Is the Vitamin D Receptor Found in Muscle?

Endocrinology 152, 354-363 DOI: 10.1210/en.2010-1109

Citation Report

CITATION	DEDODT

#	Article	IF	CITATIONS
1	3. Impact of Vitamin D on the Aging Population. Translational Endocrinology & Metabolism, 2011, , 73-108.	0.2	1
3	VDR activation of intracellular signaling pathways in skeletal muscle. Molecular and Cellular Endocrinology, 2011, 347, 11-16.	1.6	92
4	Translational Endocrinology & Metabolism: Aging Update. Translational Endocrinology & Metabolism, 2011, , .	0.2	0
5	Is vitamin D a determinant of muscle mass and strength?. Journal of Bone and Mineral Research, 2011, 26, 2860-2871.	3.1	102
6	Minireview: Vitamin D: Is There a Role in Extraskeletal Health?. Endocrinology, 2011, 152, 2930-2936.	1.4	92
7	Low Vitamin D Impairs Strength Recovery After Anterior Cruciate Ligament Surgery. Journal of Evidence-Based Complementary & Alternative Medicine, 2011, 16, 201-209.	1.5	32
8	Vitamin D and falls—are intermittent, high doses better?. Nature Reviews Endocrinology, 2011, 7, 695-696.	4.3	4
9	VDR and CYP27B1 are expressed in C2C12 cells and regenerating skeletal muscle: potential role in suppression of myoblast proliferation. American Journal of Physiology - Cell Physiology, 2012, 303, C396-C405.	2.1	140
10	Nutrition and sarcopenia: evidence for an interaction. Proceedings of the Nutrition Society, 2012, 71, 566-575.	0.4	58
11	Vitamin D. Current Opinion in Nephrology and Hypertension, 2012, 21, 72-79.	1.0	51
12	Identification of the vitamin D receptor in various cells of the mouse kidney. Kidney International, 2012, 81, 993-1001.	2.6	48
13	Role of vitamin D in vascular calcification: bad guy or good guy?. Nephrology Dialysis Transplantation, 2012, 27, 1704-1707.	0.4	53
14	Is Vitamin DÂa Determinant of Muscle Mass and Strength?. Yearbook of Medicine, 2012, 2012, 464-466.	0.1	0
15	Is Vitamin D a Determinant of Muscle Mass and Strength?. Yearbook of Endocrinology, 2012, 2012, 242-244.	0.0	0
16	Extraskeletal Effects of Vitamin D. Endocrinology and Metabolism Clinics of North America, 2012, 41, 571-594.	1.2	44
17	Vitamin D status: a review with implications for the pelvic floor. International Urogynecology Journal, 2012, 23, 1517-1526.	0.7	38
19	Aspects of interest on vitamin D for the traumatologist and orthopaedic surgeon. Revista Española De CirugÃa Ortopédica Y TraumatologÃa, 2012, 56, 164-173.	0.1	2
20	Vitamin D and osteoporosis-related fracture. Archives of Biochemistry and Biophysics, 2012, 523, 115-122.	1.4	19

