Abrasive wear of HDPE/UHMWPE blends

Wear 270, 576-583 DOI: 10.1016/j.wear.2011.01.011

Citation Report

		FDADT	
#	Article	IF	CITATIONS
1	MICROSCOPIC MECHANISMS OF DAMAGE CAUSED BY DEGRADANTS. , 2012, , 105-283.		1
2	Abrasive wear of micro- and nanocomposites based on super-high-molecular polyethylene (SHMPE). Part 1. Composites based on shmpe filled with microparticles AlO(OH) and Al2O3. Journal of Friction and Wear, 2012, 33, 381-387.	0.1	13
3	Abrasive wear of micro- and nanocomposites based on ultra-high-molecular-weight polyethylene (UHMWPE): Part 2. composites based on UHMWPE filled by nanoparticles and nanofibers. Journal of Friction and Wear, 2012, 33, 453-459.	0.1	4
4	Controlling Polyolefin Properties by Inâ€Reactor Blending, 1–Polymerization Process, Precise Kinetics, and Molecular Properties of UHMWâ€PE Polymers. Macromolecular Reaction Engineering, 2012, 6, 302-317.	0.9	40
5	Controlling Polyolefin Properties by Inâ€Reactor Blending: 3. Mechanical Properties. Macromolecular Reaction Engineering, 2013, 7, 328-343.	0.9	23
6	Morphology and strain rate effects on heat generation during the plastic deformation of polyethylene/carbon black nanocomposites. Polymer Testing, 2013, 32, 1105-1113.	2.3	9
7	Nanoparticle type effects on heat generation during the plastic deformation of polyethylene nanocomposites. Polymer Testing, 2013, 32, 1502-1510.	2.3	7
8	Comparative study of micro- and nano-ZnO reinforced UHMWPE composites under dry sliding wear. Wear, 2013, 297, 1120-1127.	1.5	99
9	Elucidation of polymer wear resistance via nanoscale healing and fracture of sintered polystyrene particles. Journal of Applied Polymer Science, 2013, 128, 3432-3437.	1.3	4
10	Temporary-Creep and Post-Creep Properties of Aquaculture Netting Materials With UHMWPE Fibres. , 2013, , .		Ο
11	Structure and tensile properties change of LDPE/UHMWPE blends via solid state shear milling. Journal of Applied Polymer Science, 2013, 130, 2487-2493.	1.3	13
12	Role of Micro- and Nanofillers in Abrasive Wear of Composites Based on Ultra-High Molecular Weight Polyethylene. Advanced Materials Research, 0, 1040, 148-154.	0.3	10
13	Improved performance balance of polyethylene by simultaneously forming oriented crystals and blending ultrahigh-molecular-weight polyethylene. RSC Advances, 2014, 4, 1512-1520.	1.7	35
14	Viscoelastic properties correlations to morphological and mechanical response of HDPE/UHMWPE blends. Journal of Polymer Research, 2014, 21, 1.	1.2	55
15	Friction and Wear Behavior of Irradiated Polyethylene Sliding Against a Rough Steel Surface. Tribology Letters, 2014, 55, 165-176.	1.2	5
16	Effect of solidâ€state shear milling on structure and properties of HDPE/UHMWPE blends. Journal of Applied Polymer Science, 2014, 131, .	1.3	6
17	Polyolefins structure formation effected by addition of industrial natural diamond powders. International Journal of Abrasive Technology, 2015, 7, 14.	0.2	1
18	Cocrystallization Behavior of Hdpe/Uhmwpe Blends Prepared by Two-Step Processing Way. Polymers and Polymer Composites, 2015, 23, 59-64.	1.0	16

