From zero to heroâ€"Design-based systems metabolic e glutamicum for l-lysine production

Metabolic Engineering 13, 159-168 DOI: 10.1016/j.ymben.2011.01.003

Citation Report

#	Article	IF	CITATIONS
2	Metabolic engineering is key to a sustainable chemical industry. Natural Product Reports, 2011, 28, 1406.	5.2	28
3	Flux-Balance Modeling of Plant Metabolism. Frontiers in Plant Science, 2011, 2, 38.	1.7	124
4	Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum. Metabolic Engineering, 2011, 13, 617-627.	3.6	135
5	Tools for genetic manipulations in Corynebacterium glutamicum and their applications. Applied Microbiology and Biotechnology, 2011, 90, 1641-1654.	1.7	77
8	Analysis of Corynebacterium glutamicum Promoters and Their Applications. Sub-Cellular Biochemistry, 2012, 64, 203-221.	1.0	4
9	Expanding the chemical palate of cells by combining systems biology and metabolic engineering. Metabolic Engineering, 2012, 14, 289-297.	3.6	131
10	A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biology, 2012, 13, R40.	13.9	223
11	Substitution of crystallinel-lysine withl-lysine enriched fermentation broth in feed and effect on the performance of broiler chicks. Journal of Applied Animal Research, 2012, 40, 118-123.	0.4	3
12	METABOLIC MODELLING IN THE DEVELOPMENT OF CELL FACTORIES BY SYNTHETIC BIOLOGY. Computational and Structural Biotechnology Journal, 2012, 3, e201210009.	1.9	19
13	Genetic and biochemical characterization of Corynebacterium glutamicum ATP phosphoribosyltransferase and its three mutants resistant to feedback inhibition by histidine. Biochimie, 2012, 94, 829-838.	1.3	25
14	Rational improvement of the engineered isobutanol-producing Bacillus subtilis by elementary mode analysis. Microbial Cell Factories, 2012, 11, 101.	1.9	53
15	Design and testing of a synthetic biology framework for genetic engineering of Corynebacterium glutamicum. Microbial Cell Factories, 2012, 11, 147.	1.9	38
16	Recent advances in engineering the central carbon metabolism of industrially important bacteria. Microbial Cell Factories, 2012, 11, 50.	1.9	112
17	Postgenomic Approaches to Using Corynebacteria as Biocatalysts. Annual Review of Microbiology, 2012, 66, 521-550.	2.9	46
18	Bio-based production of chemicals, materials and fuels – Corynebacterium glutamicum as versatile cell factory. Current Opinion in Biotechnology, 2012, 23, 631-640.	3.3	329
19	Systems and synthetic metabolic engineering for amino acid production – the heartbeat of industrial strain development. Current Opinion in Biotechnology, 2012, 23, 718-726.	3.3	210
20	l-Valine production with minimization of by-products' synthesis in Corynebacterium glutamicum and Brevibacterium flavum. Amino Acids, 2012, 43, 2301-2311.	1.2	46
21	Systems Metabolic Engineering. , 2012, , .		11

#	Article	IF	Citations
22	Reprogramming Microbial Metabolic Pathways. Sub-Cellular Biochemistry, 2012, , .	1.0	11
23	Genome-Scale Reconstruction and Analysis of the Metabolic Network in the Hyperthermophilic Archaeon Sulfolobus Solfataricus. PLoS ONE, 2012, 7, e43401.	1.1	44
24	Intracellular Metabolite Pool Changes in Response to Nutrient Depletion Induced Metabolic Switching in Streptomyces coelicolor. Metabolites, 2012, 2, 178-194.	1.3	39
25	Genome-Scale Network Modeling. , 2012, , 1-23.		2
26	Systems Metabolic Engineering of Corynebacterium glutamicum for Biobased Production of Chemicals, Materials and Fuels. , 2012, , 151-191.		4
27	Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nature Chemical Biology, 2012, 8, 536-546.	3.9	639
28	Improved Lâ€lysine production with <i>Corynebacterium glutamicum</i> and systemic insight into citrate synthase flux and activity. Biotechnology and Bioengineering, 2012, 109, 2070-2081.	1.7	121
29	Systembiotechnologie von Corynebacterium glutamicum Nachhaltige Produktion von Lysin aus Hemicellulose. Chemie-Ingenieur-Technik, 2012, 84, 1195-1195.	0.4	0
30	Systems Metabolic Engineering von Corynebacterium glutamicum für die industrielle Bioproduktion. Chemie-Ingenieur-Technik, 2012, 84, 1403-1404.	0.4	0
31	Metabolic engineering and flux analysis of Corynebacterium glutamicum for L-serine production. Science China Life Sciences, 2012, 55, 283-290.	2.3	28
32	Integration of in vivo and in silico metabolic fluxes for improvement of recombinant protein production. Metabolic Engineering, 2012, 14, 47-58.	3.6	64
33	Construction of microbial cell factories for industrial bioprocesses. Journal of Chemical Technology and Biotechnology, 2012, 87, 445-450.	1.6	31
34	Flux analysis and metabolomics for systematic metabolic engineering of microorganisms. Biotechnology Advances, 2013, 31, 818-826.	6.0	103
35	Biotechnological production of feed nucleotides by microbial strain improvement. Process Biochemistry, 2013, 48, 1263-1270.	1.8	31
36	Systemsâ€wide analysis and engineering of metabolic pathway fluxes in bioâ€succinate producing <i>Basfia succiniciproducens</i> . Biotechnology and Bioengineering, 2013, 110, 3013-3023.	1.7	88
37	In silico aided metabolic engineering of <i>Klebsiella oxytoca</i> and fermentation optimization for enhanced 2,3-butanediol production. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 1057-1066.	1.4	42
38	Genome-scale metabolic network guided engineering of Streptomyces tsukubaensis for FK506 production improvement. Microbial Cell Factories, 2013, 12, 52.	1.9	67
39	Genome-scale reconstruction and in silico analysis of Klebsiella oxytoca for 2,3-butanediol production. Microbial Cell Factories, 2013, 12, 20.	1.9	24

# 40	ARTICLE Corynebacterium glutamicum. Microbiology Monographs, 2013, , .	IF 0.3	CITATIONS 28
41	The Role of ARGR Repressor Regulation on L-arginine Production in Corynebacterium crenatum. Applied Biochemistry and Biotechnology, 2013, 170, 587-597.	1.4	16
42	Application of Genome-Scale Metabolic Models in Metabolic Engineering. Industrial Biotechnology, 2013, 9, 203-214.	0.5	26
43	Genome-scale metabolic model in guiding metabolic engineering of microbial improvement. Applied Microbiology and Biotechnology, 2013, 97, 519-539.	1.7	50
44	The Effect of a LYSE Exporter Overexpression on l-Arginine Production in Corynebacterium crenatum. Current Microbiology, 2013, 67, 271-278.	1.0	16
45	An analysis of a â€~community-driven' reconstruction of the human metabolic network. Metabolomics, 2013, 9, 757-764.	1.4	30
46	Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks. Current Opinion in Biotechnology, 2013, 24, 965-972.	3.3	111
47	Production of l-lysine on different silage juices using genetically engineered Corynebacterium glutamicum. Journal of Biotechnology, 2013, 163, 217-224.	1.9	40
48	Platform Engineering of Corynebacterium glutamicum with Reduced Pyruvate Dehydrogenase Complex Activity for Improved Production of <scp> </scp> -Lysine, <scp> </scp> -Valine, and 2-Ketoisovalerate. Applied and Environmental Microbiology, 2013, 79, 5566-5575.	1.4	98
49	Fundamentals and Application of New Bioproduction Systems. Advances in Biochemical Engineering/Biotechnology, 2013, , .	0.6	4
50	Recent advances in recombinant protein expression by Corynebacterium, Brevibacterium, and Streptomyces: from transcription and translation regulation to secretion pathway selection. Applied Microbiology and Biotechnology, 2013, 97, 9597-9608.	1.7	30
51	Improvement of cell growth and <scp>l</scp> -lysine production by genetically modified <i>Corynebacterium glutamicum</i> during growth on molasses. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 1423-1432.	1.4	35
52	<i><scp>C</scp>orynebacterium glutamicum</i> promoters: a practical approach. Microbial Biotechnology, 2013, 6, 103-117.	2.0	46
53	Directed Multistep Biocatalysis Using Tailored Permeabilized Cells. Advances in Biochemical Engineering/Biotechnology, 2013, 137, 185-234.	0.6	15
54	Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metabolic Engineering, 2013, 15, 55-66.	3.6	251
55	Coping with complexity in metabolic engineering. Trends in Biotechnology, 2013, 31, 52-60.	4.9	29
56	In-silico-driven metabolic engineering of Pseudomonas putida for enhanced production of poly-hydroxyalkanoates. Metabolic Engineering, 2013, 15, 113-123.	3.6	160
58	Deriving metabolic engineering strategies from genomeâ€scale modeling with flux ratio constraints. Biotechnology Journal, 2013, 8, 581-594.	1.8	16