# 21	ARTICLE Vitamin D compounds and diabetic nephropathy. Archives of Biochemistry and Biophysics, 2012, 523, 87-94.	IF 1.4	CITATIONS
22	Where is the vitamin D receptor?. Archives of Biochemistry and Biophysics, 2012, 523, 123-133.	1.4	468
23	Efficacy and safety of high dose intramuscular or oral cholecalciferol in vitamin D deficient/insufficient elderly. Maturitas, 2012, 72, 332-338.	1.0	47
24	Vitamin D Deficiency and Muscle Strength: Are They Related?. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 4366-4369.	1.8	8
25	Which Vitamin D Oral Supplement is Best for Postmenopausal Women?. Current Osteoporosis Reports, 2012, 10, 251-257.	1.5	7
26	Role of vitamin D deficiency in cardiovascular disease. Heart, 2012, 98, 609-614.	1.2	38
27	Vitamin D status in women with pelvic floor disorder symptoms. International Urogynecology Journal, 2012, 23, 1699-1705.	0.7	34
28	Vitamin D and Musculoskeletal Status in Nova Scotian Women Who Wear Concealing Clothing. Nutrients, 2012, 4, 399-412.	1.7	24
29	Relevance of Vitamin D in Bone and Muscle Health of Cancer Patients. Anti-Cancer Agents in Medicinal Chemistry, 2012, 13, 58-64.	0.9	2
30	The Nonskeletal Effects of Vitamin D: An Endocrine Society Scientific Statement. Endocrine Reviews, 2012, 33, 456-492.	8.9	611
31	Dietary Vitamin D ₃ Supplementation at 10× the Adequate Intake Improves Functional Capacity in the G93A Transgenic Mouse Model of ALS, a Pilot Study. CNS Neuroscience and Therapeutics, 2012, 18, 547-557.	1.9	44
32	Relevance of vitamin D in muscle health. Reviews in Endocrine and Metabolic Disorders, 2012, 13, 71-77.	2.6	144
33	Impact of nutrition on muscle mass, strength, and performance in older adults. Osteoporosis International, 2013, 24, 1555-1566.	1.3	236
34	Vitamin D: do we get enough?. Osteoporosis International, 2013, 24, 1567-1577.	1.3	102
35	Optimal Vitamin D Status: A Critical Analysis on the Basis of Evidence-Based Medicine. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E1283-E1304.	1.8	234
36	Vitamin D and Its Role in Skeletal Muscle. Calcified Tissue International, 2013, 92, 151-162.	1.5	221
37	Vitamin D 3 supplementation modulates inflammatory responses from the muscle damage induced by high-intensity exercise in SD rats. Cytokine, 2013, 63, 27-35.	1.4	94
38	1,25(<scp>OH</scp>) ₂ â€vitamin <scp>D</scp> ₃ enhances the stimulating effect of leucine and insulin on protein synthesis rate through <scp>A</scp> kt/ <scp>PKB</scp> and m <scp>TOR</scp> mediated pathways in murine <scp>C</scp> 2 <scp>C</scp> 12 skeletal myotubes. Molecular Nutrition and Food Research. 2013. 57. 2137-2146.	1.5	142

#	Article	IF	CITATIONS
39	The vitamin D receptor in dopamine neurons; its presence in human substantia nigra and its ontogenesis in rat midbrain. Neuroscience, 2013, 236, 77-87.	1.1	148
40	Vitamin D Deficiency-Induced Muscle Wasting Occurs through the Ubiquitin Proteasome Pathway and Is Partially Corrected by Calcium in Male Rats. Endocrinology, 2013, 154, 4018-4029.	1.4	95
41	Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. Frontiers in Neuroendocrinology, 2013, 34, 47-64.	2.5	546
42	Supplemental vitamin D enhances the recovery in peak isometric force shortly after intense exercise. Nutrition and Metabolism, 2013, 10, 69.	1.3	64
43	Vitamin D — Effects on Skeletal and Extraskeletal Health and the Need for Supplementation. Nutrients, 2013, 5, 111-148.	1.7	531
44	Is Vitamin D a Key Factor in Muscle Health?. Endocrinology, 2013, 154, 3963-3964.	1.4	6
45	1,25(OH)2vitamin D3 enhances myogenic differentiation by modulating the expression of key angiogenic growth factors and angiogenic inhibitors in C2C12 skeletal muscle cells. Journal of Steroid Biochemistry and Molecular Biology, 2013, 133, 1-11.	1.2	55
46	The Roles of Vitamin D in Skeletal Muscle: Form, Function, and Metabolism. Endocrine Reviews, 2013, 34, 33-83.	8.9	417
47	Genes and the ageing muscle: a review on genetic association studies. Age, 2013, 35, 207-233.	3.0	76
48	Hypocalcemic rachitic cardiomyopathy in infants. Journal of the Saudi Heart Association, 2013, 25, 25-33.	0.2	29
49	Vitamin D and Muscle Function: Is There a Threshold in the Relation?. Journal of the American Medical Directors Association, 2013, 14, 627.e13-627.e18.	1.2	34
50	Vitamin D and Cardiovascular disease - dilemma, delight or â€ ⁻ dont know?'. International Journal of Clinical Practice, 2013, 67, 939-942.	0.8	Ο
51	Role of VDR in 1α,25-dihydroxyvitamin D3-dependent non-genomic activation of MAPKs, Src and Akt in skeletal muscle cells. Journal of Steroid Biochemistry and Molecular Biology, 2013, 136, 125-130.	1.2	66
52	Vitamin D status in professional ballet dancers: Winter vs. summer. Journal of Science and Medicine in Sport, 2013, 16, 388-391.	0.6	50
53	ls Vitamin <scp>D</scp> Deficiency a Confounder in Alcoholic Skeletal Muscle Myopathy?. Alcoholism: Clinical and Experimental Research, 2013, 37, E209-15.	1.4	22
54	Circulating pro-inflammatory cytokines are elevated and peak power output correlates with 25-hydroxyvitamin D in vitamin D insufficient adults. European Journal of Applied Physiology, 2013, 113, 1523-1534.	1.2	43
55	Vitamin D and the Athlete: Risks, Recommendations, and Benefits. Nutrients, 2013, 5, 1856-1868.	1.7	140
56	The role of vitamin D supplementation in patients with rheumatic diseases. Nature Reviews Rheumatology, 2013, 9, 411-422.	3.5	17

