Polymer nanoparticles: Preparation techniques and size

Progress in Polymer Science 36, 887-913 DOI: 10.1016/j.progpolymsci.2011.01.001

Citation Report

#	Article	IF	CITATIONS
1	Novel self-assembling system based on resorcinarene and cationic surfactant. Physical Chemistry Chemical Physics, 2011, 13, 15891.	1.3	39
2	Responsive fluorescent core-crosslinked polymer particles based on the anthracene-containing hyperbranched poly(ether amine) (hPEA–AN). Soft Matter, 2011, 7, 6853.	1.2	23
3	Evaluating the effects of crystallinity in new biocompatible polyester nanocarriers on drug release behavior. International Journal of Nanomedicine, 2011, 6, 3021.	3.3	69
4	A continuous RESS process to prepare PLA–PEG–PLA microparticles. Journal of Supercritical Fluids, 2011, 59, 92-97.	1.6	24
5	Radiation-induced synthesis of poly(vinylpyrrolidone) nanogel. Polymer, 2011, 52, 5746-5755.	1.8	59
6	Polyamides nanoparticles containing flexible linkages and their copper complexes with novel dielectric properties: Structure–property relationship. Journal of Molecular Structure, 2011, 1001, 89-103.	1.8	11
7	Single/Double Soft-Templates Involved Synthesis of Polyaniline Blends: Interfacial Polymerization and Characterization by AC Impedance Analysis. Journal of Macromolecular Science - Physics, 2012, 51, 1617-1636.	0.4	4
8	Single Emulsion-Solvent Evaporation Technique and Modifications for the Preparation of Pharmaceutical Polymeric Nanoparticles. Recent Patents on Drug Delivery and Formulation, 2012, 6, 209-223.	2.1	57
9	Morphological Tuning of Polymeric Nanoparticles via Microfluidic Platform for Fuel Cell Applications. Journal of the American Chemical Society, 2012, 134, 18904-18907.	6.6	55
10	Cascade Molecule–Particle–Molecule Self-Assemblies for Fabricating Narrowly Size-Distributed Polymeric Superparticles with a Bicontinuous Nanostructure. ACS Macro Letters, 2012, 1, 1312-1316.	2.3	13
11	PLA nanoparticles coated with a Î ² -cyclodextrin polymer shell: Preparation, characterization and release kinetics of a hydrophobic compound. International Journal of Pharmaceutics, 2012, 436, 644-651.	2.6	25
12	Tamoxifen-loaded nanoparticles based on a novel mixture of biodegradable polyesters: characterization and <i>in vitro</i> evaluation as sustained release systems. Journal of Microencapsulation, 2012, 29, 309-322.	1.2	12
13	Flash nanoprecipitation of polystyrenenanoparticles. Soft Matter, 2012, 8, 86-93.	1.2	161
14	Poly(methyl methacrylate) particulate carriers in drug delivery. Journal of Microencapsulation, 2012, 29, 353-367.	1.2	149
15	Structural Iridescent Tuned Colors from Self-Assembled Polymer Opal Surfaces. ACS Applied Materials & Interfaces, 2012, 4, 6071-6079.	4.0	33
16	Polymeric nanocarriers for controlled and enhanced delivery of therapeutic agents to the CNS. Therapeutic Delivery, 2012, 3, 875-887.	1.2	28
17	Nonionic, Water Self-Dispersible "Hairy-Rod―Poly(<i>p</i> -phenylene)- <i>g</i> -poly(ethylene glycol) Copolymer/Carbon Nanotube Conjugates for Targeted Cell Imaging. Biomacromolecules, 2012, 13, 2680-2691.	2.6	31
18	Dual crosslinked hydrogel nanoparticles by nanogel bottom-up method for sustained-release delivery. Colloids and Surfaces B: Biointerfaces, 2012, 99, 38-44.	2.5	61

#	Article	IF	CITATIONS
19	Solid-in-oil dispersion: A novel core technology for drug delivery systems. International Journal of Pharmaceutics, 2012, 438, 249-257.	2.6	38
20	Preparation, Cellular Internalization, and Biocompatibility of Highly Fluorescent PMMA Nanoparticles. Macromolecular Rapid Communications, 2012, 33, 1791-1797.	2.0	34