		CITATION REPORT		
#	ARTICLE		IF	Citations
59	Amino Acid Production by Corynebacterium glutamicum. Microbiology Monographs, 20	13, , 107-147.	0.3	42
60	Increased lysine production by flux coupling of the tricarboxylic acid cycle and the lysine biosynthetic pathway—Metabolic engineering of the availability of succinyl-CoA in Corglutamicum. Metabolic Engineering, 2013, 15, 184-195.	ynebacterium	3.6	106
61	Finding novel pharmaceuticals in the systems biology era using multiple effective drug t phenotypic screening and knowledge of transporters: where drug discovery went wrong fix it. FEBS Journal, 2013, 280, 5957-5980.	argets, g and how to	2.2	95
62	Systems metabolic engineering of xyloseâ€utilizing <i>Corynebacterium glutamicumof 1,5â€diaminopentane. Biotechnology Journal, 2013, 8, 557-570.</i>	> for production	1.8	106
63	SMET: Systematic multiple enzyme targeting – a method to rationally design optimal chemical overproduction. Biotechnology Journal, 2013, 8, 605-618.	strains for target	1.8	18
64	Metabolic network flux analysis for engineering plant systems. Current Opinion in Biote 2013, 24, 247-255.	chnology,	3.3	40
65	Elementary flux modes in a nutshell: Properties, calculation and applications. Biotechno 2013, 8, 1009-1016.	ogy Journal,	1.8	91
66	Microbial production of glucosamine and N-acetylglucosamine: advances and perspectiv Microbiology and Biotechnology, 2013, 97, 6149-6158.	ves. Applied	1.7	105
67	Lysine biosynthesis in microbes: relevance as drug target and prospects for β-lactam an production. Applied Microbiology and Biotechnology, 2013, 97, 3763-3772.	tibiotics	1.7	18
68	Systems metabolic engineering of Corynebacterium glutamicum for production of the c chaperone ectoine. Microbial Cell Factories, 2013, 12, 110.	hemical	1.9	84
69	Pathways at Work: Metabolic Flux Analysis of the Industrial Cell Factory Corynebacteriu glutamicum. Microbiology Monographs, 2013, , 217-237.	m	0.3	4
70	Computational evaluation of cellular metabolic costs successfully predicts genes whose is deleterious. Proceedings of the National Academy of Sciences of the United States of 110, 19166-19171.	expression America, 2013,	3.3	21
71	Systems metabolic engineering for the production of bioâ€nylon precursor. Biotechnolc 2013, 8, 513-514.	ygy Journal,	1.8	7
72	Proline addition increases the efficiency of lâ€lysine production by <i><scp>C</scp>ory glutamicum</i> . Engineering in Life Sciences, 2013, 13, 393-398.	nebacterium	2.0	3
73	Comparison and improvement of algorithms for computing minimal cut sets. BMC Bioir 2013, 14, 318.	formatics,	1.2	22
74	Metabolic analyses elucidate non-trivial gene targets for amplifying dihydroartemisinic a production in yeast. Frontiers in Microbiology, 2013, 4, 200.	cid	1.5	12
75	Reliable Metabolic Flux Estimation in Escherichia coli Central Carbon Metabolism Using Free Amino Acids. Metabolites, 2014, 4, 408-420.	Intracellular	1.3	19
77	Metabolic engineering of microorganisms for the production of L-arginine and its deriva Microbial Cell Factories, 2014, 13, 166.	tives.	1.9	43

#	Article	IF	CITATIONS
79	Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds. Microbial Cell Factories, 2014, 13, 126.	1.9	126
80	Production of medium chain length polyhydroxyalkanoate in metabolic flux optimized Pseudomonas putida. Microbial Cell Factories, 2014, 13, 88.	1.9	98
81	Production of scopularide A in submerged culture with Scopulariopsis brevicaulis. Microbial Cell Factories, 2014, 13, 89.	1.9	10
82	Identifying target processes for microbial electrosynthesis by elementary mode analysis. BMC Bioinformatics, 2014, 15, 410.	1.2	80
83	OpenFLUX2: 13C-MFA modeling software package adjusted for the comprehensive analysis of single and parallel labeling experiments. Microbial Cell Factories, 2014, 13, 152.	1.9	29
84	FastPros: screening of reaction knockout strategies for metabolic engineering. Bioinformatics, 2014, 30, 981-987.	1.8	43
85	Taking Control over Control: Use of Product Sensing in Single Cells to Remove Flux Control at Key Enzymes in Biosynthesis Pathways. ACS Synthetic Biology, 2014, 3, 21-29.	1.9	125
86	Current topics in the biotechnological production of essential amino acids, functional amino acids, and dipeptides. Current Opinion in Biotechnology, 2014, 26, 38-44.	3.3	91
87	The optimisation and application of a metabolite profiling procedure for the metabolic phenotyping of Bacillus species. Metabolomics, 2014, 10, 77-90.	1.4	14
88	Metabolomics and systems pharmacology: why and how to model the human metabolic network for drug discovery. Drug Discovery Today, 2014, 19, 171-182.	3.2	140
89	Transformation of Biomass into Commodity Chemicals Using Enzymes or Cells. Chemical Reviews, 2014, 114, 1871-1908.	23.0	365
90	Synthetic promoter libraries for Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2014, 98, 2617-2623.	1.7	92
91	A method for gene amplification and simultaneous deletion in Corynebacterium glutamicum genome without any genetic markers. Plasmid, 2014, 72, 9-17.	0.4	16
92	Kinetic models in industrial biotechnology – Improving cell factory performance. Metabolic Engineering, 2014, 24, 38-60.	3.6	238
93	Improvement of L-lysine production combines with minimization of by-products synthesis in <i>Corynebacterium glutamicum</i> . Journal of Chemical Technology and Biotechnology, 2014, 89, 1924-1933.	1.6	18
94	Novel pathways and products from 2-keto acids. Current Opinion in Biotechnology, 2014, 29, 1-7.	3.3	30
95	From zero to hero – Production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metabolic Engineering, 2014, 25, 113-123.	3.6	246
96	FERMENTATION (INDUSTRIAL) Production of Amino Acids. , 2014, , 778-784.		8

ARTICLE IF CITATIONS # Efficient search, mapping, and optimization of multiâ€protein genetic systems in diverse bacteria. 97 3.2 193 Molecular Systems Biology, 2014, 10, 731. 9.15 Synthetic Biology Approaches for Organic Synthesis., 2014, , 390-420. 99 The Family Corynebacteriaceae., 2014, , 239-277. 7 A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. Metabolic Engineering, 2014, 25, 30-37. 100 Metabolic engineering of Corynebacterium glutamicum for L-arginine production. Nature 102 209 5.8 Communications, 2014, 5, 4618. Generation of branched-chain amino acids resistant Corynebacterium glutamicum acetohydroxy acid synthase by site-directed mutagenesis. Biotechnology and Bioprocess Engineering, 2014, 19, 456-467. 1.4 Metabolic engineering Corynebacterium glutamicum for the l-lysine production by increasing the flux 104 1.2 52 into l-lysine biosynthetic pathway. Amino Acids, 2014, 46, 2165-2175. Identification of novel knockout and up-regulated targets for improving isoprenoid production in E. 1.1 coli. Biotechnology Letters, 2014, 36, 1021-1027. Effect of Cofactor Folate on the Growth of Corynebacterium glutamicum SYPS-062 and l-Serine 106 1.4 17 Accumulation. Applied Biochemistry and Biotechnology, 2014, 173, 1607-1617. Enhancing the carbon flux and NADPH supply to increase L-isoleucine production in Corynebacterium 1.4 34 glutamicum. Biotechnology and Bioprocess Éngineering, 2014, 19, 132-142. Enhancement of acetoin production in Candida glabrata by in silico-aided metabolic engineering. 108 1.9 23 Microbial Cell Factories, 2014, 13, 55. Systems metabolic engineering of <i>Escherichia coli</i> for gram scale production of the antitumor drug deoxyviolacein from glycerol. Biotechnology and Bioengineering, 2014, 111, 2280-2289. Histidine biosynthesis, its regulation and biotechnological application in 110 2.0 95 <i><scp>C</scp>orynebacterium glutamicum</i>. Microbial Biotechnology, 2014, 7, 5-25. Model based engineering of Pichia pastoris central metabolism enhances recombinant protein production. Metabolic Engineering, 2014, 24, 129-138. 3.6 Enhanced production of l-serine by deleting sdaA combined with modifying and overexpressing serA in a mutant of Corynebacterium glutamicum SYPS-062 from sucrose. Biochemical Engineering Journal, 115 19 1.8 2015, 103, 60-67. Engineering microbial cell factories: Metabolic engineering of <i>Corynebacterium glutamicum</i> 1.8 with a focus on nonâ€natural products. Biotechnology Journal, 2015, 10, 1170-1184. Lean-Proteome Strains ââ,¬â€œ Next Step in Metabolic Engineering. Frontiers in Bioengineering and 118 2.0 19 Biotechnology, 2015, 3, 11. Cell surface engineering of industrial microorganisms for biorefining applications. Biotechnology Advances, 2015, 33, 1403-1411.

#	Article	IF	CITATIONS
121	Enhanced I-lysine production from pretreated beet molasses by engineered Escherichia coli in fed-batch fermentation. Bioprocess and Biosystems Engineering, 2015, 38, 1615-1622.	1.7	17
122	Production of L-ornithine from sucrose and molasses by recombinant Corynebacterium glutamicum. Folia Microbiologica, 2015, 60, 393-398.	1.1	20
123	Co-evolution of strain design methods based on flux balance and elementary mode analysis. Metabolic Engineering Communications, 2015, 2, 85-92.	1.9	66
124	Advanced Biotechnology: Metabolically Engineered Cells for the Bioâ€Based Production of Chemicals and Fuels, Materials, and Healthâ€Care Products. Angewandte Chemie - International Edition, 2015, 54, 3328-3350.	7.2	255
125	Genetically modifying aspartate aminotransferase and aspartate ammonia-lyase affects metabolite accumulation in l-lysine producing strain derived from Corynebacterium glutamicum ATCC13032. Journal of Molecular Catalysis B: Enzymatic, 2015, 113, 82-89.	1.8	13
126	Enhanced cadaverine production from l-lysine using recombinant Escherichia coli co-overexpressing CadA and CadB. Biotechnology Letters, 2015, 37, 799-806.	1.1	75
127	Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum by expressing glutamate decarboxylase active in expanded pH range. Microbial Cell Factories, 2015, 14, 21.	1.9	95
128	Generation of mutant threonine dehydratase and its effects on isoleucine synthesis in Corynebacterium glutamicum. World Journal of Microbiology and Biotechnology, 2015, 31, 1369-1377.	1.7	8
129	Enhancement of L-Serine Production by <i>Corynebacterium glutamicum</i> SYPS-062 Directly from Sucrose. Tropical Journal of Pharmaceutical Research, 2015, 13, 2011.	0.2	2
130	Analysis of acetohydroxyacid synthase variants from branched-chain amino acids-producing strains and their effects on the synthesis of branched-chain amino acids in Corynebacterium glutamicum. Protein Expression and Purification, 2015, 109, 106-112.	0.6	17
131	Predicting genetic engineering targets with Elementary Flux Mode Analysis: a review of four current methods. New Biotechnology, 2015, 32, 534-546.	2.4	9
132	Overexpression of the phosphofructokinase encoding gene is crucial for achieving high production of D-lactate in Corynebacterium glutamicum under oxygen deprivation. Applied Microbiology and Biotechnology, 2015, 99, 4679-4689.	1.7	49
133	Dynamic metabolic engineering: New strategies for developing responsive cell factories. Biotechnology Journal, 2015, 10, 1360-1369.	1.8	155
134	Complete genome sequence of Corynebacterium glutamicum B253, a Chinese lysine-producing strain. Journal of Biotechnology, 2015, 207, 10-11.	1.9	8
135	A giant market and a powerful metabolism: l-lysine provided by Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2015, 99, 3387-3394.	1.7	193
136	Synthesis of chemicals by metabolic engineering of microbes. Chemical Society Reviews, 2015, 44, 3760-3785.	18.7	97
137	Metabolic engineering of Corynebacterium glutamicum ATCC13869 for l-valine production. Metabolic Engineering, 2015, 29, 66-75.	3.6	66
138	Modular pathway engineering of Corynebacterium glutamicum for production of the glutamate-derived compounds ornithine, proline, putrescine, citrulline, and arginine. Journal of Biotechnology, 2015, 214, 85-94.	1.9	60

