The crossover stress, anisotropy and the ice flow law at

Journal of Glaciology 57, 39-52 DOI: 10.3189/002214311795306619

Citation Report

#	Article	IF	CITATIONS
1	In-situquantification of ice rheology and direct measurement of the Raymond Effect at Summit, Greenland using a phase-sensitive radar. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	49
2	Microstructural evolution in the fine-grained region of the Siple Dome (Antarctica) ice core. Journal of Glaciology, 2011, 57, 1046-1056.	1.1	1
3	Effects of nonlinear rheology, temperature and anisotropy on the relationship between age and depth at ice divides. Cryosphere, 2012, 6, 1221-1229.	1.5	36
4	The crystal fabric of ice from fullâ€waveform borehole sonic logging. Journal of Geophysical Research, 2012, 117, .	3.3	35
5	Measurements and numerical simulation of fabric evolution along the Talos Dome ice core, Antarctica. Earth and Planetary Science Letters, 2012, 357-358, 168-178.	1.8	31
6	The tertiary creep of polycrystalline ice: experimental evidence for stress-dependent levels of strain-rate enhancement. Journal of Glaciology, 2012, 58, 301-314.	1.1	77
7	Characterizing the glaciological conditions at Halvfarryggen ice dome, Dronning Maud Land, Antarctica. Journal of Glaciology, 2013, 59, 9-20.	1.1	32
8	Full-depth englacial vertical ice sheet velocities measured using phase-sensitive radar. Journal of Geophysical Research F: Earth Surface, 2014, 119, 2604-2618.	1.0	37
9	Multiscale modeling of ice deformation behavior. Journal of Structural Geology, 2014, 61, 78-108.	1.0	64
10	Flow speed within the Antarctic ice sheet and its controls inferred from satellite observations. Journal of Geophysical Research F: Earth Surface, 2015, 120, 1171-1188.	1.0	57
11	Anisotropy and crystalline fabric of Whillans Ice Stream (West Antarctica) inferred from multicomponent seismic data. Journal of Geophysical Research: Solid Earth, 2015, 120, 4237-4262.	1.4	41
12	Modelled stress distributions at the Dome Summit South borehole, Law Dome, East Antarctica: a comparison of anisotropic ice flow relations. Journal of Glaciology, 2015, 61, 987-1004.	1.1	7
13	The response of fabric variations to simple shear and migration recrystallization. Journal of Glaciology, 2015, 61, 537-550.	1.1	6
14	Antarctic ice rises and rumples: Their properties and significance for ice-sheet dynamics and evolution. Earth-Science Reviews, 2015, 150, 724-745.	4.0	103
15	Evolution of Derwael Ice Rise in Dronning Maud Land, Antarctica, over the last millennia. Journal of Geophysical Research F: Earth Surface, 2015, 120, 564-579.	1.0	31
16	Structures and fabrics in glacial ice: A review. Journal of Structural Geology, 2015, 81, 1-27.	1.0	96
17	Converging flow and anisotropy cause large-scale folding in Greenland's ice sheet. Nature Communications, 2016, 7, 11427.	5.8	56
18	Approximations to seismic AVA responses: Validity and potential in glaciological applications. Geophysics, 2016, 81, WA1-WA11.	1.4	15

IF CITATIONS # ARTICLE Numerical Modeling of the Seasonal Dynamic Characteristics of the Koxkar Glacier, in West Tianshan, 0.5 19 3 China. Journal of the Geological Society of India, 2018, 92, 457-464. On the physical basis for the creep of ice: the high temperature regime. Journal of Glaciology, 2020, 66, 401-414. 1.1 Five decades of radioglaciology. Annals of Glaciology, 2020, 61, 1-13. 21 2.8 74 Crystallographic analysis of temperate ice on Rhonegletscher, Swiss Alps. Cryosphere, 2021, 15, 677-694. Quantifying the potential future contribution to global mean sea level from the Filchner–Ronne 24 1.510 basin, Antarctica. Cryosphere, 2021, 15, 4675-4702. On the nonlinear viscosity of the orthotropic bulk rheology. Journal of Glaciology, 0, , 1-6. 1.1 Grain growth inhibited during grain size-sensitive creep in polycrystalline ice: an energy dissipation-rate perspective. Physics and Chemistry of Minerals, 2022, 49, . 26 0.3 0

CITATION REPORT