21	Influence of the preparation method on the physicochemical properties of econazole-loaded poly(butyl cyanoacrylate) colloidal nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 413, 260-265.	2.3	14
22	Improved size-tunable preparation of polymeric nanoparticles by microfluidic nanoprecipitation. Polymer, 2012, 53, 5045-5051.	1.8	76
23	A novel and green biomaterial based silver nanocomposite hydrogel: Synthesis, characterization and antibacterial effect. Journal of Inorganic Biochemistry, 2012, 117, 367-373.	1.5	62
24	Nanotechnology-based approaches in anticancer research. International Journal of Nanomedicine, 2012, 7, 4391.	3.3	217
25	Solubilities of acetaminophen in supercritical carbon dioxide with and without menthol cosolvent: Measurement and correlation. Scientia Iranica, 2012, 19, 619-625.	0.3	34
26	Patenting Nanomedicines. , 2012, , .		3
27	Xylan, a Promising Hemicellulose for Pharmaceutical Use. , 0, , .		11
28	Dual drug delivery system for targeting H. pylori in the stomach: preparation and in vitro characterization of amoxicillin-loaded Carbopol® nanospheres. International Journal of Nanomedicine, 2012, 7, 4787.	3.3	32
29	Protein–polymer nanoreactors for medical applications. Chemical Society Reviews, 2012, 41, 2800-2823.	18.7	158
30	Polymerization-Induced Self-Assembly: From Soluble Macromolecules to Block Copolymer Nano-Objects in One Step. Macromolecules, 2012, 45, 6753-6765.	2.2	724
31	Nanomedicines for Immunization and Vaccines. , 2012, , 435-450.		0
32	Biodegradable nanogel-integrated hydrogels for sustained protein delivery. Macromolecular Research, 2012, 20, 266-270.	1.0	24
33	Self-assembled nanomicelles using PLGA–PEG amphiphilic block copolymer for insulin delivery: a physicochemical investigation and determination of CMC values. Journal of Materials Science: Materials in Medicine, 2012, 23, 943-953.	1.7	49
34	Chitosan-g-PEG nanoparticles ionically crosslinked with poly(glutamic acid) and tripolyphosphate as protein delivery systems. International Journal of Pharmaceutics, 2012, 430, 318-327.	2.6	86
35	Synthesis of cross-linked epoxy microparticles: Effect of the synthesis parameters. Journal of Colloid and Interface Science, 2012, 368, 158-164.	5.0	9
36	Generation of polymer nanocapsules via a membrane-extrusion emulsification approach. Materials Letters, 2012, 77, 96-99.	1.3	14

#	Article	IF	CITATIONS
37	ATRP in the design of functional materials for biomedical applications. Progress in Polymer Science, 2012, 37, 18-37.	11.8	506
38	Characterization of novel spray-dried polymeric particles for controlled pulmonary drug delivery. Journal of Controlled Release, 2012, 158, 329-335.	4.8	120
39	Synthesis of chemically modified macroreticular resins for the preparation of gold nanoparticles via sorption from aqueous gold solution, and the application of these nanoparticles in catalytic remediation. Journal of Polymer Research, 2013, 20, 1.	1.2	2
40	Single chain polymer nanoparticles via sequential ATRP and oxidative polymerization. Polymer Chemistry, 2013, 4, 3765.	1.9	40
42	pH-responsive polymer core-shell nanospheres for drug delivery. Journal of Polymer Science Part A, 2013, 51, 4440-4450.	2.5	19
43	Controlled Synthesis of Anisotropic Polymer Particles Templated by Porous Coordination Polymers. Chemistry of Materials, 2013, 25, 3772-3776.	3.2	56
44	Modelling the size and polydispersity of magnetic hybrid nanoparticles for luminescent sensing of oxygen. Mikrochimica Acta, 2013, 180, 1201-1209.	2.5	2
45	Polymeric nanoparticles for optical sensing. Biotechnology Advances, 2013, 31, 1585-1599.	6.0	118
