Analysis of 94 Candidate Genes and 12 Endophenotypes Consortium on the Genetics of Schizophrenia

American Journal of Psychiatry 168, 930-946 DOI: 10.1176/appi.ajp.2011.10050723

Citation Report

#	Article	IF	CITATIONS
1	The genetics of cognitive impairment in schizophrenia: a phenomic perspective. Trends in Cognitive Sciences, 2011, 15, 428-435.	7.8	27
2	Molecular Etiologies of Schizophrenia: Are We Almost There Yet?. American Journal of Psychiatry, 2011, 168, 879-881.	7.2	4
3	Genetic Models of Sensorimotor Gating: Relevance to Neuropsychiatric Disorders. Current Topics in Behavioral Neurosciences, 2011, 12, 251-318.	1.7	120
4	Dissociation of accumulated genetic risk and disease severity in patients with schizophrenia. Translational Psychiatry, 2011, 1, e45-e45.	4.8	13
5	Startle reactivity and prepulse inhibition of the acoustic startle response are modulated by catechol- <i>O</i> -methyl-transferase Val ¹⁵⁸ Met polymorphism in adults with 22q11 deletion syndrome. Journal of Psychopharmacology, 2012, 26, 1548-1560.	4.0	14
6	Epigenomics in Neurobehavioral Diseases. , 2012, , 127-152.		0
7	The genetics of attention deficit/hyperactivity disorder in adults, a review. Molecular Psychiatry, 2012, 17, 960-987.	7.9	317
8	Heterogeneity of Brain Structural Variation and the Structural Imaging Endophenotypes in Schizophrenia. Neuropsychobiology, 2012, 66, 44-49.	1.9	40
9	Impairment in Functional Capacity as an Endophenotype Candidate in Severe Mental Illness. Schizophrenia Bulletin, 2012, 38, 1318-1326.	4.3	27
10	Schizophrenia risk polymorphisms in the <i>TCF4</i> gene interact with smoking in the modulation of auditory sensory gating. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6271-6276.	7.1	60
11	Glutamate and Psychosis Risk. Current Pharmaceutical Design, 2012, 18, 466-478.	1.9	34
12	An environmental analysis of genes associated with schizophrenia: hypoxia and vascular factors as interacting elements in the neurodevelopmental model. Molecular Psychiatry, 2012, 17, 1194-1205.	7.9	95
13	Biomarkers for Antipsychotic Therapies. Handbook of Experimental Pharmacology, 2012, , 339-360.	1.8	8
14	Genetics of schizophrenia from a clinicial perspective. International Review of Psychiatry, 2012, 24, 393-404.	2.8	10
15	Systems Biology, Bioinformatics, and Biomarkers in Neuropsychiatry. Frontiers in Neuroscience, 2012, 6, 187.	2.8	41
16	The involvement of Type II Neuregulin-1 in rat visuospatial learning and memory. Neuroscience Letters, 2012, 531, 131-135.	2.1	8
19	Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends in Neurosciences, 2012, 35, 57-67.	8.6	892
20	Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Molecular Psychiatry, 2012, 17, 887-905.	7.9	355

ARTICLE IF CITATIONS # Adolescent neuregulin 1 heterozygous mice display enhanced behavioural sensitivity to 4.8 10 21 methamphetamine. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2012, 39, 376-381. Genetic association study of the P300 endophenotype in schizophrenia. Schizophrenia Research, 2012, 141, 54-59. Reliable Biomarkers and Predictors of Schizophrenia and its Treatment. Psychiatric Clinics of North 23 29 1.3 America, 2012, 35, 645-659. Mutant Mouse Models in Evaluating Novel Approaches to Antipsychotic Treatment. Handbook of 1.8 Experimental Pharmacology, 2012, , 113-145. GABAB-mediated rescue of altered excitatoryâ€"inhibitory balance, gamma synchrony and behavioral 26 4.8 172 deficits following constitutive NMDAR-hypofunction. Translational Psychiatry, 2012, 2, e142-e142. Confluence of genes, environment, development, and behavior in a post Genome-Wide Association Study world. Development and Psychopathology, 2012, 24, 1195-1214. 2.3 Fronto-temporal-mesolimbic gene expression and heritable differences in amphetamine-disrupted 28 3.1 21 sensorimotor gating in rats. Psychopharmacology, 2012, 224, 349-362. Current Antipsychotics. Handbook of Experimental Pharmacology, 2012, , . 29 1.8 Deletion of Glutamate Delta-1 Receptor in Mouse Leads to Aberrant Emotional and Social Behaviors. 30 2.5 102 PLoS ONE, 2012, 7, e32969. Characterization of Neurophysiologic and Neurocognitive Biomarkers for Use in Genomic and 2.5 159 Clinical Outcome Studies of Schizophrenia. PLoS ONE, 2012, 7, e39434. Promises and challenges of translational research in neuropsychiatry., 2012, 339-358. 33 2 Neuregulin and dopamine modulation of hippocampal gamma oscillations is dependent on dopamine D4 receptors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7.1 34 13118-13123. Genetic Variations in the ADAMTS12 Gene are Associated with Schizophrenia in Puerto Rican Patients 35 3.4 13 of Spanish Descent. NeuroMolecular Medicine, 2012, 14, 53-64. Effects of $\hat{l}\pm7$ nicotinic acetylcholine receptor agonists on antipsychotic efficacy in a preclinical mouse model of psychosis. Psychopharmacology, 2012, 220, 823-833. 3.1 Genetic association analysis of ERBB4 polymorphisms with the risk of schizophrenia and SPEM 37 2.2 12 abnormality in a Korean population. Brain Research, 2012, 1466, 146-151. Serotonin 6 receptor gene and schizophrenia: caseâ€control study and metaâ€analysis. Human Psychopharmacology, 2012, 27, 63-69. Genetic Association Analysis of ITGB3 Polymorphisms with Age at Onset of Schizophrenia. Journal of 39 2.315 Molecular Neuroscience, 2013, 51, 446-453. Altered auditory processing in frontal and left temporal cortex in 22q11.2 deletion syndrome: A group 1.8 44 at high genetic risk for schizophrenia. Psychiatry Research - Neuroimaging, 2013, 212, 141-149.