TION RE

#	Article	IF	CITATIONS
19	Processing, Characterization and Fretting Wear of Zinc Oxide and Silver Nanoparticles Reinforced Ultra High Molecular Weight Polyethylene Biopolymer Nanocomposite. Jom, 2015, 67, 688-701.	0.9	31
20	Morphological correlations to mechanical performance of hydroxyapatiteâ€filled HDPE/UHMWPE composites. Journal of Applied Polymer Science, 2015, 132, .	1.3	21
21	Modification effects of short carbon fibers on mechanical properties and fretting wear behavior of UHMWPE composites. Surface and Interface Analysis, 2016, 48, 139-145.	0.8	23
22	The effect of ball milling time and rotational speed on ultra high molecular weight polyethylene reinforced with multiwalled carbon nanotubes. Polymer Composites, 2016, 37, 1128-1136.	2.3	35
23	Temporary-Creep and Postcreep Properties of Aquaculture Netting Materials With UHMWPE Fibers. Journal of Offshore Mechanics and Arctic Engineering, 2016, 138, .	0.6	2
24	Influence of laser power on tensile properties and material characteristics of laser-sintered UHMWPE. Manufacturing Review, 2016, 3, 15.	0.9	14
25	Influence of energy density on flexural properties of laser-sintered UHMWPE. Additive Manufacturing, 2016, 10, 67-75.	1.7	35
26	The influences of several carbon additions on the fretting wear behaviors of UHMWPE composites. Tribology International, 2016, 93, 390-398.	3.0	34
27	Effect of entangled state of nascent UHMWPE on structural and mechanical properties of HDPE/UHMWPE blends. Journal of Applied Polymer Science, 2017, 134, .	1.3	25
28	Rheological and mechanical properties of blends of LDPE with high contents of UHMWPE wastes. Journal of Applied Polymer Science, 2017, 134, .	1.3	14
29	MICROSCOPIC MECHANISMS OF DAMAGE CAUSED BY DEGRADANTS. , 2017, , 113-305.		3
30	Toughening high density polyethylene submitted to extreme ambient temperatures. Journal of Polymer Research, 2017, 24, 1.	1.2	13
31	Tailored Nanostructured HDPE Wax/UHMWPE Reactor Blends as Additives for Melt-Processable All-Polyethylene Composites and in Situ UHMWPE Fiber Reinforcement. Macromolecules, 2017, 50, 8129-8139.	2.2	49
32	One pot synthesis of bimodal UHMWPE/HDPE inâ€reactor blends with Cr/V bimetallic catalysts. Journal of Polymer Science Part A, 2017, 55, 3404-3412.	2.5	8
33	Graphene oxide/PVA inorganic/organic interpenetrating hydrogels with excellent mechanical properties and biocompatibility. Carbon, 2017, 111, 18-27.	5.4	94
34	All-polyethylene composites reinforced via extended-chain UHMWPE nanostructure formation during melt processing. Polymer, 2018, 140, 107-116.	1.8	28
35	Investigation on the Effect of Grit size on Two Body Abrasive Wear Behavior of Polyamide66/Polypropylene (PA66/PP) blends. Materials Today: Proceedings, 2018, 5, 2444-2452.	0.9	7
36	Effect of Micro fillers on Two Body Abrasive Wear Behavior of Polyamide 66 and Polypropylene (PA66/PP) Blend Based Composites. Materials Today: Proceedings, 2018, 5, 22376-22383.	0.9	3

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
37	Tailored bimodal ultraâ€high molecular weight polyethylene particles. Journal of Polymer Science Part A, 2018, 56, 1645-1656.	2.5	11
38	Influence of carbon fiber content on bio-tribological performances of high-density polyethylene. Materials Research Express, 2019, 6, 125307.	0.8	10
39	Rheological properties of bimodal polyethylenes produced with silica nanoparticle supported catalysts. Journal of Applied Polymer Science, 2019, 136, 47577.	1.3	1
40	Shortâ€time fabrication of wellâ€mixed highâ€density polyethylene/ultrahighâ€molecularâ€weight polyethylene blends under elongational flow: morphology, mechanical properties and mechanism. Polymer International, 2019, 68, 904-914.	1.6	11
41	Evaluation of the Mechanical and Thermal Properties of Blended (HDPE/UHMWPE) Nanocomposites with Graphite Nanosheets (GNS). Macromolecular Symposia, 2019, 383, 1800017.	0.4	4
42	Melt-Processable Nacre-Mimetic Hydrocarbon Composites via Polymer 1D Nanostructure Formation. Macromolecules, 2019, 52, 9272-9279.	2.2	2
43	Improved performance and crystallization behaviors of bimodal HDPE/UHMWPE blends assisted by ultrasonic oscillations. Materials Research Express, 2019, 6, 035306.	0.8	10
44	Effects of different ultrahigh molecular weight polyethylene contents on the formation and evolution of hierarchical crystal structure of highâ€density polyethylene/ultrahigh molecular weight polyethylene blend fibers. Journal of Polymer Science, 2020, 58, 2278-2291.	2.0	3
45	Process Optimization of Ultra-High Molecular Weight Polyethylene/Cellulose Nanofiber Bionanocomposites in Triple Screw Kneading Extruder by Response Surface Methodology. Molecules, 2020, 25, 4498.	1.7	7
46	An investigation of post treatment on properties and structure of ultrahigh molecular weight polyethylene parts prepared by selective laser sintering for biomedical application. Polymers for Advanced Technologies, 2020, 31, 1484-1495.	1.6	5
47	Influence of process parameters on the rheological behavior of ultra-high molecular weight compounds. AIP Conference Proceedings, 2020, , .	0.3	2
48	Allâ€polyethylene compositions based on ultrahigh molecular weight polyethylene: Synthesis and properties. Journal of Applied Polymer Science, 2020, 137, 49121.	1.3	4
49	Investigation of the rheological and mechanical behavior of Polypropylene/ultra-high molecular weight polyethylene compounds related to new online process control. Polymer Testing, 2020, 86, 106442.	2.3	11
50	Effect of Adhesion on Mechanical and Tribological Properties of Glass Fiber Composites, Based on Ultra-High Molecular Weight Polyethylene Powders with Various Initial Particle Sizes. Materials, 2020, 13, 1602.	1.3	29
51	Designing soft/hard double network hydrogel microsphere/UHMWPE composites to promote water lubrication performance. Friction, 2021, 9, 551-568.	3.4	18
52	Fabrication of well-miscible and highly enhanced polyethylene/ultrahigh molecular weight polyethylene blends by facile construction of interfacial intermolecular entanglement. Polymer Testing, 2021, 93, 106973.	2.3	15
53	Synergism of fillers on adhesive and abrasive wear of thermoplastic copolyester elastomer composites. , 2021, , 321-354.		0
54	High abrasive wear resistance polyethylene blends: an adapted Ratner–Lancaster correlation. Polymer Bulletin, 0, , 1.	1.7	1

