Natural and biomimetic artificial surfaces for superhyd adhesion, and drag reduction

Progress in Materials Science 56, 1-108 DOI: 10.1016/j.pmatsci.2010.04.003

Citation Report

#	Article	IF	CITATIONS
1	Glucosan controlled biomineralization of SrCO3 complex nanostructures with superhydrophobicity and adsorption properties. Journal of Materials Chemistry, 2011, 21, 8734.	6.7	32
2	Recent progress on surface pattern fabrications based on monolayer colloidal crystal templates and related applications. Nanoscale, 2011, 3, 2768.	2.8	62
3	Hierarchically Structured Materials from Block Polymer Confinement within Bicontinuous Microemulsion-Derived Nanoporous Polyethylene. ACS Nano, 2011, 5, 8914-8927.	7.3	41
4	Tailoring the Wetting Properties of Surface-Modified Nanostructured Gold Films. Journal of Physical Chemistry C, 2011, 115, 17097-17101.	1.5	9
5	Fluoroalkyl-Functionalized Silica Particles: Synthesis, Characterization, and Wetting Characteristics. Langmuir, 2011, 27, 10206-10215.	1.6	61
6	Patterning and Optical Properties of Materials at the Nanoscale. Advanced Structured Materials, 2011, , 47-68.	0.3	0
7	Nanometric Multiscale Rough CuO/Cu(OH) ₂ Superhydrophobic Surfaces Prepared by a Facile One-Step Solution-Immersion Process: Transition to Superhydrophilicity with Oxygen Plasma Treatment. Journal of Physical Chemistry C, 2011, 115, 18213-18220.	1.5	121
8	Peptide-Based and Polypeptide-Based Hydrogels for Drug Delivery and Tissue Engineering. Topics in Current Chemistry, 2011, 310, 135-167.	4.0	104
9	Fabricating Superhydrophobic Polymer Surfaces with Excellent Abrasion Resistance by a Simple Lamination Templating Method. ACS Applied Materials & amp; Interfaces, 2011, 3, 3508-3514.	4.0	138
10	Formation of Superhydrophobic Microspheres of Poly(vinylidene fluoride–) Tj ETQq1 1 0.784314 rgBT /Overloc	:k 10 Tf 5(1.6) 3 <u>82</u> Td (he
11	From Superamphiphobic to Amphiphilic Polymeric Surfaces with Ordered Hierarchical Roughness Fabricated with Colloidal Lithography and Plasma Nanotexturing. Langmuir, 2011, 27, 3960-3969.	1.6	212
12	One-step electrodeposition process to fabricate cathodic superhydrophobic surface. Applied Surface Science, 2011, 258, 1395-1398.	3.1	74
13	<i>In situ</i> , noninvasive characterization of superhydrophobic coatings. Review of Scientific Instruments, 2011, 82, 045109.	0.6	44
14	Nanoparticle decorated fibrous silica membranes exhibiting biomimetic superhydrophobicity and highly flexible properties. RSC Advances, 2011, 1, 1482.	1.7	66
15	Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity. Beilstein Journal of Nanotechnology, 2011, 2, 66-84.	1.5	155
16	Biologically inspired hairy structures for superhydrophobicity. Materials Science and Engineering Reports, 2011, 72, 189-201.	14.8	65
17	Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials. Nano Today, 2011, 6, 510-530.	6.2	417
18	Immobilization of protein-coated drug nanoparticles in nanofibrillar cellulose matrices—Enhanced stability and release. Journal of Controlled Release. 2011. 156. 390-397.	4.8	128

ATION REDO

#	Article	IF	Citations
19	Microfiber SMPU film affords quicker shape recovery than the bulk one. Materials Letters, 2011, 65, 3639-3642.	1.3	31
20	Nanoscale biomimetics studies of Salvinia molesta for micropattern fabrication. Journal of Colloid and Interface Science, 2011, 363, 187-192.	5.0	33
21	Control of morphology and surface wettability of anodic niobium oxide microcones formed in hot phosphate–glycerol electrolytes. Electrochimica Acta, 2011, 56, 7446-7453.	2.6	34
22	Biologically inspired design. CIRP Annals - Manufacturing Technology, 2011, 60, 673-693.	1.7	165
23	Hydrophilic and superhydrophilic surfaces and materials. Soft Matter, 2011, 7, 9804.	1.2	736
24	The superhydrophobicity of polymer surfaces: Recent developments. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 1203-1217.	2.4	151
25	Hierarchical Superhydrophobic Surfaces Fabricated by Dualâ€Scale Electronâ€Beamâ€Lithography with Wellâ€Ordered Secondary Nanostructures. Advanced Functional Materials, 2011, 21, 3715-3722.	7.8	157
26	The super hydrophobicity of ZnO nanorods fabricated by electrochemical deposition method. Applied Surface Science, 2011, 257, 6590-6594.	3.1	55
27	Fouling of nanostructured insect cuticle: adhesion of natural and artificial contaminants. Biofouling, 2011, 27, 1125-1137.	0.8	40
28	Radical modification of the wetting behavior of textiles coated with ZnO thin films and nanoparticles when changing the ambient pressure in the pulsed laser deposition process. Journal of Applied Physics, 2011, 110, .	1.1	33
29	Facile creation of bio-inspired superhydrophobic Ce-based metallic glass surfaces. Applied Physics Letters, 2011, 99, .	1.5	47
30	Biology Inspired Superhydrophobic Surfaces. Advanced Materials Research, 0, 409, 814-819.	0.3	5
31	Superhydrophobic nickel micromesh with microfences. Journal of Micromechanics and Microengineering, 2011, 21, 105003.	1.5	2
32	Nature Inspired Structured Surfaces for Biomedical Applications. Current Medicinal Chemistry, 2011, 18, 3367-3375.	1.2	59
33	Controlling roughness: from etching to nanotexturing and plasma-directed organization on organic and inorganic materials. Journal Physics D: Applied Physics, 2011, 44, 174021.	1.3	110
34	Solar Cells. , 2012, , 2459-2459.		0
35	AFM, Tapping Mode. , 2012, , 99-99.		2
36	Nanoscale surface roughness affects low Reynolds number flow: Experiments and modeling. Applied Physics Letters, 2012, 101, .	1.5	13

#	Article	IF	CITATIONS
37	Hydrodynamic drag-force measurement and slip length on microstructured surfaces. Physical Review E, 2012, 85, 066310.	0.8	33
38	Theoretical analysis of micro-structural antireflective grating with hydrophobicity. , 2012, , .		Ο
39	Air-directed attachment of coccoid bacteria to the surface of superhydrophobic lotus-like titanium. Biofouling, 2012, 28, 539-550.	0.8	125
40	Effect of Particle Size Distribution on Microstructure and Wettability of 316L Coating. Applied Mechanics and Materials, 0, 197, 787-791.	0.2	1
41	Modeling of Contact Angle for a Liquid in Contact with a Rough Surface. Biological and Medical Physics Series, 2012, , 19-45.	0.3	0
42	Important Role of Nanopore Morphology in Superoleophobic Hierarchical Surfaces. Journal of Physical Chemistry C, 2012, 116, 23308-23314.	1.5	27
43	siRNA Delivery. , 2012, , 2429-2429.		0
44	Wet Self-Cleaning of Superhydrophobic Microfiber Adhesives Formed from High Density Polyethylene. Langmuir, 2012, 28, 15372-15377.	1.6	39
45	Recent advances in the rational design of silica-based nanoparticles for gene therapy. Therapeutic Delivery, 2012, 3, 1217-1237.	1.2	36
46	Ultrafast fabrication of rough structures required by superhydrophobic surfaces on Al substrates using an immersion method. Chemical Engineering Journal, 2012, 211-212, 143-152.	6.6	107
47	Surface topographical factors influencing bacterial attachment. Advances in Colloid and Interface Science, 2012, 179-182, 142-149.	7.0	285
48	A comparison of the antifouling/foul-release characteristics of non-biocidal xerogel and commercial coatings toward micro- and macrofouling organisms. Biofouling, 2012, 28, 511-523.	0.8	48
49	Magneto-elastic buckling of a soft cellular solid. Soft Matter, 2012, 8, 6880.	1.2	33
50	Factors Affecting the Spontaneous Motion of Condensate Drops on Superhydrophobic Copper Surfaces. Langmuir, 2012, 28, 6067-6075.	1.6	154
51	Super-wetting, wafer-sized silicon nanowire surfaces with hierarchical roughness and low defects. RSC Advances, 2012, 2, 11472.	1.7	32
52	Electrospun shape memory film with reversible fibrous structure. Journal of Materials Chemistry, 2012, 22, 22387.	6.7	42
53	Simple Physical Approach to Reducing Frictional and Adhesive Forces on a TiO ₂ Surface via Creating Heterogeneous Nanopores. Langmuir, 2012, 28, 15270-15277.	1.6	20
54	Tin Oxide Nanosheet Assembly for Hydrophobic/Hydrophilic Coating and Cancer Sensing. ACS Applied Materials & amp; Interfaces, 2012, 4, 1666-1674.	4.0	50

	Сіта	tion Report	
#	Article	IF	CITATIONS
55	Bioinspired steel surfaces with extreme wettability contrast. Nanoscale, 2012, 4, 2900.	2.8	48
56	Thermodynamic analysis on superhydrophobicity based on the design of a pillar model. Soft Matter, 2012, 8, 10360.	1.2	13
57	Hydrophobization of epoxy nanocomposite surface with 1H,1H,2H,2H-perfluorooctyltrichlorosilane for superhydrophobic properties. Open Physics, 2012, 10, .	0.8	15
58	A superoleophobic textile repellent towards impacting drops of alkanes. Applied Surface Science, 2012, 258, 3835-3840.	3.1	69
59	Facile fabrication of non-sticking superhydrophobic boehmite film on Al foil. Applied Surface Science, 2012, 258, 8928-8933.	3.1	33
60	A non-aqueous electrodeposition process for fabrication of superhydrophobic surface with hierarchical micro/nano structure. Applied Surface Science, 2012, 258, 8970-8973.	3.1	21
61	Photo-induced properties of non-annealed anatase TiO2 mesoporous film prepared by anodizing in the hot phosphate/glycerol electrolyte. Applied Surface Science, 2012, 258, 9810-9815.	3.1	11
62	Hierarchically Structured Superoleophobic Surfaces with Ultralow Contact Angle Hysteresis. Advanced Materials, 2012, 24, 5838-5843.	11.1	288
63	Switchable wettability of vertical Si nanowire array surface by simple contact-printing of siloxane oligomers and chemical washing. Journal of Materials Chemistry, 2012, 22, 10625.	6.7	24
66	Superoleophobic Surfaces. ACS Symposium Series, 2012, , 171-185.	0.5	14
67	Small-Angle Scattering. , 2012, , 2437-2437.		0
68	Dual Scale Roughness Driven Perfectly Hydrophobic Surfaces Prepared by Electrospraying a Polymer in Good Solvent–Poor Solvent Systems. Langmuir, 2012, 28, 14192-14201.	1.6	16
69	Bioinspired rice leaf and butterfly wing surface structures combining shark skin and lotus effects. Soft Matter, 2012, 8, 11271.	1.2	315
70	Biomimicry via Electrospinning. Critical Reviews in Solid State and Materials Sciences, 2012, 37, 94-114.	6.8	100
71	A new method for producing "Lotus Effect―on a biomimetic shark skin. Journal of Colloid and Interface Science, 2012, 388, 235-242.	5.0	101
72	A facile method to fabricate superhydrophobic cotton fabrics. Applied Surface Science, 2012, 261, 561-566.	3.1	89
73	Anisotropic wetting of copper alloys induced by one-step laser micro-patterning. Applied Surface Science, 2012, 263, 416-422.	3.1	36
74	The superhydrophobic properties of self-organized microstructured surfaces derived from anodically oxidized Al/Nb and Al/Ta metal layers. Electrochimica Acta, 2012, 82, 90-97.	2.6	29

#	Article	IF	CITATIONS
75	Superhydrophobic SiO2 micro-particle coatings by spray method. Surface and Coatings Technology, 2012, 207, 489-492.	2.2	46
76	Superhydrophobic Textures for Microfluidics. Mendeleev Communications, 2012, 22, 229-236.	0.6	103
77	Silver (Ag). , 2012, , 2420-2420.		0
78	Recent Progress in Preparation of Superhydrophobic Surfaces: A Review. Journal of Surface Engineered Materials and Advanced Technology, 2012, 02, 76-94.	0.2	97
79	Fabrication and characterization of multi-level hierarchical surfaces. Faraday Discussions, 2012, 156, 235.	1.6	19
80	Robust superomniphobic surfaces with mushroom-like micropillar arrays. Soft Matter, 2012, 8, 8563.	1.2	116
81	Ab Initio DFT Simulations of Nanostructures. , 2012, , 11-17.		3
82	Synthesis of Subnanometric Metal Nanoparticles. , 2012, , 2639-2648.		0
83	Surface Plasmon Enhanced Optical Bistability and Optical Switching. , 2012, , 2583-2591.		0
84	AFM. , 2012, , 83-83.		0
85	Preparation of metallic coatings with reversibly switchable wettability based on plasma spraying technology. Journal of Coatings Technology Research, 2012, 9, 579-587.	1.2	11
86	Solid Lipid Nanoparticles - SLN. , 2012, , 2471-2487.		3
87	Green Tribology. Green Energy and Technology, 2012, , .	0.4	70
88	AC Electroosmosis: Basics and Lab-on-a-Chip Applications. , 2012, , 25-30.		1
89	Curing behavior and cured film performance of easy-to-clean UV-curable coatings based on hybrid urethane acrylate oligomers. Journal of Polymer Research, 2012, 19, 1.	1.2	24
90	Superoleophobic Surfaces through Control of Sprayed-on Stochastic Topography. Langmuir, 2012, 28, 9834-9841.	1.6	75
91	Smart Carbon Nanotube-Polymer Composites. , 2012, , 2451-2451.		0
92	Spatial Variations and Temporal Metastability of the Self-Cleaning and Superhydrophobic Properties of Damselfly Wings. Langmuir, 2012, 28, 17404-17409.	1.6	55

#	Article	IF	CITATIONS
93	Biomimetics. Biological and Medical Physics Series, 2012, , .	0.3	44
94	Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions. Theoretical Biology and Medical Modelling, 2012, 9, 45.	2.1	57
95	Literature review on superhydrophobic selfâ€cleaning surfaces produced by electrospinning. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 824-845.	2.4	260
96	Recent developments in polymeric superoleophobic surfaces. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1209-1224.	2.4	219
97	Enriching libraries of high-aspect-ratio micro- or nanostructures by rapid, low-cost, benchtop nanofabrication. Nature Protocols, 2012, 7, 311-327.	5.5	39
98	Superomniphobic Magnetic Microtextures with Remote Wetting Control. Journal of the American Chemical Society, 2012, 134, 12916-12919.	6.6	114
99	Bio-Inspired Self-Cleaning Surfaces. Annual Review of Materials Research, 2012, 42, 231-263.	4.3	427
100	Biomimetic Modification of Polymeric Surfaces: A Promising Pathway for Tuning of Wetting and Adhesion. Macromolecular Materials and Engineering, 2012, 297, 743-760.	1.7	32
101	Icephobic/Antiâ€lcing Properties of Micro/Nanostructured Surfaces. Advanced Materials, 2012, 24, 2642-2648.	11.1	518
102	Biofouling: lessons from nature. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 2381-2417.	1.6	425
103	Advances in the theory of superhydrophobic surfaces. Journal of Materials Chemistry, 2012, 22, 20112.	6.7	177
104	Recoverable and thermally stable superhydrophobic silica coating. Journal of Sol-Gel Science and Technology, 2012, 62, 490-494.	1.1	22
105	Wettability of Atmospheric Plasma Sprayed Fe, Ni, Cr and Their Mixture Coatings. Journal of Thermal Spray Technology, 2012, 21, 255-262.	1.6	42
106	A fast electrodeposition method for fabrication of lanthanum superhydrophobic surface with hierarchical micro-nanostructures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 401, 1-7.	2.3	50
107	A simple "two foil―approach to the fabrication of hierarchical superhydrophobic surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 404, 12-16.	2.3	20
108	Fabrication and characterization of hierarchical nanostructured smart adhesion surfaces. Journal of Colloid and Interface Science, 2012, 372, 231-238.	5.0	49
109	Oxygen adsorption induced superhydrophilic-to-superhydrophobic transition on hierarchical nanostructured CuO surface. Journal of Colloid and Interface Science, 2012, 377, 438-441.	5.0	74
110	A rapid one-step process for fabrication of superhydrophobic surface by electrodeposition method. Electrochimica Acta, 2012, 59, 168-171.	2.6	144

#	Article	IF	CITATIONS
111	Microscopic Observations of the Lotus Leaf for Explaining the Outstanding Mechanical Properties. Journal of Bionic Engineering, 2012, 9, 84-90.	2.7	29
112	Study of hydrophobic SiO2 films on enamel substrate via sol–gel process. Micro and Nano Letters, 2012, 7, 427.	0.6	1
113	Combined XPS and contact angle studies of flat and rough ethyleneâ€vinyl acetate copolymer films. Journal of Applied Polymer Science, 2012, 124, 2100-2109.	1.3	30
114	Synthesis and characterization of PMMA-based superhydrophobic surfaces. Colloid and Polymer Science, 2012, 290, 315-322.	1.0	15
115	Optimum conditions for fabricating superhydrophobic surface on copper plates via controlled surface oxidation and dehydration processes. Applied Surface Science, 2013, 280, 898-902.	3.1	25
116	Control of surface wetting via production of graft polymer chains with adaptive behavior. Protection of Metals and Physical Chemistry of Surfaces, 2013, 49, 101-108.	0.3	6
117	Adsorption Kinetics of DPPG Liposome Layers: A Quantitative Analysis of Surface Roughness. Microscopy and Microanalysis, 2013, 19, 867-875.	0.2	21
118	Transparent and Hard Zirconia-Based Hybrid Coatings with Excellent Dynamic/Thermoresponsive Oleophobicity, Thermal Durability, and Hydrolytic Stability. ACS Applied Materials & Interfaces, 2013, 5, 7899-7905.	4.0	29
120	Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces. Nanoscale, 2013, 5, 7685.	2.8	212
121	A facile approach for fabrication of underwater superoleophobic alloy. Applied Physics A: Materials Science and Processing, 2013, 113, 693-702.	1.1	11
124	Mimicking the Wettability of the Rose Petal using Self-assembly of Waterborne Polymer Particles. Chemistry of Materials, 2013, 25, 3472-3479.	3.2	45
125	Wetting on Physically Patterned Solid Surfaces: The Relevance of Molecular Dynamics Simulations to Macroscopic Systems. Langmuir, 2013, 29, 11632-11639.	1.6	43
126	Development of Particle Interface Bonding in Thermal Spray Coatings: A Review. Journal of Thermal Spray Technology, 2013, 22, 192-206.	1.6	86
127	Seasonal variations in leaf capturing of particulate matter, surface wettability and micromorphology in urban tree species. Frontiers of Environmental Science and Engineering, 2013, 7, 579-588.	3.3	91
128	Mechanically durable superhydrophobic surfaces prepared by abrading. Journal of Applied Physics, 2013, 114, 124902.	1.1	25
129	Roughness analysis for textured surfaces over several orders of magnitudes. Applied Surface Science, 2013, 284, 222-228.	3.1	8
130	Fabrication of Optically Transparent PDMS Artificial Lotus Leaf Film Using Underexposed and Underbaked Photoresist Mold. Journal of Microelectromechanical Systems, 2013, 22, 1073-1080.	1.7	26
131	Fabrication and icing property of superhydrophilic and superhydrophobic aluminum surfaces derived from anodizing aluminum foil in a sodium chloride aqueous solution. Applied Surface Science, 2013, 283, 19-24	3.1	26

#	Article	IF	CITATIONS
132	Magnetic Flux Alignment Studies on Entrapped Ferrofluid Nanoparticles in Poly Vinyl Alcohol Matrix. Journal of Materials Science and Technology, 2013, 29, 903-908.	5.6	3
133	Molecular basis for solvent dependent morphologies observed on electrosprayed surfaces. Physical Chemistry Chemical Physics, 2013, 15, 17862.	1.3	14
134	The Effect of Wetting and Surface Energy on the Friction and Slip in Oil-Lubricated Contacts. Tribology Letters, 2013, 52, 185-194.	1.2	95
135	A numerical study of the effects of superhydrophobic surface on skin-friction drag in turbulent channel flow. Physics of Fluids, 2013, 25, .	1.6	148
136	Surface Tension in Microsystems. Microtechnology and MEMS, 2013, , .	0.2	25
138	Nanoparticles assembly-induced special wettability for bio-inspired materials. Particuology, 2013, 11, 361-370.	2.0	22
139	Effect of Surface Energy on Dispersion and Mechanical Properties of Polymer/Nanocrystalline Cellulose Nanocomposites. Biomacromolecules, 2013, 14, 3155-3163.	2.6	167
140	25th Anniversary Article: Dynamic Interfaces for Responsive Encapsulation Systems. Advanced Materials, 2013, 25, 5029-5043.	11.1	82
141	Utilizing Dynamic Tensiometry to Quantify Contact Angle Hysteresis and Wetting State Transitions on Nonwetting Surfaces. Langmuir, 2013, 29, 13396-13406.	1.6	26
142	Polyaniline/carbon nanotube nanocomposite electrodes with biomimetic hierarchical structure for supercapacitors. Journal of Materials Chemistry A, 2013, 1, 14719.	5.2	75
143	Eco-Friendly Fabrication of Superhydrophobic Bayerite Array on Al Foil via an Etching and Growth Process. Journal of Physical Chemistry C, 2013, 117, 25519-25525.	1.5	46
144	Bio-inspired superoleophobic and smart materials: Design, fabrication, and application. Progress in Materials Science, 2013, 58, 503-564.	16.0	513
145	Bioinspired Multifunctional Foam with Self leaning and Oil/Water Separation. Advanced Functional Materials, 2013, 23, 2881-2886.	7.8	513
146	Selective bactericidal activity of nanopatterned superhydrophobic cicada Psaltoda claripennis wing surfaces. Applied Microbiology and Biotechnology, 2013, 97, 9257-9262.	1.7	270
147	Controlled water adhesion and electrowetting of conducting hydrophobic graphene/carbon nanotubes composite films on engineering materials. Journal of Materials Chemistry A, 2013, 1, 1254-1260.	5.2	63
148	Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RSC Advances, 2013, 3, 671-690.	1.7	702
149	Biophysical Model of Bacterial Cell Interactions with Nanopatterned Cicada Wing Surfaces. Biophysical Journal, 2013, 104, 835-840.	0.2	496
150	Shark skin inspired low-drag microstructured surfaces in closed channel flow. Journal of Colloid and Interface Science, 2013, 393, 384-396.	5.0	100

		CITATION RE	PORT	
#	Article		IF	CITATIONS
151	Erosion-Resistant Surfaces Inspired by Tamarisk. Journal of Bionic Engineering, 2013, 1	0, 479-487.	2.7	46
152	Thermal annealing as a new simple method for PTFE texturing. Polymer, 2013, 54, 585	8-5864.	1.8	25
153	Multi walled carbon nanotubes deposited on metal substrate using EPD technique. A s study. Journal of Molecular Structure, 2013, 1040, 238-245.	pectroscopic	1.8	48
154	Experimental investigation of viscous drag reduction of superhydrophobic nano-coatin and turbulent flows. Experimental Thermal and Fluid Science, 2013, 51, 239-243.	g in laminar	1.5	40
155	Simulation and ZnO nanowires-based generation of a hierarchical structure on an optic Applied Surface Science, 2013, 280, 186-192.	cal fiber core.	3.1	6
157	Bioinspired micro/nanostructured surfaces for oil drag reduction in closed channel flov Matter, 2013, 9, 1620-1635.	v. Soft	1.2	61
158	Hierarchical or Not? Effect of the Length Scale and Hierarchy of the Surface Roughness Omniphobicity of Lubricant-Infused Substrates. Nano Letters, 2013, 13, 1793-1799.	; on	4.5	426
159	Intermolecular interactions between natural polysaccharides and silk fibroin protein. C Polymers, 2013, 93, 561-573.	arbohydrate	5.1	78
160	Long-lived superhydrophobic surfaces. Journal of Materials Chemistry A, 2013, 1, 4146		5.2	288
161	Bio-mimetic mechanisms of natural hierarchical materials: A review. Journal of the Mec Behavior of Biomedical Materials, 2013, 19, 3-33.	nanical	1.5	155
162	Verification of Icephobic/Anti-icing Properties of a Superhydrophobic Surface. ACS App & Interfaces, 2013, 5, 3370-3381.	lied Materials	4.0	447
163	Engineering superhydrophobic surface on poly(vinylidene fluoride) nanofiber membrar contact membrane distillation. Journal of Membrane Science, 2013, 440, 77-87.	es for direct	4.1	292
164	Methodology for Robust Superhydrophobic Fabrics and Sponges from In Situ Growth o Metal/Metal Oxide Nanocrystals with Thiol Modification and Their Applications in Oil/V Separation. ACS Applied Materials & Interfaces, 2013, 5, 1827-1839.	of Transition Vater	4.0	251
165	Study on the wetting behavior and theoretical models of polydimethylsiloxane/silica co Surface Science, 2013, 279, 458-463.	ating. Applied	3.1	54
166	Superhydrophobic surfaces with excellent mechanical durability and easy repairability. Surface Science, 2013, 276, 397-400.	Applied	3.1	50
167	PVDF surfaces with stable superhydrophobicity. Surface and Coatings Technology, 202	.3, 222, 55-61.	2.2	18
168	Estimation of contact angle for hydrophobic silica nanoparticles in their hexagonally of Materials Chemistry and Physics, 2013, 140, 602-609.	dered layer.	2.0	11
169	Fabrication of superhydrophobic cotton textiles for water–oil separation based on d route. Carbohydrate Polymers, 2013, 97, 59-64.	rop-coating	5.1	137

#	Article	IF	CITATIONS
170	Spray deposition of electrospun TiO2 nanoparticles with self-cleaning and transparent properties onto glass. Applied Surface Science, 2013, 276, 390-396.	3.1	48
171	A tunable method for nonwetting surfaces based on nanoimprint lithography and hydrothermal growth. Journal of Materials Chemistry A, 2013, 1, 8417.	5.2	17
172	The correlation between the surface energy, the contact angle and the spreading parameter, and their relevance for the wetting behaviour of DLC with lubricating oils. Tribology International, 2013, 66, 225-233.	3.0	134
173	Fast, active droplet interaction: coalescence and reactive mixing controlled by electrowetting on a superhydrophobic surface. Lab on A Chip, 2013, 13, 332-335.	3.1	44
174	Improving biocompatibility by surface modification techniques on implantable bioelectronics. Biosensors and Bioelectronics, 2013, 47, 451-460.	5.3	58
175	Superhydrophobic Surfaces Engineered Using Diatomaceous Earth. ACS Applied Materials & Interfaces, 2013, 5, 4202-4208.	4.0	63
176	Biomimetic Superhydrophobic Surfaces. Journal of Dispersion Science and Technology, 2013, 34, 1-21.	1.3	10
177	Self cleaning behaviour of Ni/nano-TiO2 metal matrix composites. Electrochimica Acta, 2013, 105, 324-332.	2.6	37
178	Neurite outgrowth and synaptophysin expression of postnatal CNS neurons on GaP nanowire arrays in long-term retinal cell culture. Biomaterials, 2013, 34, 875-887.	5.7	87
179	Gecko-inspired fibril nanostructures for reversible adhesion in biomedical applications. Materials Letters, 2013, 92, 409-412.	1.3	32
180	Accurate control of friction with nanosculptured thin coatings: Application to gripping in microscale assembly. Tribology International, 2013, 59, 67-78.	3.0	13
181	A Biologically Inspired Hydrophobic Membrane for Application in Pervaporation. Langmuir, 2013, 29, 1510-1516.	1.6	23
182	Dynamics of Nanoscale Droplets on Moving Surfaces. Langmuir, 2013, 29, 6936-6943.	1.6	46
183	Bioâ€Inspired Superoleophobic Fluorinated Wax Crystalline Surfaces. Advanced Functional Materials, 2013, 23, 4572-4576.	7.8	39
184	Preparation of Biomimetic Superhydrophobic Silica/Polyurethane Composite Coating. Advanced Materials Research, 0, 785-786, 974-977.	0.3	2
185	Bioinspired hierarchical superhydrophobic structures formed by n-paraffin waxes of varying chain lengths. Soft Matter, 2013, 9, 5710.	1.2	23
186	Hydrophobic–hydrophilic dichotomy of the butterfly proboscis. Journal of the Royal Society Interface, 2013, 10, 20130336.	1.5	68
187	Superoleophobic surfaces: design criteria and recent studies. Surface Innovations, 2013, 1, 71-83.	1.4	69

#	Article	IF	CITATIONS
188	Cassie-Wenzel–like transition in patterned soft elastomer adhesive contacts. Europhysics Letters, 2013, 101, 14001.	0.7	15
189	Effect of Process Conditions on Hydrophobic Characteristics of Injection Molded Silicone Rubber Surface Replicated from Electric Discharge Machined Surface. Applied Mechanics and Materials, 0, 465-466, 1272-1276.	0.2	0
190	Multi-coupling hydrophobic characteristics on the lower surface of the lotus leaf. , 2013, , .		0
191	Transparent, Flexible, Superomniphobic Surfaces with Ultra‣ow Contact Angle Hysteresis. Angewandte Chemie - International Edition, 2013, 52, 13007-13011.	7.2	112
192	Microstructured SiO <inf>2</inf> surface repellant to liquids without coating. , 2013, , .		0
193	A novel approach to determine the efficacy of patterned surfaces for biofouling control in relation to its microfluidic environment. Biofouling, 2013, 29, 697-713.	0.8	25
194	Fluid Drag Reduction with Shark‧kin Riblet Inspired Microstructured Surfaces. Advanced Functional Materials, 2013, 23, 4507-4528.	7.8	261
195	A simple approach to fabricate sticky superhydrophobic polystyrene surfaces. Journal of Adhesion Science and Technology, 2013, 27, 2296-2303.	1.4	3
196	Active Anti-erosion Protection Strategy in Tamarisk (Tamarix aphylla). Scientific Reports, 2013, 3, 3429.	1.6	23
198	Determination of the second step microstructure for superhydrophobic surfaces. Surface and Interface Analysis, 2013, 45, 919-929.	0.8	2
200	Metal oxide thin films and nanostructures for self-cleaning applications: current status and future prospects. EPJ Applied Physics, 2013, 62, 30001.	0.3	45
201	DETERMINATION OF APPARENT CONTACT ANGLE AND SHAPE OF A STATIC PENDANT DROP ON A PHYSICALLY TEXTURED INCLINED SURFACE. Interfacial Phenomena and Heat Transfer, 2013, 1, 29-49.	0.3	12
202	The Effects of Leaf Roughness, Surface Free Energy and Work of Adhesion on Leaf Water Drop Adhesion. PLoS ONE, 2014, 9, e107062.	1.1	62
203	Surface Structure and Wetting Characteristics of Collembola Cuticles. PLoS ONE, 2014, 9, e86783.	1.1	34
204	The surface microstructure of cusps and leaflets in rabbit and mouse heart valves. Beilstein Journal of Nanotechnology, 2014, 5, 622-629.	1.5	2
205	Inherent Constraint for Three-Dimensional Patterning by Microtransfer Molding. Materials and Manufacturing Processes, 2014, 29, 59-63.	2.7	3
206	Residual stress induced wetting variation on electric brush-plated Cu film. Chinese Physics B, 2014, 23, 038201.	0.7	4
207	<i>Staphylococcus epidermidis</i> adhesion on hydrophobic and hydrophilic textured biomaterial surfaces. Biomedical Materials (Bristol), 2014, 9, 035003.	1.7	55