ARTICLE IF CITATIONS # Vitamin D, Mitochondria, and Muscle. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 1.8 38 57 961-963. Genes, physical fitness and ageing. Ageing Research Reviews, 2013, 12, 90-102. 5.0 59 Vitamin D and Physical Performance. Sports Medicine, 2013, 43, 601-611. 3.143 A Randomized Study on the Effect of Vitamin D₃Supplementation on Skeletal Muscle Morphology and Vitamin D Receptor Concentration in Older Women. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E1927-E1935. 1.8 219 Evidence for a Specific Uptake and Retention Mechanism for 25-Hydroxyvitamin D (25OHD) in Skeletal 61 1.4 98 Muscle Cells. Endocrinology, 2013, 154, 3022-3030. Relevance of Vitamin D in Bone and Muscle Health of Cancer Patients. Anti-Cancer Agents in Medicinal Chemistry, 2013, 13, 58-64. Association between neurological and rheumatological manifestations in vitamin D deficiency and 63 0.3 2 vitamin D levels. Pakistan Journal of Medical Sciences, 2013, 29, 735-9. Vitamin D and its Metabolites and Analogs in the Management of Osteoporosis., 2013,, 1701-1737. 64 65 Nutritional Influences on Bone Health., 2013, , . 8 Vitamin D attenuates nucleoside reverse transcriptase inhibitor induced human skeletal muscle 1.0 mitochondria DNA depletion. Aids, 2013, 27, 1397-1401. Supplemental vitamin D and physical performance in COPD: a pilot randomized trial. International 68 0.9 28 Journal of COPD, 2013, 8, 97. Vitamin D and rheumatic diseases. Reumatismo, 2014, 66, 153-170. 0.4 Nutritional influences on age-related skeletal muscle loss. Proceedings of the Nutrition Society, 2014, 70 0.4 103 73, 16-33. Vitamin D Signaling in Myogenesis: Potential for Treatment of Sarcopenia. BioMed Research International, 2014, 2014, 1-13. 58 Vitamin D Receptor Agonists: Suitable Candidates as Novel Therapeutic Options in Autoimmune 72 0.9 13 Inflammatory Myopathy. BioMed Research International, 2014, 2014, 1-10. Vitamin D and Its Relationship with Obesity and Muscle. International Journal of Endocrinology, 2014, 2014, 1-11. Vitamin D Receptor and Vitamin D Action in Muscle. Endocrinology, 2014, 155, 3210-3213. 74 1.4 15 The Vitamin D Receptor (VDR) Is Expressed in Skeletal Muscle of Male Mice and Modulates 1.4 25-Hydroxyvitamin D (250HD) Uptake in Myofibers. Endocrinology, 2014, 155, 3227-3237.