#	Article	IF	CITATIONS
139	Recent advances in development of biomass pretreatment technologies used in biorefinery for the production of bio-based fuels, chemicals and polymers. Korean Journal of Chemical Engineering, 2015, 32, 1945-1959.	1.2	104
140	Systems strategies for developing industrial microbial strains. Nature Biotechnology, 2015, 33, 1061-1072.	9.4	433
141	White biotechnology: State of the art strategies for the development of biocatalysts for biorefining. Biotechnology Advances, 2015, 33, 1653-1670.	6.0	83
142	Bio-based production of monomers and polymers by metabolically engineered microorganisms. Current Opinion in Biotechnology, 2015, 36, 73-84.	3.3	126
143	Modular pathway rewiring of Saccharomyces cerevisiae enables high-level production of L-ornithine. Nature Communications, 2015, 6, 8224.	5.8	97
144	Advancing metabolic engineering through systems biology of industrial microorganisms. Current Opinion in Biotechnology, 2015, 36, 8-15.	3.3	92
145	Increased expression of pyruvate carboxylase and biotin protein ligase increases lysine production in a biotin prototrophic <i>Corynebacterium glutamicum</i> strain. Engineering in Life Sciences, 2015, 15, 73-82.	2.0	10
146	Electrifying White Biotechnology: Engineering and Economic Potential of Electricityâ€Driven Bioâ€Production. ChemSusChem, 2015, 8, 758-766.	3.6	81
147	Metabolic engineering of <i>Corynebacterium glutamicum</i> for the production of Lâ€ornithine. Biotechnology and Bioengineering, 2015, 112, 416-421.	1.7	73
148	Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering. Biotechnology Advances, 2015, 33, 1455-1466.	6.0	94
149	Metabolic engineering of strains: from industrial-scale to lab-scale chemical production. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 423-436.	1.4	50
150	Protein design and engineering of a de novo pathway for microbial production of 1,3â€propanediol from glucose. Biotechnology Journal, 2015, 10, 284-289.	1.8	51
151	Rational Design of Allosteric Regulation of Homoserine Dehydrogenase by a Nonnatural Inhibitor <scp>l</scp> -Lysine. ACS Synthetic Biology, 2015, 4, 126-131.	1.9	42
152	13C-Metabolic Flux Analysis: An Accurate Approach to Demystify Microbial Metabolism for Biochemical Production. Bioengineering, 2016, 3, 3.	1.6	16
153	Systems and Synthetic Biology for the Microbial Production of Biofuels. Current Metabolomics, 2016, 4, 5-13.	0.5	6
154	A method for simultaneous gene overexpression and inactivation in the Corynebacterium glutamicum genome. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 1417-1427.	1.4	2
155	Metabolic engineering of <i>Corynebacterium glutamicum</i> for efficient production of 5â€aminolevulinic acid. Biotechnology and Bioengineering, 2016, 113, 1284-1293.	1.7	63
156	Enhancing pentose phosphate pathway in <i>Corynebacterium glutamicum</i> to improve lâ€isoleucine production. Biotechnology and Applied Biochemistry, 2016, 63, 877-885.	1.4	29

#	Article	IF	CITATIONS
161	l -Lysine production independent of the oxidative pentose phosphate pathway by Corynebacterium glutamicum with the Streptococcus mutans gapN gene. Metabolic Engineering, 2016, 37, 1-10.	3.6	50
162	Characterization of aspartate kinase and homoserine dehydrogenase from <i>Corynebacterium glutamicum</i> IWJ001 and systematic investigation of <scp>l</scp> -isoleucine biosynthesis. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 873-885.	1.4	30
163	Recent advances in amino acid production by microbial cells. Current Opinion in Biotechnology, 2016, 42, 133-146.	3.3	118
164	Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid. Microbial Cell Factories, 2016, 15, 174.	1.9	96
165	Modification of aspartokinase III and dihydrodipicolinate synthetase increases the production of l-lysine in Escherichia coli. Biochemical Engineering Journal, 2016, 114, 79-86.	1.8	22
166	Creating metabolic demand as an engineering strategy in Pseudomonas putida – Rhamnolipid synthesis as an example. Metabolic Engineering Communications, 2016, 3, 234-244.	1.9	73
167	Attenuating l -lysine production by deletion of ddh and lysE and their effect on l -threonine and l -isoleucine production in Corynebacterium glutamicum. Enzyme and Microbial Technology, 2016, 93-94, 70-78.	1.6	36
168	Improvement of the intracellular environment for enhancing l-arginine production of Corynebacterium glutamicum by inactivation of H2O2-forming flavin reductases and optimization of ATP supply. Metabolic Engineering, 2016, 38, 310-321.	3.6	48
169	Elucidation of the regulatory role of the fructose operon reveals a novel target for enhancing the NADPH supply in Corynebacterium glutamicum. Metabolic Engineering, 2016, 38, 344-357.	3.6	18
170	Corynebacterium glutamicum for Sustainable Bioproduction: From Metabolic Physiology to Systems Metabolic Engineering. Advances in Biochemical Engineering/Biotechnology, 2016, 162, 217-263.	0.6	40
171	Biosensors for Metabolic Engineering. , 2016, , 53-70.		6
172	Decoding how a soil bacterium extracts building blocks and metabolic energy from ligninolysis provides road map for lignin valorization. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5802-E5811.	3.3	76
173	Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate. Microbial Cell Factories, 2016, 15, 154.	1.9	109
175	Increased glucose utilization and cell growth of <i>Corynebacterium glutamicum</i> by modifying the glucose-specific phosphotransferase system (PTS ^{Clc}) genes. Canadian Journal of Microbiology, 2016, 62, 983-992.	0.8	11
176	Lysine Fermentation: History and Genome Breeding. Advances in Biochemical Engineering/Biotechnology, 2016, 159, 73-102.	0.6	16
177	Biosynthesis of polyesters and polyamide building blocks using microbial fermentation and biotransformation. Reviews in Environmental Science and Biotechnology, 2016, 15, 639-663.	3.9	65
178	Systems pathway engineering of Corynebacterium crenatum for improved L-arginine production. Scientific Reports, 2016, 6, 28629.	1.6	52
179	Overexpression of transport proteins improves the production of 5-aminovalerate from l-lysine in Escherichia coli. Scientific Reports, 2016, 6, 30884.	1.6	24

#	Article	IF	CITATIONS
180	Assessment of effectiveness of Corynebacterium glutamicum promoters and their application for the enhancement of gene activity in lysine-producing bacteria. Applied Biochemistry and Microbiology, 2016, 52, 692-698.	0.3	5
181	In silico metabolic network analysis of Arabidopsis leaves. BMC Systems Biology, 2016, 10, 102.	3.0	12
182	Highâ€ŧiter biosynthesis of hyaluronic acid by recombinant <i>Corynebacterium glutamicum</i> . Biotechnology Journal, 2016, 11, 574-584.	1.8	63
183	Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol. Microbial Cell Factories, 2016, 15, 73.	1.9	70
184	Cathodes enhance Corynebacterium glutamicum growth with nitrate and promote acetate and formate production. Bioresource Technology, 2016, 216, 105-113.	4.8	5
185	Construction of a Corynebacterium glutamicum platform strain for the production of stilbenes and (2S)-flavanones. Metabolic Engineering, 2016, 38, 47-55.	3.6	156
186	Biotechnology of riboflavin. Applied Microbiology and Biotechnology, 2016, 100, 2107-2119.	1.7	123
187	Metabolic engineering of Corynebacterium glutamicum ATCC13032 to produce S -adenosyl- I -methionine. Enzyme and Microbial Technology, 2016, 83, 14-21.	1.6	26
188	Novel technologies provide more engineering strategies for amino acid-producing microorganisms. Applied Microbiology and Biotechnology, 2016, 100, 2097-2105.	1.7	8
189	Complete genome sequence of Corynebacterium glutamicum CP, a Chinese l-leucine producing strain. Journal of Biotechnology, 2016, 220, 64-65.	1.9	7
190	Pyruvate kinase deletion as an effective phenotype to enhance lysine production in Corynebacterium glutamicum ATCC13032: Redirecting the carbon flow to a precursor metabolite. Journal of Bioscience and Bioengineering, 2016, 122, 160-167.	1.1	20
191	Characterization of a Unique Pathway for 4-Cresol Catabolism Initiated by Phosphorylation in Corynebacterium glutamicum. Journal of Biological Chemistry, 2016, 291, 6583-6594.	1.6	38
192	Strategies used for genetically modifying bacterial genome: site-directed mutagenesis, gene inactivation, and gene over-expression. Journal of Zhejiang University: Science B, 2016, 17, 83-99.	1.3	16
193	Pathway construction and metabolic engineering for fermentative production of ectoine in Escherichia coli. Metabolic Engineering, 2016, 36, 10-18.	3.6	69
194	Green pathways: Metabolic network analysis of plant systems. Metabolic Engineering, 2016, 34, 1-24.	3.6	24
195	A scientific workflow framework for 13C metabolic flux analysis. Journal of Biotechnology, 2016, 232, 12-24.	1.9	18
196	<i>In Silico</i> Constraint-Based Strain Optimization Methods: the Quest for Optimal Cell Factories. Microbiology and Molecular Biology Reviews, 2016, 80, 45-67.	2.9	103
197	Improvement of the ammonia assimilation for enhancing <scp>l</scp> -arginine production of <i>Corynebacterium crenatum</i> . Journal of Industrial Microbiology and Biotechnology, 2017, 44, 443-451	1.4	19