46	A comparative in vitro evaluation of self-assembled PTX-PLA and PTX-MPEG-PLA nanoparticles. Nanoscale Research Letters, 2013, 8, 301.	3.1	26
47	Biomimetic fabrication of biocompatible and biodegradable core–shell polystyrene/biosurfactant bionanocomposites for protein drug release. Journal of Chemical Technology and Biotechnology, 2013, 88, 1551-1560.	1.6	16
48	Polymer encapsulation of inorganic nanoparticles for biomedical applications. International Journal of Pharmaceutics, 2013, 458, 230-241.	2.6	77
49	Nanoprecipitation of PMMA Stabilized by Core Crossâ€Linked Star Polymers. Macromolecular Chemistry and Physics, 2013, 214, 1158-1164.	1.1	10
50	Production of BSA-poly(ethyl cyanoacrylate) nanoparticles as a coating material that improves wetting property. Colloids and Surfaces B: Biointerfaces, 2013, 107, 68-75.	2.5	9
51	Physicochemical aspects behind the size of biodegradable polymeric nanoparticles: A step forward. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 1092-1102.	2.3	49
52	Reactive poly(divinyl benzene-co-maleic anhydride) nanoparticles: Preparation and characterization. Chinese Chemical Letters, 2013, 24, 970-974.	4.8	8
53	Nanooncology: The future of cancer diagnosis and therapy. Ca-A Cancer Journal for Clinicians, 2013, 63, 395-418.	157.7	481
54	Recent Advances in the Emulsion Solvent Evaporation Technique for the Preparation of Nanoparticles and Nanocapsules. Advances in Polymer Science, 2013, , 329-344.	0.4	47
55	Sizeâ€Controllable Synthesis and Functionalization of Ultrafine Polymeric Nanoparticles. Small, 2013, 9, 2715-2719.	5.2	5

#	Article	IF	CITATIONS
56	Thermoplastic Vinyl Polymers: From Macro to Nanostructure. Polymer-Plastics Technology and Engineering, 2013, 52, 1423-1466.	1.9	16
57	Can Controversial Nanotechnology Promise Drug Delivery?. Chemical Reviews, 2013, 113, 1686-1735.	23.0	181
58	Facile method for preparation of anisotropic submicron magnetic Janus particles using miniemulsion. Journal of Colloid and Interface Science, 2013, 409, 66-71.	5.0	25
59	Particle Formation in the Emulsionâ€Solvent Evaporation Process. Small, 2013, 9, 3514-3522.	5.2	71
60	Violacein/poly(ϵ-caprolactone)/chitosan nanoparticles against bovine mastistis: Antibacterial and ecotoxicity evaluation. Journal of Physics: Conference Series, 2013, 429, 012030.	0.3	7
61	Multifaceted Development and Application of Biopolymers for Biology, Biomedicine and Nanotechnology. Advances in Polymer Science, 2013, , .	0.4	12
62	Visible light photopolymerization in BHDC reverse micelles. Laser flash photolysis study of the photoinitiating mechanism. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 257, 60-65.	2.0	5
63	Development, characterization, and photocytotoxicity assessment on human melanoma of chloroaluminum phthalocyanine nanocapsules. Materials Science and Engineering C, 2013, 33, 1744-1752.	3.8	60
64	Fluorescence imaging of cancer tissue based on metal-free polymeric nanoparticles – a review. Journal of Materials Chemistry B, 2013, 1, 1994.	2.9	92
65	Drug Delivery Systems for Predictive Medicine: Polymers as Tools for Advanced Applications. Advances in Predictive, Preventive and Personalised Medicine, 2013, , 399-455.	0.6	7
66	Fluorescent monomers as building blocks for dye labeled polymers: synthesis and application in energy conversion, biolabeling and sensors. Chemical Society Reviews, 2013, 42, 5366.	18.7	207
67	Drug carriers in osteoporosis: Preparation, drug encapsulation and applications. International Journal of Pharmaceutics, 2013, 445, 181-195.	2.6	45
68	Synthesis of Organic and Bioorganic Nanoparticles: An Overview of the Preparation Methods. , 2013, , 27-74.		29
