 146.	1.8	28
92	Spatial Coordinates Correction Based on Multi-Sensor Low-Altitude Remote Sensing Image Registration for Monitoring Forest Dynamics. IEEE Access, 2020, 8, 18483-18496.	2.6	13
93	Predicting Future Urban Flood Risk Using Land Change and Hydraulic Modeling in a River Watershed in the Central Province of Vietnam. Remote Sensing, 2021, 13, 262.	1.8	31
94	Forest Road Detection Using LiDAR Data and Hybrid Classification. Remote Sensing, 2021, 13, 393.	1.8	13
95	Validation of Visually Interpreted Corine Land Cover Classes with Spectral Values of Satellite Images and Machine Learning. Remote Sensing, 2021, 13, 857.	1.8	9
96	Assessing Deep Convolutional Neural Networks and Assisted Machine Perception for Urban Mapping. Remote Sensing, 2021, 13, 1523.	1.8	4
97	A PROCEDURE FOR IDENTIFYING INVASIVE WILD PARSNIP PLANTS BASED ON VISIBLE BANDS FROM UAV IMAGES. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLIII-B1-2021, 173-181.	0.2	1
98	Optimization of urban land cover classification using an improved Elephant Herding Optimization algorithm and random forest classifier. International Journal of Remote Sensing, 2021, 42, 5741-5763.	1.3	4
99	Exploring the relationships between tree canopy cover and socioeconomic characteristics in tropical urban systems: The case of Santo Domingo, Dominican Republic. Urban Forestry and Urban Greening, 2021, 62, 127125.	2.3	8
100	Microwave versus Optical Remote Sensing Data in Urban Footprint Mapping of the Coastal City of Jeddah, Saudi Arabia. Journal of the Indian Society of Remote Sensing, 2021, 49, 2451-2466.	1.2	4
101	Machine learning and multi-sensor data fusion for mapping lithology: A case study of Kowli-kosh area, SW Iran. Advances in Space Research, 2021, 68, 3992-4015.	1.2	14
102	Automatic cloud and cloud shadow detection in tropical areas for PlanetScope satellite images. Remote Sensing of Environment, 2021, 264, 112604.	4.6	21
103	Classification of tree species in a heterogeneous urban environment using object-based ensemble analysis and World View-2 satellite imagery. Applied Geomatics, 2021, 13, 373-387.	1.2	11
104	Object-based approach for urban land cover mapping using high spatial resolution data. E3S Web of Conferences, 2021, 227, 01001.	0.2	10
105	Optimizing Multiresolution Segmentation for Extracting Plastic Greenhouses from WorldView-3 Imagery. Smart Innovation, Systems and Technologies, 2018, , 31-40.	0.5	11
106	Analysis of 2016 Minamiaso landslides using remote sensing and geographic information system. Journal of Applied Remote Sensing, 2018, 12, 1.	0.6	4
107	Integrating structure and function: mapping the hierarchical spatial heterogeneity of urban landscapes. Ecological Processes, 2020, 9, .	1.6	21
108	Resources and Environmental Carrying Capacity Using RS and GIS. Polish Journal of Environmental Studies, 2017, 26, 2793-2800.	0.6	7

#	Article	IF	CITATIONS
109	ASSESSMENT OF MULTIRESOLUTION SEGMENTATION FOR EXTRACTING GREENHOUSES FROM WORLDVIEW-2 IMAGERY. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLI-B7, 145-152.	0.2	6
110	OPTIMIZING OBJECT-BASED CLASSIFICATION IN URBAN ENVIRONMENTS USING VERY HIGH RESOLUTION GEOEYE-1 IMAGERY. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, I-7, 99-104.	0.0	12
111	IDENTIFICATION AND MAPPING OF TREE SPECIES IN URBAN AREAS USING WORLDVIEW-2 IMAGERY. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, II-2/W2, 175-181.	0.0	14
112	COMPARISON OF DIFFERENT VEGETATION INDICES FOR VERY HIGH-RESOLUTION IMAGES, SPECIFIC CASE ULTRACAM-D IMAGERY. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XL-1/W5, 97-104.	0.2	4
113	A Framework for Geographic Object-Based Image Analysis (GEOBIA) based on geographic ontology. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XL-7/W4, 27-33.	0.2	4
114	Extracting Information of Urban Land Surface with High Resolution Remote Sensing Image. Geographical Science Research, 2021, 10, 326-335.	0.0	0
115	Extracting Vegetation Information Using QuickBird Imagery Based on AdaBoost Classifiers. Journal of Information and Computational Science, 2014, 11, 1615-1624.	0.1	0
116	Analysis of Land Cover Classification and Pattern Using Remote Sensing and Spatial Statistical Method. Journal of the Korean Association of Geographic Information Studies, 2015, 18, 100-118.	0.1	2
117	Integration of ZiYuan-3 multispectral and stereo imagery for mapping urban vegetation using the hierarchy-based classifier. International Journal of Applied Earth Observation and Geoinformation, 2021, 105, 102594.	1.4	10
118	Mapping Tree Species Using Advanced Remote Sensing Technologies: A State-of-the-Art Review and Perspective. Journal of Remote Sensing, 2021, 2021, .	3.2	29
119	High-resolution land use and land cover change analysis using GEOBIA and landscape metrics: A case of Istanbul, Turkey. Geocarto International, 2022, 37, 9071-9097.	1.7	10
120	Mapping of Urban Vegetation with High-Resolution Remote Sensing: A Review. Remote Sensing, 2022, 14, 1031.	1.8	36
121	Mapping nectar-rich pollinator floral resources using airborne multispectral imagery. Journal of Environmental Management, 2022, 313, 114942.	3.8	4
122	Optimal Methodology for Detecting Land Cover Change in a Forestry, Lakeside Environment Using NAIP Imagery. , 2022, , 617-640.		0
123	A hybrid image segmentation method for building extraction from high-resolution RGB images. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 192, 299-314.	4.9	5
124	Remote sensing image classification based on object-oriented convolutional neural network. Frontiers in Earth Science, 0, 10 , .	0.8	O
125	Google Earth Engine Üzerinde Sentinel-2 Görüntülerinin Arazi Örtüsü Haritalama Doğruluğunun İyileştirilmesi. Turkish Journal of Remote Sensing and GIS, 0, , 150-159.	0.0	0
126	Semantic segmentation recognition model for tornado-induced building damage based on satellite images. Journal of Building Engineering, 2022, 61, 105321.	1.6	3

#	Article	IF	CITATIONS
127	Multi-Level Dynamic Analysis of Landscape Patterns of Chinese Megacities during the Period of 2016–2021 Based on a Spatiotemporal Land-Cover Classification Model Using High-Resolution Satellite Imagery: A Case Study of Beijing, China. Remote Sensing, 2023, 15, 74.	1.8	2
128	Object-based classification of urban plant species from very high-resolution satellite imagery. Urban Forestry and Urban Greening, 2023, 81, 127866.	2.3	4