#	Article	IF	CITATIONS
208	An assessment of the dynamic stability of microorganisms on patterned surfaces in relation to biofouling control. Biofouling, 2014, 30, 695-707.	0.8	28
209	Fabrication and tribological properties of superhydrophobic nickel films with positive and negative biomimetic microtextures. Friction, 2014, 2, 287-294.	3.4	13
210	Nanocomposite Photocatalyst Based on Layered Double Hydroxides (LDHs) Associated with TiO ₂ . Advances in Science and Technology, 2014, 92, 100-109.	0.2	2
211	Superhydrophobic Surface by Replication of Laser Micromachined Pattern in Epoxy/Alumina Nanoparticle Composite. Journal of Nanomaterials, 2014, 2014, 1-11.	1.5	31
213	The Biomimetic Shark Skin Optimization Design Method for Improving Lubrication Effect of Engineering Surface. Journal of Tribology, 2014, 136, 0317031-3170313.	1.0	23
214	Investigating and biomimicking the surface wetting behaviors of ginkgo leaf. Soft Matter, 2014, 10, 8800-8803.	1.2	22
215	Kinetics of Droplet Wetting Mode Transitions on Grooved Surfaces: Forward Flux Sampling. Langmuir, 2014, 30, 15442-15450.	1.6	20
216	Superhydrophobic metallic glass surface with superior mechanical stability and corrosion resistance. Applied Physics Letters, 2014, 104, .	1.5	106
217	Needle-free drop deposition technique for contact angle measurements of superhydrophobic surfaces. Journal of Applied Physics, 2014, 116, .	1.1	5
218	CHAPTER 13. Bacterial Adhesion and Interaction with Biomaterial Surfaces. RSC Smart Materials, 2014, , 363-398.	0.1	0
219	Grooved Organogel Surfaces towards Anisotropic Sliding of Water Droplets. Advanced Materials, 2014, 26, 3131-3135.	11.1	113
220	Interfaces in Microfluidic and Nanofluidic Systems. , 2014, , 39-86.		2
221	Interaction forces during the sliding of a water droplet on a textured surface. , 2014, , .		4
222	Hydrophobicity of Thin Films of Compounds of Lowâ€Electronegativity Metals. Journal of the American Ceramic Society, 2014, 97, 2713-2717.	1.9	62
223	Lubricantâ€Infused Nanoparticulate Coatings Assembled by Layerâ€byâ€Layer Deposition. Advanced Functional Materials, 2014, 24, 6658-6667.	7.8	206
224	Switch isotropic/anisotropic wettability via dual-scale rods. AIP Advances, 2014, 4, 107103.	0.6	1
225	Bioâ€Inspired Multifunctional Metallic Foams Through the Fusion of Different Biological Solutions. Advanced Functional Materials, 2014, 24, 2721-2726.	7.8	46
226	Water-Repellent Stability of Superhydrophobic Materials under Hydrostatic Pressure. Applied Mechanics and Materials, 0, 633-634, 764-768.	0.2	0

#	Article	IF	CITATIONS
227	Optical coherence tomography as a tool for characterization of complex biological surfaces. Journal of Microscopy, 2014, 255, 150-157.	0.8	1
228	Synthesis of grafted functional polymer coatings on the aluminum surface by the methods of controlled radical polymerization. Russian Chemical Bulletin, 2014, 63, 1610-1614.	0.4	6
229	Superhydrophobic surfaces by laser ablation of rare-earth oxide ceramics. MRS Communications, 2014, 4, 95-99.	0.8	32
231	Thermodynamics of (Nano)interfaces. , 2014, , 1-31.		4
232	Fabrication of superhydrophobic surfaces on flexible fluorinated foils by using dual-scale patterning. Materials Research Express, 2014, 1, 025704.	0.8	16
233	Dropwise Condensation: Experiments. SpringerBriefs in Applied Sciences and Technology, 2014, , 95-126.	0.2	2
234	Controlled fabrication of non-fluoro polymer composite film with hierarchically nano structured fibers. Progress in Organic Coatings, 2014, 77, 904-907.	1.9	19
235	Microscale patterned surfaces reduce bacterial fouling-microscopic and theoretical analysis. Colloids and Surfaces B: Biointerfaces, 2014, 117, 225-232.	2.5	92
236	Anti-fouling properties of microstructured surfaces bio-inspired by rice leaves and butterfly wings. Journal of Colloid and Interface Science, 2014, 419, 114-133.	5.0	198
237	Effects of calcination temperature on the microstructure and wetting behavior of superhydrophobic polydimethylsiloxane/silica coating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 445, 111-118.	2.3	49
238	Peanut Leaf Inspired Multifunctional Surfaces. Small, 2014, 10, 294-299.	5.2	107
239	Super-non-wettable surfaces: A review. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 448, 93-106.	2.3	144
240	Potential innovations in separation technology by natureâ€inspired membranes: beneath and beyond the Earth's crust. Journal of Chemical Technology and Biotechnology, 2014, 89, 475-478.	1.6	1
241	Superhydrophobic and superoleophobic surfaces using ZnO nano-in-micro hierarchical structures. Microelectronic Engineering, 2014, 116, 51-57.	1.1	33
242	Fabrication and characterization of stable superhydrophobic fluorinated-polyacrylate/silica hybrid coating. Applied Surface Science, 2014, 298, 214-220.	3.1	50
243	Simulationâ€Experimental Approach to Investigate the Role of Interfaces in Selfâ€Replenishing Composite Coatings. Advanced Materials Interfaces, 2014, 1, 1400053.	1.9	15
244	Adhesion behaviors on superhydrophobic surfaces. Chemical Communications, 2014, 50, 3900.	2.2	202
245	Polymer brush coatings for combating marine biofouling. Progress in Polymer Science, 2014, 39, 1017-1042.	11.8	401

#	Article	IF	CITATIONS
246	Spray-coating process in preparing PTFE-PPS composite super-hydrophobic coating. AIP Advances, 2014, 4, .	0.6	17
247	Selfâ€Replenishing Dual Structured Superhydrophobic Coatings Prepared by Dropâ€Casting of an Allâ€Inâ€One Dispersion. Advanced Functional Materials, 2014, 24, 986-992.	7.8	108
248	One-dimensional silicone nanofilaments. Advances in Colloid and Interface Science, 2014, 209, 144-162.	7.0	40
249	Fabrication of biomimetic superhydrophobic surface with controlled adhesion by electrodeposition. Chemical Engineering Journal, 2014, 248, 440-447.	6.6	96
250	Fabrication of durable superhydrophobic coatings with hierarchical structure on inorganic radome materials. Ceramics International, 2014, 40, 10907-10914.	2.3	30
251	Synthesis and characterization of functionalized carbon nanotubes with different wetting behaviors and their influence on the wetting properties of carbon nanotubes/polymethylmethacrylate coatings. Progress in Organic Coatings, 2014, 77, 1007-1014.	1.9	19
252	A low cost, safe, disposable, rapid and self-sustainable paper-based platform for diagnostic testing: lab-on-paper. Nanotechnology, 2014, 25, 094006.	1.3	193
253	Superhydrophobic coating deposited directly on aluminum. Applied Surface Science, 2014, 305, 774-782.	3.1	60
254	Cu surfaces with controlled structures: From intrinsically hydrophilic to apparently superhydrophobic. Applied Surface Science, 2014, 290, 320-326.	3.1	28
255	Synthesis and characterization of nanocrystalline TiO2 with application as photoactive coating on stones. Environmental Science and Pollution Research, 2014, 21, 13264-13277.	2.7	37
256	Hydrophobic and oleophobic anti-reflective polyacrylate coatings. Microelectronic Engineering, 2014, 114, 38-46.	1.1	14
257	Preparation of stable superhydrophobic film on stainless steel substrate by a combined approach using electrodeposition and fluorinated modification. Applied Surface Science, 2014, 293, 265-270.	3.1	81
258	A novel fluorinated polyimide surface with petal effect produced by electrospinning. Soft Matter, 2014, 10, 549-552.	1.2	45
259	Recent progress of membrane distillation using electrospun nanofibrous membrane. Journal of Membrane Science, 2014, 453, 435-462.	4.1	318
260	Designing superhydrophobic surfaces with SAM modification on hierarchical ZIF-8/polymer hybrid membranes for efficient bioalcohol pervaporation. RSC Advances, 2014, 4, 59750-59753.	1.7	23
261	Formation and characterization of hydrophobic glass surface treated by atmospheric pressure He/CH4 plasma. Journal of Applied Physics, 2014, 115, 043307.	1.1	11
262	From †petal effect' to †lotus effect' on the highly flexible Silastic S elastomer microstructured using a fluorine based reactive ion etching process. Journal of Micromechanics and Microengineering, 2014, 24, 115008.	1.5	7
263	Ice-phobic gummed tape with nano-cones on microspheres. Journal of Materials Chemistry A, 2014, 2, 3312.	5.2	51

#	Article	IF	CITATIONS
264	Hydrophilically patterned superhydrophobic cotton fabrics and their use in ink printing. Journal of Materials Chemistry A, 2014, 2, 8094-8102.	5.2	67
265	Electrochemical fabrication of transparent nickel hydroxide nanostructures with tunable superhydrophobicity/superhydrophilicity for 2D microchannels application. Journal of Materials Chemistry A, 2014, 2, 1985-1990.	5.2	19
266	Facile fabrication of a robust superhydrophobic/superoleophilic sponge for selective oil absorption from oily water. RSC Advances, 2014, 4, 23861.	1.7	40
267	Effect of topography on the wetting of nanoscale patterns: experimental and modeling studies. Nanoscale, 2014, 6, 15321-15332.	2.8	53
268	Lotus bioinspired superhydrophobic, selfâ€cleaning surfaces from hierarchically assembled templates. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 603-609.	2.4	42
269	Self-Driven One-Step Oil Removal from Oil Spill on Water via Selective-Wettability Steel Mesh. ACS Applied Materials & Interfaces, 2014, 6, 19858-19865.	4.0	226
270	A simple route to transform normal hydrophilic cloth into a superhydrophobic–superhydrophilic hybrid surface. Journal of Materials Chemistry A, 2014, 2, 7845-7852.	5.2	63
271	Nanoscale Hydrophilicity Studies of Gulf Parrotfish (<i>Scarus persicus</i>) Scales. ACS Applied Materials & Interfaces, 2014, 6, 16320-16326.	4.0	9
272	The design and applications of superomniphobic surfaces. NPG Asia Materials, 2014, 6, e109-e109.	3.8	314
273	Superhydrophobic durable coating based on UVâ€photoreactive silica nanoparticles. Journal of Applied Polymer Science, 2014, 131, .	1.3	19
274	Superhydrophobic PVDF–PTFE electrospun nanofibrous membranes for desalination by vacuum membrane distillation. Desalination, 2014, 347, 175-183.	4.0	172
275	pH-responsive smart fabrics with controllable wettability in different surroundings. RSC Advances, 2014, 4, 14684.	1.7	45
276	A review of helical nanostructures: growth theories, synthesis strategies and properties. Nanoscale, 2014, 6, 9366.	2.8	123
277	Wetting behavior and remarkable durability of amphiphobic aluminum alloys surfaces in a wide range of environmental conditions. Chemical Engineering Journal, 2014, 258, 101-109.	6.6	34
278	Interfacial effects of superhydrophobic plant surfaces: A review. Journal of Bionic Engineering, 2014, 11, 325-345.	2.7	102
279	Characterization of the topography and wettability of English weed leaves and biomimetic replicas. Journal of Bionic Engineering, 2014, 11, 346-359.	2.7	26
280	Surface functionalization of coal powder with different coupling agents for potential applications in organic materials. Applied Surface Science, 2014, 313, 954-960.	3.1	15
281	Interfacial Material System Exhibiting Superwettability. Advanced Materials, 2014, 26, 6872-6897.	11.1	448

#	Article	IF	CITATIONS
282	The impact and retention of spray droplets on a horizontal hydrophobic surface. Biosystems Engineering, 2014, 126, 82-91.	1.9	41
283	Construction of wettability gradient surface on copper substrate by controlled hydrolysis of poly(methyl methacrylate–butyl acrylate) films. Applied Surface Science, 2014, 315, 163-168.	3.1	12
284	Fabrication of superhydrophobic surface with hierarchical multi-scale structure on copper foil. Surface and Coatings Technology, 2014, 254, 151-156.	2.2	29
285	Electrospun Superhydrophobic Membranes with Unique Structures for Membrane Distillation. ACS Applied Materials & Interfaces, 2014, 6, 16035-16048.	4.0	234
286	Bio-Inspired Titanium Dioxide Materials with Special Wettability and Their Applications. Chemical Reviews, 2014, 114, 10044-10094.	23.0	489
287	Superhydrophobic surfaces with near-zero sliding angles realized from solvent relative permittivity mediated silica nanoparticle aggregation. Journal of Materials Chemistry A, 2014, 2, 17165-17173.	5.2	23
288	Three-dimensional superhydrophobic porous hybrid monoliths for effective removal of oil droplets from the surface of water. RSC Advances, 2014, 4, 17393.	1.7	42
289	The Effect of DLC Coating Thickness on Elstohydrodynamic Friction. Tribology Letters, 2014, 55, 353-362.	1.2	33
290	Tailoring the grooved texture of electrospun polystyrene nanofibers by controlling the solvent system and relative humidity. Nanoscale Research Letters, 2014, 9, 350.	3.1	28
291	Proteins, platelets, and blood coagulation at biomaterial interfaces. Colloids and Surfaces B: Biointerfaces, 2014, 124, 49-68.	2.5	290
292	Flexible superhydrophobic paper with a large and stable floating capacity. RSC Advances, 2014, 4, 48443-48448.	1.7	15
293	Controlling the Cassie-to-Wenzel Transition: an Easy Route towards the Realization of Tridimensional Arrays of Biological Objects. Nano-Micro Letters, 2014, 6, 280-286.	14.4	14
294	Controllable fabrication of lotus-leaf-like superhydrophobic surface on copper foil by self-assembly. Applied Physics A: Materials Science and Processing, 2014, 116, 1613-1620.	1.1	18
295	Biomimetic and bioinspired membranes: Preparation and application. Progress in Polymer Science, 2014, 39, 1668-1720.	11.8	174
296	Antifungal efficiency assessment of the TiO2 coating on façade paints. Environmental Science and Pollution Research, 2014, 21, 11228-11237.	2.7	27
297	Tribology and Superhydrophobicity of Laser-Controlled-Melted Alumina Surfaces with Hard Particles. Jom, 2014, 66, 1068-1079.	0.9	7
298	The evaluation of hierarchical structured superhydrophobic coatings for the alleviation of insect residue to aircraft laminar flow surfaces. Applied Surface Science, 2014, 314, 1053-1062.	3.1	19
299	How to repel hot water from a superhydrophobic surface?. Journal of Materials Chemistry A, 2014, 2, 10639-10646.	5.2	62

#	Article	IF	CITATIONS
300	Exploring the significance of structural hierarchy in material systems—A review. Applied Physics Reviews, 2014, 1, 021302.	5.5	29
301	Physics and applications of superhydrophobic and superhydrophilic surfaces and coatings. Surface Innovations, 2014, 2, 211-227.	1.4	130
302	Rice- and butterfly-wing effect inspired self-cleaning and low drag micro/nanopatterned surfaces in water, oil, and air flow. Nanoscale, 2014, 6, 76-96.	2.8	198
303	Preparation of self-cleaning surfaces with a dual functionality of superhydrophobicity and photocatalytic activity. Applied Surface Science, 2014, 319, 367-371.	3.1	56
304	Geometryâ€Induced Mechanical Properties of Carbon Nanotube Foams. Advanced Engineering Materials, 2014, 16, 1026-1031.	1.6	10
305	Droplets engulfing on a filament. Applied Surface Science, 2014, 294, 49-57.	3.1	7
306	Comparison of micro-/nano-hierarchical and nano-scale roughness of silica membranes in terms of wetting behavior and transparency. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 446, 8-14.	2.3	31
307	Hydrophobic modification of fibers by pressure-induced phase-separation coupled with ultrasonic irradiation in high-pressure liquid carbon dioxide. Chemical Engineering Journal, 2014, 246, 106-113.	6.6	11
308	Fabrication of template with dualâ€scale structures based on glass wet etching and its application in hydrophobic surface preparation. Micro and Nano Letters, 2014, 9, 340-344.	0.6	8
309	Fabrication of Bioinspired Composite Nanofiber Membranes with Robust Superhydrophobicity for Direct Contact Membrane Distillation. Environmental Science & Technology, 2014, 48, 6335-6341.	4.6	216
310	Preparation of a polydimethylsiloxane (PDMS)/CaCO3 based superhydrophobic coating. Surface and Coatings Technology, 2014, 254, 97-103.	2.2	30
311	A Simple Route to Morphology-Controlled Polydimethylsiloxane Films Based on Particle-Embedded Elastomeric Masters for Enhanced Superhydrophobicity. ACS Applied Materials & Interfaces, 2014, 6, 2770-2776.	4.0	9
312	Recent progress in fabrication and characterisation of hierarchical biomimetic superhydrophobic structures. RSC Advances, 2014, 4, 22053.	1.7	163
313	Washable and Wear-Resistant Superhydrophobic Surfaces with Self-Cleaning Property by Chemical Etching of Fibers and Hydrophobization. ACS Applied Materials & Interfaces, 2014, 6, 10153-10161.	4.0	241
314	One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation. Applied Surface Science, 2014, 313, 411-417.	3.1	104
315	Wetting behavior of triethoxyoctylsilane modified ZnO nanowire films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 444, 48-53.	2.3	16
316	A facile approach to fabricate a stable superhydrophobic film with switchable water adhesion on titanium surface. Surface and Coatings Technology, 2014, 239, 227-232.	2.2	44
317	Fabricating superhydrophobic aluminum: An optimized one-step wet synthesis using fluoroalkyl silane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 919-924.	2.3	42

	CHATION	REPORT	
#	Article	IF	CITATIONS
318	Superhydrophobic merino fibres utilising silica nanospheres. Surface Innovations, 2014, 2, 127-134.	1.4	0
319	Morphological development and environmental degradation of superhydrophobic aspen and black locust leaf surfaces. Ecohydrology, 2014, 7, 1421-1436.	1.1	11
320	Synthesis and texturization processes of (super)-hydrophobic fluorinated surfaces by atmospheric plasma. Journal of Materials Research, 2015, 30, 3177-3191.	1.2	32
321	Energy and environmental engineering. , 2015, , 651-1557.		0
323	Bioâ€based Wrinkled Surfaces Harnessed from Biological Design Principles of Wood and Peroxidase Activity. ChemSusChem, 2015, 8, 3892-3896.	3.6	15
324	Adhesion Tuning at Superhydrophobic States: From Petal Effect to Lotus Effect. Macromolecular Materials and Engineering, 2015, 300, 1057-1062.	1.7	15
325	Facile fabrication of superhydrophobic polyimide/polytetrafluoroethylene composite coatings with high water adhesion. Journal of Applied Polymer Science, 2015, 132, .	1.3	2
327	Superhydrophobic "Aspiratorâ€i Toward Dispersion and Manipulation of Micro/Nanoliter Droplets. Small, 2015, 11, 4491-4496.	5.2	34
328	The capillary adhesion technique: a versatile method for determining the liquid adhesion force and sample stiffness. Beilstein Journal of Nanotechnology, 2015, 6, 11-18.	1.5	18
329	Wettability of Nanostructured Surfaces. , 0, , .		18
330	A Comprehensive Review on Fluid Dynamics and Transport of Suspension/Liquid Droplets and Particles in High-Velocity Oxygen-Fuel (HVOF) Thermal Spray. Coatings, 2015, 5, 576-645.	1.2	54
331	Generation of superhydrophobic surfaces and wettability gradients on metallic substrates by nanosecond laser irradiation. , 2015, , .		0
332	The Wetting of Leaf Surfaces and Its Ecological Significances. , 0, , .		21
333	Engineering a nanostructured "super surface―with superhydrophobic and superkilling properties. RSC Advances, 2015, 5, 44953-44959.	1.7	128
334	Under-water superoleophobicity of fish scales. Scientific Reports, 2014, 4, 7454.	1.6	69
335	Superhydrophobic coatings fabricated with polytetrafluoroethylene and SiO2 nanoparticles by spraying process on carbon steel surfaces. Applied Surface Science, 2015, 349, 724-732.	3.1	86
336	Robust Polypropylene Fabrics Super-Repelling Various Liquids: A Simple, Rapid and Scalable Fabrication Method by Solvent Swelling. ACS Applied Materials & Interfaces, 2015, 7, 13996-14003.	4.0	53
337	Floatable, Self-Cleaning, and Carbon-Black-Based Superhydrophobic Gauze for the Solar Evaporation Enhancement at the Air–Water Interface. ACS Applied Materials & Interfaces, 2015, 7, 13645-13652.	4.0	316

#	Article	IF	CITATIONS
338	Modeling Pressure Stability and Contact-Angle Hysteresis of Superlyophobic Surfaces Based on Local Contact Line. Journal of Physical Chemistry C, 2015, 119, 12916-12922.	1.5	13
339	Fabrication of filter paper with tunable wettability and its application in oil–water separation. Journal of Sol-Gel Science and Technology, 2015, 76, 129-137.	1.1	21
340	Stepwise anodic electrodeposition of nanoporous NiOOH/Ni(OH) ₂ with controllable wettability and its applications. HKIE Transactions, 2015, 22, 202-211.	1.9	4
341	HS-WEDM machining of superamphiphobic al surfaces and effect of the droplet size on wettability. , 2015, , .		1
342	One-step electrodeposition fabrication of a superhydrophobic surface on an aluminum substrate with enhanced self-cleaning and anticorrosion properties. RSC Advances, 2015, 5, 100000-100010.	1.7	61
343	Effect of surface area on the wettability of dual micro- and nanostructures fabricated by laser interference lithography. , 2015, , .		2
344	Adhesion of water droplets by low voltage electrowetting on a superhydrophobic surface of a 3C-SiC nanorod network. Materials Research Express, 2015, 2, 125004.	0.8	4
345	Preparation and application of biomimetic superhydrophobic silica and polyurethane composite coating. International Journal of Surface Science and Engineering, 2015, 9, 510.	0.4	0
346	Hydrophobic engineered cementitious composites for highway applications. Cement and Concrete Composites, 2015, 57, 68-74.	4.6	80
347	Tunable wettability of hierarchical structured coatings derived from one-step synthesized raspberry-like poly(styrene-acrylic acid) particles. Polymer Chemistry, 2015, 6, 703-713.	1.9	24
348	Fluid dynamic and heat transfer processes between solid surfaces and non-Newtonian liquid droplets. Applied Thermal Engineering, 2015, 88, 33-46.	3.0	7
349	Photocatalytic activity and stability of TiO2/ZnAl layered double hydroxide based coatings on mortar substrates. Cement and Concrete Composites, 2015, 58, 50-58.	4.6	22
350	Polydopamine-assisted synthesis of raspberry-like nanocomposite particles for superhydrophobic and superoleophilic surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 470, 80-91.	2.3	54
351	A glimpse of superb tribological designs in nature. Biotribology, 2015, 1-2, 11-23.	0.9	31
352	Structure of Aqueous Water Films on Textured â^'OH-Terminated Self-Assembled Monolayers. Langmuir, 2015, 31, 2382-2389.	1.6	8
353	Functionalization of Metallic Glasses through Hierarchical Patterning. Nano Letters, 2015, 15, 963-968.	4.5	98
354	Ice accretion on superhydrophobic insulators under freezing condition. Cold Regions Science and Technology, 2015, 112, 87-94.	1.6	38
355	Temperature effects on the fracture resistance of scales from Cyprinus carpio. Acta Biomaterialia, 2015, 14, 154-163.	4.1	19

#	Article	IF	CITATIONS
358	Superhydrophobic nanocoatings: from materials to fabrications and to applications. Nanoscale, 2015, 7, 5922-5946.	2.8	322
359	Rice and Butterfly Wing Effect Inspired Low Drag and Antifouling Surfaces: A Review. Critical Reviews in Solid State and Materials Sciences, 2015, 40, 1-37.	6.8	96
360	Influence of the average surface roughness on the formation of superhydrophobic polymer surfaces through spin-coating with hydrophobic fumed silica. Polymer, 2015, 62, 118-128.	1.8	83
361	Superhydrophobic treatment using atmospheric-pressure He/C ₄ F ₈ plasma for buoyancy improvement. Japanese Journal of Applied Physics, 2015, 54, 046201.	0.8	3
362	Dynamic lateral adhesion force of water droplets on microstructured hydrophobic surfaces. Sensors and Actuators B: Chemical, 2015, 213, 360-367.	4.0	17
363	Superhydrophobic carbon nanotube/polydimethylsiloxane composite coatings. Materials Science and Technology, 2015, 31, 1745-1748.	0.8	18
364	Fabrication and characterization of the functional parylene-C film with micro/nano hierarchical structures. Microelectronic Engineering, 2015, 141, 72-80.	1.1	5
365	Transparent, durable and thermally stable PDMS-derived superhydrophobic surfaces. Applied Surface Science, 2015, 339, 94-101.	3.1	100
366	Recent developments in superhydrophobic graphene and graphene-related materials: from preparation to potential applications. Nanoscale, 2015, 7, 7101-7114.	2.8	144
367	Preparation and Antiscaling Application of Superhydrophobic Anodized CuO Nanowire Surfaces. Industrial & Engineering Chemistry Research, 2015, 54, 6874-6883.	1.8	96
368	Fabricating an enhanced stable superhydrophobic surface on copper plates by introducing a sintering process. Applied Surface Science, 2015, 355, 145-152.	3.1	11
369	Highly hydrophilic poly(ethylene terephthalate) films prepared by combined hot embossing and plasma treatment techniques. Applied Surface Science, 2015, 349, 200-210.	3.1	13
370	Fabrication of the replica templated from butterfly wing scales with complex light trapping structures. Applied Surface Science, 2015, 355, 290-297.	3.1	28
371	A facile solution-immersion process for the fabrication of superhydrophobic gibbsite films with a binary micro-nano structure: Effective factors optimization via Taguchi method. Applied Surface Science, 2015, 356, 157-166.	3.1	21
372	Comparison of leaf surface roughness analysis methods by sensitivity to noise analysis. Biosystems Engineering, 2015, 136, 77-86.	1.9	15
373	Determination of contact angle of droplet on convex and concave spherical surfaces. Chemical Physics, 2015, 457, 63-69.	0.9	44
374	Effect of hierarchical structured superhydrophobic surfaces on coherent structures in turbulent channel flow. Experimental Thermal and Fluid Science, 2015, 69, 27-37.	1.5	22
375	Superhydrophobic modification of PVDF–SiO ₂ electrospun nanofiber membranes for vacuum membrane distillation. RSC Advances, 2015, 5, 67962-67970.	1.7	97

#	Article	IF	CITATIONS
376	Bioinspired Surfaces with Superwettability: New Insight on Theory, Design, and Applications. Chemical Reviews, 2015, 115, 8230-8293.	23.0	1,292
377	Bio-inspired 3D funnel structures made by grayscale electron-beam patterning and selective topography equilibration. Microelectronic Engineering, 2015, 141, 107-111.	1.1	26
378	Overview of PES biocompatible/hemodialysis membranes: PES–blood interactions and modification techniques. Materials Science and Engineering C, 2015, 56, 574-592.	3.8	99
379	Superhydrophobic materials and coatings: a review. Reports on Progress in Physics, 2015, 78, 086501.	8.1	415
380	Superhydrophobic and oleophobic surfaces obtained by graft copolymerization of perfluoroalkyl ethyl acrylate onto SBR rubber. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 481, 537-546.	2.3	34
381	Under-water unidirectional air penetration via a Janus mesh. Chemical Communications, 2015, 51, 11872-11875.	2.2	88
382	Hydrophobic and superhydrophobic surfaces fabricated by plasma polymerization of perfluorohexane, perfluoro(2-methylpent-2-ene), and perfluoro(4-methylpent-2-ene). Journal of Adhesion Science and Technology, 2015, 29, 2035-2048.	1.4	13
383	Seasonal change in the wetting characteristics of the cuticle of the Collembola Cryptopygus clavatus (Schött, 1893). Zoomorphology, 2015, 134, 211-218.	0.4	8
384	Direct Insight into the Threeâ€Dimensional Internal Morphology of Solid–Liquid–Vapor Interfaces at Microscale. Angewandte Chemie - International Edition, 2015, 54, 4792-4795.	7.2	25
385	Influence of the Structure of Glycidyl Methacrylate Copolymers on the Hydrophobic Properties of Cellulose Materials. Advanced Materials Research, 0, 1098, 98-103.	0.3	4
386	Super hydrophobic surface of polytetrafluoroethylene fabricated by picosecond laser and phenomenon of total internal reflection underwater. Proceedings of SPIE, 2015, , .	0.8	0
387	General Aspects of Biomimetic Materials. , 2015, , 57-79.		7
388	Synthesis and self-assembly of well-defined binary graft copolymer and its use in superhydrophobic cotton fabrics preparation. RSC Advances, 2015, 5, 46132-46145.	1.7	17
389	Anti-icing performance of transparent and superhydrophobic surface under wind action. Journal of Sol-Gel Science and Technology, 2015, 75, 625-634.	1.1	16
390	Facile fabrication of a flower-like CuO/Cu(OH) ₂ nanorod film with tunable wetting transition and excellent stability. RSC Advances, 2015, 5, 38100-38110.	1.7	34
391	Role of Flagella in Adhesion of <i>Escherichia coli</i> to Abiotic Surfaces. Langmuir, 2015, 31, 6137-6144.	1.6	96
392	Bioinspired Porous Octacalcium Phosphate/Silk Fibroin Composite Coating Materials Prepared by Electrochemical Deposition. ACS Applied Materials & amp; Interfaces, 2015, 7, 5634-5642.	4.0	49
393	Sputtered Ag thin films with modified morphologies: Influence on wetting property. Applied Surface Science, 2015, 347, 101-108.	3.1	16