#	Article	IF	CITATIONS
55	Tailored Bonded Interfacial Intermolecular Entanglement of Polyethylene/Ultrahigh-Molecular-Weight Polyethylene Blends: Enhancing Miscibility, Reinforcement, and Friction Reduction. Industrial & Engineering Chemistry Research, 2021, 60, 5879-5889.	1.8	10
56	Rheological properties of UHMWPE/HDPE blend gels and morphology and mechanical properties of gelâ€spun fibers. Polymer Engineering and Science, 2021, 61, 2127-2136.	1.5	7
57	Polymer Blends and Alloys. Seikei-Kakou, 2021, 33, 227-230.	0.0	0
58	High-Tribological-Performance Polymer Nanocomposites: An Approach Based on the Superlubricity State of the Graphene Oxide Agglomerates. Polymers, 2021, 13, 2237.	2.0	8
59	Exploring the three body abrasive wear behavior of glass – Carbon thermoplastic hybrid composites. Materials Today: Proceedings, 2021, , .	0.9	0
60	Creep Resistance of Novel Polyethylene/Carbon Black Nanocomposites. International Journal of Materials Science and Engineering, 0, , .	0.1	7
61	Mechanical characterisation of novel polyethylene nanocomposites by nanoindentation. , 2013, , .		4
62	Tribological Response of Polyamide 66 and Polytetrafluroethylene (PA66/PTFE) Blends in Two Body Abrasion Through Multipass Condition. International Journal of Surface Engineering and Interdisciplinary Materials Science, 2018, 6, 1-16.	0.2	3
63	Nanoparticle type effects on the scratch resistance of polyethylene-based nanocomposites. International Journal of Advanced and Applied Sciences, 2017, 4, 1-6.	0.2	3
64	Constructing highly oriented and condensed shish-kebab crystalline structure of HDPE/UHMWPE blends via intense stretching process:Achieving high mechanical properties and in-plane thermal conductivity. Polymer, 2022, 241, 124532.	1.8	20
65	Investigation of Injection Moulded UHMWPE Liner Manufacturability. , 2020, , .		0
66	MICROSCOPIC MECHANISMS OF DAMAGE CAUSED BY DEGRADANTS. , 2022, , 141-386.		0
67	Suppression in Melt Viscosity of the Homogeneously Mixed Blends of Polypropylene (iPP–UHMWiPP) in the Presence of an Oxalamide. Macromolecules, 0, , .	2.2	2
68	Carbon Nanotube-Based Reinforced Polymers for Medical Applications: Improving Impact Strength of Polymer-Polymer Composites. Journal of Nanomaterials, 2022, 2022, 1-15.	1.5	2
69	Six decades of UHMWPE in reconstructive surgery. International Materials Reviews, 2023, 68, 46-81.	9.4	9
70	Increasing the Resistance of HDPE to Abrasive Wear with Small Additions of UHMWPE. Journal of Friction and Wear, 2022, 43, 1-7.	0.1	1
71	Investigation of the Tensile Strength and Chemical Interaction & Structure of Ultra-High Molecular Weight Polyethylene/ Silicon Carbide Nanocomposite. Silicon, 0, , .	1.8	0
72	All-polyethylene compositions of ultrahigh molecular weight polyethylene (UHMWPE) synthesized in one-step ethylene polymerization with combinations of zirconocene and iron-based catalysts. Iranian Polymer Journal (English Edition), 2023, 32, 523-531.	1.3	1

CITATION REPORT

ARTICLE

IF CITATIONS