#	Article	IF	CITATIONS
76	The Emerging Biomolecular Role of Vitamin D in Skeletal Muscle. Exercise and Sport Sciences Reviews, 2014, 42, 76-81.	1.6	87
77	The influence of winter vitamin D supplementation on muscle function and injury occurrence in elite ballet dancers: A controlled study. Journal of Science and Medicine in Sport, 2014, 17, 8-12.	0.6	114
78	Vitamin D Deficiency and its Role in Muscle-Bone Interactions in the Elderly. Current Osteoporosis Reports, 2014, 12, 74-81.	1.5	59
79	Biochemical Interaction Between Muscle and Bone: A Physiological Reality?. Clinical Reviews in Bone and Mineral Metabolism, 2014, 12, 27-43.	1.3	8
80	Muscle–bone interactions: basic and clinical aspects. Endocrine, 2014, 45, 165-177.	1.1	143
81	Vitamin D Signaling Regulates Proliferation, Differentiation, and Myotube Size in C2C12 Skeletal Muscle Cells. Endocrinology, 2014, 155, 347-357.	1.4	176
82	Mouse and Human BAC Transgenes Recapitulate Tissue-Specific Expression of the Vitamin D Receptor in Mice and Rescue the VDR-Null Phenotype. Endocrinology, 2014, 155, 2064-2076.	1.4	33
83	Effect of vitamin D supplementation on physical performance and activity in non-western immigrants. Endocrine Connections, 2014, 3, 224-232.	0.8	6
84	Vitamin D: Present and future. Revista Clinica Espanola, 2014, 214, 383-384.	0.2	1
85	Influence of vitamin D mushroom powder supplementation on exercise-induced muscle damage in vitamin D insufficient high school athletes. Journal of Sports Sciences, 2014, 32, 670-679.	1.0	49
86	Expression of the Vitamin D Receptor in Skeletal Muscle: Are We There Yet?. Endocrinology, 2014, 155, 3214-3218.	1.4	19
87	Vitamin D Status Is Associated With Grip Strength in Centenarians. Journal of Nutrition in Gerontology and Geriatrics, 2014, 33, 35-46.	0.4	16
88	Effects of vitamin <scp>D</scp> in skeletal muscle: falls, strength, athletic performance and insulin sensitivity. Clinical Endocrinology, 2014, 80, 169-181.	1.2	96
89	Skeletal and nonskeletal effects of vitamin D: is vitamin D a tonic for bone and other tissues?. Osteoporosis International, 2014, 25, 2347-2357.	1.3	43
90	Intracellular distribution of the vitamin D receptor in the brain: Comparison with classic target tissues and redistribution with development. Neuroscience, 2014, 268, 1-9.	1.1	90
91	Novel, Selective Vitamin D Analog Suppresses Parathyroid Hormone in Uremic Animals and Postmenopausal Women. American Journal of Nephrology, 2014, 39, 476-483.	1.4	13
92	Association of protein intake with the change of lean mass among elderly women: The Osteoporosis Risk Factor and Prevention – Fracture Prevention Study (OSTPRE-FPS). Journal of Nutritional Science, 2015, 4, e41.	0.7	56
93	Relation of serum 25-hydroxyvitamin D status with skeletal muscle mass by sex and age group among Korean adults. British Journal of Nutrition, 2015, 114, 1838-1844.	1.2	20

#	Article	IF	CITATIONS
94	Associations of 25-Hydroxyvitamin D and 1,25-Dihydroxyvitamin D With Bone Mineral Density, Bone Mineral Density Change, and Incident Nonvertebral Fracture. Journal of Bone and Mineral Research, 2015, 30, 1403-1413.	3.1	32
95	Association Between Vitamin D Status and Maximal-Intensity Exercise Performance in Junior and Collegiate Hockey Players. Journal of Strength and Conditioning Research, 2015, 29, 2513-2521.	1.0	31
96	Secondary hyperparathyroidism and its relationship with sarcopenia in elderly women. Archives of Gerontology and Geriatrics, 2015, 60, 349-353.	1.4	20
97	Vitamin D receptor protein is associated with interleukin-6 in human skeletal muscle. Endocrine, 2015, 49, 512-520.	1.1	27
98	Effects of vitamin D supplements on bone density. Journal of Endocrinological Investigation, 2015, 38, 91-94.	1.8	21
99	More than healthy bones: a review of vitamin D in muscle health. Therapeutic Advances in Musculoskeletal Disease, 2015, 7, 152-159.	1.2	37
100	Calcitriol Prevents In Vitro Vascular Smooth Muscle Cell Mineralization by Regulating Calcium-Sensing Receptor Expression. Endocrinology, 2015, 156, 1965-1974.	1.4	37
101	Vitamin D, muscle and bone: Integrating effects in development, aging and injury. Molecular and Cellular Endocrinology, 2015, 410, 3-10.	1.6	48
102	Low Serum Vitamin D Is Not Correlated With the Severity of a Rotator Cuff Tear or Retear After Arthroscopic Repair. American Journal of Sports Medicine, 2015, 43, 1743-1750.	1.9	26
103	Hypovitaminosis D and frailty: Epiphenomenon or causal?. Maturitas, 2015, 82, 328-335.	1.0	23
104	Vitamin D Receptor Ablation and Vitamin D Deficiency Result in Reduced Grip Strength, Altered Muscle Fibers, and Increased Myostatin in Mice. Calcified Tissue International, 2015, 97, 602-610.	1.5	110
105	Serum 25-Hydroxyvitamin D: A Predictor of Macrovascular and Microvascular Complications in Patients With Type 2 Diabetes. Diabetes Care, 2015, 38, 521-528.	4.3	127
106	The vitamin D receptor in the proximal renal tubule is a key regulator of serum 1α,25-dihydroxyvitamin D ₃ . American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E201-E205.	1.8	35
107	Effects of 1,25-Dihydroxyvitamin D3 and Vitamin D3 on the Expression of the Vitamin D Receptor in Human Skeletal Muscle Cells. Calcified Tissue International, 2015, 96, 256-263.	1.5	72
108	Handbook of Clinical Nutrition and Aging. , 2015, , .		15
109	Is there more to learn about functional vitamin D metabolism?. Journal of Steroid Biochemistry and Molecular Biology, 2015, 148, 3-6.	1.2	12
110	Vitamin D: Recent Advances and Implications for Athletes. Sports Medicine, 2015, 45, 213-229.	3.1	63
111	Vitamin D and muscle strength throughout the life course: a review of epidemiological and intervention studies. Journal of Human Nutrition and Dietetics, 2015, 28, 636-645.	1.3	32