#	Article	IF	CITATIONS
394	Fabrication of mechanically durable superhydrophobic wood surfaces using polydimethylsiloxane and silica nanoparticles. RSC Advances, 2015, 5, 30647-30653.	1.7	129
395	Influence of the coating method on the formation of superhydrophobic silicone–urea surfaces modified with fumed silica nanoparticles. Progress in Organic Coatings, 2015, 84, 143-152.	1.9	37
396	HYDRODYNAMIC TESTING OF A BIOLOGICAL SHARKSKIN REPLICA MANUFACTURED USING THE VACUUM CASTING METHOD. Surface Review and Letters, 2015, 22, 1550030.	0.5	11
397	Surface properties and surface patterning of UV-curable coating using perfluorosilane-treated nanosilica. Progress in Organic Coatings, 2015, 85, 31-37.	1.9	6
398	Potential of Superhydrophobic Layer on the Implant Surface. Solid State Phenomena, 0, 227, 511-514.	0.3	0
399	The role of bio-inspired hierarchical structures in wetting. Bioinspiration and Biomimetics, 2015, 10, 026009.	1.5	24
400	A study on the fabrication of superhydrophobic iron surfaces by chemical etching and galvanic replacement methods and their anti-icing properties. Applied Surface Science, 2015, 346, 458-463.	3.1	64
401	Deposition and characterization of AlN thin films on ceramic electric insulators using pulsed DC magnetron sputtering. Surface and Coatings Technology, 2015, 284, 247-251.	2.2	10
402	Superhydrophobic surface based on self-aggregated alumina nanowire clusters fabricated by anodization. Microelectronic Engineering, 2015, 142, 70-76.	1.1	18
403	Bio-inspired formation of nanostructured arrays on flexible substrates with superoleophobicity. CrystEngComm, 2015, 17, 8441-8448.	1.3	7
404	Synthesis of poly(dimethylsiloxane)-block-poly[3-(triisopropyloxysilyl) propyl methacrylate] and its use in the facile coating of hydrophilically patterned superhydrophobic fabrics. RSC Advances, 2015, 5, 39505-39511.	1.7	26
405	Fabrication of fluorinated raspberry particles and their use as building blocks for the construction of superhydrophobic films to mimic the wettabilities from lotus leaves to rose petals. Polymer Chemistry, 2015, 6, 6746-6760.	1.9	41
406	Multifunctional Engineering Aluminum Surfaces for Selfâ€Propelled Antiâ€Condensation. Advanced Engineering Materials, 2015, 17, 961-968.	1.6	21
407	Fabrication and Testing of Self Cleaning Dry Adhesives Utilizing Hydrophobicity Gradient. Journal of Bionic Engineering, 2015, 12, 270-275.	2.7	5
408	Synthesis, structure, and properties of superhydrophobic nickel–PTFE nanocomposite coatings made by electrodeposition. Surface and Coatings Technology, 2015, 279, 134-141.	2.2	56
409	Boundary layer drag reduction research hypotheses derived from bio-inspired surface and recent advanced applications. Micron, 2015, 79, 59-73.	1.1	40
410	Direct observation of drops on slippery lubricant-infused surfaces. Soft Matter, 2015, 11, 7617-7626.	1.2	323
411	Two-axis MEMS-based force sensor for measuring the interaction forces during the sliding of a droplet on a micropillar array. Sensors and Actuators A: Physical, 2015, 231, 35-43.	2.0	17

#	Article	IF	CITATIONS
412	Directional transport of water droplets on superhydrophobic aluminium alloy surface. Micro and Nano Letters, 2015, 10, 343-346.	0.6	12
413	One-Step Spray-Coating Process for the Fabrication of Colorful Superhydrophobic Coatings with Excellent Corrosion Resistance. Langmuir, 2015, 31, 10702-10707.	1.6	163
414	Adhesive hydrophobicity of Cu ₂ O nano-columnar arrays induced by nitrogen ion irradiation. Soft Matter, 2015, 11, 9211-9217.	1.2	24
415	Robust Superhydrophobic and Photocatalytic Cotton Fabrics Based on TiO ₂ -SiO ₂ -PDMS Composite Coating . Key Engineering Materials, 0, 671, 225-230.	0.4	5
416	Electrowetting on superhydrophobic natural (Colocasia) and synthetic surfaces based upon fluorinated silica nanoparticles. Microelectronic Engineering, 2015, 148, 91-97.	1.1	19
417	Super-hydrophobic film fabricated on aluminium surface as a barrier to atmospheric corrosion in a marine environment. Corrosion Science, 2015, 91, 287-296.	3.0	135
418	Simple immersion to prepare a Zn/Ag biomimetic superhydrophobic surface and exploring its applications on SERS. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 467, 224-232.	2.3	15
419	Corrosion behavior of superhydrophobic surfaces: A review. Arabian Journal of Chemistry, 2015, 8, 749-765.	2.3	421
420	Biotechnologies and Biomimetics for Civil Engineering. , 2015, , .		21
421	Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Chemical Society Reviews, 2015, 44, 336-361.	18.7	1,359
422	Development of Hybrid Surfaces with Tunable Wettability by Selective Surface Modifications. Materials, 2016, 9, 136.	1.3	6
423	Wettability and morphology of the leaf surface in cashew tree from the Amazon, Northern Brazil. Acta Scientiarum - Biological Sciences, 2016, 38, 215.	0.3	8
424	Nanoporous Monolithic Microsphere Arrays Have Anti-Adhesive Properties Independent of Humidity. Materials, 2016, 9, 373.	1.3	2
425	Antimicrobial micro/nanostructured functional polymer surfaces. , 2016, , 153-192.		3
426	Recent Progress in Fabrication and Applications of Superhydrophobic Coating on Cellulose-Based Substrates. Materials, 2016, 9, 124.	1.3	99
427	A Facile in Situ and UV Printing Process for Bioinspired Self-Cleaning Surfaces. Materials, 2016, 9, 738.	1.3	17
428	Plasma Processing with Fluorine Chemistry for Modification of Surfaces Wettability. Molecules, 2016, 21, 1711.	1.7	23

#	Article	IF	CITATIONS
430	From natural to biomimetic: The superhydrophobicity and the contact time. Microscopy Research and Technique, 2016, 79, 712-720.	1.2	13
431	Reduced Blood Coagulation on Rollâ€ŧoâ€Roll, Shrinkâ€Induced Superhydrophobic Plastics. Advanced Healthcare Materials, 2016, 5, 593-601.	3.9	38
432	Recent Development of Durable and Self-Healing Surfaces with Special Wettability. Macromolecular Rapid Communications, 2016, 37, 463-485.	2.0	102
433	Bioinspired Interfacial Materials with Enhanced Drop Mobility: From Fundamentals to Multifunctional Applications. Small, 2016, 12, 1825-1839.	5.2	193
434	Rapid transfer of hierarchical microstructures onto biomimetic polymer surfaces with gradually tunable water adhesion from slippery to sticky superhydrophobicity. Materials Research Express, 2016, 3, 025011.	0.8	6
435	The butterfly proboscis as a fiber-based, self-cleaning, micro-fluidic system. Proceedings of SPIE, 2016, ,	0.8	1
436	Electrophoreticallyâ€Deposited Metalâ€Decorated CNT Nanoforests with High Thermal/Electric Conductivity and Wettability Tunable from Hydrophilic to Superhydrophobic. Advanced Functional Materials, 2016, 26, 2571-2579.	7.8	48
437	Bioinspired surfaces for turbulent drag reduction. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20160189.	1.6	69
438	Durable Selfâ€Healing Superhydrophobic Coating with Biomimic "Chloroplast―Analogous Structure. Advanced Materials Interfaces, 2016, 3, 1600040.	1.9	23
439	Friction on Non-Uniform Wrinkled Surface. Kobunshi Ronbunshu, 2016, 73, 514-519.	0.2	0
440	The 2016 Thermal Spray Roadmap. Journal of Thermal Spray Technology, 2016, 25, 1376-1440.	1.6	243
441	Synthesis of flat sticky hydrophobic carbon diamond-like films using atmospheric pressure Ar/CH4 dielectric barrier discharge. Journal of Applied Physics, 2016, 119, 223303.	1.1	15
442	The research of an airbag device preventing foreign matters based on composite structure. , 2016, , .		0
443	Characterization for Cassie-Wenzel wetting transition based on the force response in the process of squeezing liquid drops by two parallel superhydrophobic surfaces. Review of Scientific Instruments, 2016, 87, 065108.	0.6	5
444	Biobased Wrinkled Surfaces Induced by Wood Mimetic Skins upon Drying: Effect of Mechanical Properties on Wrinkle Morphology. Langmuir, 2016, 32, 12799-12804.	1.6	17
445	Bubble dynamics and heat transfer for pool boiling on hydrophilic, superhydrophobic and biphilic surfaces. Journal of Physics: Conference Series, 2016, 745, 032132.	0.3	10
446	Water transport control on a patterned superhydrophobic surface via laser direct writing. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	0.9	13
447	Scalable Methods to Obtain Superhydrophobicity onto Metallic Surface. Materials Science Forum, 0, 879, 2501-2506.	0.3	2

ARTICLE IF CITATIONS # Copper functionalization of polypropylene fabric surface in order to use in fog collectors. Fibers and 448 1.1 6 Polymers, 2016, 17, 2041-2046. Underwater Superhydrophobicity: Stability, Design and Regulation, and Applications. Applied 449 4.5 Mechanics Reviews, 2016, 68, . 450 Designing bioinspired superoleophobic surfaces. APL Materials, 2016, 4, . 2.2 68 Functional Surfaces on Performance Polymers. Materials Today: Proceedings, 2016, 3, 303-307. 0.9 Amphiphobic coatings for antifouling in marine environment. Colloids and Surfaces A: 452 2.3 30 Physicochemical and Engineering Aspects, 2016, 505, 158-164. Sticking to the story: outstanding challenges in gecko-inspired adhesives. Journal of Experimental Biology, 2016, 219, 912-919. 0.8 Influence of fluid flow on the stability and wetting transition of submerged superhydrophobic 454 1.2 53 surfaces. Soft Matter, 2016, 12, 4241-4246. Biotemplated hierarchical polyaniline composite electrodes with high performance for flexible 455 5.2 supercapacitors. Journal of Materials Chemistry A, 2016, 4, 9133-9145. 456 Laser textured surface gradients. Applied Surface Science, 2016, 371, 583-589. 3.1 83 Flexible hydrophobic ZrN nitride films. Vacuum, 2016, 131, 34-38. 1.6 Bioinspired monolithic polymer microsphere arrays as generically anti-adhesive surfaces. 458 1.5 8 Bioinspiration and Biomimetics, 2016, 11, 025002. Preparation of microstructure-controllable superhydrophobic polytetrafluoroethylene porous thin 1.1 film by vacuum thermal-evaporation. Frontiers of Materials Science, 2016, 10, 320-327. Superhydrophocity via gas-phase monomers grafting onto carbon nanotubes. Progress in Surface 460 3.8 12 Science, 2016, 91, 57-71. A facile method to fabricate superamphiphobic polytetrafluoroethylene surface by femtosecond laser pulses. Chemical Physics Letters, 2016, 644, 261-266. 1.2 Biomimetic multifunctional surfaces inspired from animals. Advances in Colloid and Interface 462 7.0 130 Science, 2016, 234, 27-50. Nature-inspired optimization of hierarchical porous media for catalytic and separation processes. New Journal of Chemistry, 2016, 40, 4016-4026. Superoleophobic Surfaces Obtained via Hierarchical Metallic Meshes. Langmuir, 2016, 32, 4134-4140. 464 1.6 31 On Controlling the Hydrophobicity of Nanostructured Zinc-Oxide Layers Grown by Pulsed Electrodeposition. Semiconductors, 2016, 50, 352-363.

#	Article	IF	CITATIONS
466	Current trend in fabrication of complex morphologically tunable superhydrophobic nano scale surfaces. Applied Surface Science, 2016, 384, 311-332.	3.1	60
467	Fabrication and characterization of superhydrophobic copper fiber sintered felt with a 3D space network structure and their oil–water separation. Applied Surface Science, 2016, 389, 1192-1201.	3.1	15
468	Patterning of water traps using close-loop hydrophilic micro grooves. Applied Surface Science, 2016, 389, 447-454.	3.1	16
469	Bioinspired polydopamine particles-assisted construction of superhydrophobic surfaces for oil/water separation. Journal of Colloid and Interface Science, 2016, 482, 240-251.	5.0	100
470	The Influence of Surface Topography and Surface Chemistry on the Anti-Adhesive Performance of Nanoporous Monoliths. ACS Applied Materials & Interfaces, 2016, 8, 22593-22604.	4.0	9
471	Design methodology for nano-engineered surfaces to control adhesion: Application to the anti-adhesion of particles. Applied Surface Science, 2016, 389, 889-893.	3.1	16
472	A Critical Review of Dynamic Wetting by Complex Fluids: From Newtonian Fluids to Non-Newtonian Fluids and Nanofluids. Advances in Colloid and Interface Science, 2016, 236, 43-62.	7.0	146
473	Roles of silanes and silicones in forming superhydrophobic and superoleophobic materials. Journal of Materials Chemistry A, 2016, 4, 13677-13725.	5.2	215
474	Simultaneous Replication of Hydrophilic and Superhydrophobic Micropatterns through Area‧elective Monomers Selfâ€Assembly. Advanced Materials Interfaces, 2016, 3, 1600404.	1.9	9
475	In-situ synthesis of bi-modal hydrophobic silica nanoparticles for oil-water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 508, 301-308.	2.3	42
476	Thermomechanical Mechanisms of Reducing Ice Adhesion on Superhydrophobic Surfaces. Langmuir, 2016, 32, 9664-9675.	1.6	23
477	Recent advances in biomimetic thin membranes applied in emulsified oil/water separation. Journal of Materials Chemistry A, 2016, 4, 15749-15770.	5.2	168
478	"Plugâ€andâ€Goâ€â€īype Liquid Diode: Integrated Mesh with Janus Superwetting Properties. Advanced Materials Interfaces, 2016, 3, 1600276.	1.9	32
479	Low Friction Droplet Transportation on a Substrate with a Selective Leidenfrost Effect. ACS Applied Materials & Interfaces, 2016, 8, 22658-22663.	4.0	25
480	Biomimetic self-cleaning surfaces: synthesis, mechanism and applications. Journal of the Royal Society Interface, 2016, 13, 20160300.	1.5	86
481	Superwettability integration: concepts, design and applications. Surface Innovations, 2016, 4, 180-194.	1.4	50
482	Stress concentration in periodically rough Hertzian contact: Hertz to soft-flat-punch transition. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20160235.	1.0	5
483	Durable polyorganosiloxane superhydrophobic films with a hierarchical structure by sol-gel and heat treatment method. Applied Surface Science, 2016, 390, 993-1001.	3.1	43

#	Article	IF	CITATIONS
484	Fabrication and corrosion resistance properties of super-hydrophobic coatings on iron and steel substrates by creating micro-/nano-structures and modifying rough surfaces. RSC Advances, 2016, 6, 93419-93427.	1.7	13
485	Fast fabrication of superhydrophobic surfaces on Ti–6Al–4V substrates by deposition of lead. Surface and Coatings Technology, 2016, 302, 507-514.	2.2	15
486	Enhancement and suppression effects of a nanopatterned surface on bacterial adhesion. Physical Review E, 2016, 93, 052419.	0.8	54
487	Fabrication of superhydrophobic and lyophobic slippery surface on steel substrate. Applied Surface Science, 2016, 387, 1219-1224.	3.1	17
488	Designing superhydrophobic disordered arrays of fibers with hierarchical roughness and low-surface-energy. Applied Surface Science, 2016, 389, 469-476.	3.1	25
489	Computer simulation of the mechanical properties of metamaterials. Journal of Physics: Conference Series, 2016, 738, 012100.	0.3	8
490	Functional surfaces for tribological applications: inspiration and design. Surface Topography: Metrology and Properties, 2016, 4, 043001.	0.9	44
491	Controlling the Adhesion of Superhydrophobic Surfaces Using Electrolyte Jet Machining Techniques. Scientific Reports, 2016, 6, 23985.	1.6	52
492	Light-Controlled ZrO2 Surface Hydrophilicity. Scientific Reports, 2016, 6, 34285.	1.6	22
493	Three-dimensional carbon-based architectures for oil remediation: from synthesis and modification to functionalization. Journal of Materials Chemistry A, 2016, 4, 18687-18705.	5.2	77
494	Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability. Scientific Reports, 2016, 6, 24653.	1.6	28
495	A moving contact line as a rheometer for nanometric interfacial layers. Nature Communications, 2016, 7, 12545.	5.8	29
496	Holographic microscopy and microfluidics platform for measuring wall stress and 3D flow over surfaces textured by micro-pillars. Scientific Reports, 2016, 6, 28753.	1.6	27
497	Robust superhydrophobic surface on Al substrate with durability, corrosion resistance and ice-phobicity. Scientific Reports, 2016, 6, 20933.	1.6	79
498	An investigation of the hydrophobic property stability of grafted polymeric coatings on a cellulose material surface. Polymer Science - Series D, 2016, 9, 364-367.	0.2	9
499	Fabrication of Superhydrophobic and Luminescent Rare Earth/Polymer complex Films. Scientific Reports, 2016, 6, 24682.	1.6	18
500	Long-Term Stability of Polytetrafluoroethylene (PTFE) Hollow Fiber Membranes for CO ₂ Capture. Energy & Fuels, 2016, 30, 492-503.	2.5	31
501	Bioinspired materials for water supply and management: water collection, water purification and separation of water from oil. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20160135	1.6	97

ARTICLE IF CITATIONS Bioarchitecture: bioinspired art and architectureâ€"a perspective. Philosophical Transactions Series A, 502 50 1.6 Mathematical, Physical, and Engineering Sciences, 2016, 374, 20160192. Tunable hydrophobicity on fractal and micro-nanoscale hierarchical fracture surface of metallic 3.3 glasses. Materials and Design, 2016, 95, 612-617. Superhydrophobic qualities of an aluminum surface coated with hydrophobic solution NeverWet. 504 2.3 38 Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 500, 45-53. Dynamics of droplets of biological fluids on smooth superhydrophobic surfaces under electrostatic actuation. Journal of Bionic Engineering, 2016, 13, 220-234. Probing Interactions between Air Bubble and Hydrophobic Polymer Surface: Impact of Solution 506 1.6 63 Salinity and Interfacial Nanobubbles. Langmuir, 2016, 32, 11236-11244. Investigation of Cassie-Wenzel Wetting transitions on microstructured surfaces. Colloid and 1.0 Polymer Science, 2016, 294, 833-840. Investigating the BSA protein adsorption and bacterial adhesion of Alâ \in alloy surfaces after creating a 508 hierarchical (micro/nano) superhydrophobic structure. Journal of Biomedical Materials Research -2.1 52 Part A, 2016, 104, 2220-2233. Zirconia coatings deposited by novel plasmaâ€enhanced aerosol–gel method. Physica Status Solidi (A) 509 0.8 Applications and Materials Science, 2016, 213, 1109-1114. Recent Advances in TiO₂â€Based Nanostructured Surfaces with Controllable Wettability 510 5.2 278 and Adhesion. Small, 2016, 12, 2203-2224. High strain rate thermoplastic demolding of metallic glasses. Scripta Materialia, 2016, 123, 140-143. 2.6 Mesoporous Carbon Nanocapsules Based Coatings with Multifunctionalities. Advanced Materials 512 1.9 8 Interfaces, 2016, 3, 1500708. Analyses of drag on viscoelastic liquid infused bio-inspired patterned surfaces. Journal of 1.0 Non-Newtonian Fluid Mechanics, 2016, 228, 17-30. $\hat{a} \in \infty$ Lotus-effect $\hat{a} \in \mathbf{tape}$: imparting superhydrophobicity to solid materials with an electrospun Janus 514 1.7 19 composite mat. RSC Advances, 2016, 6, 17215-17221. Experimental Investigation of TiO₂/Water Nanofluid Droplet Impingement on 1.8 Nanostructured Surfaces. Industrial & amp; Engineering Chemistry Research, 2016, 55, 2230-2241. Developing hydrophobic and superhydrophobic TiO2 coatings by plasma spraying. Surface and 516 2.2 68 Coatings Technology, 2016, 289, 29-36. Identification of the mechanism that confers superhydrophobicity on 316L stainless steel. Materials Characterization, 2016, 111, 162-169. Bioinspired Interfaces with Superwettability: From Materials to Chemistry. Journal of the American 518 933 6.6 Chemical Society, 2016, 138, 1727-1748. Semitransparent superoleophobic coatings with low sliding angles for hot liquids based on silica 519 5.2 44 nanotubes. Journal of Materials Chemistry A, 2016, 4, 953-960.

ARTICLE IF CITATIONS # Cicada Wing Surface Topography: An Investigation into the Bactericidal Properties of Nanostructural 520 4.0 262 Features. AČS Applied Materials & amp; Interfaces, 2016, 8, 14966-14974. Smart anti-biofouling composite coatings for naval applications., 2016, , 123-155. 521 Superhydrophobic poly(vinylidene fluoride) membranes with controllable structure and tunable 522 1.8 120 wettability prepared by one-step electrospinning. Polymer, 2016, 82, 105-113. A simple and effective way to fabricate mechanical robust superhydrophobic surfaces. RSC Advances, 2016, 6, 28563-28569. Fabrication of water repellent cotton fabric by coating nano particle impregnated hydrophobic 524 2.9 47 additives and its characterization. Journal of Industrial and Engineering Chemistry, 2016, 37, 180-189. Hydrophobicity of fluorocarbon-finished electrospun poly (acrylonitrile) nanofibrous webs. Journal 1.0 of the Textile Institute, 0, , 1-9. Formation of porous hydrophobic stainless steel surfaces by maskless electrochemical machining. 526 1.1 9 Surface Engineering, 2016, 32, 132-138. Superhydrophobic, flexible and gas-permeable membrane prepared by a simple one-step vapor 1.2 deposition. Korean Journal of Chemical Engineering, 2016, 33, 1743-1748. Heat-Resistant Crack-Free Superhydrophobic Polydivinylbenzene Colloidal Films. Langmuir, 2016, 32, 528 1.6 14 3079-3084. RECENT DRAG REDUCTION DEVELOPMENTS DERIVED FROM DIFFERENT BIOLOGICAL FUNCTIONAL SURFACES: 529 A REVIEW. Journal of Mechanics in Medicine and Biology, 2016, 16, 1630001. Modification of epoxy resin, silicon and glass surfaces with alkyl- or fluoroalkylsilanes for 530 3.126 hydrophobic properties. Applied Surface Science, 2016, 380, 91-100. Controllable Water Adhesion and Anisotropic Sliding on Patterned Superhydrophobic Surface for 1.5 89 Droplet Manipulation. Journal of Physical Chemistry C, 2016, 120, 7233-7240. Designing durable and flexible superhydrophobic coatings and its application in oil purification. 532 5.2 94 Journal of Materials Chemistry A, 2016, 4, 4107-4116. Wetting characteristics of bare micro-patterned cyclic olefin copolymer surfaces fabricated by 533 1.7 ultra-precision raster milling. RSC Advances, 2016, 6, 1562-1570. Fast and large area fabrication of hierarchical bioinspired superhydrophobic silicon surfaces. Journal 534 2.8 7 of the European Ceramic Society, 2016, 36, 2363-2369. Environmental Applications of Interfacial Materials with Special Wettability. Environmental Science 273 & Technology, 2016, 50, 2132-2150. Bactericidal mechanism of nanopatterned surfaces. Physical Chemistry Chemical Physics, 2016, 18, 536 1.3144 1311-1316. Efficient modelling of droplet dynamics on complex surfaces. Journal of Physics Condensed Matter, 2016, 28, 085101

ARTICLE IF CITATIONS # Hydrophobicity and anti-icing performances of nanoimprinted and roughened fluoropolymers films 538 16 1.1 under overcooled temperature. Microelectronic Engineering, 2016, 155, 1-6. Roughness-Induced Superliquiphilic/phobic Surfaces: Lessons from Nature. Biological and Medical 0.3 Physics Series, 2016, , 23-33 Modeling of Contact Angle for a Liquid in Contact with a Rough Surface for Various Wetting 540 0.3 1 Regimes. Biological and Medical Physics Series, 2016, , 35-62. Shark-Skin Surface for Fluid-Drag Reduction in Turbulent Flow. Biological and Medical Physics Series, 541 0.3 2016, , 327-382. Modeling, Fabrication, and Characterization of Superoleophobic/Philic Surfaces. Biological and 542 0.3 0 Medical Physics Series, 2016, , 243-325. The nature of inherent bactericidal activity: insights from the nanotopology of three species of 2.8 104 dragonfly. Nanoscale, 2016, 8, 6527-6534. FACILE FABRICATION OF GRADIENT SURFACE BASED ON (METH)ACRYLATE COPOLYMER FILMS. Surface 544 0.5 0 Review and Letters, 2016, 23, 1550080. Antibacterial polyurethanes., 2016, , 247-284. 545 Control of Surface Wettability of Aluminum Mesh with Hierarchical Surface Morphology by 546 Monolayer Coating: From Superoleophobic to Superhydrophilic. Journal of Physical Chemistry C, 2016, 1.5 21 120, 15684-15690. Fabrication of nickel electrode coatings by combination of atmospheric and suspension plasma spray 547 2.2 processes. Surface and Coatings Technology, 2016, 285, 68-76. A simulation model for predicting three-dimensional surface morphology in ultra-precision roll die 548 1.5 8 turning. International Journal of Advanced Manufacturing Technology, 2016, 86, 681-689. Anti-icing properties of superhydrophobic ZnO/PDMS composite coating. Applied Physics A: Materials 1.1 Science and Processing, 2016, 122, 1. Recent advances in the mechanical durability of superhydrophobic materials. Advances in Colloid and 551 7.0 411 Interface Science, 2016, 229, 57-79. Laser textured superhydrophobic surfaces and their applications for homogeneous spot deposition. 3.1 Applied Surface Science, 2016, 365, 153-159. Photoinduced hydrophilic conversion of hydrated ZnO surfaces. Journal of Colloid and Interface 553 5.017 Science, 2016, 466, 452-460. Superhydrophobic Coatings and Their Durability. Materials and Manufacturing Processes, 2016, 31, 554 103 1143-1155. Lotus effect in wetting and self-cleaning. Biotribology, 2016, 5, 31-43. 555 0.9 208 When block copolymer self-assembly in hierarchically ordered honeycomb films depicts the breath 1.2 24 figure process. Soft Matter, 2016, 12, 790-797.

ARTICLE IF CITATIONS Texture and wettability of metallic lotus leaves. Nanoscale, 2016, 8, 3982-3990. 557 2.8 66 The springtail cuticle as a blueprint for omniphobic surfaces. Chemical Society Reviews, 2016, 45, 323-341. 558 18.7 191 Preparation and properties of biomimetic superhydrophobic composite coating. Surface Engineering, 559 1.1 14 2016, 32, 79-84. Gasâ€"Solid Erosive Wear of Biomimetic Pattern Surface Inspired from Plant. Tribology Transactions, 560 1.1 2017, 60, 159-165. Understanding the Role of Dynamic Wettability for Condensate Microdrop Selfâ€Propelling Based on 561 5.2 101 Designed Superhydrophobic TiO₂ Nanostructures. Small, 2017, 13, 1600687. Selfâ€Restoration of Superhydrophobicity on Shape Memory Polymer Arrays with Both Crushed Microstructure and Damaged Surface Chemistry. Small, 2017, 13, 1503402. 5.2 Improved performance of Mgâ€"Y alloy thin film switchable mirrors after coating with a 563 3.1 16 superhydrophobic surface. Applied Surface Science, 2017, 403, 23-28. Long-term durability of superhydrophobic properties of butterfly wing scales after continuous contact with water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 518, 564 2.3 139-144. Corrosionâ€Resistant Superhydrophobic Coatings on Mg Alloy Surfaces Inspired by Lotus Seedpod. 565 7.8 243 Advanced Functional Materials, 2017, 27, 1605446. Toward Easily Enlarged Superhydrophobic Materials with Stain-Resistant, Oil–Water Separation and Anticorrosion Function by a Water-Based One-Step Electrodeposition Method. Industrial & amp; 1.8 Engineering Chemistry Résearch, 2017, 56, 933-941. Stretchable superlyophobic surfaces for nearly-lossless droplet transfer. Sensors and Actuators B: 567 4.052 Chemical, 2017, 244, 649-654. Superhydrophobic self-floating carbon nanofiber coating for efficient gravity-directed oil/water 5.2 568 separation. Journal of Materials Chemistry A, 2017, 5, 2936-2946. Drag reduction through self-texturing compliant bionic materials. Scientific Reports, 2017, 7, 40038. 569 1.6 19 Highly sticky surfaces made by electrospun polymer nanofibers. RSC Advances, 2017, 7, 5836-5842. 570 1.7 Recent progress in marine foul-release polymeric nanocomposite coatings. Progress in Materials 571 16.0 358 Science, 2017, 87, 1-32. Inhibition of bacterial adhesion and biofilm formation by dual functional textured and nitric oxide releasing surfaces. Acta Biomaterialia, 2017, 51, 53-65. Micro-patterning by thermoplastic forming of Ni-free Ti-based bulk metallic glasses. Materials and 573 3.3 25 Design, 2017, 120, 204-211. Nature-Inspired Strategy toward Superhydrophobic Fabrics for Versatile Oil/Water Separation. ACS 574 Applied Materials & amp; Interfaces, 2017, 9, 9184-9194.