#	Article	IF	CITATIONS
41	Genetics of Childhood-onset Schizophrenia. Child and Adolescent Psychiatric Clinics of North America, 2013, 22, 675-687.	1.9	23
42	Brain mechanisms for prepulse inhibition in adults with Tourette syndrome: Initial findings. Psychiatry Research - Neuroimaging, 2013, 214, 33-41.	1.8	57
43	Genes and environments in schizophrenia: The different pieces of a manifold puzzle. Neuroscience and Biobehavioral Reviews, 2013, 37, 2424-2437.	6.1	44
44	Gene variants associated with antisocial behaviour: a latent variable approach. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2013, 54, 1074-1085.	5.2	16
45	Coupling of gene expression in medial prefrontal cortex and nucleus accumbens after neonatal ventral hippocampal lesions accompanies deficits in sensorimotor gating and auditory processing in rats. Neuropharmacology, 2013, 75, 38-46.	4.1	16
46	Does originating from a genetic isolate affect the level of cognitive impairments in schizophrenia families?. Psychiatry Research, 2013, 208, 111-117.	3.3	1
47	Forebrain gene expression predicts deficits in sensorimotor gating after isolation rearing in male rats. Behavioural Brain Research, 2013, 257, 118-128.	2.2	16
48	The interaction of disrupted Type II Neuregulin 1 and chronic adolescent stress on adult anxiety- and fear-related behaviors. Neuroscience, 2013, 249, 31-42.	2.3	32
49	Sex Differences in Familiality Effects on Neurocognitive Performance in Schizophrenia. Biological Psychiatry, 2013, 73, 976-984.	1.3	17
50	Reimagining psychoses: An agnostic approach to diagnosis. Schizophrenia Research, 2013, 146, 10-16.	2.0	77
51	"Clinical judgment―and the DSMâ€5 diagnosis of major depression. World Psychiatry, 2013, 12, 89-91.	10.4	44
52	Substantial genetic link between iq and working memory: Implications for molecular genetic studies on schizophrenia. the european twin study of schizophrenia (EUTwinsS). American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2013, 162, 413-418.	1.7	18
53	Perinatal Choline Effects on Neonatal Pathophysiology Related to Later Schizophrenia Risk. American Journal of Psychiatry, 2013, 170, 290-298.	7.2	147
54	Computerized Cognitive Training Targeting Brain Plasticity in Schizophrenia. Progress in Brain Research, 2013, 207, 301-326.	1.4	15
55	Clinical Phenotypes of Psychosis in the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP). American Journal of Psychiatry, 2013, 170, 1263-1274.	7.2	282
56	Genome-Wide Linkage Analyses of 12 Endophenotypes for Schizophrenia From the Consortium on the Genetics of Schizophrenia. American Journal of Psychiatry, 2013, 170, 521-532.	7.2	114
57	Pediatric psychopharmacology: too much or too little?. World Psychiatry, 2013, 12, 118-123.	10.4	33
58	Developmental vulnerability of synapses and circuits associated with neuropsychiatric disorders. Journal of Neurochemistry, 2013, 126, 165-182.	3.9	106