69	Spray-drying encapsulation of mangiferin using natural polymers. Food Hydrocolloids, 2013, 33, 10-18.	5.6	51
70	Nanoencapsulation of polyphenols for protective effect against colon–rectal cancer. Biotechnology Advances, 2013, 31, 514-523.	6.0	97
72	Biodegradable Polymers for Potential Delivery Systems for Therapeutics. Advances in Polymer Science, 2013, , 169-202.	0.4	15
73	Optimization of process variables for the synthesis of silver nanoparticles by Pycnoporus sanguineus using statistical experimental design. Journal of the Korean Society for Applied Biological Chemistry, 2013, 56, 11-20.	0.9	28
74	Polyaniline as a Material for Hydrogen Storage Applications. Macromolecular Rapid Communications, 2013, 34, 1043-1055.	2.0	44

#	Article	IF	CITATIONS
75	Facile synthesis of poly(ε-caprolactone) micro and nanospheres using different types of polyelectrolytes as stabilizers under ambient and elevated temperature. Composites Part B: Engineering, 2013, 45, 1471-1479.	5.9	15
76	Poly(ɛ-caprolactone), Eudragit® RS 100 and poly(ɛ-caprolactone)/Eudragit® RS 100 blend submicron particles for the sustained release of the antiretroviral efavirenz. Colloids and Surfaces B: Biointerfaces, 2013, 102, 441-449.	2.5	85
77	Synthesis of plastic scintillation microspheres: Evaluation of scintillators. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 698, 106-116.	0.7	27
78	A Mild and Efficient Approach to Functional Single-Chain Polymeric Nanoparticles via Photoinduced Diels–Alder Ligation. Macromolecules, 2013, 46, 8092-8101.	2.2	109
79	Synthesis of polymeric nanomaterials for biomedical applications. , 2013, , 27-63.		14
80	Influence of 2-Methylacryloylxyethyl Trimethyl Ammonium Chloride on the Properties of Cationic Poly(vinyl acetate-butyl acrylate-DMC) Copolymer Emulsions. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 185-192.	1.2	4
82	Encapsulation of a Biobased Lignin–Saponite Nanohybrid into Polystyrene Co-Butyl Acrylate (PSBA) Latex via Miniemulsion Polymerization. ACS Sustainable Chemistry and Engineering, 2013, 1, 1630-1637.	3.2	31
83	Poly(hexyl methacrylate) Nanoparticles Templating in Nanoemulsions-Made by Phase Inversion Temperature. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 385-391.	1.2	9
84	Effect of Physicochemical Properties of Biodegradable Polymers on Nano Drug Delivery. Polymer Reviews, 2013, 53, 546-567.	5.3	34
85	Shear Flow Controlled Morphological Polydispersity of Amphiphilic ABA Triblock Copolymer Vesicles. Langmuir, 2013, 29, 15704-15710.	1.6	7
86	Hybrid approach combining dissipative particle dynamics and finite-difference diffusion model: Simulation of reactive polymer coupling and interfacial polymerization. Journal of Chemical Physics, 2013, 139, 154102.	1.2	12
87	Preparation of ε-Polylysine Modified Silica Nanoparticles. Advanced Materials Research, 2013, 712-715, 511-514.	0.3	1
88	Characterization and Antimicrobial Property of Poly(Acrylic Acid) Nanogel Containing Silver Particle Prepared by Electron Beam. International Journal of Molecular Sciences, 2013, 14, 11011-11023.	1.8	20
89	Fabrication of Nanocolorants Using Miniemulsion Solvent Evaporation Technique. Advanced Materials Research, 2013, 785-786, 471-474.	0.3	0
90	Confined glassy properties of polymer nanoparticles. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 574-586.	2.4	30
91	Polymerization of Hexyl Methacrylate in Nanoemulsions Made by Low and High Energy Methods. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 812-820.	1.2	2
92	Hydrolyzableâ€emulsifierâ€eontaining polymer latices as dispersants and binders for waterborne carbon black paint. Journal of Applied Polymer Science, 2013, 130, 3869-3873.	1.3	3