ARTICLE IF CITATIONS # A lotus-leaf-like SiO2 superhydrophobic bamboo surface based on soft lithography. Colloids and 575 2.3 34 Surfaces A: Physicochemical and Engineering Aspects, 2017, 520, 834-840. Superhydrophobic contoured surfaces created on metal and polymer using a femtosecond laser. 576 3.1 Applied Surface Science, 2017, 405, 465-475. Simple-to-Apply Wetting Model to Predict Thermodynamically Stable and Metastable Contact Angles 577 1.5 64 on Textured/Rough/Patterned Surfaces. Journal of Physical Chemistry C, 2017, 121, 5642-5656. Chemical and physical effect of SiO2 and TiO2 nanoparticles on highly hydrophobic fluorocarbon hybrid coatings synthesized by atmospheric plasma. Surface and Coatings Technology, 2017, 315, 274-282 Bionic building energy efficiency and bionic green architecture: A review. Renewable and Sustainable Energy Reviews, 2017, 74, 771-787. 579 8.2 64 Designing Self-Healing Superhydrophobic Surfaces with Exceptional Mechanical Durability. ACS Applied Materials & amp; Interfaces, 2017, 9, 11212-11223. 4.0 198 Durable superhydrophobic paper enabled by surface sizing of starch-based composite films. Applied 581 3.1 49 Surface Science, 2017, 409, 45-51. Superamphiphobic aluminum surfaces that maintain robust stability after undergoing severe chemical 1.4 and physical damage. New Journal of Chemistry, 2017, 41, 1334-1345. Stereolithography of perfluoropolyethers for the microfabrication of robust omniphobic surfaces. 583 3.1 24 Applied Surface Science, 2017, 404, 268-275. CF4 plasma-modified omniphobic electrospun nanofiber membrane for produced water brine 584 4.1 170 treatment by membrane distillation. Journal of Membrane Science, 2017, 529, 234-242. Geometric impact of void space in woven fabrics on oil resistance or repellency. Journal of Materials 585 4 1.7 Science, 2017, 52, 8149-8158. Effects of chemical surface coating (Rain-ZTM) on the powder yield of spray-drying: a preliminary approach. Acta Horticulturae, 2017, , 165-174. 0.1 Modification of wetting property of Inconel 718 surface by nanosecond laser texturing. Applied 587 3.1 106 Surface Science, 2017, 414, 313-324. Scalable super-hydrophilic nanocomposite latex with self-cleaning action. Progress in Organic Coatings, 2017, 110, 10-15. 588 1.9 Three-level hierarchical superhydrophobic Cuâ€"Zn coating on a steel substrate without chemical 589 7 1.4 modification for self-cleaning property. New Journal of Chemistry, 2017, 41, 5436-5444. Antimicrobial cotton textiles with robust superhydrophobicity via plasma for oily water separation. 3.1 64 Applied Surface Science, 2017, 419, 16-23. A study about the influence of single-scale and dual-scale structures on surface wettability. Applied 591 1.1 5 Physics A: Materials Science and Processing, 2017, 123, 1. One-step fabrication of recyclable and robust fluorine/polymer-free superhydrophobic fabrics. RSC Advances, 2017, 7, 24374-24381.

ARTICLE IF CITATIONS The fabrication of superhydrophobic PTFE/UHMWPE composite surface by hot-pressing and texturing 593 1.0 10 process. Colloid and Polymer Science, 2017, 295, 759-766. Facile fabrication of superhydrophobic coating based on polysiloxane emulsion. Progress in Organic 594 Coatings, 2017, 102, 131-137. 595 Nano/Microstructured Antibacterial Surfaces., 2017, , 125-154. 3 Fabrication of Slippery Lubricant-Infused Porous Surface with High Underwater Transparency for the 596 4.0 Control of Marine Biofouling. ACS Applied Materials & amp; Interfaces, 2017, 9, 972-982. Silicone oil impregnated nano silica modified glass surface and influence of environmental dust 597 1.7 19 particles on optical transmittance. RSC Advances, 2017, 7, 29762-29771. Wood-mimetic skins prepared using horseradish peroxidase catalysis to induce surface wrinkling of chitosan film upon drying. Carbohydrate Polymers, 2017, 173, 519-525. 598 5.1A novel protocol to prepare cell probes for the quantification of microbial adhesion and biofilm 599 initiation on structured bioinspired surfaces using AFM for singleâ€cell force spectroscopy. 2.0 6 Engineering in Life Sciences, 2017, 17, 833-840. A robust superhydrophobic surface and origins of its self-cleaning properties. Applied Surface 3.1 56 Science, 2017, 420, 336-345. A facile process for fabrication of environmentally safe superhydrophobic surfaces. Journal of 601 1.2 2 Coating's Technology Research, 2017, 14, 1289-1295. Physical Texturing for Superhydrophobic Polymeric Surfaces: A Design Perspective. Langmuir, 2017, 33, 1.6 14 6902-6915. What Does the Eggshell Cuticle Do? A Functional Comparison of Avian Eggshell Cuticles. 603 0.6 27 Physiological and Biochemical Zoology, 2017, 90, 588-599. Rinse-resistant superhydrophobic block copolymer fabrics by electrospinning, electrospraying and 604 3.1 thermally-induced self-assembly. Applied Surface Science, 2017, 422, 769-777. Highâ€speed optical imaging of liquid film flow and liquid macroâ€slip over free surfaces with different 605 0.9 1 surface energies. Lubrication Science, 2017, 29, 557-566. Highâ€Speed Rollâ€toâ€Roll Hot Embossing of Micrometer and Sub Micrometer Structures Using Seamless Direct Laser Interference Patterning Treated Sleeves. Advanced Engineering Materials, 2017, 19, 1700201. 606 1.6 28 Sitting Phase Monolayers of Polymerizable Phospholipids Create Dimensional, Molecular-Scale Wetting Control for Scalable Solution-Based Patterning of Layered Materials. ACS Applied Materials 607 4.0 18 & Interfaces, 2017, 9, 19326-19334. Study of mechanical properties of ferroelectrics metamaterials using computer simulation. Ferroelectrics, 2017, 508, 151-160. 608 Fabrication of rough colloids by heteroaggregation. Colloids and Surfaces A: Physicochemical and 609 2.338 Engineering Aspects, 2017, 532, 116-124. Mussel-Inspired Polyglycerol Coatings with Controlled Wettability: From Superhydrophilic to 28 1.6 Superhydrophobic Surface Coatings. Langmuir, 2017, 33, 9508-9520.

#	Article	IF	CITATIONS
611	Biomimetic building skins: An adaptive approach. Renewable and Sustainable Energy Reviews, 2017, 79, 1472-1491.	8.2	72
612	Electric field induced slanting growth of silicon nanowires with enhanced hydrophobic property. Materials Letters, 2017, 198, 8-11.	1.3	Ο
613	Topochemistry of cellulose nanofibers resulting from molecular and polymer grafting. Cellulose, 2017, 24, 2139-2152.	2.4	20
614	Analytical and Computer Methods to Evaluate Mechanical Properties of the Metamaterials Based on Various Models of Polymeric Chains. Advanced Structured Materials, 2017, , 35-69.	0.3	2
615	Multifunctional Nano-engineered Polymer Surfaces with Enhanced Mechanical Resistance and Superhydrophobicity. Scientific Reports, 2017, 7, 43450.	1.6	17
616	Synthesis of ultrahydrophobic and thermally stable inorganic–organic nanocomposites for self-cleaning foul release coatings. Chemical Engineering Journal, 2017, 320, 653-666.	6.6	103
617	Lattice Boltzmann parallel simulation of microflow dynamics over structured surfaces. Advances in Engineering Software, 2017, 107, 51-58.	1.8	9
618	Colorful Superamphiphobic Coatings with Low Sliding Angles and High Durability Based on Natural Nanorods. ACS Applied Materials & Interfaces, 2017, 9, 1941-1952.	4.0	88
619	Universal wetting transition of an evaporating water droplet on hydrophobic micro- and nano-structures. Soft Matter, 2017, 13, 978-984.	1.2	47
620	Durable, Transparent, and Hot Liquid Repelling Superamphiphobic Coatings from Polysiloxane-Modified Multiwalled Carbon Nanotubes. Langmuir, 2017, 33, 510-518.	1.6	77
621	Biomimetic Superhydrophobic Engineering Metal Surface with Hierarchical Structure and Tunable Adhesion: Design of Microscale Pattern. Industrial & Engineering Chemistry Research, 2017, 56, 907-919.	1.8	36
622	Increasing the hydrophobicity degree of stonework by means of laser surface texturing: An application on Zimbabwe black granites. Applied Surface Science, 2017, 418, 463-471.	3.1	9
623	Fabrication of durable fluorine-free superhydrophobic polyethersulfone (PES) composite coating enhanced by assembled MMT-SiO2 nanoparticles. Applied Surface Science, 2017, 396, 1580-1588.	3.1	41
624	Environmental stimuli-responsive self-repairing waterbased superhydrophobic coatings. RSC Advances, 2017, 7, 543-550.	1.7	40
625	Engineering surface texture and hierarchical morphology of suspension plasma sprayed TiO 2 coatings to control wetting behavior and superhydrophobic properties. Surface and Coatings Technology, 2017, 329, 139-148.	2.2	20
626	Biomimetic structure of carbon fiber cloth grafted with poly(N-isopropylacrylamide) for water collection and smart gates. RSC Advances, 2017, 7, 45799-45806.	1.7	10
627	Ultimate Stable Underwater Superhydrophobic State. Physical Review Letters, 2017, 119, 134501.	2.9	73
628	Fabrication of a lotus leaf-like hierarchical structure to induce an air lubricant for drag reduction. Surface and Coatings Technology, 2017, 331, 48-56.	2.2	22

#	Article	IF	CITATIONS
629	Multifunctional, angle dependent antireflection, and hydrophilic properties of SiO2 inspired by nano-scale structures of cicada wings. Applied Physics Letters, 2017, 111, .	1.5	18
630	Temperature dependent switchable superamphiphobic coating on steel alloy surface. Journal of Alloys and Compounds, 2017, 727, 1293-1301.	2.8	27
631	Enhancing the stability of supported liquid membrane in phenols removal process by hydrophobic modification. Chemical Engineering Research and Design, 2017, 126, 209-216.	2.7	18
632	Superwettability of Gas Bubbles and Its Application: From Bioinspiration to Advanced Materials. Advanced Materials, 2017, 29, 1703053.	11.1	144
633	Preparation of biobased wrinkled surfaces via lignification-mimetic reactions and drying: a new approach for developing surface wrinkling. Polymer Journal, 2017, 49, 759-765.	1.3	16
634	Antimicrobial 3D Porous Scaffolds Prepared by Additive Manufacturing and Breath Figures. ACS Applied Materials & Interfaces, 2017, 9, 37454-37462.	4.0	31
635	Mixing characteristics in microchannels with biomimetic superhydrophobic (Lotus leaf replica) walls. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	15
636	A Twice Electrochemical-Etching Method to Fabricate Superhydrophobic-Superhydrophilic Patterns for Biomimetic Fog Harvest. Scientific Reports, 2017, 7, 8816.	1.6	110
637	Anti-adhesive property of maize leaf surface related with temperature and humidity. Journal of Bionic Engineering, 2017, 14, 540-548.	2.7	14
638	Functionalized superhydrophobic coatings with micro-/nanostructured ZnO particles in a sol–gel matrix. Journal of Materials Science, 2017, 52, 12677-12688.	1.7	18
639	Numerical study of energetics and wetting stability of liquid droplets on microtextured surfaces. Colloid and Polymer Science, 2017, 295, 1787-1796.	1.0	7
640	Dropwise Condensation on Advanced Functional Surfaces – Theory and Experimental Setup. Chemical Engineering and Technology, 2017, 40, 1966-1974.	0.9	18
641	Transparent superhydrophobic solar glass prepared by fabricating groove-shaped arrays on the surface. Applied Surface Science, 2017, 426, 957-964.	3.1	47
642	A biomimetic, multifunctional, superhydrophobic graphene film with self-sensing and fast recovery properties for microdroplet transportation. Journal of Materials Chemistry A, 2017, 5, 17325-17334.	5.2	40
643	Biomimetic superhydrophobic surfaces with transition metals and their oxides: A review. Journal of Bionic Engineering, 2017, 14, 401-439.	2.7	81
644	Robust, heat-resistant and multifunctional superhydrophobic coating of carbon microflowers with molybdenum trioxide nanoparticles. Journal of Colloid and Interface Science, 2017, 506, 649-658.	5.0	27
645	Application of bioinspired superhydrophobic surfaces in two-phase heat transfer experiments. Journal of Bionic Engineering, 2017, 14, 506-519.	2.7	11
646	Combining stereolithography and replica molding: On the way to superhydrophobic polymeric devices for photovoltaics. Materials and Design, 2017, 133, 143-153.	3.3	14
#	Article	IF	CITATIONS
-----	--	-----	-----------
648	Waterborne Nonfluorinated Superhydrophobic Coatings with Exceptional Mechanical Durability Based on Natural Nanorods. Advanced Materials Interfaces, 2017, 4, 1700723.	1.9	48
649	Excellent Biofouling Alleviation of Thermoexfoliated Vermiculite Blended Poly(ether sulfone) Ultrafiltration Membrane. ACS Applied Materials & Interfaces, 2017, 9, 30024-30034.	4.0	60
650	Vapor–Liquid Sol–Gel Approach to Fabricating Highly Durable and Robust Superhydrophobic Polydimethylsiloxane@Silica Surface on Polyester Textile for Oil–Water Separation. ACS Applied Materials & Interfaces, 2017, 9, 28089-28099.	4.0	234
651	Metallic superhydrophobic surfaces via thermal sensitization. Applied Physics Letters, 2017, 110, .	1.5	26
652	Nanoscale Insight into the Mechanism of a Highly Oriented Pyrolytic Graphite Edge Surface Wetting by "Interferencing―Water. Langmuir, 2017, 33, 8562-8573.	1.6	4
653	Biomimetic Recognition for Acoustic Sensing in Liquids. Springer Series on Chemical Sensors and Biosensors, 2017, , 323-344.	0.5	1
654	Mapping microscale wetting variations on biological and synthetic water-repellent surfaces. Nature Communications, 2017, 8, 1798.	5.8	77
655	Superhydrophobic conducting coatings based on silicone matrix and carbon nanotubes. Russian Journal of Applied Chemistry, 2017, 90, 1107-1116.	0.1	6
656	Fabrication of Superhydrophobic Calcium Phosphate Coating on Mg-Zn-Ca alloy and Its Corrosion Resistance. Journal of Materials Engineering and Performance, 2017, 26, 6117-6129.	1.2	19
657	Bioinspired Nanostructured Anti-Biofouling and Anti-inorganic Surfaces. Springer Handbooks, 2017, , 1307-1327.	0.3	1
658	Robust Hydrophobic Rare Earth Oxide Composite Electrodeposits. Advanced Materials Interfaces, 2017, 4, 1700850.	1.9	34
659	Laser surface texturing of granite. Procedia Manufacturing, 2017, 13, 687-693.	1.9	4
660	Fractal Model for Wettability of Rough Surfaces. Langmuir, 2017, 33, 7181-7190.	1.6	59
661	Nanotribological behavior of bioinspired textured surfaces with directional characteristics. Wear, 2017, 384-385, 151-158.	1.5	15
662	Energy distribution modulation by mechanical design for electrochemical jet processing techniques. International Journal of Machine Tools and Manufacture, 2017, 122, 32-46.	6.2	86
663	Facile preparation of self-healing superhydrophobic CeO2 surface by electrochemical processes. Applied Surface Science, 2017, 423, 968-976.	3.1	46
664	Variation in Leaf Surface Hydrophobicity of Wetland Plants: the Role of Plant Traits in Water Retention. Wetlands, 2017, 37, 997-1002.	0.7	20
665	Superhydrophobicity of polymer films via fluorine atoms covalent attachment and surface nano-texturing. Journal of Fluorine Chemistry, 2017, 200, 123-132.	0.9	18

	CITATION R	EPORT	
#	Article	IF	Citations
666	Nature-inspired superwettability systems. Nature Reviews Materials, 2017, 2, .	23.3	1,212
667	Modeling the Effects of Nanopatterned Surfaces on Wetting States of Droplets. Nanoscale Research Letters, 2017, 12, 309.	3.1	9
668	An anti-bacterial approach to nanoscale roughening of biomimetic rice-like pattern PP by thermal annealing. Applied Surface Science, 2017, 423, 1054-1061.	3.1	20
669	A Modular Flow Cell System for Studying Biomimetic and BioinspiredAnti-Adhesive and Antimicrobial Surfaces. Heat Transfer Engineering, 2017, 38, 805-817.	1.2	1
670	Assessment of morphology, topography and chemical composition of water-repellent films based on polystyrene/titanium dioxide nanocomposites. Applied Surface Science, 2017, 396, 616-624.	3.1	13
671	Effect of extreme wetting scenarios on pool boiling conditions. Applied Thermal Engineering, 2017, 115, 1424-1437.	3.0	60
672	Large area growth of vertically aligned luminescent MoS ₂ nanosheets. Nanoscale, 2017, 9, 277-287.	2.8	54
673	Durable Superhydrophobic Particles Mimicking Leafhopper Surface: Superoleophilicity and Very Low Surface Energy. ACS Sustainable Chemistry and Engineering, 2017, 5, 252-260.	3.2	26
674	Transparent, wear-resistant, superhydrophobic and superoleophobic poly(dimethylsiloxane) (PDMS) surfaces. Journal of Colloid and Interface Science, 2017, 488, 118-126.	5.0	168
675	Synthesis and characterization of photocatalytic hydrophobic hybrid TiO 2 -SiO 2 coatings for building applications. Building and Environment, 2017, 111, 72-79.	3.0	60
676	Fabrication of artificial super-hydrophobic lotus-leaf-like bamboo surfaces through soft lithography. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 513, 389-395.	2.3	63
677	Superhydrophobic and Superoleophobic Surfaces in Composite Materials. , 2017, , 647-686.		1
678	Superhydrophobic Paper by Facile and Fast Atmospheric Pressure Plasma Etching. Plasma Processes and Polymers, 2017, 14, 1600069.	1.6	56
679	Polymers against Microorganisms. , 2017, , .		10
680	Development of a novel 2D rotary ultrasonic texturing technique for fabricating tailored structures. International Journal of Advanced Manufacturing Technology, 2017, 89, 1161-1172.	1.5	16
681	Fabrication of superhydrophobic zirconium surface with a facile electrodeposition process. Surface Innovations, 2017, , 1-10.	1.4	2
682	A numerical study of drag reduction of superhydrophobic surfaces in shipping industry. , 2017, , .		2
683	Direct Measurements of Adhesion Forces for Water Droplets in Contact with Smooth and Patterned Polymers. Surface Innovations, 0, , 1-52.	1.4	18

#	Article	IF	CITATIONS
684	The effect of different wear on superhydrophobic wax coatings. Nordic Pulp and Paper Research Journal, 2017, 32, 195-203.	0.3	2
685	Collembola cuticles and the three-phase line tension. Beilstein Journal of Nanotechnology, 2017, 8, 1714-1722.	1.5	28
686	Morphological and Chemical Effects of Plasma Treatment with Oxygen (O2) and Sulfur Hexafluoride (SF6) on Cellulose Surface. Materials Research, 2017, 20, 842-850.	0.6	21
687	4.18 Surface Texturing and Control of Bacterial Adhesion. , 2017, , 303-320.		9
688	A Review of the State of Dry Adhesives: Biomimetic Structures and the Alternative Designs They Inspire. Micromachines, 2017, 8, 125.	1.4	59
689	A Facile and Effective Method to Fabricate Superhydrophobic/Superoeophilic Surface for the Separation of Both Water/Oil Mixtures and Water-in-Oil Emulsions. Polymers, 2017, 9, 563.	2.0	14
690	Superhydrophobic Coating of European Oak (Quercus robur), European Larch (Larix decidua), and Scots Pine (Pinus sylvestris) Wood Surfaces. BioResources, 2017, 12, .	0.5	5
691	Influence of Nanotechnology and the Role of Nanostructures in Biomimetic Studies and Their Potential Applications. Biomimetics, 2017, 2, 7.	1.5	19
692	Droplets, Evaporation and a Superhydrophobic Surface: Simple Tools for Guiding Colloidal Particles into Complex Materials. Gels, 2017, 3, 15.	2.1	24
693	3.9 Hydrophobicity and Surface Finish. , 2017, , 137-148.		9
694	Fabrication of high-aspect-ratio aluminum oxyhydroxide nanopillars for anti-reflection surfaces. Japanese Journal of Applied Physics, 2017, 56, 125001.	0.8	2
695	Molecular Surface Arrangement to Control Dynamic Dewettability. , 2017, , 89-114.		1
696	Antimicrobial Polymeric Nanostructures. , 2017, , 85-115.		2
697	Lithography-induced wettability changes of silicon. , 2017, , .		2
698	The investigation of equilibrium contact state of liquid droplet on determined rough surfaces. , 2017, , ,		0
699	Fabrication of Biomimetic and Bioinspired Membranes. , 2017, , .		2
700	Hydrophobic Calcium Carbonate for Cement Surface. Crystals, 2017, 7, 371.	1.0	14
701	Biomimetic electroactive polyimide with rose petal-like surface structure for anticorrosive coating application. EXPRESS Polymer Letters, 2017, 11, 635-644.	1.1	14

#	Article	IF	CITATIONS
702	Sliding friction and contact angle hysteresis of droplets on microhole-structured surfaces. European Physical Journal E, 2018, 41, 25.	0.7	11
703	Wettability of porous anodic aluminium oxide membranes with three-dimensional, layered nanostructures. Journal of Porous Materials, 2018, 25, 1707-1714.	1.3	4
704	Fluid-structure interaction with the entropic lattice Boltzmann method. Physical Review E, 2018, 97, 023305.	0.8	26
705	Ultrafast, Reversible Transition of Superwettability of Graphene Network and Controllable Underwater Oil Adhesion for Oil Microdroplet Transportation. Advanced Functional Materials, 2018, 28, 1706686.	7.8	44
707	Fabrication of bioinspired superliquiphobic synthetic leather with self-cleaning and low adhesion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 545, 130-137.	2.3	27
708	Realization of superhydrophobic aluminum surfaces with novel micro-terrace nano-leaf hierarchical structure. Applied Surface Science, 2018, 451, 207-217.	3.1	26
709	A Novel Surface Texture Shape for Directional Friction Control. Tribology Letters, 2018, 66, 1.	1.2	53
710	Visible light-induced antibacterial effects of the luminescent complex of hydroxyapatite and 8-hydroxyquinoline with gray titania coating. Applied Surface Science, 2018, 448, 529-538.	3.1	19
711	Straightforward and precise approach to replicate complex hierarchical structures from plant surfaces onto soft matterApolymer. Royal Society Open Science, 2018, 5, 172132.	1.1	18
712	Fabrication of sustainable hydrophobic and oleophilic pseudo-ordered macroporous Fe–Cu films with tunable composition and pore size via electrodeposition through colloidal templates. Applied Materials Today, 2018, 12, 1-8.	2.3	8
713	Superhydrophobic and oleophilic microâ€nano hierarchical Pdâ€decorated SiO 2 layers. Journal of the American Ceramic Society, 2018, 101, 3817-3829.	1.9	5
714	Modifier-free fabrication of durable and multifunctional superhydrophobic paper with thermostability and anti-microbial property. Chemical Engineering Journal, 2018, 346, 94-103.	6.6	39
715	Trends in Insect Molecular Biology and Biotechnology. , 2018, , .		10
716	Self-cleaning superhydrophobic nanocomposite surfaces generated by laser pulse heating. Journal of Colloid and Interface Science, 2018, 524, 204-208.	5.0	37
717	Effect of plasma treatment (He/CH4) on glass surface for the reduction of powder flux adhesion in the spray drying process. AIP Conference Proceedings, 2018, , .	0.3	3
718	Fabrication of ultrathin multilayered superomniphobic nanocoatings by liquid flame spray, atomic layer deposition and silanization. Nanotechnology, 2018, 29, 185708.	1.3	2
719	Facile strategy toward developing a scalable, environmental friendly and self-cleaning superhydrophobic surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 541, 108-116.	2.3	18
720	The mechanisms of filter feeding on oil droplets: Theoretical considerations. Marine Environmental Research, 2018, 135, 29-42.	1.1	8

#	Article	IF	CITATIONS
721	Effect of curvature on wetting and dewetting of proboscises of butterflies and moths. Royal Society Open Science, 2018, 5, 171241.	1.1	13
722	Fabrication of bioinspired, self-cleaning superliquiphilic/phobic stainless steel using different pathways. Journal of Colloid and Interface Science, 2018, 518, 284-297.	5.0	49
723	Spatially resolved chemical analysis of cicada wings using laser-ablation electrospray ionization (LAESI) imaging mass spectrometry (IMS). Analytical and Bioanalytical Chemistry, 2018, 410, 1911-1921.	1.9	15
724	Temperature-Responsive Anisotropic Slippery Surface for Smart Control of the Droplet Motion. ACS Applied Materials & Interfaces, 2018, 10, 7442-7450.	4.0	89
725	Flourishing Bioinspired Antifogging Materials with Superwettability: Progresses and Challenges. Advanced Materials, 2018, 30, e1704652.	11.1	161
726	Effect of microstructure and surface features on wetting angle of a Fe-3.2†wt%C.E. cast iron with water. Applied Surface Science, 2018, 440, 341-350.	3.1	12
730	Engineered bio-inspired coating for passive flow control. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1210-1214.	3.3	23
731	Durability, anti-corrosion and self-clean in air/oil of a transparent superhydrophobic polyimide film. Applied Materials Today, 2018, 10, 18-23.	2.3	21
732	Droplet impingement behavior analysis on the leaf surface of Shu-ChaZao under different pesticide formulations. Computers and Electronics in Agriculture, 2018, 144, 16-25.	3.7	22
733	Magnet-responsive, superhydrophobic fabrics from waterborne, fluoride-free coatings. RSC Advances, 2018, 8, 717-723.	1.7	31
734	Fluorinated-PAN nanofibers: Preparation, optimization, characterization and fog harvesting property. Journal of Industrial and Engineering Chemistry, 2018, 62, 146-155.	2.9	48
735	Rational design of materials interface at nanoscale towards intelligent oil–water separation. Nanoscale Horizons, 2018, 3, 235-260.	4.1	262
736	Superhydrophobic surfaces: a review on fundamentals, applications, and challenges. Journal of Coatings Technology Research, 2018, 15, 231-250.	1.2	388
737	Drop impact dynamics on slippery liquid-infused porous surfaces: influence of oil thickness. Soft Matter, 2018, 14, 1100-1107.	1.2	57
738	Eco-friendly design of superhydrophobic nano-magnetite/silicone composites for marine foul-release paints. Progress in Organic Coatings, 2018, 116, 21-34.	1.9	90
739	Preparation of high wear-resisting superamphiphobic robust film by self-assembled monolayer surface reaction. Progress in Organic Coatings, 2018, 117, 20-28.	1.9	9
740	Characterization of superhydrophobic surfaces for drag reduction in turbulent flow. Journal of Fluid Mechanics, 2018, 845, 560-580.	1.4	118
741	Pressureâ€Stable Airâ€Retaining Nanostructured Surfaces Inspired by Natural Air Plastrons. Advanced Materials Interfaces, 2018, 5, 1800125.	1.9	13

#	Article	IF	CITATIONS
742	Substrate-independent superliquiphobic coatings for water, oil, and surfactant repellency: An overview. Journal of Colloid and Interface Science, 2018, 526, 90-105.	5.0	31
743	Bionic PDMS film with hybrid superhydrophilic/superhydrophobic arrays for water harvest. Surface Innovations, 2018, 6, 141-149.	1.4	15
744	Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: A review. Advances in Colloid and Interface Science, 2018, 254, 1-21.	7.0	179
745	Advanced biofuel production via gasification – lessons learned from 200 manâ€years of research activity with Chalmers' research gasifier and the GoBiGas demonstration plant. Energy Science and Engineering, 2018, 6, 6-34.	1.9	134
746	Controlled perfluorination of poly(2,3,4,5,6-pentafluorostyrene) (PPFS) and PPFS-functionalized fumed silica by thiol-para-fluoro coupling: Towards the design of self-cleaning (nano)composite films. European Polymer Journal, 2018, 102, 120-129.	2.6	16
747	Silicone/Ag@SiO ₂ core–shell nanocomposite as a self-cleaning antifouling coating material. RSC Advances, 2018, 8, 9910-9921.	1.7	46
748	Nonsolvent-induced phase separation synthesis of superhydrophobic coatings composed of polyvinylidene difluoride microspheres with tunable size and roughness. Progress in Organic Coatings, 2018, 119, 230-238.	1.9	6
749	Novel superamphiphobic surfaces based on micro-nano hierarchical fluorinated Ag/SiO2 structures. Applied Surface Science, 2018, 445, 262-271.	3.1	29
750	Superhydrophobic ceramic coating: Fabrication by solution precursor plasma spray and investigation of wetting behavior. Journal of Colloid and Interface Science, 2018, 523, 35-44.	5.0	43
751	Ionic liquids-infused slippery surfaces for condensation and hot water repellency. Chemical Engineering Journal, 2018, 343, 561-571.	6.6	49
752	Patterned superhydrophobic surfaces to process and characterize biomaterials and 3D cell culture. Materials Horizons, 2018, 5, 379-393.	6.4	51
753	Control of the Hydrophilic/Hydrophobic Behavior of Biodegradable Natural Polymers by Decorating Surfaces with Nano―and Microâ€Components. Advances in Polymer Technology, 2018, 37, 654-661.	0.8	14
754	Material selection and manufacturing of riblets for drag reduction: An updated review. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2018, 232, 610-622.	0.7	5
755	Anti-fingerprint properties of engineering surfaces: a review. Surface Engineering, 2018, 34, 85-120.	1.1	51
756	The Influence of Alkali Metal Chloride Treatments on the Wear Resistance of Silicon Surfaces for Possible Use in MEMS. Tribology Transactions, 2018, 61, 178-184.	1.1	2
757	Fabrication and drag reduction of superhydrophobic surface on steel substrates. Surface Engineering, 2018, 34, 596-602.	1.1	17
758	Facile Fabrication of Durable Copper-Based Superhydrophobic Surfaces via Electrodeposition. Langmuir, 2018, 34, 3159-3169.	1.6	102
759	Study on the wettability and condensation heat transfer of sine-shaped micro-grooved surfaces. Experimental Thermal and Fluid Science, 2018, 90, 28-36.	1.5	27