#	Article	IF	CITATIONS
59	Factor Structure of Neurocognition and Functional Capacity in Schizophrenia: A Multidimensional Examination of Temporal Stability. Journal of the International Neuropsychological Society, 2013, 19, 656-663.	1.8	25
60	Between-site reliability of startle prepulse inhibition across two early psychosis consortia. NeuroReport, 2013, 24, 626-630.	1.2	6
61	BCL9 and C9orf5 Are Associated with Negative Symptoms in Schizophrenia: Meta-Analysis of Two Genome-Wide Association Studies. PLoS ONE, 2013, 8, e51674.	2.5	56
62	Evaluating the Evidence of Replication for Genetic Associations With Schizophrenia. JAMA Psychiatry, 2014, 71, 94.	11.0	2
63	Suicidality and Injury of the Prefrontal Cortex in Multiple Incidents of Mild Traumatic Brain Injury—In Reply. JAMA Psychiatry, 2014, 71, 95.	11.0	1
64	Biomarkers for drugs of abuse and neuropsychiatric disorders. , 2014, , 983-1001.		4
65	Genomeâ€wide scans of genetic variants for psychophysiological endophenotypes: A methodological overview. Psychophysiology, 2014, 51, 1207-1224.	2.4	28
66	Heritability and molecular genetic basis of electrodermal activity: A genomeâ€wide association study. Psychophysiology, 2014, 51, 1259-1271.	2.4	18
67	Heritability and molecular genetic basis of antisaccade eye tracking error rate: A genomeâ€wide association study. Psychophysiology, 2014, 51, 1272-1284.	2.4	20
68	Heritability and molecular genetic basis of acoustic startle eye blink and affectively modulated startle response: A genomeâ€wide association study. Psychophysiology, 2014, 51, 1285-1299.	2.4	35
69	Genomic substrates of neurophysiological endophenotypes: Where we've been and where we're going. Psychophysiology, 2014, 51, 1323-1324.	2.4	4
70	Neurocognitive development in 22q11.2 deletion syndrome: comparison with youth having developmental delay and medical comorbidities. Molecular Psychiatry, 2014, 19, 1205-1211.	7.9	78
71	Analysis of schizophrenia-related genes and electrophysiological measures reveals ZNF804A association with amplitude of P300b elicited by novel sounds. Translational Psychiatry, 2014, 4, e346-e346.	4.8	29
73	Electrophysiology and Psychophysiology in Psychiatry and Psychopharmacology. Current Topics in Behavioral Neurosciences, 2014, , .	1.7	2
74	Variants in the 1q21 risk region are associated with a visual endophenotype of autism and schizophrenia. Genes, Brain and Behavior, 2014, 13, 144-151.	2.2	32
75	Impaired cognitive function in idiopathic generalized epilepsy and unaffected family members: An epilepsy endophenotype. Epilepsia, 2014, 55, 835-840.	5.1	64
76	The genetics of functional disability in schizophrenia and bipolar illness: Methods and initial results for VA cooperative study #572. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2014, 165, 381-389.	1.7	36
77	Heritability and molecularâ€genetic basis of resting <scp>EEG</scp> activity: A genomeâ€wide association study. Psychophysiology, 2014, 51, 1225-1245.	2.4	46

ARTICLE IF CITATIONS # The one and the many: effects of the cell adhesion molecule pathway on neuropsychological function 4.5 18 78 in psychosis. Psychological Medicine, 2014, 44, 2177-2187. Neurocognitive Growth Charting in Psychosis Spectrum Youths. JAMA Psychiatry, 2014, 71, 366. 79 11.0 206 Pre-dispositional constitution and plastic disposition: toward a more adequate descriptive framework 80 2.0 4 for the notions of habits, learning and plasticity. Frontiers in Human Neuroscience, 2014, 8, 341. Differential Effects of Common Variants in <i>SCN2A</i>on General Cognitive Ability, Brain Physiology, and messenger RNA Expression in Schizophrenia Cases and Control Individuals. JAMA Psýchiatrý, 2014, 71, 647. Enriched Expression of GluD1 in Higher Brain Regions and Its Involvement in Parallel 82 3.6 89 Fiber–Interneuron Synapse Formation in the Cerebellum. Journal of Neuroscience, 2014, 34, 7412-7424. Cognition in schizophrenia: Past, present, and future. Schizophrenia Research: Cognition, 2014, 1, e1-e9. 1.3 Deficient prepulse inhibition in schizophrenia detected by the multi-site COGS. Schizophrenia 84 2.0 91 Research, 2014, 152, 503-512. Transcription factor 4 (TCF4) and schizophrenia: integrating the animal and the human perspective. 5.4 Cellular and Molecular Life Sciences, 2014, 71, 2815-2835. Genetic Relationships Between Schizophrenia, Bipolar Disorder, and Schizoaffective Disorder. 86 4.3 204 Schizophrenia Bulletin, 2014, 40, 504-515. The genetic contribution of the NO system at the glutamatergic post-synapse to schizophrenia: Further evidence and meta-analysis. European Neuropsychopharmacology, 2014, 24, 65-85. α7-Nicotinic Acetylcholine Receptor Agonists for Cognitive Enhancement in Schizophrenia. Annual 88 12.2 140 Review of Medicine, 2014, 65, 245-261. Neurophysiological Biomarkers Informing the Clinical Neuroscience of Schizophrenia: Mismatch Negativity and Prepulse Inhibition of Startle. Current Topics in Behavioral Neurosciences, 2014, 21, 89 34 293-314. Childhood-onset schizophrenia: what do we really know?. Health Psychology and Behavioral 90 1.8 21 Medicine, 2014, 2, 735-747. Performance in multiple domains of social cognition in parents of patients with schizophrenia. 3.3 Psychiatry Research, 2014, 220, 118-124. HPA axis genetic variation, cortisol and psychosis in major depression. Molecular Psychiatry, 2014, 19, 92 7.9 95 220-227. Suicidality and Injury of the Prefrontal Cortex in Multiple Incidents of Mild Traumatic Brain Injury. JAMA Psychiatry, 2014, 71, 94. Common genetic variation and schizophrenia polygenic risk influence neurocognitive performance in 94 young adulthood. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 1.7 52 *3*92-401. Psychometric properties of the Penn Computerized Neurocognitive Battery.. Neuropsychology, 2015, 1.3 272 29, 235-246.