#	Article	IF	CITATIONS
112	Correlation between vitamin D levels and muscle fatigue risk factors based on physical activity in healthy older adults. Clinical Interventions in Aging, 2016, 11, 513.	1.3	31
113	Vitamin D and cardiovascular prevention. Giornale De Techniche Nefrologiche & Dialitiche, 2016, 28, 197-205.	0.1	0
114	Vitamin D and/or calcium deficient diets may differentially affect muscle fiber neuromuscular junction innervation. Muscle and Nerve, 2016, 54, 1120-1132.	1.0	19
115	Short-term Administration of Alphacalcidol is Associated with More Significant Improvement of Muscular Performance in Women with Vitamin D Deficiency Compared to Native Vitamin D. Experimental and Clinical Endocrinology and Diabetes, 2016, 124, 461-465.	0.6	9
116	Closing in on Vitamin D Action in Skeletal Muscle: Early Activity in Muscle Stem Cells?. Endocrinology, 2016, 157, 48-51.	1.4	14
117	Vitamin D and cardiovascular disease prevention. Nature Reviews Cardiology, 2016, 13, 404-417.	6.1	250
119	Vitamin D and Fall Prevention: An Update. , 2016, , 197-205.		2
120	Vitamin D and spinal cord injury: should we care?. Spinal Cord, 2016, 54, 1060-1075.	0.9	15
121	Extraskeletal actions of vitamin D. Annals of the New York Academy of Sciences, 2016, 1376, 29-52.	1.8	127
122	Nonspecific binding of a frequently used vitamin D receptor (VDR) antibody: important implications for vitamin D research in human health. Endocrine, 2016, 54, 556-559.	1.1	3
123	Effects of intramuscular administration of 1α,25(OH) ₂ D ₃ during skeletal muscle regeneration on regenerative capacity, muscular fibrosis, and angiogenesis. Journal of Applied Physiology, 2016, 120, 1381-1393.	1.2	28
124	Vitamin D and insulin resistance. Clinical Endocrinology, 2016, 84, 159-171.	1.2	21
125	Mushroom Clouds for Vitamin D?. Journal of the American Society of Nephrology: JASN, 2016, 27, 1581-1584.	3.0	2
126	In vitro effects of 1α,25(OH)2D3-glycosides from Solbone A (Solanum glaucophyllum leaves extract;) Tj ETQq1 I	1 0,78431 0.8	4 rgBT /Ove
127	Vitamin D in sarcopenia: Understanding its role in pathogenesis, prevention and treatment. European Geriatric Medicine, 2016, 7, 207-213.	1.2	12
128	Monthly High-Dose Vitamin D Treatment for the Prevention of Functional Decline. JAMA Internal Medicine, 2016, 176, 175.	2.6	429
129	1α,25-Dihydroxyvitamin D3 Regulates Mitochondrial Oxygen Consumption and Dynamics in Human Skeletal Muscle Cells. Journal of Biological Chemistry, 2016, 291, 1514-1528.	1.6	164
130	Evidence for Vitamin D Receptor Expression and Direct Effects of 1α,25(OH)2D3 in Human Skeletal Muscle Precursor Cells. Endocrinology, 2016, 157, 98-111.	1.4	110