#	Article	IF	CITATIONS
760	Valorization of spruce needle waste via supercritical extraction of waxes and facile isolation of nonacosan-10-ol. Journal of Cleaner Production, 2018, 171, 557-566.	4.6	19
761	Effects of Multiâ€Scale Patterning on the Runâ€In Behavior of Steel–Alumina Pairings under Lubricated Conditions. Advanced Engineering Materials, 2018, 20, 1700521.	1.6	19
762	A novel local drug delivery system: Superhydrophobic titanium oxide nanotube arrays serve as the drug reservoir and ultrasonication functions as the drug release trigger. Materials Science and Engineering C, 2018, 82, 277-283.	3.8	34
763	Application of superhydrophobic coatings as a corrosion barrier: A review. Surface and Coatings Technology, 2018, 341, 40-56.	2.2	413
764	The effect of attributes of micro-shapes of laser surface texture on the wettability of WC-CrCo metal ceramic coatings. Surface and Coatings Technology, 2018, 334, 429-437.	2.2	24
765	Fabrication of hierarchical polymer surfaces with superhydrophobicity by injection molding from nature and function-oriented design. Applied Surface Science, 2018, 436, 224-233.	3.1	45
766	Durable superamphiphobic nano-silica/epoxy composite coating via coaxial electrospraying method. Applied Surface Science, 2018, 436, 283-292.	3.1	29
767	Fabrication of controlled hierarchical wrinkle structures on polydimethylsiloxane via one-step C ₄ F ₈ plasma treatment. Journal of Micromechanics and Microengineering, 2018, 28, 015007.	1.5	9
768	Wetting Models and Working Mechanisms of Typical Surfaces Existing in Nature and Their Application on Superhydrophobic Surfaces: A Review. Advanced Materials Interfaces, 2018, 5, 1701052.	1.9	102
769	Super-durable, non-fluorinated superhydrophobic free-standing items. Journal of Materials Chemistry A, 2018, 6, 357-362.	5.2	75
770	Superior lubrication properties of biomimetic surfaces with hierarchical structure. Tribology International, 2018, 119, 131-142.	3.0	26
771	Superhydrophilic nanopillar-structured quartz surfaces for the prevention of biofilm formation in optical devices. Applied Surface Science, 2018, 429, 244-252.	3.1	43
772	Wetting and Self-Cleaning Properties of Silicone Rubber Surfaces Treated by Atmospheric Plasma Jet. , 2018, , .		3
773	Fabrication of Superhydrophobic-Superoleophilic Cement-Coated Meshes and Their Applications for Oil/Water Separation. IOP Conference Series: Earth and Environmental Science, 2018, 171, 012045.	0.2	Ο
774	Bio-Inspired Fluorine-Free Self-Cleaning Polymer Coatings. Coatings, 2018, 8, 436.	1.2	7
775	Controlling the Secondary Surface Morphology of Electrospun PVDF Nanofibers by Regulating the Solvent and Relative Humidity. Nanoscale Research Letters, 2018, 13, 285.	3.1	76
776	Taro-Leaf Inspired Patterning of Oleophobic Surfaces with High Wear Resistance. Tribology Online, 2018, 13, 311-315.	0.2	4
777	A ratiometric fluorescent probe for bioimaging and biosensing of HBrO in mitochondria upon oxidative stress. Chemical Communications, 2018, 54, 12198-12201.	2.2	37

#	Article	IF	CITATIONS
778	Superwettable nanodendritic gold substrates for direct miRNA SERS detection. Nanoscale, 2018, 10, 20990-20994.	2.8	69
779	Mapping the transition to superwetting state for nanotextured surfaces templated from block-copolymer self-assembly. Nanoscale, 2018, 10, 20652-20663.	2.8	14
780	The wettability of gas bubbles: from macro behavior to nano structures to applications. Nanoscale, 2018, 10, 19659-19672.	2.8	50
782	Electrochemical synthesis of biomimetic micro-nano structured super-hydrophobic thin films. Materials Today: Proceedings, 2018, 5, 27500-27510.	0.9	1
784	Bio- and Inorganic Fouling. Springer Series in Materials Science, 2018, , 621-664.	0.4	1
785	Gecko Adhesion. Springer Series in Materials Science, 2018, , 739-817.	0.4	0
786	Introduction of Stimuli-Responsive Wetting/Dewetting Smart Surfaces and Interfaces. Biologically-inspired Systems, 2018, , 1-33.	0.4	0
787	Antifouling Ion-Exchange Resins. ACS Applied Materials & amp; Interfaces, 2018, 10, 41747-41756.	4.0	14
788	Preparation of Copper-Based Superhydrophobic Surfaces by Jet-Electrodeposition. Materials Transactions, 2018, 59, 793-798.	0.4	12
789	Performance of Volcano-Like Laser Textured Cutting Tools: An Experimental and Simulative Investigation. Lubricants, 2018, 6, 98.	1.2	6
790	A methodology to produce eco-friendly superhydrophobic coatings produced from all-water-processed plant-based filler materials. Green Chemistry, 2018, 20, 5169-5178.	4.6	46
791	Fabrication and Characterization of Mechanically Durable Superhydrophobic Surfaces. Springer Series in Materials Science, 2018, , 199-248.	0.4	0
793	Strategies for Superliquiphobic/Philic Surfaces. Springer Series in Materials Science, 2018, , 289-325.	0.4	0
794	Adaptable Fabrication Techniques for Mechanically Durable Superliquiphobic/philic Surfaces. Springer Series in Materials Science, 2018, , 327-427.	0.4	0
795	Roughness-Induced Superliquiphilic/Phobic Surfaces: Wetting States and Lessons from Living Nature. Springer Series in Materials Science, 2018, , 39-49.	0.4	2
796	Modeling of Contact Angle for a Liquid in Contact with a Rough Surface for Various Wetting Regimes. Springer Series in Materials Science, 2018, , 51-80.	0.4	2
797	Plant Leaf Surfaces in Living Nature. Springer Series in Materials Science, 2018, , 81-107.	0.4	2
798	Strategies for Micropatterned, Nanopatterned, and Hierarchically Structured Lotus-like Surfaces. Springer Series in Materials Science, 2018, , 121-197.	0.4	0

#	Article	IF	CITATIONS
799	Characterization of Rose Petals and Fabrication and Characterization of Superhydrophobic Surfaces with High and Low Adhesion. Springer Series in Materials Science, 2018, , 259-287.	0.4	3
800	Fabrication of a polyvinylidene fluoride cactus-like nanofiber through one-step electrospinning. RSC Advances, 2018, 8, 42353-42360.	1.7	49
801	Superhydrophobic Coating Bioinspired on Rice Leaf: A First Attempt to Enhance Erosion Resistance Properties at Environmental Conditions with Ceramic Particles. Materials Science Forum, 2018, 941, 1874-1879.	0.3	5
802	Creation of Superhydrophobic and Superhydrophilic Surfaces on ABS Employing a Nanosecond Laser. Materials, 2018, 11, 2547.	1.3	10
804	Geckos Race Across the Water's Surface Using Multiple Mechanisms. Current Biology, 2018, 28, 4046-4051.e2.	1.8	31
805	Resistance of Superhydrophobic Surface-Functionalized TiO2 Nanotubes to Corrosion and Intense Cavitation. Nanomaterials, 2018, 8, 783.	1.9	18
806	Nanoid Canyons On-Demand: Electrically Switchable Surface Topography in Liquid Crystal Networks. ACS Applied Materials & Interfaces, 2018, 10, 37743-37748.	4.0	9
807	Superhydrophobic Film Coatings for Corrosion Inhibition. Interface Science and Technology, 2018, , 133-184.	1.6	3
808	Fabrication of Superhydrophobic Al5083 Aluminum Alloy for Marine Applications. Protection of Metals and Physical Chemistry of Surfaces, 2018, 54, 899-908.	0.3	12
809	Experimental Investigation of Concave and Convex Micro-Textures for Improving Anti-Adhesion Property of Cutting Tool in Dry Finish Cutting. International Journal of Precision Engineering and Manufacturing - Green Technology, 2018, 5, 583-591.	2.7	29
810	Shark Skin Surface for Fluid-Drag Reduction in Turbulent Flow. Springer Series in Materials Science, 2018, , 491-562.	0.4	2
811	One-Step Generation of Reactive Superhydrophobic Surfaces via SiHCl3-Based Silicone Nanofilaments. Langmuir, 2018, 34, 13505-13513.	1.6	12
812	Relation between chemical composition of sols and surface free energy of inorganic-organic films. Journal of Sol-Gel Science and Technology, 2018, 88, 497-507.	1.1	2
813	UV-Cured Fluoride-Free Polyurethane Functionalized Textile with pH-Induced Switchable Superhydrophobicity and Underwater Superoleophobicity for Controllable Oil/Water Separation. ACS Sustainable Chemistry and Engineering, 2018, 6, 16616-16628.	3.2	62
814	Highly Reliable Superhydrophobic Surface with Carbon Nanotubes Immobilized on a PDMS/Adhesive Multilayer. ACS Omega, 2018, 3, 12956-12966.	1.6	22
815	Three-Dimensional Compatible Sacrificial Nanoimprint Lithography for Tuning the Wettability of Thermoplastic Materials. Journal of Micro and Nano-Manufacturing, 2018, 6, .	0.8	2
816	Strengthening mechanisms in NiTi(NbFe)/amorphous-CuZrAl multilayered thin films. Surface and Coatings Technology, 2018, 353, 247-253.	2.2	4
817	Recent exploration of bio-mimetic nanomaterial for potential biomedical applications. Materials Science and Engineering C, 2018, 93, 1104-1115.	3.8	27

ARTICLE IF CITATIONS # Superhydrophobic Plant Leaves with Micro-line Structures: An Optimal Biomimetic Objective in Bionic 818 2.7 18 Engineering. Journal of Bionic Engineering, 2018, 15, 851-858. Bioinspired silica-containing polyurethane-acrylate films: Towards superhydrophobicity with tunable 1.8 water adhesion. Polymer, 2018, 155, 1-12. Hydrophilic and hydrophobic materials and their applications. Energy Sources, Part A: Recovery, 820 1.2 119 Utilization and Environmental Effects, 2018, 40, 2686-2725. Biomimetic Facade Applications for a More Sustainable Future., 0,,. Development of UV Protective, Superhydrophobic and Antibacterial Textiles Using ZnO and TiO2 822 1.1 67 Nanoparticles. Fibers and Polymers, 2018, 19, 1647-1654. Hierarchical Polymer Structures Using Templates and the Modified Breath Figure Method. Langmuir, 2018, 34, 7472-7478. 1.6 Block Copolymer as a Surface Modifier to Monodisperse Patchy Silica Nanoparticles for 824 1.6 5 Superhydrophobic Surfaces. Langmuir, 2018, 34, 7738-7743. Reduction of Shear Viscosity in Phospholipid Vesicle Dispersions by Self-organized Ripple Structures of Vesicle Surfaces. Chemistry Letters, 2018, 47, 240-242. Functional finishing and coloration of textiles with nanomaterials. Coloration Technology, 2018, 134, 826 0.7 42 327-346. Smart Anisotropic Wetting Surfaces with Reversed pHâ€Responsive Wetting Directions. Advanced Functional Materials, 2018, 28, 1802001. Superhydrophobic, carbon-infiltrated carbon nanotubes on Si and 316L stainless steel with tunable 828 1.5 6 geometry. Applied Physics Letters, 2018, 112, . Self-cleaning and wear-resistant polymer nanocomposite surfaces. Surface and Coatings Technology, 2.2 24 2018, 348, 111-120. Surface-Chemistry-Mediated Control of Individual Magnetic Helical Microswimmers in a Swarm. ACS 830 7.3 97 Nano, 2018, 12, 6210-6217. Wettability Effect on Pool Boiling: A Review., 2018, , 1-61. Wettability of laser textured surface: a parametric study based on numerical simulation and 832 2 0.6 experimentation. Industrial Lubrication and Tribology, 2018, 70, 977-983. Slippery liquid-infused porous surface fabricated on CuZn: A barrier to abiotic seawater corrosion 3.1 and microbiologically induced corrosion. Applied Surface Science, 2018, 457, 468-476. Dynamic Contact Angles and Mechanisms of Motion of Water Droplets Moving on Nanopillared 834 1.6 58 Superhydrophobic Surfaces: A Molecular Dynamics Simulation Study. Langmuir, 2018, 34, 9917-9926. Study of adhesion and friction drag on a rough hydrophobic surface: Sandblasted aluminum. Physics 1.6 of Fluids, 2018, 30, .

#	Article	IF	CITATIONS
836	A brief review on bio-inspired superhydrophobic electrodeposited nickel coatings. Transactions of the Institute of Metal Finishing, 2018, 96, 185-192.	0.6	10
837	Nanostructured biomimetic, bioresponsive, and bioactive biomaterials. , 2018, , 35-65.		1
838	Surface modification of silica nanoparticle using dichlorodimethylsilane for preparation of self-cleaning coating based on polyurethane and polydimethylsiloxane. Materials Research Express, 2018, 5, 095311.	0.8	4
839	Growth Regimes of Poly(perfluorodecyl acrylate) Thin Films by Initiated Chemical Vapor Deposition. Macromolecules, 2018, 51, 5694-5703.	2.2	22
840	Nanoparticles as Precious Stones in the Crown of Modern Molecular Biology. , 2018, , 331-351.		0
841	Chemical and Physical Pathways for Fabricating Flexible Superamphiphobic Surfaces with High Transparency. Coatings, 2018, 8, 47.	1.2	21
842	Wake of super-hydrophobic falling spheres: influence of the air layer deformation. Journal of Fluid Mechanics, 2018, 850, 646-673.	1.4	11
843	Variability in the Wettability and Water Storage Capacity of Common Oak Leaves (Quercus robur L.). Water (Switzerland), 2018, 10, 695.	1.2	30
844	Bioinspired Further Enhanced Dry Adhesive by the Combined Effect of the Microstructure and Surface Free-Energy Increase. ACS Applied Materials & Interfaces, 2018, 10, 26752-26758.	4.0	24
845	ZnO nanowire-coated hydrophobic surfaces for various biomedical applications. Bulletin of Materials Science, 2018, 41, 1.	0.8	12
846	Fabrication of self-healing waterbased superhydrophobic coatings from POSS modified silica nanoparticles. Materials Letters, 2018, 229, 281-285.	1.3	43
847	Polymeric materials with switchable superwettability for controllable oil/water separation: A comprehensive review. Progress in Polymer Science, 2018, 87, 1-33.	11.8	210
848	Mechanically Robust and Thermally Stable Colorful Superamphiphobic Coatings. Frontiers in Chemistry, 2018, 6, 144.	1.8	13
849	Green and timesaving fabrication of a superhydrophobic surface and its application to anti-icing, self-cleaning and oil-water separation. Surface and Coatings Technology, 2018, 352, 609-618.	2.2	71
850	Fabrication of a corrosion resistant superhydrophobic surface on magnesium alloy substrate. AIP Advances, 2018, 8, 075125.	0.6	3
851	Biomimetic super durable and stable surfaces with superhydrophobicity. Journal of Materials Chemistry A, 2018, 6, 16731-16768.	5.2	136
852	Wetting behavior of superhydrophobic poly(methyl methacrylate). Progress in Organic Coatings, 2018, 125, 530-536.	1.9	18
853	Biomimetic Super Anti-Wetting Coatings from Natural Materials: Superamphiphobic Coatings Based on Nanoclays. Scientific Reports, 2018, 8, 12062.	1.6	24

#	Article	IF	CITATIONS
854	Femtosecond Laser Produced Hydrophobic Hierarchical Structures on Additive Manufacturing Parts. Nanomaterials, 2018, 8, 601.	1.9	48
855	Entropic multi-relaxation free-energy lattice Boltzmann model for two-phase flows. Europhysics Letters, 2018, 122, 14002.	0.7	15
856	Facile Fabrication of Ecoâ€Friendly Durable Superhydrophobic Material from Eggshell with Oil/Water Separation Property. Advanced Engineering Materials, 2018, 20, 1701180.	1.6	21
857	Contact angle measurements and water drop behavior on leaf surface for several deciduous shrub and tree species from a temperate zone. Trees - Structure and Function, 2018, 32, 1253-1266.	0.9	42
858	Oil/Water Separations from Nanosized Superhydrophobic to Microsized under-Oil Superhydrophilic Dust. ACS Applied Nano Materials, 2018, 1, 3398-3406.	2.4	16
859	Physicochemical characterization of nanomaterials: polymorph, composition, wettability, and thermal stability. , 2018, , 255-278.		29
860	White paper on the future of plasma science and technology in plastics and textiles. Plasma Processes and Polymers, 2019, 16, 1700228.	1.6	73
861	Rapid fabrication of super-hydrophobic surfaces of silicon wafers with excellent anisotropic wetting. Microsystem Technologies, 2019, 25, 237-243.	1.2	5
862	Facile preparation of superhydrophobic wood surfaces <i>via</i> spraying of aqueous alkyl ketene dimer dispersions. RSC Advances, 2019, 9, 24357-24367.	1.7	24
863	Fluorinated Nanocomposite Coatings for Confinement and Pumpless Transport of Lowâ€Surfaceâ€Tension Liquids. Advanced Materials Interfaces, 2019, 6, 1901105.	1.9	8
864	Superhydrophobic heterogeneous graphene networks with controllable adhesion behavior for detecting multiple underwater motions. Journal of Materials Chemistry A, 2019, 7, 17766-17774.	5.2	28
865	Numerical investigation of vibration-induced droplet shedding on microstructured superhydrophobic surfaces. Physical Review E, 2019, 99, 063111.	0.8	6
866	Toward durable and robust superhydrophobic cotton fabric through hydrothermal growth of ZnO for oil/water separation. Cellulose, 2019, 26, 8121-8133.	2.4	32
867	Multidimensional durability of superhydrophobic self-cleaning surface derived from rice-husk ash. Progress in Organic Coatings, 2019, 136, 105221.	1.9	12
868	Robust Super-Hydrophobic Coating Prepared by Electrochemical Surface Engineering for Corrosion Protection. Coatings, 2019, 9, 452.	1.2	46
869	Surface free energy and microstructure dependent environmental stability of sol–gel SiO2 antireflective coatings: Effect of combined vapor phase surface treatment. Journal of Colloid and Interface Science, 2019, 555, 124-131.	5.0	20
870	The influence of the surface microtexture on wettability properties and drop evaporation. Surface and Coatings Technology, 2019, 375, 458-467.	2.2	53
871	Spatially Engraving Morphological Structure on a Polymeric Surface by Ion Beam Milling. Polymers, 2019. 11. 1229.	2.0	4

#	Article	IF	CITATIONS
872	A new model for contact angle hysteresis of superhydrophobic surface. AIP Advances, 2019, 9, .	0.6	15
873	Impact of Perfluoro and Alkylphosphonic Self-Assembled Monolayers on Tribological and Antimicrobial Properties of Ti-DLC Coatings. Materials, 2019, 12, 2365.	1.3	8
874	Numerical study of wetting stability and sliding behavior of liquid droplets on microgrooved surfaces. Colloid and Polymer Science, 2019, 297, 989-1000.	1.0	9
875	Charged monosized droplet behaviour and wetting ability on hydrophobic leaf surfaces depending on surfactant-pesticide concentrate formulation. Journal of Electrostatics, 2019, 100, 103356.	1.0	22
876	Suppressing Crystallinity by Nanoconfining Polymers Using Initiated Chemical Vapor Deposition. Macromolecules, 2019, 52, 5183-5191.	2.2	11
877	Light-induced crystallization-driven formation of hierarchically ordered superhydrophobic sol-gel coatings. Progress in Organic Coatings, 2019, 135, 255-262.	1.9	12
878	Fabrication on bioinspired surfaces. , 2019, , 99-146.		15
879	TiO2-based Photocatalytic Cementitious Composites: Materials, Properties, Influential Parameters, and Assessment Techniques. Nanomaterials, 2019, 9, 1444.	1.9	92
880	The stability of the superhydrophobic surfaces. , 2019, , 123-159.		2
881	Design and preparation of a multi-fluorination organic superhydrophobic coating with high mechanical robustness and icing delay ability. Applied Surface Science, 2019, 497, 143663.	3.1	51
882	Counterionâ€Switched Reversibly Hydrophilic and Hydrophobic TiO ₂ â€Incorporated Layerâ€Byâ€Layer Selfâ€Assembled Membrane for Nanofiltration. Macromolecular Materials and Engineering, 2019, 304, 1900481.	1.7	4
883	Study on ultrasliding surface of fluorinated block copolymer for coating. Materials Research Express, 2019, 6, 105364.	0.8	1
885	The influence of the wall microtexture on functional properties and heat transfer. Journal of Molecular Liquids, 2019, 294, 111670.	2.3	21
886	Superhydrophobic Surface with Controllable Adhesion for Antiâ€Roofâ€Collapse Application in Flexible Microfluidics. Advanced Materials Interfaces, 2019, 6, 1901178.	1.9	15
887	An Experimental Investigation on the Transient Runback Process of Wind-Driven Water Droplets over Surfaces with Different Wettabilities. , 2019, , .		1
888	Molecular Dynamics Study of Friction Reduction of Two-Phase Flows on Surfaces Using 3D Hierarchical Nanostructures. Journal of Physical Chemistry C, 2019, 123, 27519-27530.	1.5	5
889	Development of a transparent silica-titania-methyl siliconate nanocoating with photocatalytic-hydrophobic properties aided by response surface method. Materials Research Express, 2019, 6, 106430.	0.8	6
890	Statistically understanding the roles of nanostructure features in interfacial ice nucleation for enhancing icing delay performance. Physical Chemistry Chemical Physics, 2019, 21, 19785-19794.	1.3	14

#	Article	IF	CITATIONS
891	Methods and fabrication techniques of superhydrophobic surfaces. , 2019, , 43-75.		32
892	Robust and nanoparticle-free superhydrophobic cotton fabric fabricated from all biological resources for oil/water separation. International Journal of Biological Macromolecules, 2019, 140, 1175-1182.	3.6	21
893	Superhydrophobic foul resistant and self-cleaning polymer coating. , 2019, , 181-203.		14
894	A developed, eco-friendly, and flexible thermoplastic elastomeric foam from SEBS for footwear application. EXPRESS Polymer Letters, 2019, 13, 948-958.	1.1	27
895	Effect of stearic acid as a low cost and green material on the self-cleaning and anti-corrosion behavior of anodized titanium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 123971.	2.3	32
896	An Enhanced System with Macrophytes and Polyurethane Sponge as an Eco-Technology for Restoring Eutrophic Water: A Pilot Test. Water (Switzerland), 2019, 11, 1828.	1.2	5
897	Design of a Bio-Inspired Anti-Erosion Structure for a Water Hydraulic Valve Core: An Experimental Study. Biomimetics, 2019, 4, 63.	1.5	12
898	Facile fabrication and hydrophobic properties of Cu2O nanowire films on Cu substrates. Materials Chemistry and Physics, 2019, 226, 88-94.	2.0	16
899	Size dependence of bubble wetting on surfaces: breakdown of contact angle match between small sized bubbles and droplets. Nanoscale, 2019, 11, 2823-2828.	2.8	17
900	Hydrophobic properties of textile materials: robustness of hydrophobicity. Journal of the Textile Institute, 2019, 110, 1221-1228.	1.0	15
901	Robust and superhydrophobic coating highly resistant to wear and efficient in water/oil separation. Surface and Coatings Technology, 2019, 364, 330-340.	2.2	24
902	Superamphiphobic Cu/CuO Micropillar Arrays with High Repellency Towards Liquids of Extremely High Viscosity and Low Surface Tension. Scientific Reports, 2019, 9, 702.	1.6	10
903	Design and direct additive manufacturing of three-dimensional surface micro-structures using material jetting technologies. Additive Manufacturing, 2019, 27, 167-174.	1.7	31
904	Fabrication of super-robust and nonfluorinated superhydrophobic coating based on diatomaceous earth. Surface and Coatings Technology, 2019, 362, 90-96.	2.2	36
905	Study on the Fabrication of Super-Hydrophobic Surface on Inconel Alloy via Nanosecond Laser Ablation. Materials, 2019, 12, 278.	1.3	38
906	Application of biomimicry for sustainable functionalization of textiles: review of current status and prospectus. Textile Reseach Journal, 2019, 89, 4282-4294.	1.1	16
907	Achieving an acid resistant surface on magnesium alloy via bio-inspired design. Applied Surface Science, 2019, 478, 150-161.	3.1	60
908	Explaining Evaporation-Triggered Wetting Transition Using Local Force Balance Model and Contact Line-Fraction. Scientific Reports, 2019, 9, 405.	1.6	38

#	Article	IF	CITATIONS
909	Ascendant bioinspired antireflective materials: Opportunities and challenges coexist. Progress in Materials Science, 2019, 103, 1-68.	16.0	89
910	Robust Superhydrophobic Sepiolite-Coated Polyurethane Sponge for Highly Efficient and Recyclable Oil Absorption. ACS Sustainable Chemistry and Engineering, 2019, 7, 5560-5567.	3.2	87
911	Mammalian cell viability on hydrophobic and superhydrophobic fabrics. Materials Science and Engineering C, 2019, 99, 241-247.	3.8	25
912	Directional droplet-actuation and fluid-resistance reduction performance on the bio-inspired shark-fin-like superhydrophobic surface. Journal of the Taiwan Institute of Chemical Engineers, 2019, 97, 389-396.	2.7	17
913	Self-Cleaning: From Bio-Inspired Surface Modification to MEMS/Microfluidics System Integration. Micromachines, 2019, 10, 101.	1.4	35
914	Effect of thermal annealing on the physico-chemical and tribological performance of hydrophobic alkylated graphene sheets. New Journal of Chemistry, 2019, 43, 2624-2639.	1.4	15
915	Combination of active behaviors and passive structures contributes to the cleanliness of housefly wing surfaces: A new insight for the design of cleaning materials. Colloids and Surfaces B: Biointerfaces, 2019, 180, 473-480.	2.5	3
916	Fabrication of corrosion-resistant superhydrophobic coating on magnesium alloy by one-step electrodeposition method. Journal of Magnesium and Alloys, 2019, 7, 193-202.	5.5	114
917	Smart Copolymer-Functionalized Flexible Surfaces with Photoswitchable Wettability: From Superhydrophobicity with "Rose Petal―Effect to Superhydrophilicity. ACS Applied Materials & Interfaces, 2019, 11, 25436-25444.	4.0	55
918	Role of Hierarchical Protrusions in Water Repellent Superhydrophobic PTFE Surface Produced by Low Energy Ion Beam Irradiation. Scientific Reports, 2019, 9, 8675.	1.6	27
919	Polysilsesquioxane-based silica aerogel monoliths with embedded CNTs. Microporous and Mesoporous Materials, 2019, 288, 109575.	2.2	26
920	Chemical Curiosity on Campus: An Undergraduate Project on the Structure and Wettability of Natural Surfaces. Journal of Chemical Education, 2019, 96, 1998-2002.	1.1	3
921	One-Step Fabrication of Robust Superhydrophobic Steel Surfaces with Mechanical Durability, Thermal Stability, and Anti-icing Function. ACS Applied Materials & amp; Interfaces, 2019, 11, 25586-25594.	4.0	151
922	Hierarchical superhydrophobic surfaces for oil–water separation via a gradient of ammonia content controlling of dopamine oxidative selfâ€polymerization. Journal of Applied Polymer Science, 2019, 136, 48044.	1.3	23
923	Rigorous testing to assess the self-cleaning properties of an ultra-water-repellent silicone rubber surface. Surface and Coatings Technology, 2019, 374, 557-568.	2.2	24
924	Brushing up functional materials. NPG Asia Materials, 2019, 11, .	3.8	119
925	Superhydrophobic surfaces review: Functional application, fabrication techniques and limitations. Journal of Micromanufacturing, 2019, 2, 59-78.	0.6	104
926	Surface micro-texturing of dual phase steel and copper by combining laser machining and electrochemical dissolution. Journal of Materials Processing Technology, 2019, 273, 116260.	3.1	13

#	Article	IF	CITATIONS
927	Icephobic behaviors of superhydrophobic amorphous carbon nano-films synthesized from a flame process. Journal of Colloid and Interface Science, 2019, 552, 613-621.	5.0	19
928	Acoustics of bubbles trapped in microgrooves: From isolated subwavelength resonators to superhydrophobic metasurfaces. Physical Review B, 2019, 99, .	1.1	7
929	Surface-Embedding of Functional Micro-/Nanoparticles for Achieving Versatile Superhydrophobic Interfaces. Matter, 2019, 1, 661-673.	5.0	119
930	Hydrophobic Metal–Organic Frameworks. Advanced Materials, 2019, 31, e1900820.	11.1	138
931	Bioinspired oil–water separation approaches for oil spill clean-up and water purification. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20190120.	1.6	29
932	Air retaining grids—a novel technology to maintain stable air layers under water for drag reduction. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20190126.	1.6	12
933	Trapped Airâ€Induced Reversible Transition between Underwater Superaerophilicity and Superaerophobicity on the Femtosecond Laserâ€Ablated Superhydrophobic PTFE Surfaces. Advanced Materials Interfaces, 2019, 6, 1900262.	1.9	16
934	Heat transfer during dropwise condensation of steam over a mirror polished sol-gel coated aluminum substrate. International Journal of Thermal Sciences, 2019, 144, 93-106.	2.6	19
935	Sink electrical discharge machining of hydrophobic surfaces. CIRP Annals - Manufacturing Technology, 2019, 68, 185-188.	1.7	12
936	Ormosils loaded with SiO ₂ nanoparticles functionalized with Ag as multifunctional superhydrophobic/biocidal/consolidant treatments for buildings conservation. Nanotechnology, 2019, 30, 345701.	1.3	24
937	Hemocompatibility of super-repellent surfaces: current and future. Materials Horizons, 2019, 6, 1596-1610.	6.4	30
938	UV-resistant superhydrophobic surface on copper foil. AIP Conference Proceedings, 2019, , .	0.3	2
939	Mussel-inspired coatings with tunable wettability, for enhanced antibacterial efficiency and reduced bacterial adhesion. Journal of Materials Chemistry B, 2019, 7, 3438-3445.	2.9	37
940	Thermal insulation design bioinspired by microstructure study of penguin feather and polar bear hair. Acta Biomaterialia, 2019, 91, 270-283.	4.1	44
941	An underwater, self-sensing, conductive composite coating with controllable wettability and adhesion behavior. Journal of Materials Chemistry A, 2019, 7, 12333-12342.	5.2	15
942	Preparation of Hierarchically Structured Polystyrene Surfaces with Superhydrophobic Properties by Plasma-Assisted Fluorination. Coatings, 2019, 9, 201.	1.2	16
943	A facile route to engineer highly superhydrophobic antibacterial film through polymerizable emulsifier. Progress in Organic Coatings, 2019, 133, 387-394.	1.9	10
944	Wetting Characteristics of Surfaces. , 2019, , 11-44.		2