#	Article	IF	CITATIONS
96	Re-visiting the nature and relationships between neurological signs and neurocognitive functions in first-episode schizophrenia: An invariance model across time. Scientific Reports, 2015, 5, 11850.	3.3	11
97	Targeting of α7 Nicotinic Acetylcholine Receptors in the Treatment of Schizophrenia and the Use of Auditory Sensory Gating as a Translational Biomarker. Current Pharmaceutical Design, 2015, 21, 3797-3806.	1.9	44
98	Effective Cessation Strategies for Smokers with Schizophrenia. International Review of Neurobiology, 2015, 124, 133-147.	2.0	20
99	Genetic Sources of Subcomponents of Event-Related Potential in the Dimension of Psychosis Analyzed From the B-SNIP Study. American Journal of Psychiatry, 2015, 172, 466-478.	7.2	23
100	Attention/vigilance in schizophrenia: Performance results from a large multi-site study of the Consortium on the Genetics of Schizophrenia (COGS). Schizophrenia Research, 2015, 163, 38-46.	2.0	62
101	Restoration of <i>Sp4</i> in Forebrain GABAergic Neurons Rescues Hypersensitivity to Ketamine in <i>Sp4</i> Hypomorphic Mice. International Journal of Neuropsychopharmacology, 2015, 18, pyv063.	2.1	4
102	Neurocognitive performance in family-based and case-control studies of schizophrenia. Schizophrenia Research, 2015, 163, 17-23.	2.0	37
103	Factor structure and heritability of endophenotypes in schizophrenia: Findings from the Consortium on the Genetics of Schizophrenia (COGS-1). Schizophrenia Research, 2015, 163, 73-79.	2.0	52
104	Schizophrenia or Schizophrenias? The Challenge of Genetic Parsing of a Complex Disorder. American Journal of Psychiatry, 2015, 172, 105-107.	7.2	16
105	Consortium on the Genetics of Schizophrenia (COGS) assessment of endophenotypes for schizophrenia: An introduction to this Special Issue of schizophrenia research. Schizophrenia Research, 2015, 163, 9-16.	2.0	47
106	California Verbal Learning Test-II performance in schizophrenia as a function of ascertainment strategy: Comparing the first and second phases of the Consortium on the Genetics of Schizophrenia (COGS). Schizophrenia Research, 2015, 163, 32-37.	2.0	12
107	Verbal working memory in schizophrenia from the Consortium on the Genetics of Schizophrenia (COGS) Study: The moderating role of smoking status and antipsychotic medications. Schizophrenia Research, 2015, 163, 24-31.	2.0	26
108	Robust differences in antisaccade performance exist between COGS schizophrenia cases and controls regardless of recruitment strategies. Schizophrenia Research, 2015, 163, 47-52.	2.0	16
109	The relationship between dopamine receptor D1 and cognitive performance. NPJ Schizophrenia, 2015, 1, 14002.	3.6	18
110	The importance of endophenotypes in schizophrenia research. Schizophrenia Research, 2015, 163, 1-8.	2.0	55
111	Essential role of CluD1 in dendritic spine development and CluN2B to CluN2A NMDAR subunit switch in the cortex and hippocampus reveals ability of CluN2B inhibition in correcting hyperconnectivity. Neuropharmacology, 2015, 93, 274-284.	4.1	58
112	Multivariate genetic determinants of EEG oscillations in schizophrenia and psychotic bipolar disorder from the BSNIP study. Translational Psychiatry, 2015, 5, e588-e588.	4.8	32
113	Connectome-wide network analysis of youth with Psychosis-Spectrum symptoms. Molecular Psychiatry, 2015, 20, 1508-1515.	7.9	110