#	Article	IF	CITATIONS
131	What diseases are causally linked to vitamin D deficiency?. Archives of Disease in Childhood, 2016, 101, 185-189.	1.0	34
132	Sunlight exposure is just one of the factors which influence vitamin D status. Photochemical and Photobiological Sciences, 2017, 16, 302-313.	1.6	35
133	"Nutraceuticals―in relation to human skeletal muscle and exercise. American Journal of Physiology - Endocrinology and Metabolism, 2017, 312, E282-E299.	1.8	51
134	The effect of parathyroid hormone on the uptake and retention of 25-hydroxyvitamin D in skeletal muscle cells. Journal of Steroid Biochemistry and Molecular Biology, 2017, 173, 173-179.	1.2	27
135	Skeletal muscle vitamin D in patients with end stage osteoarthritis of the knee. Journal of Steroid Biochemistry and Molecular Biology, 2017, 173, 180-184.	1.2	17
136	Vitamin D receptor expression and associated gene signature in tumour stromal fibroblasts predict clinical outcome in colorectal cancer. Gut, 2017, 66, 1449-1462.	6.1	131
137	Vitamin-D concentrations, cardiovascular risk and events - a review of epidemiological evidence. Reviews in Endocrine and Metabolic Disorders, 2017, 18, 259-272.	2.6	59
138	Vitamin D: Musculoskeletal health. Reviews in Endocrine and Metabolic Disorders, 2017, 18, 363-371.	2.6	40
139	Vitamin D in the Spectrum of Prediabetes and Cardiovascular Autonomic Dysfunction. Journal of Nutrition, 2017, 147, jn250209.	1.3	16
140	Tumour-induced osteomalacia. Nature Reviews Disease Primers, 2017, 3, 17044.	18.1	204
141	Vitamin D: not just the bone. Evidence for beneficial pleiotropic extraskeletal effects. Eating and Weight Disorders, 2017, 22, 27-41.	1.2	127
142	Vitamin D and VDR in cancer cachexia and muscle regeneration. Oncotarget, 2017, 8, 21778-21793.	0.8	37
143	Role of Vitamin D in Myogenesis. , 0, , .		0
144	Vitamin D Status, Muscle Strength and Physical Performance Decline in Very Old Adults: A Prospective Study. Nutrients, 2017, 9, 379.	1.7	49
145	25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 exert distinct effects on human skeletal muscle function and gene expression. PLoS ONE, 2017, 12, e0170665.	1.1	65
146	Vitamin D and Urinary Incontinence among Korean Women: a Propensity Score-matched Analysis from the 2008–2009 Korean National Health and Nutrition Examination Survey. Journal of Korean Medical Science, 2017, 32, 661.	1.1	17
148	Muscle Weakness and Falls. Contemporary Endocrinology, 2018, , 205-225.	0.3	0
149	Extra-Skeletal Effects of Vitamin D. Frontiers of Hormone Research, 2018, 50, 72-88.	1.0	38

#	Article	IF	CITATIONS
150	Does nutrition play a role in the prevention and management of sarcopenia?. Clinical Nutrition, 2018, 37, 1121-1132.	2.3	279
151	1,25-Dihydroxycholecalciferol (calcitriol) modifies uptake and release of 25-hydroxycholecalciferol in skeletal muscle cells in culture. Journal of Steroid Biochemistry and Molecular Biology, 2018, 177, 109-115.	1.2	27
152	Relationships between 25(OH)D concentration, sarcopenia and HOMA-IR in postmenopausal Korean women. Climacteric, 2018, 21, 40-46.	1.1	9
153	Vitamin D and Ageing. Sub-Cellular Biochemistry, 2018, 90, 191-220.	1.0	17
154	iTRAQ analysis of a mouse acute myocardial infarction model reveals that vitamin D binding protein promotes cardiomyocyte apoptosis after hypoxia. Oncotarget, 2018, 9, 1969-1979.	0.8	9
155	Association between blood marker analyses regarding physical fitness levels in Spanish older adults: A cross-sectional study from the PHYSMED project. PLoS ONE, 2018, 13, e0206307.	1.1	6
156	Vitamin D status is associated with muscle strength and quality of life in patients with COPD: a seasonal prospective observation study. International Journal of COPD, 2018, Volume 13, 2613-2622.	0.9	21
157	The association between 25(OH)D levels, frailty status and obesity indices in older adults. PLoS ONE, 2018, 13, e0198650.	1.1	31
158	Vitamin D Brain Development and Function. , 2018, , 563-581.		1
159	Genetic predisposition score predicts the increases of knee strength and muscle mass after one-year exercise in healthy elderly. Experimental Gerontology, 2018, 111, 17-26.	1.2	16
160	Vitamin D and the Cardiovascular System. , 2018, , 545-562.		1
161	Vitamin D and Skeletal Muscle. , 2018, , 597-612.		3
162	Vitamin D, Cardiovascular Disease, and Hypertension. , 2018, , 1077-1094.		0
163	Vitamin D and Muscle Performance in Athletes. , 2018, , 1121-1130.		2
164	Mice with myocyte deletion of vitamin D receptor have sarcopenia and impaired muscle function. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 1228-1240.	2.9	79
165	No effect of 25-hydroxyvitamin D supplementation on the skeletal muscle transcriptome in vitamin D deficient frail older adults. BMC Geriatrics, 2019, 19, 151.	1.1	12
166	Relationship Between Vitamin D Status From Childhood to Early Adulthood With Body Composition in Young Australian Adults. Journal of the Endocrine Society, 2019, 3, 563-576.	0.1	2
167	Vitamin D Deficiency and Sarcopenia in Older Persons. Nutrients, 2019, 11, 2861.	1.7	179