#	Article	IF	CITATIONS
198	Effects of pyruvate kinase on the growth of Corynebacterium glutamicum and L-serine accumulation. Process Biochemistry, 2017, 55, 32-40.	1.8	11
199	Fermentative production of Lâ€pipecolic acid from glucose and alternative carbon sources. Biotechnology Journal, 2017, 12, 1600646.	1.8	58
200	l -lysine production by Bacillus methanolicus : Genome-based mutational analysis and l -lysine secretion engineering. Journal of Biotechnology, 2017, 244, 25-33.	1.9	21
201	Genetic biosensors for small-molecule products: Design and applications in high-throughput screening. Frontiers of Chemical Science and Engineering, 2017, 11, 15-26.	2.3	22
202	Synergizing 13C Metabolic Flux Analysis and Metabolic Engineering for Biochemical Production. Advances in Biochemical Engineering/Biotechnology, 2017, 162, 265-299.	0.6	7
203	Improved fermentative production of the compatible solute ectoine by Corynebacterium glutamicum from glucose and alternative carbon sources. Journal of Biotechnology, 2017, 258, 59-68.	1.9	52
204	CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nature Communications, 2017, 8, 15179.	5.8	276
205	Enhancement of rapamycin production by metabolic engineering in <i>Streptomyces hygroscopicus</i> based on genome-scale metabolic model. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 259-270.	1.4	22
206	CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum. Metabolic Engineering, 2017, 42, 157-167.	3.6	181
207	Enhancement of anaerobic lysine production in Corynebacterium glutamicum electrofermentations. Bioelectrochemistry, 2017, 117, 40-47.	2.4	29
208	1,5-Diaminopentane production from xylooligosaccharides using metabolically engineered Corynebacterium glutamicum displaying beta-xylosidase on the cell surface. Bioresource Technology, 2017, 245, 1684-1691.	4.8	38
209	Establishing an Artificial Pathway for <i>De Novo</i> Biosynthesis of Vanillyl Alcohol in <i>Escherichia coli</i> . ACS Synthetic Biology, 2017, 6, 1784-1792.	1.9	27
210	Current status on metabolic engineering for the production of l-aspartate family amino acids and derivatives. Bioresource Technology, 2017, 245, 1588-1602.	4.8	107
212	Production of Platform Chemicals from Sustainable Resources. Biofuels and Biorefineries, 2017, , .	0.5	30
213	Systems Biology of Metabolism. Annual Review of Biochemistry, 2017, 86, 245-275.	5.0	173
214	Engineering central metabolism – a grand challenge for plant biologists. Plant Journal, 2017, 90, 749-763.	2.8	78
215	Engineering photosynthetic production of L-lysine. Metabolic Engineering, 2017, 44, 273-283.	3.6	36
216	Post-genomic Studies and Systems Biology of Actinobacteria: A Brief Overview. , 2017, , 377-395.		0

#	Article	IF	CITATIONS
217	Potential Challenges and Alternative Approaches in Metabolic Engineering of Bioactive Compounds in Industrial Setup. , 2017, , 405-412.		4
218	Bio-based succinate from sucrose: High-resolution 13C metabolic flux analysis and metabolic engineering of the rumen bacterium Basfia succiniciproducens. Metabolic Engineering, 2017, 44, 198-212.	3.6	46
221	High Substrate Uptake Rates Empower Vibrio natriegens as Production Host for Industrial Biotechnology. Applied and Environmental Microbiology, 2017, 83, .	1.4	112
222	Recombineering using RecET in Corynebacterium glutamicum ATCC14067 via a self-excisable cassette. Scientific Reports, 2017, 7, 7916.	1.6	32
223	To be certain about the uncertainty: Bayesian statistics for ¹³ C metabolic flux analysis. Biotechnology and Bioengineering, 2017, 114, 2668-2684.	1.7	27
224	Metabolic engineering of isopropyl alcoholâ€producing <i>Escherichia coli</i> strains with ¹³ Câ€metabolic flux analysis. Biotechnology and Bioengineering, 2017, 114, 2782-2793.	1.7	26
225	Advances in Cadaverine Bacterial Production and Its Applications. Engineering, 2017, 3, 308-317.	3.2	81
226	Systems metabolic engineering strategies for the production of amino acids. Synthetic and Systems Biotechnology, 2017, 2, 87-96.	1.8	56
227	Influence of glutamate dehydrogenase activity on L-proline synthesis. Applied Biochemistry and Microbiology, 2017, 53, 518-523.	0.3	0
228	Rational engineering of <i>p</i> â€hydroxybenzoate hydroxylase to enable efficient gallic acid synthesis via a novel artificial biosynthetic pathway. Biotechnology and Bioengineering, 2017, 114, 2571-2580.	1.7	67
229	Structural Insights into Substrate Specificity of Cystathionine γ-Synthase from <i>Corynebacterium glutamicum</i> . Journal of Agricultural and Food Chemistry, 2017, 65, 6002-6008.	2.4	5
230	A new genome-scale metabolic model of Corynebacterium glutamicum and its application. Biotechnology for Biofuels, 2017, 10, 169.	6.2	74
231	Metabolic engineering of Escherichia coli for microbial synthesis of monolignols. Metabolic Engineering, 2017, 39, 102-109.	3.6	97
232	Recent advances in high-throughput 13C-fluxomics. Current Opinion in Biotechnology, 2017, 43, 104-109.	3.3	59
233	Mutations in MurE, the essential UDP-N-acetylmuramoylalanyl-d-glutamate 2,6-diaminopimelate ligase of Corynebacterium glutamicum: effect on l-lysine formation and analysis of systemic consequences. Biotechnology Letters, 2017, 39, 283-288.	1.1	8
234	Systems biology for understanding and engineering of heterotrophic oleaginous microorganisms. Biotechnology Journal, 2017, 12, 1600104.	1.8	19
235	Improved fermentative production of gammaâ€aminobutyric acid via the putrescine route: Systems metabolic engineering for production from glucose, amino sugars, and xylose. Biotechnology and Bioengineering, 2017, 114, 862-873.	1.7	67
236	An introduction toÂfermentation processes. , 2017, , 1-20.		6

#	Article	IF	CITATIONS
237	The isolation and improvement of industrially important microorganisms. , 2017, , 75-211.		3
238	Aeration and agitation. , 2017, , 537-618.		8
239	Metabolic Flux Analysis using 13C Isotopes: III. Significance for Systems Biology and Metabolic Engineering. Applied Biochemistry and Microbiology, 2017, 53, 827-841.	0.3	0
240	Metabolic Flux Analysis Using 13C Isotopes (13C-MFA). 1. Experimental Basis of the Method and the Present State of Investigations. Applied Biochemistry and Microbiology, 2017, 53, 733-753.	0.3	1
241	Synthetic Biology. , 2017, , 239-269.		3
242	In Silico Approaches to Metabolic Engineering. , 2017, , 161-200.		3
243	Challenges and Advances for Genetic Engineering of Non-model Bacteria and Uses in Consolidated Bioprocessing. Frontiers in Microbiology, 2017, 8, 2060.	1.5	68
244	Efficient gene editing in Corynebacterium glutamicum using the CRISPR/Cas9 system. Microbial Cell Factories, 2017, 16, 201.	1.9	66
245	Metabolic engineering of Corynebacterium glutamicum to enhance L-leucine production. African Journal of Biotechnology, 2017, 16, 1048-1060.	0.3	13
246	Biotechnological production of mono- and diamines using bacteria: recent progress, applications, and perspectives. Applied Microbiology and Biotechnology, 2018, 102, 3583-3594.	1.7	53
247	NADPH metabolism: a survey of its theoretical characteristics and manipulation strategies in amino acid biosynthesis. Critical Reviews in Biotechnology, 2018, 38, 1061-1076.	5.1	67
248	Synthetic Escherichia coli-Corynebacterium glutamicum consortia for l-lysine production from starch and sucrose. Bioresource Technology, 2018, 260, 302-310.	4.8	69
249	Rational modification of <i>Corynebacterium glutamicum</i> dihydrodipicolinate reductase to switch the nucleotideâ€cofactor specificity for increasing <scp>l</scp> â€lysine production. Biotechnology and Bioengineering, 2018, 115, 1764-1777.	1.7	21
250	Improved riboflavin production with Ashbya gossypii from vegetable oil based on 13C metabolic network analysis with combined labeling analysis by GC/MS, LC/MS, 1D, and 2D NMR. Metabolic Engineering, 2018, 47, 357-373.	3.6	50
251	Expanding lysine industry: industrial biomanufacturing of lysine and its derivatives. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 719-734.	1.4	35
252	Catalytically active inclusion bodies of L-lysine decarboxylase from E. coli for 1,5-diaminopentane production. Scientific Reports, 2018, 8, 5856.	1.6	45
253	Co-production of microbial oil and exopolysaccharide by the oleaginous yeast <i>Sporidiobolus pararoseus</i> grown in fed-batch culture. RSC Advances, 2018, 8, 3348-3356.	1.7	22
254	A RecET-assisted CRISPR–Cas9 genome editing in Corynebacterium glutamicum. Microbial Cell Factories, 2018, 17, 63	1.9	59