# 945	ARTICLE Realizing the flexible and transparent highly-hydrophobic film through siloxane functionalized polyurethane-acrylate micro-pattern. Chemical Engineering Journal, 2019, 373, 68-77.	IF 6.6	Citations 30
946	Biomimetic fabrication of micro-/nanostructure on polypropylene surfaces with high dynamic superhydrophobic stability. Materials Today Communications, 2019, 19, 487-494.	0.9	26
947	Ultrafast Propulsion of Water Nanodroplets on Patterned Graphene. ACS Nano, 2019, 13, 5465-5472.	7.3	46
948	Study on the Properties of Vertical Carbon Nanotube Films Grown on Stainless Steel Bipolar Plates. Materials, 2019, 12, 899.	1.3	13
949	Environmental perspectives of interfacially active and magnetically recoverable composite materials – A review. Science of the Total Environment, 2019, 670, 523-538.	3.9	76
950	Superhydrophobic surface based on cross-linked polymer. Materials Research Express, 2019, 6, 055008.	0.8	2
951	Designing liquid repellent, icephobic and self-cleaning surfaces with high mechanical and chemical durability. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180270.	1.6	15
952	Amphiphobic Nanostructured Coatings for Industrial Applications. Materials, 2019, 12, 787.	1.3	7
953	A universal method to fabricate Cu films with superhydrophobic and anti-corrosion properties. Materials Science and Technology, 2019, 35, 695-701.	0.8	6
954	Superhydrophobic Silicone/TiO ₂ –SiO ₂ Nanorodâ€like Composites for Marine Fouling Release Coatings. ChemistrySelect, 2019, 4, 3395-3407.	0.7	56
955	Replicating the complexity of natural surfaces: technique validation and applications for biomimetics, ecology and evolution. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180265.	1.6	20
956	Droplet Impact on the Super-Hydrophobic Surface with Micro-Pillar Arrays Fabricated by Hybrid Laser Ablation and Silanization Process. Materials, 2019, 12, 765.	1.3	24
957	Lessons from nature for green science and technology: an overview and bioinspired superliquiphobic/philic surfaces. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180274.	1.6	17
958	Recent progress and challenges with 3D printing of patterned hydrophobic and superhydrophobic surfaces. International Journal of Advanced Manufacturing Technology, 2019, 103, 1225-1238.	1.5	64
959	When Lotus Leaves Prevent Metal from Melting — Biomimetic Surfaces for High Temperature Applications. Journal of Bionic Engineering, 2019, 16, 281-290.	2.7	4
960	Selfâ€Cleaning of Interfacial Oil Between Polymer Composites with Porous Zeolite Microparticles and Their Selfâ€Lubrication Properties. Advanced Materials Interfaces, 2019, 6, 1801889.	1.9	10
961	Robust mold fabricated by femtosecond laser pulses for continuous thermal imprinting of superhydrophobic surfaces. Materials Research Express, 2019, 6, 075011.	0.8	10
962	Super-hydrophobic film deposition by an atmospheric-pressure plasma process and its anti-icing characteristics. Plasma Science and Technology, 2019, 21, 055502.	0.7	16

#	Article	IF	Citations
963	Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: A review. Progress in Organic Coatings, 2019, 132, 235-256.	1.9	292
964	Robust superâ€hydrophobic ceramic coating on alumina with water and dirt repelling properties. Journal of the American Ceramic Society, 2019, 102, 6267-6274.	1.9	18
965	Carbon Fibers Encapsulated with Nano-Copper: A Core‒Shell Structured Composite for Antibacterial and Electromagnetic Interference Shielding Applications. Nanomaterials, 2019, 9, 460.	1.9	31
966	Influence of Multiple Factors on the Wettability and Surface Free Energy of Leaf Surface. Applied Sciences (Switzerland), 2019, 9, 593.	1.3	31
967	Superwettabilityâ€Based Interfacial Chemical Reactions. Advanced Materials, 2019, 31, e1800718.	11.1	128
968	Superhydrophobic silicone/SiC nanowire composite as a fouling release coating material. Journal of Coatings Technology Research, 2019, 16, 1165-1180.	1.2	35
969	Superhydrophobic surface on aeronautical materials via the deposition of nanoparticles and a PDMS seal. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	5
970	Simple and Affordable Way To Achieve Polymeric Superhydrophobic Surfaces with Biomimetic Hierarchical Roughness. ACS Omega, 2019, 4, 2750-2757.	1.6	24
971	Large area metal micro-/nano-groove arrays with both structural color and anisotropic wetting fabricated by one-step focused laser interference lithography. Nanoscale, 2019, 11, 4803-4810.	2.8	63
972	Efficiency of Novel Photocatalytic Coating and Consolidants for Protection of Valuable Mineral Substrates. Materials, 2019, 12, 521.	1.3	4
973	Capillary bridge technique to study superhydrophobic surfaces. Soft Matter, 2019, 15, 2990-2998.	1.2	2
974	Magnetic-Sensitive Nanoparticle Self-Assembled Superhydrophobic Biopolymer-Coated Slow-Release Fertilizer: Fabrication, Enhanced Performance, and Mechanism. ACS Nano, 2019, 13, 3320-3333.	7.3	98
975	Preparation of hierarchically structured PCL superhydrophobic membrane via alternate electrospinning/electrospraying techniques. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 421-430.	2.4	29
976	Depinning force of a receding droplet on pillared superhydrophobic surfaces: Analytical models. Journal of Colloid and Interface Science, 2019, 543, 122-129.	5.0	25
977	Robust Fluorine-Free and Self-Healing Superhydrophobic Coatings by H ₃ BO ₃ Incorporation with SiO ₂ –Alkyl-Silane@PDMS on Cotton Fabric. ACS Applied Materials & Interfaces, 2019, 11, 10262-10275.	4.0	129
978	lcing behavior of water droplets impinging on cold superhydrophobic surface. Surface and Coatings Technology, 2019, 363, 362-368.	2.2	56
979	Fabrication and Application of Superhydrophobic MultiStage Structure Separation Membranes. IOP Conference Series: Materials Science and Engineering, 2019, 678, 012120.	0.3	0
980	Influence of the Composition of Graft Copolymers of Fluoroalkyl Methacrylates on Stability of the Superhydrophobic State of Stainless Steel Surface. Polymer Science - Series B, 2019, 61, 725-734.	0.3	2

#	Article	IF	CITATIONS
981	Fluoropolymer-containing layer formed on MA8 magnesium alloy. Materials Today: Proceedings, 2019, 19, 1887-1890.	0.9	4
982	Preparation of hydrophobic fabrics and effect of fluorine monomers on surface properties. Journal of Engineered Fibers and Fabrics, 2019, 14, 155892501988961.	0.5	5
983	How Surfactants Affect Droplet Wetting on Hydrophobic Microstructures. Journal of Physical Chemistry Letters, 2019, 10, 7510-7515.	2.1	17
985	Insect Mouthparts. Zoological Monographs, 2019, , .	1.1	32
986	A Non-electric and Affordable Surface Engineered Particle (SEP) based Point-of-Use (POU) Water Disinfection System. Scientific Reports, 2019, 9, 18245.	1.6	4
987	The Fabrication of Micro/Nano Structures by Laser Machining. Nanomaterials, 2019, 9, 1789.	1.9	80
988	Thermodynamic analysis and injection molding of hierarchical superhydrophobic polypropylene surfaces. Journal of Polymer Engineering, 2019, 40, 86-97.	0.6	5
989	Control of tip nanostructure on superhydrophobic shape memory arrays toward reversibly adjusting water adhesion. Advanced Composites and Hybrid Materials, 2019, 2, 753-762.	9.9	19
990	Nanostructured superhydrophobic coatings for solar panel applications. , 2019, , 397-424.		21
991	Gradient structure based dual-robust superhydrophobic surfaces with high-adhesive force. Applied Surface Science, 2019, 463, 427-434.	3.1	38
992	Design and preparation of biomimetic polydimethylsiloxane (PDMS) films with superhydrophobic, self-healing and drag reduction properties via replication of shark skin and SI-ATRP. Chemical Engineering Journal, 2019, 356, 318-328.	6.6	176
993	Current trends, challenges, and perspectives of anti-fogging technology: Surface and material design, fabrication strategies, and beyond. Progress in Materials Science, 2019, 99, 106-186.	16.0	162
994	Thermally Robust Non-Wetting Ni-PTFE Electrodeposited Nanocomposite. Nanomaterials, 2019, 9, 2.	1.9	25
995	A novel, efficient and cost-effective synthesis technique for the development of superhydrophobic glass surface. Journal of Alloys and Compounds, 2019, 781, 1175-1181.	2.8	26
996	Rapid fabrication of superhydrophobic high-silicon aluminum alloy surfaces with corrosion resistance. Results in Physics, 2019, 12, 1082-1088.	2.0	16
997	Fabrication of stable superhydrophobic coating on fabric with mechanical durability, UV resistance and high oil-water separation efficiency. Surface and Coatings Technology, 2019, 360, 318-328.	2.2	57
998	Generalized slip condition over rough surfaces. Journal of Fluid Mechanics, 2019, 858, 407-436.	1.4	36
999	Bacterial adhesion reduction on the surface with a simulated pattern: An insight into extrand model. International Journal of Adhesion and Adhesives, 2019, 88, 66-73.	1.4	11

#	Article	IF	CITATIONS
1000	How to Coat the Inside of Narrow and Long Tubes with a Superâ€Liquidâ€Repellent Layer—A Promising Candidate for Antibacterial Catheters. Advanced Materials, 2019, 31, e1801324.	11.1	65
1001	Blood coagulation response and bacterial adhesion to biomimetic polyurethane biomaterials prepared with surface texturing and nitric oxide release. Acta Biomaterialia, 2019, 84, 77-87.	4.1	61
1002	Fabrication of superhydrophobic surfaces for corrosion protection: A review. Materials Science and Technology, 2019, 35, 313-326.	0.8	60
1003	Hybrid Laser Ablation and Chemical Modification for Fast Fabrication of Bio-inspired Super-hydrophobic Surface with Excellent Self-cleaning, Stability and Corrosion Resistance. Journal of Bionic Engineering, 2019, 16, 13-26.	2.7	62
1004	Smart UV-curable fabric coatings with self-healing ability for durable self-cleaning and intelligent oil/water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 565, 86-96.	2.3	34
1005	Superhydrophobic Plant Leaves: The Variation in Surface Morphologies and Wettability during the Vegetation Period. Langmuir, 2019, 35, 1047-1053.	1.6	35
1006	Mosquito's Compound Eyes as Inspiration for Fabrication of Conductive Superhydrophobic Nanocarbon Materials from Waste Wheat Straw. ACS Sustainable Chemistry and Engineering, 2019, 7, 3883-3894.	3.2	18
1007	Robust Mg(OH)2/epoxy resin superhydrophobic coating applied to composite insulators. Applied Surface Science, 2019, 466, 126-132.	3.1	38
1008	A universal method to create surface patterns with extreme wettability on metal substrates. Journal of Colloid and Interface Science, 2019, 535, 100-110.	5.0	21
1009	Facile preparation of mechanically robust superhydrophobic concrete with self-cleaning property. Materials Research Express, 2019, 6, 015001.	0.8	14
1010	Silicone/ZnO nanorod composite coating as a marine antifouling surface. Applied Surface Science, 2019, 466, 40-50.	3.1	94
1011	Effect of the texture geometry on the slippery behavior of liquid-infused nanoporous surfaces. Journal of Materials Science, 2019, 54, 2729-2739.	1.7	20
1012	Study on the surface morphology and wettability of nanocomposite films based on poly(methyl) Tj ETQqO O O rgE Composites, 2019, 40, E127.	3T /Overloo 2.3	ck 10 Tf 50 2 2
1013	A novel complex network-based modeling method for heterogeneous product design. Cluster Computing, 2019, 22, 7861-7872.	3.5	4
1014	Fabrication of superhydrophobic cotton fabrics through wrapping silica with plasma-induced grafting polymerization. Textile Reseach Journal, 2019, 89, 401-410.	1.1	7
1015	Fabrication of the pod-like KCC-1/TiO2 superhydrophobic surface on AZ31 Mg alloy with stability and photocatalytic property. Applied Surface Science, 2020, 499, 143933.	3.1	23
1016	Evaluation of the protective performance of hydrophobic coatings applied on carbon-fibre epoxy composites. Journal of Composite Materials, 2020, 54, 1327-1338.	1.2	6
1017	Flexible and thermally stable superhydrophobic surface with excellent anti-corrosion behavior. Journal of Materials Science, 2020, 55, 2215-2225.	1.7	30

#	ARTICLE Molecular-level analysis of the wetting behavior of imidazolium-based ionic liquids on bismuth	IF	CITATIONS
1018	telluride surfaces. Chemical Engineering Science, 2020, 211, 115270.	1.9	9
1019	Modeling and multi-objective optimization of a bionic crash box with folding deformation. Structural and Multidisciplinary Optimization, 2020, 61, 283-299.	1.7	16
1020	Smart Materials by Nanoscale Magnetic Assembly. Advanced Functional Materials, 2020, 30, 1903467.	7.8	88
1021	A correlation of metallic surface roughness with its hydrophobicity for dropwise condensation. Materials Today: Proceedings, 2020, 21, 1446-1452.	0.9	8
1022	Durability of submerged hydrophobic surfaces. Soft Matter, 2020, 16, 1692-1701.	1.2	45
1023	Synergistic effect of a "stellate―mesoporous SiO ₂ @Au nanoprobe and coffee-ring-free hydrophilic–hydrophobic substrate assembly in an ultrasensitive SERS-based immunoassay for a tumor marker. Journal of Materials Chemistry C, 2020, 8, 2142-2154.	2.7	32
1024	Role of randomly distributed nanoscale roughness for designing highly hydrophobic particle surface without using low surface energy coating. Journal of Colloid and Interface Science, 2020, 564, 8-18.	5.0	23
1025	Design and preparation of bioinspired slippery liquid-infused porous surfaces with anti-icing performance via delayed phase inversion process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 588, 124384.	2.3	28
1026	Maneuvering the secondary surface morphology of electrospun poly (vinylidene fluoride) nanofibers by controlling the processing parameters. Materials Research Express, 2020, 7, 015008.	0.8	19
1027	Nature–Inspired self–cleaning surfaces: Mechanisms, modelling, and manufacturing. Chemical Engineering Research and Design, 2020, 155, 48-65.	2.7	79
1028	Geometric structure modification in cellulose acetate nanofibers and its impact on liquid resistance/repellency. Cellulose, 2020, 27, 2521-2528.	2.4	1
1029	High stable self-cleaning surface developed by monolithic hierarchical roughness. Surface Engineering, 2020, 36, 628-635.	1.1	4
1030	In Vitro Aerosol Exposure to Nanomaterials: From Laboratory to Environmental Field Toxicity Testing. Chemical Research in Toxicology, 2020, 33, 1179-1194.	1.7	9
1031	Continuous and ordered surface microtexturing on Cu and Ni-based alloys by novel electrochemical dissolution. Journal of Alloys and Compounds, 2020, 817, 153263.	2.8	3
1032	Fog harvesting against water shortage. Environmental Chemistry Letters, 2020, 18, 361-375.	8.3	46
1033	Fabrication of multifunctional wax infused porous PVDF film with switchable temperature response surface and anti corrosion property. Journal of Industrial and Engineering Chemistry, 2020, 82, 211-219.	2.9	16
1034	Smart superhydrophobic anticorrosive coatings. , 2020, , 515-534.		3
1035	Molecular-continuum simulation of elevated temperature drag reduction by nanostructure-induced vapor layer. International Journal of Heat and Mass Transfer, 2020, 148, 119100.	2.5	3

#	Article	IF	CITATIONS
1036	Biomimetic superhydrophobic membrane for membrane distillation with robust wetting and fouling resistance. Journal of Membrane Science, 2020, 599, 117708.	4.1	68
1037	Applying droplets and films in evaporative lithography. Advances in Colloid and Interface Science, 2020, 285, 102271.	7.0	32
1038	Simultaneous Effect of Droplet Temperature and Surface Wettability on Single Drop Impact Dynamics. Fluid Dynamics, 2020, 55, 640-652.	0.2	19
1039	Recent Progress in the Abatement of Hazardous Pollutants Using Photocatalytic TiO2-Based Building Materials. Nanomaterials, 2020, 10, 1854.	1.9	44
1040	Controlling the wettability of stainless steel from highly-hydrophilic to super-hydrophobic by femtosecond laser-induced ripples and nanospikes. RSC Advances, 2020, 10, 37956-37961.	1.7	37
1041	Air Retention under Water by the Floating Fern <i>Salvinia</i> : The Crucial Role of a Trapped Air Layer as a Pneumatic Spring. Small, 2020, 16, e2003425.	5.2	29
1042	Reduced contact time of a droplet impacting on a moving superhydrophobic surface. Applied Physics Letters, 2020, 117, .	1.5	43
1043	Slip length measurement of pdms/hydrophobic silica superhydrophobic coating for drag reduction application. Surface and Coatings Technology, 2020, 404, 126428.	2.2	45
1044	Direct Laser Processing of Two-Scale Periodic Structures for Superhydrophobic Surfaces Using a Nanosecond Pulsed Laser. Lasers in Manufacturing and Materials Processing, 2020, 7, 496-512.	1.2	5
1045	Transparent Coating with TiO2 Nanorods for High-performance Photocatalytic Self-cleaning and Environmental Remediation. Chemical Research in Chinese Universities, 2020, 36, 1097-1101.	1.3	3
1046	Fabrication of superhydrophobic surfaces with Cassie-Baxter state. Journal of Dispersion Science and Technology, 2022, 43, 1099-1111.	1.3	15
1047	Polymers and Plastrons in Parallel Yield Enhanced Turbulent Drag Reduction. Fluids, 2020, 5, 197.	0.8	4
1048	Moth-Eye Mimicking Solid Slippery Glass Surface with Icephobicity, Transparency, and Self-Healing. ACS Nano, 2020, 14, 10198-10209.	7.3	78
1049	One-step fabrication of Salvinia-inspired superhydrophobic surfaces with High adhesion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 590, 124517.	2.3	14
1050	Characterization of intermediate wetting states on micro-grooves by water droplet contact line. Journal of Industrial and Engineering Chemistry, 2020, 91, 69-78.	2.9	13
1051	A Framework to Achieve Multifunctionality in Biomimetic Adaptive Building Skins. Buildings, 2020, 10, 114.	1.4	18
1053	A facile approach to achieve multifunctional polyethylene terephthalate fabrics with durable superhydrophobicity, photocatalysis and self-quenched flame retardance. New Journal of Chemistry, 2020, 44, 14198-14210.	1.4	16
1054	Influence of Gravity on the Sliding Angle of Water Drops on Nanopillared Superhydrophobic Surfaces. Langmuir, 2020, 36, 9916-9925.	1.6	11

#	Article	IF	CITATIONS
1055	Growth of a superhydrophobic coating on an aluminium substrate with strong adhesive properties and showing efficient oil/water separation. Thin Solid Films, 2020, 710, 138259.	0.8	11
1056	Superhydrophobic membrane with hierarchically 3D-microtexture to treat saline water by deploying membrane distillation. Journal of Water Process Engineering, 2020, 37, 101528.	2.6	30
1057	Study on wettability of plasma spray coated oxide ceramic for hydrophobicity. Surfaces and Interfaces, 2020, 20, 100591.	1.5	4
1058	Bactericidal efficacy of nanopatterned surface tuned by topography. Journal of Applied Physics, 2020, 128, .	1.1	15
1059	A Mini Review on Superhydrophobic and Transparent Surfaces. Chemical Record, 2020, 20, 1257-1268.	2.9	33
1060	A Facile Method to Prepare a Superhydrophobic Magnesium Alloy Surface. Materials, 2020, 13, 4007.	1.3	8
1061	Superwettable Surface Engineering in Controlling Cell Adhesion for Emerging Bioapplications. Small Methods, 2020, 4, 2000573.	4.6	40
1062	In Situ Investigation of Adhesion Mechanisms on Complex Microstructured Biological Surfaces. Advanced Materials Interfaces, 2020, 7, 2000969.	1.9	6
1063	Superhydrophobic and Sustainable Nanostructured Powdered Iron for the Efficient Separation of Oil-in-Water Emulsions and the Capture of Microplastics. ACS Applied Materials & Interfaces, 2020, 12, 45629-45640.	4.0	29
1064	A lubricant-infused slip surface for drag reduction. Physics of Fluids, 2020, 32, .	1.6	31
1065	Fabrication of Superhydrophobic Ti–6Al–4V Surfaces with Single-Scale Micotextures by using Two-Step Laser Irradiation and Silanization. Materials, 2020, 13, 3816.	1.3	5
1067	Numerical investigation of surface curvature effect on the self-propelled capability of coalesced drops. Physics of Fluids, 2020, 32, 122117.	1.6	8
1068	A Facile Method for Preparing a Superhydrophobic Block with Rapid Reparability. Coatings, 2020, 10, 1202.	1.2	5
1069	Surface topology modification of organic substrates using material jetting technologies. Materials and Design, 2020, 196, 109116.	3.3	3
1070	Engineered topographies and hydrodynamics in relation to biofouling control—a review. Environmental Science and Pollution Research, 2021, 28, 40678-40692.	2.7	4
1071	Replication of the Surface Wettability of Plant Leaves with Different Surface Morphologies Using Soft Lithography. International Journal of Nanoscience, 2020, 19, 1950018.	0.4	1
1072	Effect of number of –CF3 groups in tails of polyester on surface wettability of coatings: synthesis and characterization of PFPE based polyesters with three -CF3 groups in tails. Journal of Polymer Research, 2020, 27, 1.	1.2	3
1073	The Superhydrophobic State Stability of Coatings Based on Copolymers of Glycidyl Methacrylate and Alkyl Methacrylates on Cotton Fabric Surface. Fibers and Polymers, 2020, 21, 1032-1038.	1.1	15

#	Article	IF	CITATIONS
1074	Recent Developments and Practical Feasibility of Polymerâ€Based Antifouling Coatings. Advanced Functional Materials, 2020, 30, 2000936.	7.8	358
1075	Experimental description of bubble dynamics and heat transfer processes occurring on the pool boiling of water on biphilic surfaces. Applied Thermal Engineering, 2020, 178, 115507.	3.0	25
1077	Significant role of carbonate radicals in tetracycline hydrochloride degradation based on solar light-driven TiO2-seashell composites: Removal and transformation pathways. Chinese Journal of Catalysis, 2020, 41, 1511-1521.	6.9	26
1078	Obtaining hydrophobic surfaces in atmospheric pressure plasma. Materials Today: Proceedings, 2020, 20, 335-341.	0.9	6
1079	Design of robust superhydrophobic surfaces. Nature, 2020, 582, 55-59.	13.7	1,124
1080	Spontaneous Ordering of Oxide-Oxide Epitaxial Vertically Aligned Nanocomposite Thin Films. Annual Review of Materials Research, 2020, 50, 229-253.	4.3	22
1081	Non-Fluorinated, Sustainable, and Durable Superhydrophobic Microarrayed Surface for Water-Harvesting. Coatings, 2020, 10, 314.	1.2	5
1082	Fabrication of robust superhydrophobic surfaces by one-step spray coating: Evaporation driven self-assembly of wax and nanoparticles into hierarchical structures. Chemical Engineering Journal, 2020, 396, 125230.	6.6	143
1083	Dynamics of oil-water interface demulsification using multifunctional magnetic hybrid and assembly materials. Journal of Molecular Liquids, 2020, 312, 113434.	2.3	47
1084	Green Fabrication of a Multifunctional Sponge as an Absorbent for Highly Efficient and Ultrafast Oil–Water Separation. ACS Omega, 2020, 5, 14232-14241.	1.6	24
1085	Laser engineering of biomimetic surfaces. Materials Science and Engineering Reports, 2020, 141, 100562.	14.8	180
1086	Droplet spreading and wettability of laser textured C-263 based nickel superalloy. Surface and Coatings Technology, 2020, 397, 126055.	2.2	5
1088	Underwater writable and heat-insulated paper with robust fluorine-free superhydrophobic coatings. Nanoscale, 2020, 12, 8536-8545.	2.8	24
1089	Thermodynamic analysis on wetting states and wetting state transitions of rough surfaces. Advances in Colloid and Interface Science, 2020, 278, 102136.	7.0	31
1090	Fabrication of a Zr-based bulk metallic glass surface with extreme wettability. Journal of Non-Crystalline Solids, 2020, 536, 120001.	1.5	11
1091	Low-fouling biomimetic membranes fabricated by direct replication of self-cleaning natural leaf. Environmental Technology (United Kingdom), 2021, 42, 3641-3650.	1.2	2
1092	Janus Interface Materials: A Critical Review and Comparative Study. , 2020, 2, 336-357.		59
109 <u>3</u>	Self-Cleaning Device Using SAW Actuation. , 2020, , .		0 _

#	Article	IF	CITATIONS
1094	Fabrication and characterization of a PDMS modified polyurethane/Al composite coating with super-hydrophobicity and low infrared emissivity. Progress in Organic Coatings, 2020, 143, 105622.	1.9	25
1095	Contact Line and Adhesion Force of Droplets on Concentric Ring-Textured Hydrophobic Surfaces. Langmuir, 2020, 36, 2622-2628.	1.6	25
1096	Surprising Lack of Influence on Water Droplet Motion by Hydrophilic Microdomains on Checkerboard-like Surfaces with Matched Contact Angle Hysteresis. Langmuir, 2020, 36, 7835-7843.	1.6	13
1097	Recent Advances in Surface Nanoengineering for Biofilm Prevention and Control. Part I: Molecular Basis of Biofilm Recalcitrance. Passive Anti-Biofouling Nanocoatings. Nanomaterials, 2020, 10, 1230.	1.9	38
1098	Bacterial cell–biomaterials interactions. , 2020, , 11-42.		0
1099	Preparation of a Flexible Superhydrophobic Surface and Its Wetting Mechanism Based on Fractal Theory. Langmuir, 2020, 36, 8435-8443.	1.6	22
1100	Fast self-healing superhydrophobic surfaces enabled by biomimetic wax regeneration. Chemical Engineering Journal, 2020, 390, 124311.	6.6	60
1101	Study on laser shock imprinting nanoscale line textures on metallic foil and its application in nanotribology. Materials and Design, 2020, 193, 108822.	3.3	13
1102	Fabrication and characterization of superhydrophobic PDMS composite membranes for efficient ethanol recovery via pervaporation. Separation and Purification Technology, 2020, 241, 116675.	3.9	53
1103	Shape Control of Lotus Leaf Induced by Surface Submillimeter Texture. Advanced Materials Interfaces, 2020, 7, 2000040.	1.9	16
1104	Progress in biomimetic leverages for marine antifouling using nanocomposite coatings. Journal of Materials Chemistry B, 2020, 8, 3701-3732.	2.9	157
1105	Practical Applications of Superhydrophobic Materials and Coatings: Problems and Perspectives. Langmuir, 2020, 36, 2493-2509.	1.6	134
1106	Silica and Silane based polymer composite coating on glass slide by dip-Coating Method. Surfaces and Interfaces, 2020, 19, 100472.	1.5	21
1107	Preparation of superaerophilic copper mesh for underwater gas collection by combination of spraying technology and flame treatment. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	5
1108	Facile construction of robust super-hydrophobic coating for urea-formaldehyde foam: Durable hydrophobicity and Self-cleaning ability. Composites Part A: Applied Science and Manufacturing, 2020, 132, 105831.	3.8	17
1109	Fabrication of durable superhydrophobic Mg alloy surface with water-repellent, temperature-resistant, and self-cleaning properties. Vacuum, 2020, 173, 109172.	1.6	32
1110	A Review on the Secondary Surface Morphology of Electrospun Nanofibers: Formation Mechanisms, Characterizations, and Applications. ChemistrySelect, 2020, 5, 1335-1348.	0.7	64
1112	When and how self-cleaning of superhydrophobic surfaces works. Science Advances, 2020, 6, eaaw9727.	4.7	242

#	Article	IF	CITATIONS
1113	Biomimetic Superlyophobic Metallic Surfaces: Focusing on Their Fabrication and Applications. Journal of Bionic Engineering, 2020, 17, 1-33.	2.7	32
1114	One-step synthesis of core shell cellulose-silica/n-octadecane microcapsules and their application in waterborne self-healing multiple protective fabric coatings. Journal of Colloid and Interface Science, 2020, 566, 401-410.	5.0	58
1115	A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings. Progress in Organic Coatings, 2020, 142, 105557.	1.9	187
1116	Molecular Architectonicsâ€Guided Fabrication of Superhydrophobic and Selfâ€Cleaning Materials. Advanced Materials Interfaces, 2020, 7, 2000246.	1.9	35
1117	Super-Amphiphobic Coating System Incorporating Functionalized Nano-Al2O3 in Polyvinylidene Fluoride (PVDF) with Enhanced Corrosion Resistance. Coatings, 2020, 10, 387.	1.2	19
1118	A facile and low-cost method for preparing robust superhydrophobic cement block. Materials Chemistry and Physics, 2020, 250, 123064.	2.0	21
1120	High durability of non-fluorinated superhydrophobic nanocomposite coatings. Materials Letters, 2020, 270, 127717.	1.3	4
1121	Electrodeposited superhydrophobic hierarchical structures as sensitive surface enhanced Raman scattering substrates. Materials Letters, 2020, 271, 127738.	1.3	7
1122	Convection-dominated dissolution for single and multiple immersed sessile droplets. Journal of Fluid Mechanics, 2020, 892, .	1.4	30
1123	Fabrication of a superhydrophobic surface using a simple <i>in situ</i> growth method of HKUST-1/copper foam with hexadecanethiol modification. New Journal of Chemistry, 2020, 44, 7065-7070.	1.4	11
1124	Superhydrophobic carbonous surfaces production by PECVD methods. Applied Surface Science, 2020, 515, 146050.	3.1	12
1125	Facile Method for Obtaining Gold-Coated Polyester Surfaces with Antimicrobial Properties. Advances in Polymer Technology, 2020, 2020, 1-12.	0.8	2
1126	Surface Morphing of Geometrically Patterned Active Skins. MRS Advances, 2020, 5, 743-750.	0.5	3
1127	<i>Salvinia</i> -like slippery surface with stable and mobile water/air contact line. National Science Review, 2021, 8, nwaa153.	4.6	47
1128	Additive texturing of metallic surfaces for wetting control. Additive Manufacturing, 2021, 37, 101631.	1.7	8
1129	Green manufacturing of nanostructured Al-Based sustainable self-cleaning metallic surfaces. Journal of Cleaner Production, 2021, 278, 123373.	4.6	24
1130	Droplet Retention on Superhydrophobic Surfaces: A Critical Review. Advanced Materials Interfaces, 2021, 8, 2001205.	1.9	56
1131	Design of multi-scale textured surfaces for unconventional liquid harnessing. Materials Today, 2021, 43, 62-83.	8.3	28