#	Article	IF	CITATIONS
168	Relation of Serum 25-Hydroxyvitamin D Status with Skeletal Muscle Mass and Grip Strength in Patients on Peritoneal Dialysis. Journal of Nutritional Science and Vitaminology, 2019, 65, 477-482.	0.2	7
169	Nutritional Considerations for Concurrent Training. , 2019, , 229-252.		ο
170	Skeletal and Extraskeletal Actions of Vitamin D: Current Evidence and Outstanding Questions. Endocrine Reviews, 2019, 40, 1109-1151.	8.9	611
171	Nutrition and sarcopenia: A review of the evidence of nutritional influences. Critical Reviews in Food Science and Nutrition, 2019, 59, 1456-1466.	5.4	32
172	Genetic, environmental and biomarker considerations delineating the regulatory effects of vitamin D on central nervous system function. British Journal of Nutrition, 2020, 123, 41-58.	1.2	3
173	Vitamin D and Skeletal Muscle: Emerging Roles in Development, Anabolism and Repair. Calcified Tissue International, 2020, 106, 47-57.	1.5	31
174	Vitamin D binding protein is related to cardiac autonomic function and metabolic status in prediabetes. Nutrition Research, 2020, 75, 56-66.	1.3	2
175	Vitamin D Merging into Immune System-Skeletal Muscle Network: Effects on Human Health. Applied Sciences (Switzerland), 2020, 10, 5592.	1.3	5
176	An Update on Vitamin D Metabolism. International Journal of Molecular Sciences, 2020, 21, 6573.	1.8	133
177	Regulation of vitamin D system in skeletal muscle and resident myogenic stem cell during development, maturation, and ageing. Scientific Reports, 2020, 10, 8239.	1.6	21
178	Effects of vitamin D on health outcomes and sporting performance: Implications for elite and recreational athletes. Nutrition Bulletin, 2020, 45, 11-24.	0.8	8
179	Vitamin D Deficiency During Pregnancy and Autism Spectrum Disorders Development. Frontiers in Psychiatry, 2019, 10, 987.	1.3	26
180	Vitamin D: Brain and Behavior. JBMR Plus, 2021, 5, e10419.	1.3	42
181	Myogenic, genomic and nonâ€genomic influences of the vitamin D axis in skeletal muscle. Cell Biochemistry and Function, 2021, 39, 48-59.	1.4	19
182	Vitamin D Restores Skeletal Muscle Cell Remodeling and Myogenic Program: Potential Impact on Human Health. International Journal of Molecular Sciences, 2021, 22, 1760.	1.8	8
183	Vitamin D Sources, Metabolism, and Deficiency: Available Compounds and Guidelines for Its Treatment. Metabolites, 2021, 11, 255.	1.3	88
184	Vitamin D: good or bad for muscle strength?. Journal of Bone and Mineral Research, 2020, 36, 1649-1650.	3.1	1
185	Myostatin and Follistatin—New Kids on the Block in the Diagnosis of Sarcopenia in IBD and Possible Therapeutic Implications. Biomedicines, 2021, 9, 1301.	1.4	7