93	Controllable preparation of uniform polystyrene nanospheres with premix membrane emulsification. Journal of Applied Polymer Science, 2013, 129, 1202-1211.	1.3	6

#	Article	IF	CITATIONS
94	Availability of polymeric nanoparticles for specific enhanced and targeted drug delivery. Therapeutic Delivery, 2013, 4, 1261-1278.	1.2	15
95	Nanoparticles in Bioimaging. , 2013, , 203-228.		0
96	Synthetic Polymer-Network Based Materials in Stem Cell Research. , 2013, , 3-36.		0
97	Novel intravaginal nanomedicine for the targeted delivery of saquinavir to CD4+ immune cells. International Journal of Nanomedicine, 2013, 8, 2847.	3.3	25
99	Nanoparticles in relation to peptide and protein aggregation. International Journal of Nanomedicine, 2014, 9, 899.	3.3	103
100	A new formulation of curcumin using poly (lactic-co-glycolic acid)—polyethylene glycol diblock copolymer as carrier material. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2014, 5, 035013.	0.7	5
101	Linear interfacial polymerization: Theory and simulations with dissipative particle dynamics. Journal of Chemical Physics, 2014, 141, 194906.	1.2	12
102	Dual sustained release delivery system for multiple route therapy of an antiviral drug. Drug Delivery, 2014, 21, 276-292.	2.5	14
105	Polymorphic crystallization of poly(butylene adipate) and its copolymer: Effect of poly(vinyl alcohol). Journal of Applied Polymer Science, 2014, 131, .	1.3	5
107	Size Controlled Synthesis of Starch Nanoparticles by a Microemulsion Method. Journal of Nanomaterials, 2014, 2014, 1-7.	1.5	44
108	Nanoparticles applied to antineoplastic agents: a patent landscape. Pharmaceutical Patent Analyst, 2014, 3, 613-623.	0.4	3
109	Production of Drug-Loaded Polymeric Nanoparticles by Electrospraying Technology. Journal of Biomedical Nanotechnology, 2014, 10, 2200-2217.	0.5	34
110	Tumor-penetrating acetalated dextran nanoparticles capable of tandem delivery of agents for the treatment of lung cancer. , 2014, , .		3
111	Oral insulin delivery – challenges and strategies. , 2014, , 113-168.		3
112	Bright Singleâ€Chain Conjugated Polymer Dots Embedded Nanoparticles for Longâ€Term Cell Tracing and Imaging. Small, 2014, 10, 1212-1219.	5.2	49
113	Poly(ethylene terephthalate) nanoparticles prepared by CO ₂ laser supersonic atomization. Journal of Applied Polymer Science, 2014, 131, .	1.3	0
114	Nano-Oncologicals. Advances in Delivery Science and Technology, 2014, , .	0.4	7
115	Core/Shell Quantum Dots Encapsulated in Biocompatible Oil-Core Nanocarriers as Two-Photon Fluorescent Markers for Bioimaging, Langmuir, 2014, 30, 14931-14943.	1.6	30

#	Article	IF	CITATIONS
116	Synthesis of polystyrene nanolatexes via emulsion polymerization using sodium dodecyl sulfonate as the emulsifier. High Performance Polymers, 2014, 26, 900-905.	0.8	10
117	Plasmonic mode interactions with organic semiconductor gain media in nano-confined geometries. Proceedings of SPIE, 2014, , .	0.8	0
118	Polymeric Nanocarriers for Cancer Therapy. Advances in Delivery Science and Technology, 2014, , 67-94.	0.4	1
119	Size-controlled synthesis of chitosan nanoparticles and their structural characterization. Materials Research Society Symposia Proceedings, 2014, 1685, 7.	0.1	0
120	1. Introductory remarks on polymers and polymer surfaces. , 2014, , 1-38.		2
121	Paclitaxel-loaded PCL–TPGS nanoparticles: In vitro and in vivo performance compared with Abraxane®. Colloids and Surfaces B: Biointerfaces, 2014, 113, 43-50.	2.5	101