#	Article	IF	CITATIONS
114	Discovering Schizophrenia Endophenotypes in Randomly Ascertained Pedigrees. Biological Psychiatry, 2015, 77, 75-83.	1.3	30
115	Sensory Processing Dysfunction in the Personal Experience and Neuronal Machinery of Schizophrenia. American Journal of Psychiatry, 2015, 172, 17-31.	7.2	306
116	Social Isolation Rearing and Sensorimotor Gating in Rat Models of Relevance to Schizophrenia. Handbook of Behavioral Neuroscience, 2016, 23, 125-138.	0.7	2
117	The Endosome Localized Arf-GAP AGAP1 Modulates Dendritic Spine Morphology Downstream of the Neurodevelopmental Disorder Factor Dysbindin. Frontiers in Cellular Neuroscience, 2016, 10, 218.	3.7	14
118	Research Review: Do motor deficits during development represent an endophenotype for schizophrenia? A metaâ€analysis. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2016, 57, 446-456.	5.2	60
119	Electrophysiological Endophenotypes for Schizophrenia. Harvard Review of Psychiatry, 2016, 24, 129-147.	2.1	37
120	Clutamate Delta-1 Receptor Regulates Metabotropic Glutamate Receptor 5 Signaling in the Hippocampus. Molecular Pharmacology, 2016, 90, 96-105.	2.3	21
121	Prioritizing schizophrenia endophenotypes for future genetic studies: An example using data from the COGS-1 family study. Schizophrenia Research, 2016, 174, 1-9.	2.0	13
122	Behavioral, Neurophysiological, and Synaptic Impairment in a Transgenic Neuregulin1 (NRG1-IV) Murine Schizophrenia Model. Journal of Neuroscience, 2016, 36, 4859-4875.	3.6	47
123	Kynurenine pathway and cognitive impairments in schizophrenia: Pharmacogenetics of galantamine and memantine. Schizophrenia Research: Cognition, 2016, 4, 4-9.	1.3	28
124	Effects of acute memantine administration on MATRICS Consensus Cognitive Battery performance in psychosis: Testing an experimental medicine strategy. Psychopharmacology, 2016, 233, 2399-2410.	3.1	23
125	Social cognition as an RDoC domain. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 132-141.	1.7	65
126	Emerging roles of GluN3-containing NMDA receptors in the CNS. Nature Reviews Neuroscience, 2016, 17, 623-635.	10.2	135
128	Positive Traits in the Bipolar Spectrum: The Space between Madness and Genius. Molecular Neuropsychiatry, 2016, 2, 198-212.	2.9	17
129	Neuregulin-1 and schizophrenia in the genome-wide association study era. Neuroscience and Biobehavioral Reviews, 2016, 68, 387-409.	6.1	68
130	Cholinergic modulation of auditory P3 event-related potentials as indexed by CHRNA4 and CHRNA7 genotype variation in healthy volunteers. Neuroscience Letters, 2016, 623, 36-41.	2.1	7
131	Emotion moderates the association between HTR2A (rs6313) genotype and antisaccade latency. Experimental Brain Research, 2016, 234, 2653-2665.	1.5	4
132	Are there glutamate abnormalities in subjects at high risk mental state for psychosis? A review of the evidence. Schizophrenia Research, 2016, 171, 166-175.	2.0	26

#	Article	IF	CITATIONS
133	Genetic assessment of additional endophenotypes from the Consortium on the Genetics of Schizophrenia Family Study. Schizophrenia Research, 2016, 170, 30-40.	2.0	65
134	Multivariate Genetic Correlates of the Auditory Paired Stimuli-Based P2 Event-Related Potential in the Psychosis Dimension From the BSNIP Study. Schizophrenia Bulletin, 2016, 42, 851-862.	4.3	10
135	Sensorimotor gating deficits are inheritable in an isolation-rearing paradigm in rats. Behavioural Brain Research, 2016, 302, 115-121.	2.2	5
136	Antipsychotic pharmacogenomics in first episode psychosis: a role for glutamate genes. Translational Psychiatry, 2016, 6, e739-e739.	4.8	53
137	Sex differences in animal models of schizophrenia shed light on the underlying pathophysiology. Neuroscience and Biobehavioral Reviews, 2016, 67, 41-56.	6.1	44
138	The Relationship of Common Risk Variants and Polygenic Risk for Schizophrenia to Sensorimotor Gating. Biological Psychiatry, 2016, 79, 988-996.	1.3	44
139	Using human brain imaging studies as a guide toward animal models of schizophrenia. Neuroscience, 2016, 321, 77-98.	2.3	26
140	The Philadelphia Neurodevelopmental Cohort: A publicly available resource for the study of normal and abnormal brain development in youth. NeuroImage, 2016, 124, 1115-1119.	4.2	268
141	Sensory encoding in Neuregulin 1 mutants. Brain Structure and Function, 2016, 221, 1067-1081.	2.3	12
142	A GluD Coming-Of-Age Story. Trends in Neurosciences, 2017, 40, 138-150.	8.6	75
143	Ionotropic glutamate receptors (iGluRs) of the delta family (GluD1 and GluD2) and synaptogenesis. Alexandria Journal of Medicine, 2017, 53, 201-206.	0.6	3
144	Habituation is altered in neuropsychiatric disorders—A comprehensive review with recommendations for experimental design and analysis. Neuroscience and Biobehavioral Reviews, 2017, 80, 286-305.	6.1	85
145	Psychophysiological endophenotypes to characterize mechanisms of known schizophrenia genetic loci. Psychological Medicine, 2017, 47, 1116-1125.	4.5	22
146	Endophenotypes, Epigenetics, Polygenicity and More: Irv Gottesman's Dynamic Legacy. Schizophrenia Bulletin, 2017, 43, 10-16.	4.3	13
147	Genome-wide association studies of smooth pursuit and antisaccade eye movements in psychotic disorders: findings from the B-SNIP study. Translational Psychiatry, 2017, 7, e1249-e1249.	4.8	31
148	The Pioneering Contributions of Irving Gottesman. Clinical Psychological Science, 2017, 5, 424-426.	4.0	0
149	NMDA Receptors in the Central Nervous System. Methods in Molecular Biology, 2017, 1677, 1-80.	0.9	105
150	Association between ErbB4 single nucleotide polymorphisms and susceptibility to schizophrenia. Medicine (United States), 2017, 96, e5920	1.0	5