#	Article	IF	CITATIONS
187	Calcium and Vitamin D for Bone Health in Adults. , 2015, , 217-230.		4
188	Vitamin D3 Deficiency Differentially Affects Functional and Disease Outcomes in the G93A Mouse Model of Amyotrophic Lateral Sclerosis. PLoS ONE, 2011, 6, e29354.	1.1	40
189	Does Serum 25-Hydroxyvitamin D Influence Muscle Development during Puberty in Girls? - A 7-Year Longitudinal Study. PLoS ONE, 2013, 8, e82124.	1.1	2
190	CURRENT NUTRITIONAL RECOMMENDATIONS AND NOVEL DIETARY STRATEGIES TO MANAGE SARCOPENIA. Journal of Frailty & amp; Aging, the, 0, , 1-16.	0.8	66
191	Current vitamin D status in European and Middle East countries and strategies to prevent vitamin D deficiency: a position statement of the European Calcified Tissue Society. European Journal of Endocrinology, 2019, 180, P23-P54.	1.9	443
192	Vitamin D - A Probable Performance Boosting Mediator in Athletes. Journal of Food Science and Nutrition Therapy, 2016, 2, 019-024.	0.1	1
193	Multiple Hormonal Dysregulation as Determinant of Low Physical Performance and Mobility in Older Persons. Current Pharmaceutical Design, 2014, 20, 3119-3148.	0.9	24
194	Concealing Clothing Leading to Severe Vitamin D Deficiency, Osteomalacia and Muscle Weakness. Open Access Macedonian Journal of Medical Sciences, 2019, 7, 2146-2149.	0.1	5
195	Vitamin D status in hospitalized male patients in Ain Shams University Hospitals and relation to body composition. Egyptian Rheumatology and Rehabilitation, 2016, 43, 150-155.	0.2	1
196	Role of Vitamin D in Cardiovascular Diseases. Endocrines, 2021, 2, 417-426.	0.4	3
197	25‑hydroxyvitamin D and physical and cognitive performance in older people with chronic conditions. Polish Archives of Internal Medicine, 2012, 122, 162-169.	0.3	13
199	1,25-Dihydroxyvitamin D3 effects on the regulation of the insulin receptor gene in the hind limb muscle and heart of streptozotocin-induced diabetic rats. American Journal of Molecular Biology, 2013, 03, 87-97.	0.1	1
200	Vitamin D, Vitamin D Binding Protein, and Cardiovascular Disease. , 2013, , 107-126.		0
201	Acciones extraóseas de la vitamina D. Revista De Osteoporosis Y Metabolismo Mineral, 0, 6, 11-18.	0.3	3
203	Pathophysiology of Metabolic Syndrome: Part I—Inuence of Adiposity and Insulin Resistance. , 2015, , 36-51.		0
204	Vitamin D and Cardiovascular Calcification in Chronic Kidney Disease. , 2016, , 361-377.		0
206	Vitamin <scp>D</scp> and Skeletal Muscle: Current Concepts From Preclinical Studies. JBMR Plus, 2021, 5, e10575.	1.3	11
207	Is it reasonable to ignore vitamin D status for musculoskeletal health?. Faculty Reviews, 2020, 9, 19.	1.7	2

#	Article	IF	CITATIONS
208	Current nutritional recommendations and novel dietary strategies to manage sarcopenia. Journal of Frailty & Aging,the, 2013, 2, 38-53.	0.8	94
210	Cholecalciferol ameliorates insulin signalling and insulin regulation of enzymes involved in glucose metabolism in the rat heart. Archives of Physiology and Biochemistry, 2021, , 1-9.	1.0	2
213	Effect of a single oral dose of 600,000 IU of cholecalciferol on muscle strength: a study in young women. Journal of Endocrinological Investigation, 2013, 36, 1051-4.	1.8	4
215	Vitamin D supplementation at different doses affects the vagal component of the baroreceptor reflex and the Bezold-Jarisch reflex in eutrophic rats. Frontiers in Physiology, 0, 13, .	1.3	0
216	Vitamin D, exercise, and immune health in athletes: A narrative review. Frontiers in Immunology, 0, 13, .	2.2	9
217	Vitamin D and the Central Nervous System: Causative and Preventative Mechanisms in Brain Disorders. Nutrients, 2022, 14, 4353.	1.7	28
219	Effect of vitamin D3 vs. calcifediol on VDR concentration and fiber size in skeletal muscle. Journal of Bone and Mineral Metabolism, 2023, 41, 41-51.	1.3	3
220	Falls caused by balance disorders in the elderly with multiple systems involved: Pathogenic mechanisms and treatment strategies. Frontiers in Neurology, 0, 14, .	1.1	3
225	Vitamin D, brain development and function. , 2024, , 537-562.		1
226	Aspekte der ErnÄ ¤ rung bei kombiniertem Ausdauer- und Krafttraining. , 2023, , 259-284.		0
227	Vitamin D and skeletal muscle. , 2024, , 587-607.		0
228	Vitamin D and the cardiovascular system. , 2024, , 511-535.		0