122	A novel drug "copper acetylacetonate―loaded in folic acid-tagged chitosan nanoparticle for efficient cancer cell targeting. Journal of Drug Targeting, 2014, 22, 23-33.	2.1	28
123	Synthesis of poly(É>-caprolactone) nanospheres in the presence of the protective agent poly(glutamic) Tj ETQq1 1 Colloids and Surfaces B: Biointerfaces, 2014, 117, 414-424.	0.784314 2.5	1 rgBT /Over 11
124	Preparation and characterization of nanocomposite between poly(aniline-co-m-chloroaniline)–copper sulfide nanoparticles. Physica B: Condensed Matter, 2014, 443, 107-113.	1.3	11
125	Application of poly(epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. Journal of Hazardous Materials, 2014, 268, 207-215.	6.5	218
126	Polymer nanoparticles for drug and small silencing <scp>RNA</scp> delivery to treat cancers of different phenotypes. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2014, 6, 40-60.	3.3	59
127	Bioapplications for Molecularly Imprinted Polymers. Analytical Chemistry, 2014, 86, 250-261.	3.2	310
128	Design of Bio-nanosystems for Oral Delivery of Functional Compounds. Food Engineering Reviews, 2014, 6, 1-19.	3.1	99
129	Ultra-Fine Characteristics of Starch Nanoparticles Prepared Using Native Starch With and Without Surfactant. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 515-524.	1.9	101
130	Improvement single-wall carbon nanotubes (SWCNTs) based on functionalizing with monomers 2-hydroxyethylmethacryate (HEMA) and N-vinylpyrrolidone (NVP) for pharmaceutical applications as cancer therapy. Journal of Industrial and Engineering Chemistry, 2014, 20, 2895-2900.	2.9	27
131	A facile method for preparing colored nanospheres of poly(styrene-co-acrylic acid). Dyes and Pigments, 2014, 100, 50-56.	2.0	35
132	Concentration–polarization effect of poly(sodium styrene sulfonate) on size distribution of colloidal silver nanoparticles during diafiltration experiments. Colloid and Polymer Science, 2014, 292, 619-626.	1.0	8
133	Synthesis and Characterization of Silver–PVA Nanocomposite for Sensor and Antibacterial Applications. Journal of Cluster Science, 2014, 25, 639-650.	1.7	19

#	Article	IF	CITATIONS
134	Cyclodextrin containing biodegradable particles: From preparation to drug delivery applications. International Journal of Pharmaceutics, 2014, 461, 351-366.	2.6	81
135	Emerging Applications of Phaseâ€Change Materials (PCMs): Teaching an Old Dog New Tricks. Angewandte Chemie - International Edition, 2014, 53, 3780-3795.	7.2	292
136	Mechanism of particle formation in radical emulsion copolymerization of styrene with α-tert-butoxy-I‰-vinylbenzyl-polyglycidol macromonomer. Polymer, 2014, 55, 788-797.	1.8	6
137	A simple hydrogen peroxide biosensor based on a novel electro-magnetic poly(p-phenylenediamine)@Fe3O4 nanocomposite. Biosensors and Bioelectronics, 2014, 55, 259-265.	5.3	151
138	Effect of aqueous phase composition on particle coagulation behavior in batch emulsion polymerization of styrene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 452, 159-164.	2.3	19
139	Synthesis and property of polystyrene particle with smart surface by emulsion polymerization using "giant―surfactant. Polymer, 2014, 55, 2389-2393.	1.8	5
140	Nanodiamond–polymer nanoparticle composites and their thin films. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	53
141	Preparation of p <scp>H</scp> â€ <scp>R</scp> esponsive Polymer Core– <scp>S</scp> hell Nanospheres for Delivery of Hydrophobic Antineoplastic Drug Ellipticine. Macromolecular Bioscience, 2014, 14, 166-172.	2.1	7
142	Palladium nanoparticles encapsulated in magnetically separable polymeric nanoreactors. Journal of Materials Chemistry A, 2014, 2, 3971-3977.	5.2	18