#	Article	IF	CITATIONS
255	Ribosomal binding site sequences and promoters for expressing glutamate decarboxylase and producing Î ³ -aminobutyrate in Corynebacterium glutamicum. AMB Express, 2018, 8, 61.	1.4	41
256	Discovery of feed-forward regulation in L-tryptophan biosynthesis and its use in metabolic engineering of E. coli for efficient tryptophan bioproduction. Metabolic Engineering, 2018, 47, 434-444.	3.6	37
257	Lysine production from the sugar alcohol mannitol: Design of the cell factory Corynebacterium glutamicum SEA-3 through integrated analysis and engineering of metabolic pathway fluxes. Metabolic Engineering, 2018, 47, 475-487.	3.6	65
258	Promoter library-based module combination (PLMC) technology for optimization of threonine biosynthesis in Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2018, 102, 4117-4130.	1.7	27
259	MACBETH: Multiplex automated Corynebacterium glutamicum base editing method. Metabolic Engineering, 2018, 47, 200-210.	3.6	139
260	Characterization of a non-phosphotransferase system for cis,cis-muconic acid production in Corynebacterium glutamicum. Biochemical and Biophysical Research Communications, 2018, 499, 279-284.	1.0	28
261	From lignin to nylon: Cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida. Metabolic Engineering, 2018, 47, 279-293.	3.6	225
262	Our microbes not only produce antibiotics, they also overproduce amino acids. Journal of Antibiotics, 2018, 71, 26-36.	1.0	57
263	Synthetic Biology – Metabolic Engineering. Advances in Biochemical Engineering/Biotechnology, 2018, , .	0.6	4
264	Modification of Corynebacterium glutamicum YILW for Isoleucine Production Improvement. Lecture Notes in Electrical Engineering, 2018, , 495-504.	0.3	0
265	Amino acids production focusing on fermentation technologies – A review. Biotechnology Advances, 2018, 36, 14-25.	6.0	205
266	Native promoters of Corynebacterium glutamicum and its application in l-lysine production. Biotechnology Letters, 2018, 40, 383-391.	1.1	25
267	Deep scanning lysine metabolism in <i>Escherichia coli</i> . Molecular Systems Biology, 2018, 14, e8371.	3.2	34
268	The colors of biotechnology: general overview and developments of white, green and blue areas. FEMS Microbiology Letters, 2018, 365, .	0.7	41
269	Current advance in bioconversion of methanol to chemicals. Biotechnology for Biofuels, 2018, 11, 260.	6.2	58
270	Systematic Analysis of Bottlenecks in a Multibranched and Multilevel Regulated Pathway: The Molecular Fundamentals of <scp>l</scp> -Methionine Biosynthesis in <i>Escherichia coli</i> . ACS Synthetic Biology, 2018, 7, 2577-2589.	1.9	59
271	A bio-based route to the carbon-5 chemical glutaric acid and to bionylon-6,5 using metabolically engineered <i>Corynebacterium glutamicum</i> . Green Chemistry, 2018, 20, 4662-4674.	4.6	78
272	CipA-mediating enzyme self-assembly to enhance the biosynthesis of pyrogallol in Escherichia coli. Applied Microbiology and Biotechnology, 2018, 102, 10005-10015.	1.7	12

#	Article	IF	CITATIONS
273	Efficient Production of the Dicarboxylic Acid Glutarate by Corynebacterium glutamicum via a Novel Synthetic Pathway. Frontiers in Microbiology, 2018, 9, 2589.	1.5	39
274	Biobased adipic acid $\hat{a} \in$ "The challenge of developing the production host. Biotechnology Advances, 2018, 36, 2248-2263.	6.0	125
275	Metabolic engineering of Corynebacterium glutamicum for anthocyanin production. Microbial Cell Factories, 2018, 17, 143.	1.9	61
276	From systems biology to metabolically engineered cells — an omics perspective on the development of industrial microbes. Current Opinion in Microbiology, 2018, 45, 180-188.	2.3	52
277	Transport and metabolic engineering of the cell factory Corynebacterium glutamicum. FEMS Microbiology Letters, 2018, 365, .	0.7	50
278	Towards better understanding of industrial cell factories: novel approaches for 13C metabolic flux analysis in complex nutrient environments. Current Opinion in Biotechnology, 2018, 54, 128-137.	3.3	33
279	Metabolic engineering of Corynebacterium glutamicum for the production of cis, cis-muconic acid from lignin. Microbial Cell Factories, 2018, 17, 115.	1.9	150
280	Rational modification of tricarboxylic acid cycle for improving l-lysine production in Corynebacterium glutamicum. Microbial Cell Factories, 2018, 17, 105.	1.9	48
281	In Silico Prediction of Large-Scale Microbial Production Performance: Constraints for Getting Proper Data-Driven Models. Computational and Structural Biotechnology Journal, 2018, 16, 246-256.	1.9	13
282	Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metabolic Engineering, 2018, 50, 122-141.	3.6	183
283	Corynebacterium glutamicum as platform for the production of hydroxybenzoic acids. Microbial Cell Factories, 2018, 17, 70.	1.9	64
284	Catalytic and Anticatalytic Snapshots of a Short-Form ATP Phosphoribosyltransferase. ACS Catalysis, 2018, 8, 5601-5610.	5.5	10
285	Alterations in the transcription factors GntR1 and RamA enhance the growth and central metabolism of Corynebacterium glutamicum. Metabolic Engineering, 2018, 48, 1-12.	3.6	30
286	Advancement of Biotechnology by Genetic Modifications. Methods in Molecular Biology, 2018, 1852, 1-43.	0.4	2
287	In silico and in vitro studies of the reduction of unsaturated α,β bonds of trans-2-hexenedioic acid and 6-amino-trans-2-hexenoic acid – Important steps towards biobased production of adipic acid. PLoS ONE, 2018, 13, e0193503.	1.1	12
288	Polymeric solvent engineering for gram/liter scale production of a water-insoluble isoflavone derivative, (S)-equol. Applied Microbiology and Biotechnology, 2018, 102, 6915-6921.	1.7	18
289	Recent advances in metabolic engineering of <i>Corynebacterium glutamicum</i> as a potential platform microorganism for biorefinery. Biofuels, Bioproducts and Biorefining, 2018, 12, 899-925.	1.9	34
290	Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical. Metabolic Engineering, 2019, 51, 99-109.	3.6	50

#	Article	IF	CITATIONS
291	A Review of the Microbial Production of Bioactive Natural Products and Biologics. Frontiers in Microbiology, 2019, 10, 1404.	1.5	323
292	Engineering Corynebacterium glutamicum for high-titer biosynthesis of hyaluronic acid. Metabolic Engineering, 2019, 55, 276-289.	3.6	71
293	Enzymatic characterization and molecular mechanism of a novel aspartokinase mutant M372I/T379W from <i>Corynebacterium pekinense</i> . RSC Advances, 2019, 9, 21344-21354.	1.7	3
294	Targeting metabolic driving and intermediate influx in lysine catabolism for high-level glutarate production. Nature Communications, 2019, 10, 3337.	5.8	44
295	Genome-driven cell engineering review: <i>in vivo</i> and <i>in silico</i> metabolic and genome engineering. Essays in Biochemistry, 2019, 63, 267-284.	2.1	13
296	A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol. Biotechnology for Biofuels, 2019, 12, 240.	6.2	343
297	Modular metabolic engineering of lysine supply for enhanced production of bacitracin in Bacillus licheniformis. Applied Microbiology and Biotechnology, 2019, 103, 8799-8812.	1.7	15
298	L-lysine production improvement: a review of the state of the art and patent landscape focusing on strain development and fermentation technologies. Critical Reviews in Biotechnology, 2019, 39, 1031-1055.	5.1	29
299	Recent advances in the applications of promoter engineering for the optimization of metabolite biosynthesis. World Journal of Microbiology and Biotechnology, 2019, 35, 33.	1.7	66
300	Systems Metabolic Engineering Strategies: Integrating Systems and Synthetic Biology with Metabolic Engineering. Trends in Biotechnology, 2019, 37, 817-837.	4.9	345
301	Metabolic engineering to improve 1,5â€diaminopentane production from cellobiose using βâ€glucosidaseâ€secreting <i>Corynebacterium glutamicum</i> . Biotechnology and Bioengineering, 2019, 116, 2640-2651.	1.7	27
302	GREACE-assisted adaptive laboratory evolution in endpoint fermentation broth enhances lysine production by Escherichia coli. Microbial Cell Factories, 2019, 18, 106.	1.9	19
303	Evolutionary Approaches for Engineering Industrially Relevant Phenotypes in Bacterial Cell Factories. Biotechnology Journal, 2019, 14, e1800439.	1.8	41
304	Metabolic Engineering of <i>Corynebacterium glutamicum</i> for Highâ€Level Ectoine Production: Design, Combinatorial Assembly, and Implementation of a Transcriptionally Balanced Heterologous Ectoine Pathway. Biotechnology Journal, 2019, 14, e1800417.	1.8	61
305	Extracellular Proteolytic Activity and Amino Acid Production by Lactic Acid Bacteria Isolated from Malaysian Foods. International Journal of Molecular Sciences, 2019, 20, 1777.	1.8	46
306	Quantifying a Biocatalytic Product from a Few Living Microbial Cells Using Microfluidic Cultivation Coupled to FT-ICR-MS. Analytical Chemistry, 2019, 91, 7012-7018.	3.2	25
307	GC-MS-based 13C metabolic flux analysis resolves the parallel and cyclic glucose metabolism of Pseudomonas putida KT2440 and Pseudomonas aeruginosa PAO1. Metabolic Engineering, 2019, 54, 35-53.	3.6	90
308	Betaine supplementation improved l-threonine fermentation of Escherichia coli THRD by upregulating zwf (glucose-6-phosphate dehydrogenase) expression. Electronic Journal of Biotechnology, 2019, 39, 67-73.	1.2	8