#	Article	IF	CITATIONS
1132	Tailored wetting of copper using precise nanosecond direct laser interference patterning. Optics and Lasers in Engineering, 2021, 137, 106364.	2.0	23
1133	Fabrication of a Robust Superhydrophobic Ni Coating with Micro–Nano Dual cale Structures on 316L Stainless Steel. Advanced Engineering Materials, 2021, 23, .	1.6	11
1134	Numerical investigations of the spreading and retraction dynamics of viscous droplets impact on solid surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 609, 125649.	2.3	30
1135	Antifouling nanoporous diamond membrane for enhanced detection of dopamine in human serum. Journal of Materials Science, 2021, 56, 746-761.	1.7	15
1136	Contact line-based model for the Cassie-Wenzel transition of a sessile droplet on the hydrophobic micropillar-structured surfaces. Applied Surface Science, 2021, 542, 148611.	3.1	41
1137	Analytical model for drag reduction on liquid-infused structured non-wetting surfaces. Soft Matter, 2021, 17, 1388-1403.	1.2	19
1138	Fabrication of repairable anti-corrosive superhydrophobic surfaces with micro-nano structures by ultrasonic cavitation. Applied Surface Science, 2021, 541, 148605.	3.1	19
1139	Water droplet bouncing dynamics. Nano Energy, 2021, 81, 105647.	8.2	57
1140	Synthesis and Modification of Polyurethane Foam Doped with Multi-walled Carbon Nanotubes for Cleaning up Spilled Oil from Water. Journal of Polymers and the Environment, 2021, 29, 1271-1286.	2.4	15
1141	Facile Formation of Hierarchical Textures for Flexible, Translucent, and Durable Superhydrophobic Film. Advanced Functional Materials, 2021, 31, 2008574.	7.8	68
1142	Solvent-free fabrication of tough self-crosslinkable short-fluorinated copolymer nanocoatings for ultradurable superhydrophobic fabrics. Chemical Engineering Journal, 2021, 416, 128043.	6.6	35
1143	A robust and anticorrosion non-fluorinated superhydrophobic aluminium surface for microplastic removal. Science of the Total Environment, 2021, 760, 144090.	3.9	35
1144	A Critical Review of Membrane Wettability in Membrane Distillation from the Perspective of Interfacial Interactions. Environmental Science & amp; Technology, 2021, 55, 1395-1418.	4.6	105
1145	Superwetting membranes: from controllable constructions to efficient separations. Journal of Materials Chemistry A, 2021, 9, 1395-1417.	5.2	46
1146	Bioinspired superwetting surfaces for biosensing. View, 2021, 2, 20200053.	2.7	33
1147	Morphology-dependent optical and wetting behavior of GLAD PTFE thin films. Journal of Coatings Technology Research, 2021, 18, 173-182.	1.2	2
1148	A short review on inorganic thin films from device perspective. , 2021, , 231-275.		3
1149	Robust superhydrophobicity: mechanisms and strategies. Chemical Society Reviews, 2021, 50, 4031-4061.	18.7	334

#	Article	IF	CITATIONS
1151	Non-fluorinated Superhydrophobic Surfaces: A New Scenario for Sustainable Applications. , 2021, , 133-152.		0
1152	Surface properties of POSS nanocomposites. , 2021, , 421-448.		0
1153	Photoinduced Hydrophilicity of Surfaces of Thin Films. Colloid Journal, 2021, 83, 20-48.	0.5	12
1154	Researching Advances in Application of Bio-Inspired Superhydrophobic Metallic Surface. Key Engineering Materials, 0, 871, 125-133.	0.4	0
1155	Bouncing-to-wetting transition of water droplets impacting soft solids. Soft Matter, 2021, 17, 5969-5977.	1.2	13
1156	Droplet evaporation-induced analyte concentration toward sensitive biosensing. Materials Chemistry Frontiers, 2021, 5, 5639-5652.	3.2	26
1157	Superhydrophobic μ-pillars <i>via</i> simple and scalable SLA 3D-printing: the stair-case effect and their wetting models. Soft Matter, 2021, 17, 7524-7531.	1.2	7
1158	A Review on Solar Panel Cleaning Through Chemical Self-cleaning Method. Lecture Notes in Mechanical Engineering, 2021, , 835-844.	0.3	4
1159	The effects of bio-inspired micro/nano scale structures on anti-icing properties. Soft Matter, 2021, 17, 447-466.	1.2	24
1160	Antireflective Multilayer Surface with Self-Cleaning Subwavelength Structures. ACS Photonics, 2021, 8, 894-900.	3.2	22
1161	Facile Fabrication of Fluorine-Free Superhydrophobic Surfaces with SiO2 Monospheres. Journal of Nanoelectronics and Optoelectronics, 2021, 16, 208-212.	0.1	0
1162	Hybrid Sol–Gel Superhydrophobic Coatings Based on Alkyl Silane-Modified Nanosilica. Polymers, 2021, 13, 539.	2.0	19
1163	Tulip-Shaped Pattern Imprinting for Omni-Phobic Surfaces Using Partially Cured Photopolymer. Applied Sciences (Switzerland), 2021, 11, 1747.	1.3	3
1164	Droplet Characteristics at the Maximum Adhesion on Curved Surfaces. Langmuir, 2021, 37, 2532-2540.	1.6	6
1165	Efficient Fabrication of Wear-Resistant PEEK Matrix Composite Coating with Superhydrophobicity for Self-Cleaning and Anti-Icing Applications. Polymer-Plastics Technology and Materials, 2021, 60, 1106-1121.	0.6	3
1166	Enhanced Pollution Flashover of a Slurry Coalescence Superhydrophobic Coating. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28, 310-317.	1.8	14
1167	Angleâ€Independent Structurally Colored Materials with Superhydrophobicity and Selfâ€Healing Capability. Advanced Materials Interfaces, 2021, 8, 2001950.	1.9	15
1168	Bioinspired Two-Dimensional Structure with Asymmetric Wettability Barriers for Unidirectional and Long-Distance Gas Bubble Delivery Underwater. Nano Letters, 2021, 21, 2117-2123.	4.5	43

#	Article	IF	CITATIONS
1169	Facile Electrochemical Method for the Fabrication of Stable Corrosion-Resistant Superhydrophobic Surfaces on Zr-Based Bulk Metallic Glasses. Molecules, 2021, 26, 1558.	1.7	8
1170	Electrospinning Janus Nanofibrous Membrane for Unidirectional Liquid Penetration and Its Applications. Chemical Research in Chinese Universities, 2021, 37, 337-354.	1.3	21
1171	Superhydrophobic Self-Cleaning Hierarchical Micro-/Nanocomposite Coating with High Corrosion Resistance and Durability. ACS Sustainable Chemistry and Engineering, 2021, 9, 4111-4121.	3.2	77
1172	Study on Favorable Comprehensive Properties of Superhydrophobic Coating Fabricated by Polytetrafluoroethylene Doped with Graphene. Advanced Composites and Hybrid Materials, 2021, 4, 521-533.	9.9	48
1173	Epoxy thermoset coatings with fine controllable hierarchical structures prepared from bio-inspired photo-/colloidal lithography technique for anticorrosion application. Progress in Organic Coatings, 2021, 152, 106132.	1.9	9
1174	Recent progress on the surface finishing of metals and alloys to achieve superhydrophobic surfaces: a critical review. Transactions of the Institute of Metal Finishing, 2021, 99, 61-72.	0.6	5
1175	Initial spreading dynamics of a liquid droplet: The effects of wettability, liquid properties, and substrate topography. Physics of Fluids, 2021, 33, .	1.6	31
1176	Robust and durable transparent superhydrophobic boehmite (Î ³ -AlOOH) film by a simple hydrothermal method. Ceramics International, 2021, 47, 11694-11701.	2.3	13
1177	Patterned nickel interlayers for enhanced silver wetting, spreading and adhesion on ceramic substrates. Scripta Materialia, 2021, 196, 113767.	2.6	4
1178	Wetting and corrosion characteristics of thermally sprayed copper-graphene nanoplatelet coatings for enhanced dropwise condensation application. Carbon Trends, 2021, 3, 100018.	1.4	3
1179	Rose Pistil Stigma: Hierarchical Superhydrophobic Surfaces with Hydrophilic Microtips for Microdroplet Manipulation. Langmuir, 2021, 37, 4129-4136.	1.6	8
1180	Highly thermally conductive SiO2-coated NFC/BNNS hybrid films with water resistance. Composites Part A: Applied Science and Manufacturing, 2021, 143, 106261.	3.8	23
1181	Ultrafast Flame-Induced Pyrolysis of Poly(dimethylsiloxane) Foam Materials toward Exceptional Superhydrophobic Surfaces and Reliable Mechanical Robustness. ACS Applied Materials & Interfaces, 2021, 13, 23161-23172.	4.0	78
1182	Research on high instantaneous power droplet generator by using super-hydrophobic electrode. IOP Conference Series: Earth and Environmental Science, 2021, 781, 042050.	0.2	0
1184	Stretchable and Superwettable Colorimetric Sensing Patch for Epidermal Collection and Analysis of Sweat. ACS Sensors, 2021, 6, 2261-2269.	4.0	61
1185	Irregular, nanostructured superhydrophobic surfaces: Local wetting and slippage monitored by fluorescence correlation spectroscopy. Physical Review Fluids, 2021, 6, .	1.0	10
1186	Bioinspired Energy Storage and Harvesting Devices. Advanced Materials Technologies, 2021, 6, 2001301.	3.0	11
1187	Recent advances in slippery liquid-infused surfaces with unique properties inspired by nature. Bio-Design and Manufacturing, 2021, 4, 506-525.	3.9	35

#	Article	IF	CITATIONS
1188	Recent Progress in Development of Wearable Pressure Sensors Derived from Biological Materials. Advanced Healthcare Materials, 2021, 10, e2100460.	3.9	30
1189	Construction of Functional Superhydrophobic Biochars as Hydrogen Transfer Catalysts for Dehydrogenation of <i>N</i> -Heterocycles. ACS Sustainable Chemistry and Engineering, 2021, 9, 9062-9077.	3.2	7
1190	Surface-functionalised materials for microplastic removal. Marine Pollution Bulletin, 2021, 167, 112335.	2.3	13
1191	Bactericidal surfaces: An emerging 21st-century ultra-precision manufacturing and materials puzzle. Applied Physics Reviews, 2021, 8, .	5.5	23
1192	Estimation of surface roughness for transparent superhydrophobic coating through image processing and machine learning. Molecular Crystals and Liquid Crystals, 2021, 726, 90-104.	0.4	11
1193	Regulation of the Volume Flow Rate of Aqueous Methyl Blue Solution and the Wettability of CuO/ZnO Nanorods to Improve the Photodegradation Performance of Related Microfluidic Reactors. Langmuir, 2021, 37, 7890-7906.	1.6	9
1194	Exploring Contact Angle Hysteresis Behavior of Droplets on the Surface Microstructure. Langmuir, 2021, 37, 7078-7086.	1.6	11
1195	A universal, multifunctional, high-practicability superhydrophobic paint for waterproofing grass houses. NPG Asia Materials, 2021, 13, .	3.8	26
1196	Studying droplet adhesion to fibers using the magnetic field: a review paper. Experiments in Fluids, 2021, 62, 1.	1.1	3
1197	Preparation of electrosprayed composite coated microporous filter for particulate matter capture. Nano Select, 0, , .	1.9	4
1198	Influence of Fluorine-Containing Monomer Content on the Hydrophobic and Transparent Properties of Nanohybrid Silica Polyacrylate Coating Materials. Materials, 2021, 14, 4261.	1.3	4
1199	Hydrodynamic analysis of the nanofluids flow in a microchannel with hydrophobic and superhydrophobic surfaces. Journal of the Taiwan Institute of Chemical Engineers, 2021, 124, 266-275.	2.7	18
1200	Design and applications of surfaces that control the accretion of matter. Science, 2021, 373, .	6.0	114
1201	Preparation of superhydrophobic composite paper mulching film. Arabian Journal of Chemistry, 2021, 14, 103247.	2.3	4
1202	Tuning Power Ultrasound for Enhanced Performance of Thermoplastic Micro-Injection Molding: Principles, Methods, and Performances. Polymers, 2021, 13, 2877.	2.0	4
1203	Mapping between Surface Wettability, Droplets, and Their Impacting Behaviors. Langmuir, 2021, 37, 9964-9972.	1.6	4
1204	Design, Development, and Outlook of Superwettability Membranes in Oil/Water Emulsions Separation. Advanced Materials Interfaces, 2021, 8, 2100799.	1.9	27
1205	Superhydrophobic behavior of coatings based on fluoroalkyl methacrylate copolymers on a textured aluminum surface. Surfaces and Interfaces, 2021, 25, 101255.	1.5	6

#	Article	IF	CITATIONS
1206	Supercooled water droplet impacting-freezing behaviors on cold superhydrophobic spheres. International Journal of Multiphase Flow, 2021, 141, 103675.	1.6	26
1207	Rational design of superhydrophobic, transparent hybrid coating with superior durability. Progress in Organic Coatings, 2021, 157, 106294.	1.9	17
1208	Cellulose-based special wetting materials for oil/water separation: A review. International Journal of Biological Macromolecules, 2021, 185, 890-906.	3.6	47
1209	Architecturing materials at mesoscale: some current trends. Materials Research Letters, 2021, 9, 399-421.	4.1	51
1210	Highly durable amphiphobic coatings and surfaces: A comparative step-by-step exploration of the design variables. Surface and Coatings Technology, 2021, 421, 127419.	2.2	0
1211	Durable Super-repellent Surfaces: From Solid–Liquid Interaction to Applications. Accounts of Materials Research, 2021, 2, 920-932.	5.9	21
1212	Smart Textile for Building and Living. Autex Research Journal, 2022, 22, 493-496.	0.6	3
1213	Robust CuO micro-cone decorated membrane with superhydrophilicity applied for oil–water separation and anti-viscous-oil fouling. Materials Characterization, 2021, 179, 111387.	1.9	9
1214	New approach to formation of coatings on Mg–Mn–Ce alloy using a combination of plasma treatment and spraying of fluoropolymers. Journal of Magnesium and Alloys, 2022, 10, 1033-1050.	5.5	19
1215	Polyimide based super-wettable membranes/materials for high performance oil/water mixture and emulsion separation: A review. Advances in Colloid and Interface Science, 2021, 297, 102525.	7.0	69
1216	Robust Micro-Nanostructured Superhydrophobic Surfaces for Long-Term Dropwise Condensation. Nano Letters, 2021, 21, 9824-9833.	4.5	64
1217	Blood repellent superhydrophobic surfaces constructed from nanoparticle-free and biocompatible materials. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111864.	2.5	35
1218	Superhydrophobic self-similar nonwoven-titanate nanostructured materials. Journal of Colloid and Interface Science, 2021, 598, 93-103.	5.0	11
1219	Markedly improved hydrophobicity of cellulose film via a simple one-step aminosilane-assisted ball milling. Carbohydrate Polymers, 2022, 275, 118701.	5.1	13
1220	Evaluation of the Durability of Slippery, Liquid-Infused Porous Surfaces in Different Aggressive Environments: Influence of the Chemical-Physical Properties of Lubricants. Coatings, 2021, 11, 1170.	1.2	8
1221	Survival of polymeric microstructures subjected to interrogatory touch. PLoS ONE, 2021, 16, e0255980.	1.1	0
1222	Reversible switching of wettability based on shape memory effect. Materials Letters, 2021, 301, 130270.	1.3	2
1223	Effects of different phosphorus sources on the adsorption of U(â¥) by Zr(â£) organophosphate hybrids. Journal of Solid State Chemistry, 2021, 302, 122434.	1.4	9

#	Article	IF	CITATIONS
1224	Superhydrophobic and nanostructured CuFeCo powder alloy for the capture of microplastics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127075.	2.3	10
1225	Highly efficient removal of crude oil and dissolved hydrocarbons from water using superhydrophobic cotton filters. Journal of Environmental Chemical Engineering, 2021, 9, 106170.	3.3	5
1226	Development of natural wax based durable superhydrophobic coatings. Industrial Crops and Products, 2021, 171, 113871.	2.5	22
1227	Coalescence-induced jumping and condensation of argon nanodroplets in the Cassie or the Wenzel state on nanopillar-arrayed surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127269.	2.3	8
1228	Numerical simulation of two-phase droplets on a curved surface using Surface Evolver. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127418.	2.3	2
1229	Green manufacturing of extreme wettability contrast surfaces with superhydrophilic and superhydrophobic patterns on aluminum. Journal of Materials Processing Technology, 2021, 297, 117245.	3.1	27
1230	When SLIPS meets TIPS: An endogenous lubricant-infused surface by taking the diluent as the lubricant. Chemical Engineering Journal, 2021, 425, 130600.	6.6	12
1231	Water-repellent surfaces of metallic glasses: fabrication and application. Materials Today Advances, 2021, 12, 100164.	2.5	8
1232	Microstructure evolution and wettability regulation of air-exposed hydrogen-free diamond-like carbon films. Diamond and Related Materials, 2021, 120, 108609.	1.8	9
1233	Fabrication of a superhydrophobic surface by modulating the morphology of organogels. Soft Matter, 2021, 17, 3745-3752.	1.2	4
1235	Unidirectional water transport on a two-dimensional hydrophilic channel with anisotropic superhydrophobic barriers. Soft Matter, 2021, 17, 8153-8159.	1.2	5
1236	Direct Imaging of Superwetting Behavior on Solid–Liquid–Vapor Triphase Interfaces. Advanced Materials, 2017, 29, 1703009.	11.1	10
1237	Bio- and Inorganic Fouling. Biological and Medical Physics Series, 2016, , 423-456.	0.3	1
1238	Characterization of Rose Petals and Fabrication and Characterization of Superhydrophobic Surfaces with High and Low Adhesion. Biological and Medical Physics Series, 2016, , 213-241.	0.3	1
1239	Lotus Versus Rose: Biomimetic Surface Effects. Green Energy and Technology, 2012, , 25-40.	0.4	46
1240	Roughness-Induced Superomniphobic Surfaces: Lessons from Nature. Biological and Medical Physics Series, 2012, , 11-18.	0.3	1
1241	Lotus Effect Surfaces in Nature. Biological and Medical Physics Series, 2012, , 49-65.	0.3	1
1242	Characterization of Rose Petals and Fabrication and Characterization of Superhydrophobic Surfaces with High and Low Adhesion. Biological and Medical Physics Series, 2012, , 189-206.	0.3	4

#	Article	IF	CITATIONS
1243	Physical Background. Microtechnology and MEMS, 2013, , 3-16.	0.2	4
1244	Applications of polymer films with gas-phase aggregated nanoparticles. Frontiers of Nanoscience, 2020, 15, 119-162.	0.3	7
1245	Lotus-leaf-inspired hierarchical structured surface with non-fouling and mechanical bactericidal performances. Chemical Engineering Journal, 2020, 398, 125609.	6.6	145
1247	Friction and Adhesion of Microparticle Suspensions on Repellent Surfaces. Langmuir, 2020, 36, 13689-13697.	1.6	6
1248	Challenges and Opportunities of Superhydrophobic/Superamphiphobic Coatings in Real Applications. RSC Smart Materials, 2016, , 209-243.	0.1	9
1249	Aeroelastic deformation of a perforated strip. Physical Review Fluids, 2018, 3, .	1.0	9
1250	Revisited Cassie's law to incorporate microstructural capillary effects. Physical Review Fluids, 2019, 4, .	1.0	7
1251	Cooperative drag reduction in turbulent flows using polymer additives and superhydrophobic walls. Physical Review Fluids, 2020, 5, .	1.0	18
1252	In-Situ Time-Lapse SKPFM Investigation of Sensitized AA5083 Aluminum Alloy to Understand Localized Corrosion. Journal of the Electrochemical Society, 2020, 167, 141502.	1.3	11
1253	Superhydrophobic Structures on the Basis of Aspen Leaf Design. International Journal of Micro-nano Scale Transport, 2010, 1, 323-334.	0.2	10
1254	Contrasting Micro/Nano Architecture on Termite Wings: Two Divergent Strategies for Optimising Success of Colonisation Flights. PLoS ONE, 2011, 6, e24368.	1.1	34
1255	Preventing bacterial adhesion on scaffolds for bone tissue engineering. International Journal of Bioprinting, 2016, 2, .	1.7	16
1256	Analysis of triangular sharkskin profiles according to second law. Modelling, Measurement and Control B: Solid and Fluid Mechanics and Thermics, Mechanical Systems, 2018, 87, 188-196.	0.4	5
1257	Experimental Study on the Friction Drag Reduction of Superhydrophobic Surfaces in Closed Channel Flow. Journal of Applied Fluid Mechanics, 2019, 12, 69-76.	0.4	11
1258	BIOINSPIRED UNDERWATER SUPEROLEOPHOBIC SURFACES. Acta Polymerica Sinica, 2012, 012, 1091-1101.	0.0	4
1259	Functional Polymeric Coatings. Advances in Chemical and Materials Engineering Book Series, 2016, , 78-104.	0.2	3
1260	A Review: Natural Superhydrophobic Surfaces and Applications. Journal of Biomaterials and Nanobiotechnology, 2020, 11, 110-149.	1.0	14
1261	Fabrication of Superhydrophobic Conical Structures of Polysiloxane on Mg Plates Using an Immersion Process. Bulletin of the Korean Chemical Society, 2013, 34, 1567-1570.	1.0	2

# 1262	ARTICLE Controlling the Cassie-to-Wenzel Transition: an Easy Route towards the Realization of Tridimensional Arrays of Biological Objects. Nano-Micro Letters, 2014, 6, 280.	IF 14.4	CITATIONS
1264	NANOTECHNOLOGY FOR ADVANCED NUCLEAR THERMAL-HYDRAULICS AND SAFETY: BOILING AND CONDENSATION. Nuclear Engineering and Technology, 2011, 43, 217-242.	1.1	53
1265	Surface morphology and topographical studies of fluorine doped tin oxide as transparent conducting film. Archives of Materials Science and Engineering, 2016, 78, 66-70.	0.7	2
1266	Theoretical progress in designs of stable superhydrophobic surfaces. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 146801.	0.2	6
1267	A Study on Surface Fabrication of Super Hydrophobic using Pico Second Laser. Journal of the Korean Society for Precision Engineering, 2012, 29, 161-169.	0.1	3
1268	Laser Micromachining of Magnetoactive Elastomers as Enabling Technology for Magnetoresponsive Surfaces. Advanced Materials Technologies, 2022, 7, 2101045.	3.0	12
1269	Enhanced air stability of ridged superhydrophobic surface with nanostructure. AIP Advances, 2021, 11, .	0.6	4
1270	Recent advances in oil-water separation materials with special wettability modified by graphene and its derivatives: A review. Chemical Engineering and Processing: Process Intensification, 2022, 170, 108678.	1.8	20
1271	Convergent evolution of skin surface microarchitecture and increased skin hydrophobicity in semi-aquatic anole lizards. Journal of Experimental Biology, 2021, 224, .	0.8	5
1272	SAW-driven self-cleaning drop free glass for automotive sensors. Journal of Micromechanics and Microengineering, 2021, 31, 125007.	1.5	9
1273	Superhydrophobic Hierarchical Structures from Self-Assembly of Cellulose-Based Nanoparticles. ACS Sustainable Chemistry and Engineering, 2021, 9, 14101-14111.	3.2	23
1274	Nanopumps without Pressure Gradients: Ultrafast Transport of Water in Patterned Nanotubes. Journal of Physical Chemistry B, 2022, 126, 660-669.	1.2	4
1275	Durable Superhydrophobic Coating for Efficient Microplastic Removal. Coatings, 2021, 11, 1258.	1.2	9
1276	Hydrophobicity of Cr3C2-NiCr coating under mechanical abrasion and thermal annealing. Applied Surface Science, 2022, 574, 151600.	3.1	3
1277	Drag reduction and antifouling properties of non-smooth surfaces modified with ZIF-67. Surface and Coatings Technology, 2021, 427, 127836.	2.2	24
1278	Liquid and liquid-like surfaces/coatings that readily slide fluids. Progress in Polymer Science, 2021, 123, 101468.	11.8	49
1279	Relationship among the firing temperature, wetting properties and colonization of fungi on clay roofing tile surfaces. Acta Periodica Technologica, 2011, , 197-207.	0.5	1
1280	Gecko Adhesion. Biological and Medical Physics Series, 2012, , 269-337.	0.3	0

		CITATION REPORT	
#	Article	IF	Citations
1282	Green Tribology, its History, Challenges, and Perspectives. Green Energy and Technology, 2012, , 3	-22. 0.4	1
1283	Surface Tension Driven Actuation. Microtechnology and MEMS, 2013, , 255-277.	0.2	Ο
1284	Drag-reduction of one-dimensional period and puasiperiod groove structures. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 054701.	0.2	3
1285	Green Tribology and Biomimetics. , 0, , 949-962.		0
1286	Hydrophobic Characteristics of a Silicone Resin Surface Produced by Replicating an Electric Discharge Machined Surface. Transactions of Materials Processing, 2013, 22, 23-29.	0.1	0
1288	Drag reduction on micro-structured hydrophobic surfaces due to surface tension effect. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 054708.	0.2	5
1289	Facile preparation of superhydrophobic thin films using non-aligned carbon nanotubes. Advances in Nano Research, 2014, 2, 219-225.	٦ 0.9	0
1290	Surface-Modified Microfluidics and Nanofluidics. , 2015, , 1-7.		1
1291	Switchable Wettability on Textile Surfaces Using Nanotechnology Applications. KahramanmaraÅŸ İmam Üniversitesi Mühendislik Bilimleri Dergisi, 2015, 18, 31.	Sütçü 0.0	0
1292	Surface-Modified Microfluidics and Nanofluidics. , 2016, , 3997-4002.		О
1294	Lotus Effect Surfaces in Nature. Biological and Medical Physics Series, 2016, , 63-84.	0.3	0
1295	Fabrication and Characterization of Micro-, Nano- and Hierarchically Structured Lotus-Like Surfaces Biological and Medical Physics Series, 2016, , 97-203.	0.3	0
1296	Rice Leaf and Butterfly Wing Effect. Biological and Medical Physics Series, 2016, , 383-422.	0.3	1
1297	The Bio-Adhesion Behaviour of Banana Leaves as Soil Remover at Elevated Temperatures. Tribology Online, 2016, 11, 264-271.	0.2	2
1299	FABRICATION OF A SUPERHYDROPHOBIC SURFACE WITH SILICA NANOPARTICLES AND POLYTETRAFLUOROETHYLENE. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2016, 9		1
1300	Superhydrophobic and Highly Oleophobic Zinc Sheet Surfaces Developed by a Simple Technique. Journal of Materials Science and Engineering B, 2016, 6, .	0.2	0
1302	Functional Polymeric Coatings. , 2017, , 648-674.		0
1303	Study on Numerical Simulation of Drug Reduction on the Bionic Surface of Shark Skin Fabricated b Roller Embossing. Modeling and Simulation, 2018, 07, 63-75.	y 0.0	0

#	Article	IF	Citations
1304	Thermo-responsive Membranes with Switchable Superhydrophilicity and Superhydrophobicity for Oil–Water Separation. RSC Smart Materials, 2019, , 362-388.	0.1	0
1305	Physical Determinants of Fluid-Feeding in Insects. Zoological Monographs, 2019, , 263-314.	1.1	4
1306	Controllable wettability of metallic surfaces via micro-nano structure fabricated by femtosecond laser. , 2019, , .		0
1307	Measurement of Water Distribution on Micro-structured Surface Buried in Water as a Model of Super Water Repellent Surface by Stimulated Raman Scattering Interferometer. Analytical Sciences, 2019, 35, 911-915.	0.8	1
1308	Contact line depinning from sharp edges. Physical Review Fluids, 2019, 4, .	1.0	3
1309	Surface Preparation: Some Techniques. Mechanical Engineering Series, 2020, , 331-350.	0.1	0
1310	Molecular Architectonics Guide to the Fabrication of Self-Cleaning Materials. Nanostructure Science and Technology, 2022, , 71-88.	0.1	1
1311	Rapid and Robust Surface Treatment for Simultaneous Solid and Liquid Repellency. ACS Applied Materials & Interfaces, 2021, 13, 53171-53180.	4.0	15
1312	Molecular Architectonics. Nanostructure Science and Technology, 2022, , 3-34.	0.1	1
1313	Superhydrophobic Coatings with Photothermal Self-Healing Chemical Composition and Microstructure for Efficient Corrosion Protection of Magnesium Alloy. Langmuir, 2021, 37, 13527-13536.	1.6	41
1314	The numerical study of the fluid flow along a superhydrophobic textured surface. Journal of Physics: Conference Series, 2020, 1675, 012092.	0.3	1
1315	Wing wettability gradient in a damselfly Lestes sponsa (Odonata: Lestidae) reflects the submergence behaviour during underwater oviposition. Royal Society Open Science, 2020, 7, 201258.	1.1	2
1316	Thermodynamics of (nano)interfaces. , 2022, , 13-56.		0
1317	Selected Oil-Water Separation Techniques—Lessons from Living Nature. Springer Series in Materials Science, 2020, , 175-180.	0.4	0
1319	SUPERWETTABILITY-BASED CHEMICAL PROCESSES. Surface Review and Letters, 2021, 28, 2030005.	0.5	0
1320	Industrial applications of superhydrophobic coatings: Challenges and prospects. Hacettepe Journal of Biology and Chemistry, 0, , .	0.3	1
1321	The Effect of Topographic Defects on the Superhydrophobic Properties of Coatings Based on ZnO. Technical Physics Letters, 2020, 46, 954-957.	0.2	2
1322	Formation of Protective Coatings on AMg3 Aluminum Alloy Using Fluoropolymer Nanopowder. Solid State Phenomena, 0, 312, 330-334.	0.3	1
	Сіта	tion Report	
------	--	-------------	-----------
#	Article	IF	CITATIONS
1323	Effect of copper surface modification applied by combined modification of metal vapor vacuum arc ion implantation and laser texturing on anti-frosting property. Energy and Buildings, 2020, 223, 110132.	3.1	6
1324	Mechanism of Superhydrophobicity and Superhydrophilicity and Surface Evaluation. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2020, 71, 559-564.	0.1	0
1325	Preparation of superhydrophobic glass surface with high adhesion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 633, 127861.	2.3	14
1326	Antithetic superhydrophobic/superhydrophilic surfaces formation by simple gas switching in an atmospheric-pressure cold plasma treatment. Materials Chemistry and Physics, 2022, 277, 125482.	2.0	5
1327	Preparation of low adhesion superhydrophobic self-cleaning surface of 316L stainless steel. , 2021, , .		1
1328	Non-wetting Liquid-Infused Slippery Paper. Langmuir, 2021, 37, 13627-13636.	1.6	11
1329	Self-Cleaning Materials. , 2022, , 359-394.		3
1330	Theoretical Modelling of Droplet Extension on Hydrophobic Surfaces. International Journal of Computational Fluid Dynamics, 2021, 35, 534-548.	0.5	1
1331	A Study on the Corrosion Resistance of Hydrophobic Coatings on 65Mn Steel. Coatings, 2021, 11, 1399). 1.2	4
1332	Recent Advances in Photocatalysis Based on Bioinspired Superwettabilities. ACS Catalysis, 2021, 11, 14751-14771.	5.5	59
1333	Asymmetric Mass Transport through Dense Heterogeneous Polymer Membranes: Fundamental Principles, Lessons from Nature, and Artificial Systems. Macromolecular Rapid Communications, 2022, 43, e2100654.	2.0	1
1334	From biology to biomimicry: Using nature to build better structures – A review. Construction and Building Materials, 2022, 320, 126195.	3.2	51
1335	Universal polysiloxane additives for UV curable self-cleaning engineered surfaces. Progress in Organic Coatings, 2022, 163, 106686.	1.9	2
1336	A review of self-cleaning technology to reduce dust and ice accumulation in photovoltaic power generation using superhydrophobic coating. Renewable Energy, 2022, 185, 1034-1061.	4.3	40
1337	Wetting properties and surface energy of four different amorphous alloys compared to the corresponding crystalline alloys. Materials Chemistry and Physics, 2022, 278, 125674.	2.0	3
1338	A multifunction superhydrophobic surface with excellent mechanical/chemical/physical robustness. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 637, 128258.	2.3	10
1339	Numerical simulation of the effects of superhydrophobic coating in an oval cross-sectional solar collector with a wavy absorber filled with water-based Al2O3-ZnO-Fe3O4 ternary hybrid nanofluid. Sustainable Energy Technologies and Assessments, 2022, 50, 101881.	1.7	11
1340	Approaches and potentials for pool boiling enhancement with superhigh heat flux on responsive smart surfaces: A critical review. Renewable and Sustainable Energy Reviews, 2022, 156, 111974.	8.2	27