143	Rapamycin-loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) nanoparticles: preparation, characterization and potential application in corneal transplantation. Journal of Pharmacy and Pharmacology, 2014, 66, 557-563.	1.2	34
144	ZnO assisted polyaniline nanofibers and its application as ammonia gas sensor. Sensors and Actuators B: Chemical, 2014, 191, 276-282.	4.0	202
145	Hydrophobic dye/polymer composite colorants synthesized by miniemulsion solvent evaporation technique. Dyes and Pigments, 2014, 100, 41-49.	2.0	22
146	Loading of polymer nanocarriers: Factors, mechanisms and applications. Progress in Polymer Science, 2014, 39, 43-86.	11.8	152
148	Novel thermosensitive hydrogel composites based on poly(<scp>d,l</scp> â€lactideâ€ <i>co</i> â€glycolide) nanoparticles embedded in poly(<i>n</i> â€isopropyl acrylamide) with sustained drugâ€release behavior. Journal of Applied Polymer Science, 2014, 131, .	1.3	10
149	Facile formation of stimuli-responsive, fluorescent and magnetic nanoparticles based on cellulose stearoyl ester via nanoprecipitation. Cellulose, 2014, 21, 4181-4194.	2.4	10
150	Targeted Delivery of Pesticides Using Biodegradable Polymeric Nanoparticles. Springer Briefs in Molecular Science, 2014, , .	0.1	108
151	Emulsion-based techniques for encapsulation in biomedicine, food and personal care. Current Opinion in Pharmacology, 2014, 18, 47-55.	1.7	65
152	Hyperbranched polydendrons: a new controlled macromolecular architecture with self-assembly in water and organic solvents. Chemical Science, 2014, 5, 1844-1853.	3.7	42

#	Article	IF	CITATIONS
153	Fabrication and morphology control of hollow polymer particles by altering core particle size. Colloid and Polymer Science, 2014, 292, 2687-2694.	1.0	7
154	Synthesis of Novel Conductive Poly(pâ€phenylenediamine)/ Fe ₃ O ₄ Nanocomposite via Emulsion Polymerization and Investigation of Antioxidant Activity. Advances in Polymer Technology, 2014, 33, .	0.8	53
155	Surfactant-free polymeric nanoparticles composed of PEG, cholic acid and a sucrose moiety. Journal of Materials Chemistry B, 2014, 2, 3946-3955.	2.9	12
156	Water-Soluble Triscyclometalated Organoiridium Complex: Phosphorescent Nanoparticle Formation, Nonlinear Optics, and Application for Cell Imaging. ACS Applied Materials & Interfaces, 2014, 6, 3122-3131.	4.0	38
157	The heat–chill method for preparation of self-assembled amphiphilic poly(ε-caprolactone)–poly(ethylene glycol) block copolymer based micellar nanoparticles for drug delivery. Soft Matter, 2014, 10, 2150-2159.	1.2	22
158	Fluorescent organic nanoparticles of tripodal receptor as sensors for HSO ₄ ^{â^'} in aqueous medium: application to real sample analysis. Analytical Methods, 2014, 6, 9030-9036.	1.3	31
159	Strategy for self-assembly of the poly(9,9-dihexylfluorene) to microspheres: optimizing the self-assembling conditions. Polymer Bulletin, 2014, 71, 2103-2112.	1.7	7
160	pH-responsive polymers: properties, synthesis and applications. , 2014, , 45-92.		51
161	Frustrated phases: polymeric self-assemblies in a 3D confinement. Soft Matter, 2014, 10, 2919.	1.2	114
162	Meloxicam-loaded nanocapsules have antinociceptive and antiedematogenic effects in acute models of nociception. Life Sciences, 2014, 115, 36-43.	2.0	22
163	Synthesis, structural and spectroscopic investigations of nanostructured samarium oxalate crystals. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 122, 624-630.	2.0	16
164	Suspension thiol-ene photopolymerization: Effect of stabilizing agents on particle size and stability. Polymer, 2014, 55, 1674-1680.	1.8	32