#	Article	IF	CITATIONS
309	Equilibrium of the intracellular redox state for improving cell growth and l-lysine yield of Corynebacterium glutamicum by optimal cofactor swapping. Microbial Cell Factories, 2019, 18, 65.	1.9	14
310	Nextâ€Generation Industrial Biotechnologyâ€Transforming the Current Industrial Biotechnology into Competitive Processes. Biotechnology Journal, 2019, 14, e1800437.	1.8	63
311	Metabolic engineering of glucose uptake systems in <i>Corynebacterium glutamicum</i> for improving the efficiency of <scp>l</scp> -lysine production. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 937-949.	1.4	30
312	A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products. Biotechnology Advances, 2019, 37, 107360.	6.0	301
313	System Metabolic Engineering Applications in Corynebacterium crenatum for l-Arginine Production. , 2019, , 331-362.		0
314	Rewiring the Central Metabolic Pathway for Highâ€Yield <scp>l</scp> â€Serine Production in <i>Corynebacterium glutamicum</i> by Using Glucose. Biotechnology Journal, 2019, 14, e1800497.	1.8	24
318	Material and Methods of Bacterial Sensing in the Process of Pharmaceutical Biomanufacturing. ACS Symposium Series, 2019, , 141-154.	0.5	0
319	Yeasts as Microbial Factories for Production of Recombinant Human Interferon Alpha 2b of Therapeutic Importance. ACS Symposium Series, 2019, , 41-56.	0.5	0
320	Bacterial Cell Surface Display. ACS Symposium Series, 2019, , 81-108.	0.5	3
321	Functional Oligosaccharides: Production and Action. ACS Symposium Series, 2019, , 155-180.	0.5	5
322	Sequestering of CO ₂ to Value-Added Products through Various Biological Processes. ACS Symposium Series, 2019, , 261-284.	0.5	2
323	Microbial Biofilm Membranes for Water Remediation and Photobiocatalysis. ACS Symposium Series, 2019, , 321-351.	0.5	10
325	Cyanobacterial Cell Factories for Improved Carotenoid Biosynthesis through a Synthetic Biology Approach. ACS Symposium Series, 2019, , 23-39.	0.5	6
326	Advances in Plant Based Biologics. ACS Symposium Series, 2019, , 57-79.	0.5	1
327	Synthetic Biology and Metabolic Engineering Approaches for Improved Production and Recovery of Bacterial Polyhydroxyalkanoates. ACS Symposium Series, 2019, , 181-207.	0.5	3
328	Electrospinning: An Efficient Biopolymer-Based Micro- and Nanofibers Fabrication Technique. ACS Symposium Series, 2019, , 209-241.	0.5	18
329	Functional Approach for the Development and Production of Novel Extreme Biocatalysts. ACS Symposium Series, 2019, , 1-22.	0.5	3
330	Rational Design of Next-Generation Therapeutic Antibodies Using Protein Engineering Tools. ACS	0.5	2

#	Article	IF	CITATIONS
331	New Trends in the Biomanufacturing of Green Surfactants: Biobased Surfactants and Biosurfactants. ACS Symposium Series, 2019, , 243-260.	0.5	13
332	Characteristics and Applications of Biodiesels and Design of Reactors for Their Industrial Manufacture. ACS Symposium Series, 2019, , 285-320.	0.5	0
333	Metabolic engineering of Corynebacterium glutamicum for l-cysteine production. Applied Microbiology and Biotechnology, 2019, 103, 1325-1338.	1.7	34
334	Efficient mining of natural NADH-utilizing dehydrogenases enables systematic cofactor engineering of lysine synthesis pathway of Corynebacterium glutamicum. Metabolic Engineering, 2019, 52, 77-86.	3.6	44
335	Transcriptomic and metabolomics analyses reveal metabolic characteristics of L-leucine- and L-valine-producing Corynebacterium glutamicum mutants. Annals of Microbiology, 2019, 69, 457-468.	1.1	9
336	Triple deletion of <i>clpC</i> , <i>porB</i> , and <i>mepA</i> enhances production of small ubiquitin-like modifier-N-terminal pro-brain natriuretic peptide in <i>Corynebacterium glutamicum</i> . Journal of Industrial Microbiology and Biotechnology, 2019, 46, 67-79.	1.4	16
337	Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metabolic Engineering, 2020, 58, 47-81.	3.6	138
338	Metabolic engineering for the production of dicarboxylic acids and diamines. Metabolic Engineering, 2020, 58, 2-16.	3.6	104
339	Harnessing biocompatible chemistry for developing improved and novel microbial cell factories. Microbial Biotechnology, 2020, 13, 54-66.	2.0	8
340	Microbial production of bioactive chemicals for human health. Current Opinion in Food Science, 2020, 32, 9-16.	4.1	15
341	A Biorefinery approach towards development of renewable platform chemicals from sustainable biomass. , 2020, , 135-147.		4
342	A novel expression vector for Corynebacterium glutamicum with an auxotrophy complementation system. Plasmid, 2020, 107, 102476.	0.4	8
343	Engineering Corynebacterium glutamicum with a comprehensive genomic library and phage-based vectors. Metabolic Engineering, 2020, 62, 221-234.	3.6	4
344	Inducible Expression Systems Based on Xenogeneic Silencing and Counter-Silencing and Design of a Metabolic Toggle Switch. ACS Synthetic Biology, 2020, 9, 2023-2038.	1.9	8
345	Conversion Efficiencies of a Few Living Microbial Cells Detected at a High Throughput by Droplet-Based ESI-MS. Analytical Chemistry, 2020, 92, 10700-10708.	3.2	21
346	Glutaric acid production by systems metabolic engineering of an <scp>I</scp> -lysine–overproducing <i>Corynebacterium glutamicum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30328-30334.	3.3	56
347	You get what you screen for: on the value of fermentation characterization in high-throughput strain improvements in industrial settings. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 913-927.	1.4	13
348	The glucose uptake systems in Corynebacterium glutamicum: a review. World Journal of Microbiology and Biotechnology, 2020, 36, 126.	1.7	12

#	Article	IF	CITATIONS
349	Metabolic Modelling as a Framework for Metabolomics Data Integration and Analysis. Metabolites, 2020, 10, 303.	1.3	45
350	Diamine Biosynthesis: Research Progress and Application Prospects. Applied and Environmental Microbiology, 2020, 86, .	1.4	14
351	Accelerated Green Process of 2,5-Dimethylpyrazine Production from Glucose by Genetically Modified <i>Escherichia coli</i> . ACS Synthetic Biology, 2020, 9, 2576-2587.	1.9	8
352	A common approach for absolute quantification of short chain CoA thioesters in prokaryotic and eukaryotic microbes. Microbial Cell Factories, 2020, 19, 160.	1.9	21
353	Revisiting the Growth Modulon of Corynebacterium glutamicum Under Glucose Limited Chemostat Conditions. Frontiers in Bioengineering and Biotechnology, 2020, 8, 584614.	2.0	7
354	Enhanced production of recombinant proteins in Corynebacterium glutamicum by constructing a bicistronic gene expression system. Microbial Cell Factories, 2020, 19, 113.	1.9	17
355	Efficient production of L-homoserine in Corynebacterium glutamicum ATCC 13032 by redistribution of metabolic flux. Biochemical Engineering Journal, 2020, 161, 107665.	1.8	18
356	Optimization of hydrogenobyrinic acid biosynthesis in Escherichia coli using multi-level metabolic engineering strategies. Microbial Cell Factories, 2020, 19, 118.	1.9	7
357	Economic Process Evaluation and Environmental Life-Cycle Assessment of Bio-Aromatics Production. Frontiers in Bioengineering and Biotechnology, 2020, 8, 403.	2.0	14
358	Cascaded valorization of seaweed using microbial cell factories. Current Opinion in Biotechnology, 2020, 65, 102-113.	3.3	27
359	Metabolic pathway engineering: Perspectives and applications. Computer Methods and Programs in Biomedicine, 2020, 192, 105436.	2.6	18
360	Microbial production of extremolytes — high-value active ingredients for nutrition, health care, and well-being. Current Opinion in Biotechnology, 2020, 65, 118-128.	3.3	61
361	Automatic Redirection of Carbon Flux between Glycolysis and Pentose Phosphate Pathway Using an Oxygen-Responsive Metabolic Switch in <i>Corynebacterium glutamicum</i> . ACS Synthetic Biology, 2020, 9, 814-826.	1.9	22
362	Bacteria as genetically programmable producers of bioactive natural products. Nature Reviews Chemistry, 2020, 4, 172-193.	13.8	93
363	Microbial Engineering for Production of <i>Nâ€</i> Functionalized Amino Acids and Amines. Biotechnology Journal, 2020, 15, e1900451.	1.8	32
364	Metabolic and evolutionary responses of Clostridium thermocellum to genetic interventions aimed at improving ethanol production. Biotechnology for Biofuels, 2020, 13, 40.	6.2	49
365	Sustainable engineering technologies to promote activities of beneficial microbiome. , 2020, , 231-275.		1
366	Metabolic engineering of carbohydrate metabolism systems in Corynebacterium glutamicum for improving the efficiency of l-lysine production from mixed sugar. Microbial Cell Factories, 2020, 19, 39.	1.9	32