#	Article	IF	CITATIONS
1341	Improving superamphiphobicity by mimicking tree-branch topography. Journal of Colloid and Interface Science, 2022, 611, 118-128.	5.0	7
1342	The concept, deposition routes, and applications of superhydrophobic surfaces – Review. Egyptian Journal of Chemistry, 2020, .	0.1	0
1343	Biomimetic Super 'Silicate' Phobicity and Superhydrophobicity of Thermal Barrier Coating. SSRN Electronic Journal, 0, , .	0.4	0
1344	Facial fabrication of superhydrophobic cellulose film with hierarchical morphologies. Surface and Interface Analysis, 2022, 54, 254-261.	0.8	0
1345	Atomic Layer Deposition Reinforcement of Methylcellulose Nanowire Forests. Advanced Engineering Materials, 2022, 24, .	1.6	1
1346	Superstrong, Lightweight, and Exceptional Environmentally Stable SiO ₂ @GO/Bamboo Composites. ACS Applied Materials & Interfaces, 2022, 14, 7311-7320.	4.0	13
1347	A comprehensive review: Super hydrophobic graphene nanocomposite coatings for underwater and wet applications to enhance corrosion resistance. FlatChem, 2022, 31, 100326.	2.8	33
1348	One-step fabrication of soft calcium superhydrophobic surfaces by a simple electrodeposition process. RSC Advances, 2021, 12, 297-308.	1.7	5
1349	Nanophysical Antimicrobial Strategies: A Rational Deployment of Nanomaterials and Physical Stimulations in Combating Bacterial Infections. Advanced Science, 2022, 9, e2105252.	5.6	56
1350	Superhydrophobic Composite Coating with Excellent Mechanical Durability. Coatings, 2022, 12, 185.	1.2	7
1351	A Review of Recent Progress in Molecular Dynamics and Coarse-Grain Simulations Assisted Understanding of Wettability. Archives of Computational Methods in Engineering, 2022, 29, 3059-3085.	6.0	18
1352	Normal Force-Induced Highly Efficient Mechanical Sterilization of GaN Nanopillars. Langmuir, 2022, 38, 856-862.	1.6	4
1353	Preparation of hierarchical Micro-Nano titanium dioxide structures via laser irradiation for enhancing water transport performance. Applied Surface Science, 2022, 586, 152708.	3.1	3
1354	Slippery, Waterâ€Infused Membrane with Grooved Nanotrichomes for Lubricatingâ€Induced Oil Repellency. Advanced Science, 2022, 9, e2103950.	5.6	4
1355	Submicron topography design for controlling staphylococcal bacterial adhesion and biofilm formation. Journal of Biomedical Materials Research - Part A, 2022, 110, 1238-1250.	2.1	10
1356	Effects of the Surface Structure on the Water Transport Behavior in PEMFC Carbon Fiber Papers. ACS Omega, 2022, 7, 5992-5997.	1.6	1
1357	Functionally Integrated Device with Robust and Durable Superhydrophobic Surface for Efficient, Continuous, and Recyclable Oil–Water Separation. Advanced Materials Interfaces, 2022, 9, .	1.9	4
1358	Efficient recovery of superhydrophobic wax surfaces on solid wood. European Journal of Wood and Wood Products, 2022, 80, 345-353.	1.3	4

#	Article	IF	CITATIONS
1359	Robust fabrication of double-ring mushroom structure for reliable omniphobic surfaces. Surfaces and Interfaces, 2022, 29, 101778.	1.5	2
1360	Transparent non-fluorinated superhydrophobic coating with enhanced anti-icing performance. Progress in Organic Coatings, 2022, 165, 106758.	1.9	25
1361	Hierarchical surface wrinkles and bumps generated on chitosan films having double-skin layers comprising topmost carrageenan layers and polyion complex layers. Carbohydrate Polymers, 2022, 284, 119224.	5.1	7
1362	Hierarchically Structured Surfaces Prepared by Phase Separation: Tissue Mimicking Culture Substrate. International Journal of Molecular Sciences, 2022, 23, 2541.	1.8	2
1363	Water droplet bouncing on a hierarchical superhydrophobic surface fabricated by hydrothermal synthesis and ultraprecision machining. Journal of Adhesion Science and Technology, 2023, 37, 706-720.	1.4	1
1364	Biomimetic and Biological Nanoarchitectonics. International Journal of Molecular Sciences, 2022, 23, 3577.	1.8	9
1365	Preparation of Stable Superhydrophobic Coatings on Complexâ€Shaped Substrates. Advanced Materials Interfaces, 2022, 9, .	1.9	11
1366	Tunable and Robust Nanostructuring for Multifunctional Metal Additively Manufactured Interfaces. Nano Letters, 2022, 22, 2650-2659.	4.5	10
1367	Self-Cleaning Biomimetic Surfaces—The Effect of Microstructure and Hydrophobicity on Conidia Repellence. Materials, 2022, 15, 2526.	1.3	5
1368	Bioinspired Topographic Surface Modification of Biomaterials. Materials, 2022, 15, 2383.	1.3	8
1370	Droplet rebound and dripping during impact on small superhydrophobic spheres. Physics of Fluids, 2022, 34, .	1.6	13
1371	Assembly of Graphene Platelets for Bioinspired, Stimuli-Responsive, Low Ice Adhesion Surfaces. ACS Omega, 2022, 7, 10225-10234.	1.6	0
1372	A novel prewetting behavior of water adsorbed on solid surfaces modified with tethered chains resulting from a density functional theory. Journal of Molecular Liquids, 2022, 357, 119111.	2.3	6
1373	Preparation of superhydrophobic PVDF composite membrane via catechol/polyamine co-deposition and Ag nanoparticles in-situ growth for membrane distillation. Desalination, 2022, 529, 115649.	4.0	27
1374	Superhydrophobic coatings for food packaging applications: A review. Food Packaging and Shelf Life, 2022, 32, 100823.	3.3	57
1375	Metal-organic framework (MOF)-based slippery liquid-infused porous surface (SLIPS) for purely physical antibacterial applications. Applied Materials Today, 2022, 27, 101430.	2.3	9
1376	Effect of ultrasonic vibration-assisted laser treatment on surface roughness and wettability of aluminum. Optics and Laser Technology, 2022, 150, 107969.	2.2	8
1377	Design and complexity evaluation of a self-cleaning heat exchanger. International Journal of Heat and Mass Transfer, 2022, 191, 122725.	2.5	6

#	Article	IF	CITATIONS
1378	Drag reduction in minichannel laminar flow past superhydrophobic surfaces. Physics of Fluids, 2021, 33, .	1.6	15
1379	Physical Properties of Starch/Powdered Activated Carbon Composite Films. Polymers, 2021, 13, 4406.	2.0	4
1380	Sustainable Materials for Liquid Repellent Coatings. Coatings, 2021, 11, 1508.	1.2	6
1381	Special Wettability Materials Inspired by Multiorganisms for Fog Collection. Advanced Materials Interfaces, 2022, 9, .	1.9	9
1382	Catalyst-free Synthesis of Hydrophobic ZnO Nanowires for Self-cleaning Applications. Brazilian Journal of Physics, 2022, 52, 1.	0.7	1
1383	Lotus-Like Water Repellency of Gas-Phase-Synthesized Graphene. , 2022, 4, 995-1002.		3
1386	Superhydrophobic 304 Stainless Steel Mesh for the Removal of High-Density Polyethylene Microplastics. Langmuir, 2022, 38, 5943-5953.	1.6	13
1387	Hydrophobization of paper intended for packaging. Revista Mexicana De FÃsica, 2022, 68, .	0.2	0
1388	Effects of surface topography at different scales on the dispersion of the wetting data for sessile water droplets on nitrided austenitic stainless steels. Surface and Coatings Technology, 2022, 441, 128510.	2.2	5
1389	A soft gripper with contamination resistance and large friction coefficient. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	1
1390	Air-assisted drag reduction promoted by hydrophobic attraction. Journal of Dispersion Science and Technology, 0, , 1-10.	1.3	0
1391	Bioinspired microgroove arrays with drag reduction and hydrophobic properties. Surface Innovations, 2023, 11, 262-269.	1.4	2
1392	Adhesion behaviors of water droplets on bioinspired superhydrophobic surfaces. Bioinspiration and Biomimetics, 2022, 17, 041003.	1.5	6
1393	The preparation of hydrophobic hybrid film coatings from siloxane-modified polyacrylate associated with nano-fumed silica and organo-modified clay. Journal of Coatings Technology Research, 2022, 19, 1467-1492.	1.2	2
1394	Influence of microscopic features on the self-cleaning ability of textile fabrics. Textile Reseach Journal, 2023, 93, 450-467.	1.1	6
1395	Research on the mechanical and water-repellent properties of bionic carbon fiber reinforced plastic composites inspired by coelacanth scale and lotus leaf. Composites Science and Technology, 2022, 226, 109542.	3.8	10
1396	Bioâ€Inspired Fabrication of Porous Aromatic Framework oated Fabric for Achieving Durable Superhydrophobic Applications. Advanced Materials Interfaces, 0, , 2101994.	1.9	3
1397	Biomimetic macroscopic hierarchical moire gratings. Applied Optics, 2022, 61, 5428.	0.9	5

#	Article	IF	CITATIONS
1398	Preparation of a bionic lotus leaf microstructured surface and its drag reduction performance. RSC Advances, 2022, 12, 16723-16731.	1.7	5
1399	The concept of biomimetics in the development of protective textiles. , 2022, , 133-173.		1
1400	Effect of Sintering Temperature and Hydrophobic Treatment on the Microstructure and Properties of Copper-Graphite Composites. Journal Wuhan University of Technology, Materials Science Edition, 2022, 37, 305-313.	0.4	0
1401	A numerical study of an impacting compound droplet undergoing thermocapillary convection. Acta Mechanica, 0, , .	1.1	3
1402	A Machine Learning Approach for Predicting the Maximum Spreading Factor of Droplets upon Impact on Surfaces with Various Wettabilities. Processes, 2022, 10, 1141.	1.3	8
1403	Rational Design of Durable Anti-fouling Coatings with High Transparency, Hardness, and Flexibility. ACS Applied Materials & Interfaces, 2022, 14, 29156-29166.	4.0	19
1404	Metal surface wettability modification by nanosecond laser surface texturing: A review. Biosurface and Biotribology, 2022, 8, 95-120.	0.6	19
1405	Reduction of the Water Wettability of Cu Films Deposited on Liquid Surfaces by Thermal Evaporation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, , 129569.	2.3	2
1406	Tuning surface hybrid-wettability to enhance the vapour film phenomenon induced by boiling heat transfer: Molecular dynamics. International Communications in Heat and Mass Transfer, 2022, 136, 106172.	2.9	7
1407	Sprayable superhydrophobic coating with high mechanical/chemical robustness and anti-corrosion. Surface and Coatings Technology, 2022, 443, 128609.	2.2	21
1408	Atomic force microscopy probing interactions and microstructures of ionic liquids at solid surfaces. Nanoscale, 2022, 14, 11098-11128.	2.8	15
1409	The advent of thermoplasmonic membrane distillation. Chemical Society Reviews, 2022, 51, 6087-6125.	18.7	56
1410	Numerical investigation of the distance between micropillars effect on the flow characteristics in the microchannel with textured wall. Interfacial Phenomena and Heat Transfer, 2022, , .	0.3	0
1411	Viscous droplet impingement on soft substrates. Soft Matter, 2022, 18, 5474-5482.	1.2	1
1412	Droplet Spreading and Adhesion on Spherical Surfaces. Langmuir, 2022, 38, 8456-8461.	1.6	5
1413	Fluid Flow Induces Differential Detachment of Live and Dead Bacterial Cells from Nanostructured Surfaces. ACS Omega, 2022, 7, 23201-23212.	1.6	6
1414	Rapid forming of nanowire array on PVDF polymer surfaces at room temperature by ultrasonic loading. Advanced Engineering Materials, 0, , .	1.6	0
1415	Droplet bouncing on topological nonwetting surfaces via laser fabrication. Journal of Intelligent Manufacturing and Special Equipment, 2022, 3, 192.	0.6	0

#	Article	IF	CITATIONS
1416	Spontaneous Self-healing Bio-inspired Lubricant-infused Coating on Pipeline Steel Substrate with Reinforcing Anti-corrosion, Anti-fouling, and Anti-scaling Properties. Journal of Bionic Engineering, 2022, 19, 1601-1614.	2.7	5
1417	Facile fabrication of crescentic ZnO nanorod-based photo-catalytic micro-fluidic reactors. Microelectronic Engineering, 2022, , 111843.	1.1	1
1418	Superhydrophobic PDMS coated 304 stainless-steel mesh for the removal of HDPE microplastics. Progress in Organic Coatings, 2022, 170, 107009.	1.9	5
1419	Hydrodynamic analysis of the energy dissipation of droplets on vibrating superhydrophobic surfaces. International Communications in Heat and Mass Transfer, 2022, 137, 106264.	2.9	6
1420	How does surfactant affect the hydrophobicity of wax-coated wood?. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650, 129606.	2.3	5
1421	Enhancing dropwise condensation of vapor from moist air over a copper substrate by temperature-controlled chemical etching. Thermal Science and Engineering Progress, 2022, 34, 101403.	1.3	3
1425	Biodegradation Control of Chitosan Materials by Surface Modification with Copolymers of Glycidyl Methacrylate and Alkyl Methacrylates. Fibers and Polymers, 2022, 23, 2502-2510.	1.1	1
1426	Surface wettability of water and blood on diversified nanoconeâ€shaped ZnO films modified with nâ€dodecyl mercaptan. Surface and Interface Analysis, 0, , .	0.8	0
1427	A review of physics of moving contact line dynamics models and its applications in interfacial science. Journal of Applied Physics, 2022, 132, .	1.1	12
1428	Superhydrophobic polyaniline/TiO2 composite coating with enhanced anticorrosion function. Reactive and Functional Polymers, 2022, 179, 105381.	2.0	22
1429	Wetting of Superhydrophobic Polylactic Acid Micropillared Patterns. Langmuir, 2022, 38, 10052-10064.	1.6	6
1430	Recent advances in superhydrophobic surfaces for practical applications: A review. European Polymer Journal, 2022, 178, 111481.	2.6	47
1431	Plasma nano-patterning for altering hydrophobicity of copper substrate for moist air condensation. Applied Surface Science Advances, 2022, 11, 100281.	2.9	4
1432	Fabrication of micro-nano multi-scale hierarchical porous structure on the surface of Inconel718 nickel-base superalloy by one-step method. Journal of Materials Processing Technology, 2022, 308, 117734.	3.1	5
1433	Influence of hydrophobic coatings on fouling mechanism of combined fouling in enhanced tubes. Applied Thermal Engineering, 2022, 216, 119075.	3.0	4
1434	Preparation of self-healing Ni-Al layered double hydroxide superhydrophobic coating with nanowall arrays on aluminum alloy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 652, 129916.	2.3	13
1435	On the wetting behavior of laser-microtextured stainless steel using Direct Laser Interference Patterning. Surface and Coatings Technology, 2022, 447, 128869.	2.2	4
1436	Experimental study on nanobubble distribution control method based on the slip drag reduction effect. Tribology International, 2023, 177, 107940.	3.0	4

		15	
#	ARTICLE	IF	CITATIONS
1437	Scalableä€Manufactured Plasmonic Metamaterial with Omnidirectional Absorption Bandwidth across Visible to Farâ€Infrared. Advanced Functional Materials, 2022, 32, .	7.8	9
1438	Biomimetic Super "Silicate―Phobicity and Superhydrophobicity of Ceramic Material. Advanced Materials Interfaces, 2022, 9, .	1.9	2
1439	Functional Coating from Amyloid Superwetting Films. Advanced Materials, 2022, 34, .	11.1	8
1440	Design of a biomimetic, small-scale artificial leaf surface for the study of environmental interactions. Beilstein Journal of Nanotechnology, 0, 13, 944-957.	1.5	3
1441	Microstructured Magnetoactive Elastomers for Switchable Wettability. Polymers, 2022, 14, 3883.	2.0	6
1442	Influence of the properties of the plate surface on the oscillations of the cramped drop. Physics of Fluids, 2022, 34, .	1.6	1
1443	Superhydrophobic PVDF membrane modified by dopamine self-polymerized nanoparticles for vacuum membrane distillation. Separation and Purification Technology, 2023, 304, 122182.	3.9	13
1444	Dynamic characteristics of ellipsoidal Janus drop impact on a solid surface. Physics of Fluids, 2022, 34, 102104.	1.6	3
1445	One-Step Insulating Oil Reclamation by PVDF/PTFE Composite Nanofibers. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, 29, 2190-2198.	1.8	0
1446	Physics of Dynamic Contact Line: Hydrodynamics Theory versus Molecular Kinetic Theory. Fluids, 2022, 7, 318.	0.8	5
1447	Preparation of an Integrated Polarization Navigation Sensor via a Nanoimprint Photolithography Process. Photonics, 2022, 9, 806.	0.9	2
1448	Research on the Preparation and Application of Synthetic Leather from Coffee Grounds for Sustainable Development. Sustainability, 2022, 14, 13971.	1.6	7
1449	Advance in Structural Classification and Stability Study of Superamphiphobic Surfaces. Journal of Bionic Engineering, 2023, 20, 366-389.	2.7	3
1450	Wetting and Adhesion of a Polymer Melt on Porous Selfâ€Assembled Polymer Substrates by Breath Figure Templating. Macromolecular Chemistry and Physics, 0, , 2200273.	1.1	0
1451	Intertwined roles of fluid–solid interactions and macroscopic flow geometry in dynamic wetting of complex fluids. European Physical Journal: Special Topics, 2023, 232, 769-780.	1.2	2
1452	Experimental investigation on hydrophobic/superhydrophobic micro patterns: New manufacture method and performance. Materials Today Communications, 2022, 33, 104666.	0.9	1
1453	Laminar drag reduction in a closed channel using bioinspired textured surfaces. Surface Innovations, 0, , 1-13.	1.4	1
1454	The new trends in corrosion control using superhydrophobic surfaces: a review. Corrosion Reviews, 2023, 41, 21-37.	1.0	24

#	Article	IF	CITATIONS
1455	Exploring chemical and structural features to tailor wetting properties of PVDF and PVDF/PMMA surfaces. Polymer, 2022, 262, 125441.	1.8	4
1456	Fabrication of superhydrophobic coatings by low-temperature sintering of Ag nanoparticle paste. Materials Today Communications, 2022, 33, 104705.	0.9	2
1457	Effect of doping cation on the adsorption properties of hydroxyapatite to uranium. Journal of Solid State Chemistry, 2023, 317, 123687.	1.4	14
1458	Recent advances in eco-friendly fabrics with special wettability for oil/water separation. Chemical Communications, 2022, 58, 13413-13438.	2.2	23
1459	Removal of dyes, oils, alcohols, heavy metals and microplastics from water with superhydrophobic materials. Chemosphere, 2023, 311, 137148.	4.2	13
1460	Durability and corrosion behaviors of superhydrophobic amorphous coatings: a contrastive investigation. RSC Advances, 2022, 12, 32813-32824.	1.7	4
1461	Solvent-free synthesis of superhydrophobic materials with self-regenerative and drag reduction properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 658, 130675.	2.3	6
1462	Facile, scalable, and low-cost superhydrophobic coating for frictional drag reduction with anti-corrosion property. Tribology International, 2023, 178, 108091.	3.0	14
1463	Numerical simulation on drag reduction characteristics of concave corner microstructure of springtail cuticle. , 2022, , .		0
1464	Evolution of Membrane Surface Properties for Membrane Distillation: A Mini Review. Journal of Applied Membrane Science & Technology, 2022, 26, 45-64.	0.3	0
1465	Squeezing Drops: Force Measurements of the Cassie-to-Wenzel Transition. Langmuir, 2022, 38, 14666-14672.	1.6	3
1466	Highâ€Efficiency Reclamation of Oscillating Energy During Multiple Droplets Impact on Bionic Lotus Surface. Advanced Materials Interfaces, 0, , 2202191.	1.9	1
1467	Antireflective and Hard Multicoat Design for Allyl Diglycol Carbonate Plastic Spectacle Lenses. Key Engineering Materials, 0, 937, 139-146.	0.4	0
1468	High-Performance Photoelectrochemical Enzymatic Bioanalysis Based on a 3D Porous Cu _{<i>x</i>} O@TiO ₂ Film with a Solid–Liquid–Air Triphase Interface. Langmuir, 2022, 38, 15796-15803.	1.6	1
1469	3D printing of micro/nano-hierarchical structures with various structural stiffness for controlling friction and deformation. Additive Manufacturing, 2023, 62, 103368.	1.7	1
1470	Nanosphere Lithography-Based Fabrication of Spherical Nanostructures and Verification of Their Hexagonal Symmetries by Image Analysis. Symmetry, 2022, 14, 2642.	1.1	4
1471	Design considerations to fabricate multifunctional superomniphobic surfaces: A review. Vacuum, 2023, 209, 111758.	1.6	4
1472	Micro-structured P–N junction surfaces: large-scale preparation, antifouling properties, and a synergistic antibacterial mechanism. Journal of Materials Chemistry B, 2023, 11, 1312-1319.	2.9	4

	Стат	CITATION REPORT	
#	Article	IF	CITATIONS
1473	Periodically oriented superhydrophobic microstructures prepared by laser ablation-chemical etching process for drag reduction. Applied Surface Science, 2023, 615, 156403.	3.1	12
1474	Using an eco-friendly deep eutectic solvent for waterless anti-felting of wool fibers. Journal of Cleaner Production, 2023, 386, 135732.	4.6	5
1475	Review on ice crystallization and adhesion to optimize ice slurry generators without moving components. Applied Thermal Engineering, 2023, 223, 119974.	3.0	5
1476	Materials and Design of Fabric-Based Membrane Filtration for Oily Wastewater Treatment. ACS Symposium Series, 0, , 1-39.	0.5	0
1477	Self-cleaning coating materials. , 2023, , 289-308.		1
1479	Nanofibers for oil-water separation and coalescing filtration. , 2023, , 409-432.		Ο
1480	Effect of hybrid modification by ceramic layer formation in MAO process and laser remelting on the structure of titanium bio-alloy Ti13Nb13Zr. Ceramics International, 2023, 49, 16603-16614.	2.3	5
1481	Preparation of superhydrophobic coating with anti-corrosion and anti-fouling properties on the surface of low manganese steel by electrodeposition. Surface and Coatings Technology, 2023, 460, 129412.	2.2	12
1482	Scalable fabrication of superhydrophobic armor microstructure arrays with enhanced tribocorrosion performance via maskless electrochemical machining. Surface and Coatings Technology, 2023, 461, 129427.	2.2	8
1483	Fabrication and characterization of super-hydrophobic surfaces based on sandpapers and nano-particle coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 666, 131358.	2.3	8
1484	Fabrication of superhydrophobic surfaces for applications in total internal reflection effects. Materials Today Communications, 2023, 35, 105928.	0.9	0
1485	Thin coating of silica/polystyrene core-shell nano/microparticles with hierarchical morphology onto polymeric films for fabrication of superhydrophobic surfaces. Materials Today Chemistry, 2023, 30, 101497.	1.7	1
1486	Regulation of droplet impacting on superhydrophobic surfaces: Coupled effects of macrostructures, wettability patterns, and surface motion. Applied Physics Letters, 2023, 122, .	1.5	19
1487	Droplet Impact Dynamics on Biomimetic Replica of Yellow Rose Petals: Rebound to Micropinning Transition. Langmuir, 2023, 39, 6051-6060.	1.6	4
1488	Self-cleaning mechanisms according to the wettability of the surface and deposition material. Applied Surface Science, 2023, 626, 157197.	3.1	5
1489	Natural and synthetic superhydrophobic surfaces: A review of the fundamentals, structures, and applications. AEJ - Alexandria Engineering Journal, 2023, 68, 587-609.	3.4	21
1490	Tribological Behavior of Bioinspired Surfaces. Biomimetics, 2023, 8, 62.	1.5	2
1491	Optimization of graphene oxide modified mesh for separation of O/W emulsions. Chemical Engineering Science, 2023, 270, 118543.	1.9	2

#	Article	IF	CITATIONS
1492	Organogel delivery vehicles for the stabilization of organolithium reagents. Nature Chemistry, 2023, 15, 319-325.	6.6	12
1493	Self-Healing of Biocompatible Superhydrophobic Coatings: The Interplay of the Size and Loading of Particles. Langmuir, 2023, 39, 3194-3203.	1.6	9
1494	Effects of leaf microstructures on the water storage capacity of common urban landscape trees. Ecohydrology, 2023, 16, .	1.1	3
1495	Advanced polymer processing technologies for micro―and nanostructured surfaces: A review. Polymer Engineering and Science, 2023, 63, 1057-1081.	1.5	5
1496	Recent advances in preparation of metallic superhydrophobic surface by chemical etching and its applications. Chinese Journal of Chemical Engineering, 2023, 61, 221-236.	1.7	3
1497	Mechanism of Surface Wettability of Nanostructure Morphology Enhancing Boiling Heat Transfer: Molecular Dynamics Simulation. Processes, 2023, 11, 857.	1.3	3
1498	Experimental study of frosting cleaning process on superhydrophobic copper surface. International Journal of Refrigeration, 2023, 151, 87-96.	1.8	0
1499	Capillary Adhesion around the Shapes Optimized by Dissolution. Advanced Materials Interfaces, 2023, 10, .	1.9	2
1500	Regulating the Polypyrrole Ion-Selective Membrane and Au Solid Contact Layer to Improve the Performance of Nitrate All-Solid Ion-Selective Electrodes. Micromachines, 2023, 14, 855.	1.4	0
1501	Study on superhydrophobicity of hot embossed polytetrafluoroethylene/graphite composites. Journal of Polymer Research, 2023, 30, .	1.2	1
1502	Wetting Characteristics of Micro-patterned Surfaces Fabricated by Ultra-precision Raster Milling. Precision Manufacturing, 2023, , 1-20.	0.1	0
1503	Fabrication of carbon fiber/polyamide 6 composites with water resistance and anti-icing performance using a superhydrophobic fluorinated-polydopamine coating. Composites Science and Technology, 2023, 238, 110048.	3.8	4
1504	Hierarchical surface structure and performance of fluorinated copolymer films derived from side chain structure and α-position substitution of fluorinated monomeric units. Progress in Organic Coatings, 2023, 181, 107605.	1.9	4
1505	Sustainable and Practical Superhydrophobic Surfaces via Mechanochemical Grafting. Advanced Materials Interfaces, 2023, 10, .	1.9	5
1506	A Novel Antiâ€flashover Superhydrophobic Coating with Selfâ€assembly Characteristic of Surface Energy Differences. Macromolecular Rapid Communications, 0, , .	2.0	0
1507	Underwater Superoleophobic and Underoil Superhydrophilic Copper Benzene-1,3,5-tricarboxylate (HKUST-1) Mesh for Self-Cleaning and On-Demand Emulsion Separation. Langmuir, 2023, 39, 6201-6210.	1.6	5
1508	Characterization of Intermediate Wetting States and Anisotropic Sliding on Micro-directional Grooved Surfaces. Precision Manufacturing, 2023, , 1-23.	0.1	0
1511	Elastomeric nanocoatings. , 2023, , 75-90.		0

#	Article	IF	CITATIONS
1514	Antifouling mechanisms in and beyond nature: leverages in realization of bioinspired biomimetic antifouling coatings. , 2023, , 329-362.		1
1515	Ceramic polymer nanocomposites as eco-friendly marine antifouling coatings. , 2023, , 117-140.		1
1524	Characterization of Intermediate Wetting States and Anisotropic Sliding on Micro-directional Grooved Surfaces. Precision Manufacturing, 2023, , 1-23.	0.1	0
1527	Enhanced DC Surface Flashover Performance of the Fluorocarbon Resin/SiC Superhydrophobic Coating. , 2023, , .		0
1534	Recent Advances in Superhydrophobic and Antibacterial Cellulose-Based Fibers and Fabrics: Bio-inspiration, Strategies, and Applications. Advanced Fiber Materials, 2023, 5, 1555-1591.	7.9	6
1535	Wetting Characteristics of Micro-patterned Surfaces Fabricated by Ultra-precision Raster Milling. Precision Manufacturing, 2023, , 1-20.	0.1	0
1536	Overview of emerging hybrid and composite materials for space applications. Advanced Composites and Hybrid Materials, 2023, 6, .	9.9	12
1537	Probing surface wetting across multiple force, length and time scales. Communications Physics, 2023, 6, .	2.0	9
1540	Effect of Titanium Dioxide in Superhydrophobic Coating Using Expanded Polystyrene Foam and Palm Slag. Springer Proceedings in Physics, 2023, , 823-831.	0.1	0
1546	Fluoropolymer nanocomposites for superhydrophobic antireflective and anticorrosive coatings. , 2023, , 681-718.		0
1548	Study on natural and synthetic superhydrophobic surfaces. , 2023, , .		0
1561	Advanced bioinspired superhydrophobic marine antifouling coatings. , 0, , .		0
1563	Wetting Characteristics of Micro-patterned Surfaces Fabricated by Ultra-precision Raster Milling. Precision Manufacturing, 2023, , 393-412.	0.1	0
1572	Characterization of Intermediate Wetting States and Anisotropic Sliding on Micro-directional Grooved Surfaces. Precision Manufacturing, 2023, , 413-435.	0.1	0
1575	Superhydrophobic Polymeric Nanocomposites Coatings for Effective Corrosion Protection. Advances in Organic Synthesis, 2023, , 236-267.	0.5	0
1576	lonic Liquids as Solvents and/or Catalysts for Organic Synthesis. Advances in Organic Synthesis, 2023, , 151-189.	0.5	0
1578	Superhydrophobic and Flexible Aerogels and Xerogels Derived from Organosilane Precursors. Springer Handbooks, 2023, , 367-391.	0.3	0
1586	Self-Cleaning Textiles and Their Applications. Advanced Structured Materials, 2023, , 105-129.	0.3	О

ARTICLE

IF CITATIONS