#	Article	IF	CITATIONS
151	A review of molecular genetic studies of neurocognitive deficits in schizophrenia. Neuroscience and Biobehavioral Reviews, 2017, 72, 50-67.	6.1	47
152	A Gene-Based Analysis of Acoustic Startle Latency. Frontiers in Psychiatry, 2017, 8, 117.	2.6	7
153	Prediction Analysis for Transition to Schizophrenia in Individuals at Clinical High Risk for Psychosis: The Relationship of DAO, DAOA, and NRG1 Variants with Negative Symptoms and Cognitive Deficits. Frontiers in Psychiatry, 2017, 8, 292.	2.6	16
154	A Genetic Study of Psychosis in Huntington's Disease: Evidence for the Involvement of Glutamate Signaling Pathways. Journal of Huntington's Disease, 2018, 7, 51-59.	1.9	9
155	Association between schizophrenia polygenic risk and neural correlates of emotion perception. Psychiatry Research - Neuroimaging, 2018, 276, 33-40.	1.8	11
156	Association of Neuregulin-1 gene polymorphisms with neuro-cognitive features of schizophrenia patients from South India: A pilot study. Meta Gene, 2018, 16, 5-9.	0.6	Ο
157	Discovery biology of neuropsychiatric syndromes (DBNS): a center for integrating clinical medicine and basic science. BMC Psychiatry, 2018, 18, 106.	2.6	36
158	Polygenic signal for symptom dimensions and cognitive performance in patients with chronic schizophrenia. Schizophrenia Research: Cognition, 2018, 12, 11-19.	1.3	21
159	Deficient prepulse inhibition in schizophrenia in a multi-site cohort: Internal replication and extension. Schizophrenia Research, 2018, 198, 6-15.	2.0	52
160	GluD1, linked to schizophrenia, controls the burst firing of dopamine neurons. Molecular Psychiatry, 2018, 23, 691-700.	7.9	39
161	The effect of antipsychotic medications on acoustic startle latency in schizophrenia. Schizophrenia Research, 2018, 198, 28-35.	2.0	16
162	Cognitive development prior to onset of psychosis. Psychological Medicine, 2018, 48, 392-403.	4.5	86
163	Sensorimotor gating deficits in "two-hit―models of schizophrenia risk factors. Schizophrenia Research, 2018, 198, 68-83.	2.0	34
164	Neuregulin 3 promotes excitatory synapse formation on hippocampal interneurons. EMBO Journal, 2018, 37, .	7.8	45
165	Association between genetic variability of neuronal nitric oxide synthase and sensorimotor gating in humans. Nitric Oxide - Biology and Chemistry, 2018, 80, 32-36.	2.7	8
166	Ketamine independently modulated power and phase-coupling of theta oscillations in Sp4 hypomorphic mice. PLoS ONE, 2018, 13, e0193446.	2.5	6
167	Endophenotypes in Schizophrenia: Digging Deeper to Identify Genetic Mechanisms. Journal of Psychiatry and Brain Science, 2019, 4, .	0.5	14
168	Genome-wide Association of Endophenotypes for Schizophrenia From the Consortium on the Genetics of Schizophrenia (COCS) Study. JAMA Psychiatry, 2019, 76, 1274.	11.0	78