#	Article	IF	CITATIONS
367	CRISPR-Cpf1-Assisted Engineering of Corynebacterium glutamicum SNK118 for Enhanced l-Ornithine Production by NADP-Dependent Glyceraldehyde-3-Phosphate Dehydrogenase and NADH-Dependent Glutamate Dehydrogenase. Applied Biochemistry and Biotechnology, 2020, 191, 955-967.	1.4	7
368	Facilitating the enzymatic conversion of lysineto cadaverine in engineered Escherichia coli with metabolic regulation by genes deletion. Biochemical Engineering Journal, 2020, 156, 107514.	1.8	12
369	Corynebacterium glutamicum. Microbiology Monographs, 2020, , .	0.3	8
370	Systems Analysis of NADH Dehydrogenase Mutants Reveals Flexibility and Limits of Pseudomonas taiwanensis VLB120's Metabolism. Applied and Environmental Microbiology, 2020, 86, .	1.4	4
371	Engineering Halomonas bluephagenesis for L-Threonine production. Metabolic Engineering, 2020, 60, 119-127.	3.6	31
372	Metabolic Engineering of Lysine Producing Corynebacterium glutamicum Strains. Cytology and Genetics, 2020, 54, 137-146.	0.2	2
373	Unlocking Nature's Biosynthetic Power—Metabolic Engineering for the Fermentative Production of Chemicals. Angewandte Chemie, 2021, 133, 2288-2308.	1.6	6
374	Unlocking Nature's Biosynthetic Power—Metabolic Engineering for the Fermentative Production of Chemicals. Angewandte Chemie - International Edition, 2021, 60, 2258-2278.	7.2	16
375	The heterologous production of terpenes by the thermophile Parageobacillus thermoglucosidasius in a consolidated bioprocess using waste bread. Metabolic Engineering, 2021, 65, 146-155.	3.6	15
376	Metabolic Engineering of <i>Escherichia coli</i> for <i>De Novo</i> Production of 1,5-Pentanediol from Glucose. ACS Synthetic Biology, 2021, 10, 192-203.	1.9	29
377	Corynebacterium glutamicum as a robust microbial factory for production of value-added proteins and small molecules: fundamentals and applications. , 2021, , 235-263.		5
378	Cellular Engineering and Biocatalysis Strategies toward Sustainable Cadaverine Production: State of the Art and Perspectives. ACS Sustainable Chemistry and Engineering, 2021, 9, 1061-1072.	3.2	15
379	Redistribution of Intracellular Metabolic Flow in <i>E. coli</i> Improves Carbon Atom Economy for High-Yield 2,5-Dimethylpyrazine Production. Journal of Agricultural and Food Chemistry, 2021, 69, 2512-2521.	2.4	7
380	Microbial production of ectoine and hydroxyectoine as high-value chemicals. Microbial Cell Factories, 2021, 20, 76.	1.9	51
381	A Genome-Scale Metabolic Model of Anabaena 33047 to Guide Genetic Modifications to Overproduce Nylon Monomers. Metabolites, 2021, 11, 168.	1.3	4
382	The Development of Bacteriophage Resistance in Vibrio alginolyticus Depends on a Complex Metabolic Adaptation Strategy. Viruses, 2021, 13, 656.	1.5	6
383	Engineered Microbial Routes for Human Milk Oligosaccharides Synthesis. ACS Synthetic Biology, 2021, 10, 923-938.	1.9	29
385	Metabolic engineering of Escherichia coli for efficient ectoine production. Systems Microbiology and Biomanufacturing, 2021, 1, 444-458.	1.5	9

#	Article	IF	CITATIONS
386	Systems metabolic engineering of Vibrio natriegens for the production of 1,3-propanediol. Metabolic Engineering, 2021, 65, 52-65.	3.6	42
387	Engineering microorganisms for the biosynthesis of dicarboxylic acids. Biotechnology Advances, 2021, 48, 107710.	6.0	14
388	Comparison of noninvasive, in-situ and external monitoring of microbial growth in fed-batch cultivations in Corynebacterium glutamicum. Biochemical Engineering Journal, 2021, 170, 107989.	1.8	5
391	Microbial production of advanced biofuels. Nature Reviews Microbiology, 2021, 19, 701-715.	13.6	126
392	Starch extracted from pineapple (Ananas comosus) plant stem as a source for amino acids production. Chemical and Biological Technologies in Agriculture, 2021, 8, .	1.9	10
393	IsoSolve: An Integrative Framework to Improve Isotopic Coverage and Consolidate Isotopic Measurements by Mass Spectrometry and/or Nuclear Magnetic Resonance. Analytical Chemistry, 2021, 93, 9428-9436.	3.2	5
394	Advances in metabolic engineering of <i>Corynebacterium glutamicum</i> to produce high-value active ingredients for food, feed, human health, and well-being. Essays in Biochemistry, 2021, 65, 197-212.	2.1	71
395	<i>Halomonas</i> as a chassis. Essays in Biochemistry, 2021, 65, 393-403.	2.1	34
396	L-valine production in Corynebacterium glutamicum based on systematic metabolic engineering: progress and prospects. Amino Acids, 2021, 53, 1301-1312.	1.2	6
397	Exploring functionality of the reverse β-oxidation pathway in Corynebacterium glutamicum for production of adipic acid. Microbial Cell Factories, 2021, 20, 155.	1.9	8
398	Recent advances in tuning the expression and regulation of genes for constructing microbial cell factories. Biotechnology Advances, 2021, 50, 107767.	6.0	20
399	Recent advances in metabolic engineering–integration of in silico design and experimental analysis of metabolic pathways. Journal of Bioscience and Bioengineering, 2021, 132, 429-436.	1.1	5
400	Cascaded valorization of brown seaweed to produce l-lysine and value-added products using Corynebacterium glutamicum streamlined by systems metabolic engineering. Metabolic Engineering, 2021, 67, 293-307.	3.6	30
401	Engineering Escherichia coli for high-yield production of ectoine. Green Chemical Engineering, 2023, 4, 217-223.	3.3	8
402	Metabolic engineering of Escherichia coli for quinolinic acid production by assembling L-aspartate oxidase and quinolinate synthase as an enzyme complex. Metabolic Engineering, 2021, 67, 164-172.	3.6	12
403	Improvement of production yield of l-cysteine through inÂvitro metabolic pathway with thermophilic enzymes. Journal of Bioscience and Bioengineering, 2021, 132, 585-591.	1.1	4
404	Establishing recombinant production of pediocin PA-1 in Corynebacterium glutamicum. Metabolic Engineering, 2021, 68, 34-45.	3.6	15
405	Enhancing l-glutamine production in Corynebacterium glutamicum by rational metabolic engineering combined with a two-stage pH control strategy. Bioresource Technology, 2021, 341, 125799.	4.8	25

#	Article	IF	Citations
406	Heterologous production of α-Carotene in Corynebacterium glutamicum using a multi-copy chromosomal integration method. Bioresource Technology, 2021, 341, 125782.	4.8	17
407	Expanding the lysine industry: biotechnological production of l-lysine and its derivatives. Advances in Applied Microbiology, 2021, 115, 1-33.	1.3	6
408	Metabolic engineering for microbial cell factories. , 2021, , 79-94.		1
409	Recent Advances in Amino Acid Production. Microbiology Monographs, 2020, , 175-226.	0.3	5
410	Pathways at Work: Metabolic Flux Analysis of the Industrial Cell Factory Corynebacterium glutamicum. Microbiology Monographs, 2020, , 227-265.	0.3	3
411	The Biotechnological Potential of Corynebacterium glutamicum, from Umami to Chemurgy. Microbiology Monographs, 2013, , 1-49.	0.3	6
412	Advanced continuous cultivation methods for systems microbiology. Microbiology (United Kingdom), 2015, 161, 1707-1719.	0.7	42
415	Charting the Metabolic Landscape of the Facultative Methylotroph Bacillus methanolicus. MSystems, 2020, 5, .	1.7	13
416	OpenFLUX2: 13 C-MFA modeling software package adjusted for the comprehensive analysis of single and parallel labeling experiments. Microbial Cell Factories, 2014, 13, 152.	1.9	13
418	Metabolic engineering of. Microbial Cell Factories, 2014, 13, 104.	1.9	19
419	Rapid Prediction of Bacterial Heterotrophic Fluxomics Using Machine Learning and Constraint Programming. PLoS Computational Biology, 2016, 12, e1004838.	1.5	55
420	Exploiting Genomic Knowledge in Optimising Molecular Breeding Programmes: Algorithms from Evolutionary Computing. PLoS ONE, 2012, 7, e48862.	1.1	15
421	RuBisCO of Microalgae as Potential Targets for Nutraceutical Peptides: A Computational Study. Biotechnology, 2017, 16, 130-144.	0.5	5
422	Bio-succinic acid production: Escherichia coli strains design from genome-scale perspectives. AIMS Bioengineering, 2017, 4, 418-430.	0.6	8
423	Increased L-arginine Production by Site-directed Mutagenesis of N-acetyl-L-glutamate Kinase and proB Gene Deletion in Corynebacterium crenatum. Biomedical and Environmental Sciences, 2015, 28, 864-74.	0.2	12
424	Development and Characterization of Expression Vectors for Corynebacterium glutamicum. Journal of Microbiology and Biotechnology, 2014, 24, 70-79.	0.9	18
425	The Actinobacterium Corynebacterium glutamicum, an Industrial Workhorse. Journal of Microbiology and Biotechnology, 2016, 26, 807-822.	0.9	105
426	Recent Strategies for the Development of Biosourced-Monomers, Oligomers and Polymers-Based Materials: A Review with an Innovation and a Bigger Data Focus. Journal of Biomaterials and Nanobiotechnology, 2016, 07, 167-213.	1.0	15