	СПАНО	N REPORT	
#	Article	IF	CITATIONS
169	A systematic review of factors that influence the efficacy of cognitive remediation therapy in schizophrenia. Australian and New Zealand Journal of Psychiatry, 2019, 53, 624-641.	2.3	30
170	Social cognitions in siblings of patients with schizophrenia: a comparison with patients with schizophrenia and healthy controls - a cross-sectional study. Asian Journal of Psychiatry, 2019, 43, 24-33.	2.0	11
171	Biomarkers for Drugs of Abuse and Neuropsychiatric Disorders. , 2019, , 911-928.		0
172	P.664 Influence of NOS1AP risk variants on the corrected QT (QTc) interval in the pharmacotherapy of schizophrenia. European Neuropsychopharmacology, 2019, 29, S449-S450.	0.7	0
173	A de novo 2q37.2 deletion encompassing AGAP1 and SH3BP4 in a patient with autism and intellectual disability. European Journal of Medical Genetics, 2019, 62, 103586.	1.3	12
174	Evaluation of the role of fatty acid-binding protein 7 in controlling schizophrenia-relevant phenotypes using newly established knockout mice. Schizophrenia Research, 2020, 217, 52-59.	2.0	10
175	Expression mapping, quantification, and complex formation of GluD1 and GluD2 glutamate receptors in adult mouse brain. Journal of Comparative Neurology, 2020, 528, 1003-1027.	1.6	33
176	Interaction of maternal choline levels and prenatal Marijuana's effects on the offspring. Psychological Medicine, 2020, 50, 1716-1726.	4.5	16
177	Genetics of Childhood-onset Schizophrenia 2019ÂUpdate. Child and Adolescent Psychiatric Clinics of North America, 2020, 29, 157-170.	1.9	21
178	Genomeâ€wide association study of cognitive performance in U.S. veterans with schizophrenia or bipolar disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2020, 183, 181-194.	1.7	17
179	Relationship of prolonged acoustic startle latency to diagnosis and biotype in the bipolar-schizophrenia network on intermediate phenotypes (B–SNIP) cohort. Schizophrenia Research, 2020, 216, 357-366.	2.0	12
180	Eye movement characteristics in schizophrenia: A recent update with clinical implications. Neuropsychopharmacology Reports, 2020, 40, 2-9.	2.3	57
181	Heritability of acoustic startle magnitude and latency from the consortium on the genetics of schizophrenia. Schizophrenia Research, 2020, 224, 33-39.	2.0	3
182	Highly Recurrent Copy Number Variations in GABRB2 Associated With Schizophrenia and Premenstrual Dysphoric Disorder. Frontiers in Psychiatry, 2020, 11, 572.	2.6	14
183	Genetic Determinants of Gating Functions: Do We Get Closer to Understanding Schizophrenia Etiopathogenesis?. Frontiers in Psychiatry, 2020, 11, 550225.	2.6	5
184	Neuronal Differentiation of Induced Pluripotent Stem Cells from Schizophrenia Patients in Two-Dimensional and in Three-Dimensional Cultures Reveals Increased Expression of the Kv4.2 Subunit DPP6 That Contributes to Decreased Neuronal Activity. Stem Cells and Development, 2020, 29, 1577-1587.	2.1	12
185	Emerging insights into the structure and function of ionotropic glutamate delta receptors. British Journal of Pharmacology, 2022, 179, 3612-3627.	5.4	12
186	Neuregulins 1, 2, and 3 Promote Early Neurite Outgrowth in ErbB4-Expressing Cortical GABAergic Interneurons. Molecular Neurobiology, 2020, 57, 3568-3588.	4.0	7

#	Article	IF	CITATIONS
187	Creativity and Bipolar Disorder: A Shared Genetic Vulnerability. Annual Review of Clinical Psychology, 2020, 16, 239-264.	12.3	25
188	Striatal glutamate delta-1 receptor regulates behavioral flexibility and thalamostriatal connectivity. Neurobiology of Disease, 2020, 137, 104746.	4.4	21
189	Neuregulin1 gene variants as a biomarker for cognitive impairments in patients with schizophrenia. European Journal of Psychiatry, 2020, 34, 11-19.	1.3	2
190	Ultrastructural localization of glutamate delta 1 (<scp>GluD1</scp>) receptor immunoreactivity in the mouse and monkey striatum. Journal of Comparative Neurology, 2021, 529, 1703-1718.	1.6	9
191	Relationship between P2XR4 Gene Variants and the Risk of Schizophrenia in South-East of Iran: A Preliminary Case-Control Study and in Silico Analysis. Iranian Journal of Public Health, 2021, 50, 978-989.	0.5	3
192	Hippocampal overexpression of NOS1AP promotes endophenotypes related to mental disorders. EBioMedicine, 2021, 71, 103565.	6.1	8
193	Bioinformatics Approach to Understanding Interacting Pathways in Neuropsychiatric Disorders. Methods in Molecular Biology, 2014, 1168, 157-172.	0.9	4
194	Factor structure of cognition and functional capacity in two studies of schizophrenia and bipolar disorder: Implications for genomic studies Neuropsychology, 2016, 30, 28-39.	1.3	33
195	A truncating Aspm allele leads to a complex cognitive phenotype and region-specific reductions in parvalbuminergic neurons. Translational Psychiatry, 2020, 10, 66.	4.8	11
196	The Genetics of Schizophrenia. RSC Drug Discovery Series, 2015, , 1-27.	0.3	3
197	Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacological Reviews, 2021, 73, 1469-1658.	16.0	237
198	Association Analysis of 94 Candidate Genes and Schizophrenia-Related Endophenotypes. PLoS ONE, 2012, 7, e29630.	2.5	124
199	Deletion of Glutamate Delta-1 Receptor in Mouse Leads to Enhanced Working Memory and Deficit in Fear Conditioning. PLoS ONE, 2013, 8, e60785.	2.5	47
200	Prolonged Ketamine Effects in Sp4 Hypomorphic Mice: Mimicking Phenotypes of Schizophrenia. PLoS ONE, 2013, 8, e66327.	2.5	27
201	MPX-004 and MPX-007: New Pharmacological Tools to Study the Physiology of NMDA Receptors Containing the GluN2A Subunit. PLoS ONE, 2016, 11, e0148129.	2.5	45
203	Common Mechanisms of Excitatory and Inhibitory Imbalance in Schizophrenia and Autism Spectrum Disorders. Current Molecular Medicine, 2015, 15, 146-167.	1.3	404
204	Schizophrenia: from Epidemiology to Rehabilitation. Clinical Practice and Epidemiology in Mental Health, 2012, 8, 52-66.	1.2	34
205	Gene environment interaction in periphery and brain converge to modulate behavioral outcomes: Insights from the SP1 transient early in life interference rat model. World Journal of Psychiatry, 2016, 6. 294.	2.7	1

#	Article	IF	Citations
206	Do apparent overlaps between schizophrenia and autistic spectrum disorders reflect superficial similarities or etiological commonalities?. North American Journal of Medicine & Science, 2011, 4, 124.	3.8	45
207	Chromosome 22q11 in a Xhosa schizophrenia population. South African Medical Journal, 2012, 102, 165.	0.6	3
208	Probing the ionotropic activity of glutamate GluD2 receptor in HEK cells with genetically-engineered photopharmacology. ELife, 2020, 9, .	6.0	15
209	Schizophrenia and Bipolar Disorder. , 2014, , 153-183.		4
211	Synaptic Abnormalities and Neuroplasticity. Handbook of Behavioral Neuroscience, 2016, , 375-390.	0.7	0
216	GABAA subunit single nucleotide polymorphisms show sex-specific association to alcohol consumption and mental distress in a Norwegian population-based sample. Psychiatry Research, 2022, 307, 114257.	3.3	4
217	Delta glutamate receptors are functional glycine- and á´serine–gated cation channels in situ. Science Advances, 2021, 7, eabk2200.	10.3	17
218	<scp>GABA_BR</scp> activation partially normalizes acute <scp>NMDAR</scp> hypofunction oscillatory abnormalities but fails to rescue sensory processing deficits. Journal of Neurochemistry, 2022, 161, 417-434.	3.9	6
219	Discovery of (<i>S</i>)-1-((2′,6-Bis(difluoromethyl)-[2,4′-bipyridin]-5-yl)oxy)-2,4-dimethylpentan-2-amine (BMS-986176/LX-9211): A Highly Selective, CNS Penetrable, and Orally Active Adaptor Protein-2 Associated Kinase 1 Inhibitor in Clinical Trials for the Treatment of Neuropathic Pain. Journal of Medicinal Chemistry, 2022, 65, 4457-4480.	6.4	12
220	Discovery and Optimization of Biaryl Alkyl Ethers as a Novel Class of Highly Selective, CNS-Penetrable, and Orally Active Adaptor Protein-2-Associated Kinase 1 (AAK1) Inhibitors for the Potential Treatment of Neuropathic Pain. Journal of Medicinal Chemistry, 2022, 65, 4534-4564.	6.4	12
228	Influence of NOS1AP Risk Variants on the Corrected QT (QTc) Interval in the Pharmacotherapy of Schizophrenia. Pharmacopsychiatry, 2022, 55, 266-273.	3.3	3
229	Loss of the Schizophrenia-linked Furin protein from Drosophila mushroom body neurons results in antipsychotic-reversible habituation deficits. Journal of Neuroscience, 0, , JN-RM-1055-22.	3.6	0
230	Ultrarare Coding Variants and Cognitive Function in Schizophrenia—Unraveling the Enduring Mysteries of Neuropsychiatric Genetics. JAMA Psychiatry, 2022, 79, 946.	11.0	2
231	Genetic Influences on Cognitive Dysfunction in Schizophrenia. Current Topics in Behavioral Neurosciences, 2022, , 291-314.	1.7	1
232	On the Use of Eye Movements in Symptom Validity Assessment of Feigned Schizophrenia. Psychological Injury and Law, 0, , .	1.6	0
233	Differences between the <scp>GluD1</scp> and <scp>GluD2</scp> receptors revealed by <scp>GluD1</scp> Xâ€ray crystallography, binding studies and molecular dynamics. FEBS Journal, 2023, 290, 3781-3801.	4.7	6
234	Disrupting the nNOS/NOS1AP interaction in the medial prefrontal cortex impairs social recognition and spatial working memory in mice. European Neuropsychopharmacology, 2023, 67, 66-79.	0.7	2
235	Self-supervised graph representation learning integrates multiple molecular networks and decodes gene-disease relationships. Patterns, 2023, 4, 100651.	5.9	2

#	Article	IF	CITATIONS
236	Visual masking deficits in schizophrenia: a view into the genetics of the disease through an endophenotype. Translational Psychiatry, 2022, 12, .	4.8	0
237	Shifting as an executive function separate from updating and inhibition in old age: Behavioral and genetic evidence. Behavioural Brain Research, 2023, 452, 114604.	2.2	0
238	The Relevance of Animal Models of Social Isolation and Social Motivation for Understanding Schizophrenia: Review and Future Directions. Schizophrenia Bulletin, 2023, 49, 1112-1126.	4.3	5
239	A pharmacogenetic study of perampanel: association between rare variants of glutamate receptor genes and outcomes. Frontiers in Genetics, 0, 14, .	2.3	0
240	Clinical features, functional consequences, and rescue pharmacology of missense <i>GRID1</i> and <i>GRID2</i> human variants. Human Molecular Genetics, 2024, 33, 355-373.	2.9	1
241	Analysis of Genetic Factors of Sporadic Schizophrenia in Family Trios Using Whole-Genome Sequencing. Russian Journal of Genetics, 2023, 59, 568-578.	0.6	0