	Citation	Report	
#	Article	IF	CITATIONS
427	Microbial hosts for metabolic engineering of lignin bioconversion to renewable chemicals. Renewable and Sustainable Energy Reviews, 2021, 152, 111674.	8.2	22
430	Systems Metabolic Engineering of <i>Arabidopsis</i> for Increased Cellulose Production. FASEB Journal, 2015, 29, 887.26.	0.2	1
431	Production of Amino Acids (L-Clutamic Acid and L-Lysine) from Biomass. Biofuels and Biorefineries, 2017, , 437-455.	0.5	2
434	Structure-function investigation of 3-methylaspartate ammonia lyase reveals substrate molecular determinants for the deamination reaction. PLoS ONE, 2020, 15, e0233467.	1.1	1
435	Microbial Production and Applications of L-lysine. , 2020, , 211-229.		6
436	Improving the Microbial Production of Amino Acids: From Conventional Approaches to Recent Trends. Biotechnology and Bioprocess Engineering, 2021, 26, 708-727.	1.4	11
437	Systematic Engineering of <i>Synechococcus elongatus</i> UTEX 2973 for Photosynthetic Production of <scp>l</scp> -Lysine, Cadaverine, and Glutarate. ACS Synthetic Biology, 2021, 10, 3561-3575.	1.9	8
438	Synthetic Biology Toolkits and Metabolic Engineering Applied in <i>Corynebacterium glutamicum</i> for Biomanufacturing. ACS Synthetic Biology, 2021, 10, 3237-3250.	1.9	14
439	有甔物質生産ã«ãŠã'ã,‹å¾®ç"Ÿç‰©ä,å¤ä»£è¬çµŒè∙ã®ç,ç´ãf•ãf©ãffã,¯ã,¹æ¯"ã®æœ€é©åŒ–.	Kaga b uoTo S	Seiboutsu, 202
440	Feedback regulation and coordination of the main metabolism for bacterial growth and metabolic engineering for amino acid fermentation. Biotechnology Advances, 2022, 55, 107887.	6.0	16
442	Improved catalytic activity of a novel aspartate kinase by site-directed saturation mutagenesis. Bioprocess and Biosystems Engineering, 2022, 45, 541.	1.7	3
443	High-level production of the agmatine in engineered Corynebacterium crenatum with the inhibition-releasing arginine decarboxylase. Microbial Cell Factories, 2022, 21, 16.	1.9	4
444	Systems metabolic engineering of Corynebacterium glutamicum for high-level production of 1,3-propanediol from glucose and xylose. Metabolic Engineering, 2022, 70, 79-88.	3.6	24
445	Transcriptional Regulation of the Creatine Utilization Genes of Corynebacterium glutamicum ATCC 14067 by AmtR, a Central Nitrogen Regulator. Frontiers in Bioengineering and Biotechnology, 2022, 10, 816628.	2.0	0
446	Engineered Halomonas spp. for production of l-Lysine and cadaverine. Bioresource Technology, 2022, 349, 126865.	4.8	17
447	Module engineering coupled with omics strategies for enhancing D-pantothenate production in Escherichia coli. Bioresource Technology, 2022, 352, 127024.	4.8	6
448	Metabolic engineering of Corynebacterium glutamicum for producing branched chain amino acids. Microbial Cell Factories, 2021, 20, 230.	1.9	17

Enhanced production of Î³-amino acid 3-amino-4-hydroxybenzoic acid by recombinant Corynebacterium glutamicum under oxygen limitation. Microbial Cell Factories, 2021, 20, 228.

1

449

#	Article	IF	CITATIONS
454	GC/MS-based 13C metabolic flux analysis resolves the parallel and cyclic photomixotrophic metabolism of Synechocystis sp. PCC 6803 and selected deletion mutants including the Entner-Doudoroff and phosphoketolase pathways. Microbial Cell Factories, 2022, 21, 69.	1.9	11
457	Advanced Whole-cell Conversion for D-allulose Production Using an Engineered Corynebacterium glutamicum. Biotechnology and Bioprocess Engineering, 2022, 27, 276-285.	1.4	11
458	Genome Editing of Corynebacterium glutamicum Using CRISPR-Cpf1 System. Methods in Molecular Biology, 2022, 2479, 189-206.	0.4	1
460	Advances in microbial production of feed amino acid. Advances in Applied Microbiology, 2022, , 1-33.	1.3	3
461	Biosynthesis of Odd-Carbon Unsaturated Fatty Dicarboxylic Acids Through Engineering the HSAF Biosynthetic Gene in Lysobacter enzymogenes. Molecular Biotechnology, 0, , .	1.3	0
462	The soil bacterium, Corynebacterium glutamicum, from biosynthesis of value-added products to bioremediation: A master of many trades. Environmental Research, 2022, 213, 113622.	3.7	15
463	Plant Flavonoid Production in Bacteria and Yeasts. Frontiers in Chemical Engineering, 0, 4, .	1.3	2
464	RSM-Based Optimization of Fermentation Conditions and Kinetic Studies of Clutamic Acid and Lysine Production by Corynebacterium glutamicum. Journal of Nanomaterials, 2022, 2022, 1-6.	1.5	2
465	Metabolic engineering of Escherichia coli W3110 for efficient production of homoserine from glucose. Metabolic Engineering, 2022, 73, 104-113.	3.6	25
466	In silico cell factory design driven by comprehensive genome-scale metabolic models: development and challenges. Systems Microbiology and Biomanufacturing, 2023, 3, 207-222.	1.5	2
467	Translating advances in microbial bioproduction to sustainable biotechnology. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	7
468	Research Progress on the Construction of Artificial Pathways for the Biosynthesis of Adipic Acid by Engineered Microbes. Fermentation, 2022, 8, 393.	1.4	4
469	Can microbes be harnessed to reduce atmospheric loads of greenhouse gases?. Environmental Microbiology, 2023, 25, 17-25.	1.8	3
470	High-yield ectoine production in engineered Corynebacterium glutamicum by fine metabolic regulation via plug-in repressor library. Bioresource Technology, 2022, 362, 127802.	4.8	15
471	Systems metabolic engineering of Corynebacterium glutamicum eliminates all by-products for selective and high-yield production of the platform chemical 5-aminovalerate. Metabolic Engineering, 2022, 73, 168-181.	3.6	14
472	An enzymatic colorimetric whole-cell biosensor for high-throughput identification of lysine overproducers. Biosensors and Bioelectronics, 2022, 216, 114681.	5.3	5
473	Microbial Production of Amines and Amino Acids by Fermentation. Microbiology Monographs, 2022, , 47-80.	0.3	0
474	A manually curated compendium of expression profiles for the microbial cell factory Corynebacterium glutamicum. Scientific Data, 2022, 9, .	2.4	3

#	Article	IF	CITATIONS
475	Microbial chassis design and engineering for production of amino acids used in food industry. Systems Microbiology and Biomanufacturing, 2023, 3, 28-48.	1.5	4
476	Biotechnological and Chemical Production of Monomers from Renewable Raw Materials. Advances in Polymer Science, 2022, , 1-33.	0.4	0
477	Construction and Analysis of an Enzyme-Constrained Metabolic Model of Corynebacterium glutamicum. Biomolecules, 2022, 12, 1499.	1.8	9
478	Halomonas spp., as chassis for low-cost production of chemicals. Applied Microbiology and Biotechnology, 2022, 106, 6977-6992.	1.7	15
479	Bioactivity profiling of the extremolyte ectoine as a promising protectant and its heterologous production. 3 Biotech, 2022, 12, .	1.1	7
480	Metabolomics and modelling approaches for systems metabolic engineering. Metabolic Engineering Communications, 2022, 15, e00209.	1.9	7
481	Prospective bacterial and fungal sources of hyaluronic acid: A review. Computational and Structural Biotechnology Journal, 2022, 20, 6214-6236.	1.9	4
483	Recent advances in microbial production of diamines, aminocarboxylic acids, and diacids as potential platform chemicals and bio-based polyamides monomers. Biotechnology Advances, 2023, 62, 108070.	6.0	5
484	Systems metabolic engineering upgrades Corynebacterium glutamicum to high-efficiency cis, cis-muconic acid production from lignin-based aromatics. Metabolic Engineering, 2023, 75, 153-169.	3.6	15
485	Shikimic acid biosynthesis in microorganisms: Current status and future direction. Biotechnology Advances, 2023, 62, 108073.	6.0	12
486	Microbial Production of Diamines. , 2023, , 1-31.		0
488	Metabolic engineering for sustainability and health. Trends in Biotechnology, 2023, 41, 425-451.	4.9	17
489	Metabolic Engineering: Methodologies and Applications. Chemical Reviews, 2023, 123, 5521-5570.	23.0	32
490	High-efficiency production of 5-hydroxyectoine using metabolically engineered Corynebacterium glutamicum. Microbial Cell Factories, 2022, 21, .	1.9	4
491	Efficient production of cembratriene-ol in Escherichia coli via systematic optimization. Microbial Cell Factories, 2023, 22, .	1.9	2
492	Local metabolic response of Escherichia coli to the module genetic perturbations in l-methionine biosynthetic pathway. Journal of Bioscience and Bioengineering, 2023, 135, 217-223.	1.1	5
493	Systems metabolic engineering upgrades Corynebacterium glutamicum for selective high-level production of the chiral drug precursor and cell-protective extremolyte L-pipecolic acid. Metabolic Engineering, 2023, 77, 100-117.	3.6	5
494	Dynamic upregulation of the rate-limiting enzyme for valerolactam biosynthesis in Corynebacterium glutamicum. Metabolic Engineering, 2023, 77, 89-99.	3.6	6

#	Article	IF	CITATIONS
495	Strengthening microbial cell factories for efficient production of bioactive molecules. Biotechnology and Genetic Engineering Reviews, 0, , 1-34.	2.4	0
496	Systems metabolic engineering of Escherichia coli for hyper-production of 5‑aminolevulinic acid. , 2023, 16, .		7
497	High-efficiency production of the antimicrobial peptide pediocin PA-1 in metabolically engineered Corynebacterium glutamicum using a microaerobic process at acidic pH and elevated levels of bivalent calcium ions. Microbial Cell Factories, 2023, 22, .	1.9	9
498	Reprogramming the sulfur recycling network to improve <scp>l</scp> -cysteine production in <i>Corynebacterium glutamicum</i> . Green Chemistry, 2023, 25, 3152-3165.	4.6	8
499	Machine learning for metabolic pathway optimization: A review. Computational and Structural Biotechnology Journal, 2023, 21, 2381-2393.	1.9	1
504	Microalgae as a source of alternative protein. , 2023, , 59-71.		0
506	New Developments in the Production and Recovery of Amino Acids, Vitamins, and Metabolites from Microbial Sources. , 2023, , 175-241.		0
518	Microbial Production of Amine Chemicals from Sustainable Substrates. Biofuels and Biorefineries, 2023, , 189-248.	0.5	0
519	Modeling the Microbial Cells for Biotechnological Applications. Advances in Bioinformatics and Biomedical Engineering Book Series, 2023, , 121-151.	0.2	0