165	Advanced synthesis for monodisperse polymer nanoparticles in aqueous media with sub-millimolar surfactants. Polymer, 2014, 55, 2772-2779.	1.8	30
166	Use of renewable resource vanillin for the preparation of benzoxazine resin and reactive monomeric surfactant containing oxazine ring. Polymer, 2014, 55, 1443-1451.	1.8	153
167	Effect of a surface stabilizer on the formation of polyoxalate nanoparticles and their release profiles. Vacuum, 2014, 107, 208-212.	1.6	12
168	Polyurethane and polyurea nanoparticles based on polyoxyethylene castor oil derivative surfactant suitable for endovascular applications. International Journal of Pharmaceutics, 2014, 461, 1-13.	2.6	23
170	Biocompatible Single-Chain Polymeric Nanoparticles via Organo-Catalyzed Ring-Opening Polymerization. ACS Macro Letters, 2014, 3, 524-528.	2.3	52
171	Preparation and characterization of anionic pullulan thermoassociative nanoparticles for drug delivery. Carbohydrate Polymers, 2014, 111, 892-900.	5.1	36

ARTICLE IF CITATIONS # Respirable nanocarriers as a promising strategy for antitubercular drug delivery. Journal of 172 4.8 103 Controlled Release, 2014, 187, 183-197. Polynaphthalenes prepared by solid-state oxidative coupling polymerization and their microspheres 2.6 self-assembled via nonsolvent vapor method. European Polymer Journal, 2014, 57, 58-65. Alginate/chitosan nanoparticles for encapsulation and controlled release of vitamin B2. 174 3.6 195 International Journal of Biological Macromolecules, 2014, 71, 141-146. A facile strategy for preparation of single-chain polymeric nanoparticles by intramolecular 1.8 photo-crosslinking of azide polymers. Polymer, 2014, 55, 3696-3702. Polymeric nanocapsules and nanospheres for encapsulation and long sustained release of hydrophobic cyanine-type photosensitizer. Colloids and Surfaces A: Physicochemical and Engineering 176 2.3 71 Áspects, 2014, 442, 42-49. Polysaccharide Nanosystems for Future Progress in Cardiovascular Pathologies. Theranostics, 2014, 4, 579-591. 4.6 Solvent-induced Controllable Self-assembly of Poly(9,9-dihexylfluorene). Chemistry Letters, 2014, 43, 178 0.7 9 331-333. Thermotropic systems with fixed domains exhibiting enhanced overheating protection performance. 179 1.3 Journal of Applied Polymer Science, 2014, 131, . Deformation and fracture of nano-sized metal-coated polymer particles: A molecular dynamics study. 180 2.0 10 Engineering Fracture Mechanics, 2015, 150, 209-221. Chapter 50Nanoparticles: Biomaterials for Drug Delivery., 2015, , 1175-1190. Poly(Methyl Methacrylate) (PMMA): Drug Delivery Applications., 0,, 6511-6525. 183 5 Electron Transport and Redox Reactions in Solid-State Molecular Electronic Devices., 2015, , 220-255. 184 26 Introduction to Surface and Colloid Chemistry: Recent Advances and General Remarks., 2015, , 1-144. 185 1 Synthesis of Spherical Polymer Nanoparticles Reflecting Size of Monomer Droplets Formed by Tandem Acoustic Emulsification. Chemistry Letters, 2015, 44, 1584-1585. Micro- and nanostructures of polylactide stereocomplexes and their biomedical applications. Polymer 187 1.6 60 International, 2015, 64, 1667-1675. Blue core-shell nanospheres prepared by dyeing poly(styrene-co-methacrylic acid) dispersions. Coloration Technology, 2015, 131, 458-463. Validation of high performance liquid chromatography method for determination of meloxicam 189 1.2 1 loaded PEGylated nanocapsules. Brazilian Journal of Pharmaceutical Sciences, 2015, 51, 823-832. 190 The Use of Synthetic Carriers in Malaria Vaccine Design. Vaccines, 2015, 3, 894-929. 2.1

		CITATION RE	PORT	
#	Article		IF	Citations
191	Utilizing Nanotechnology to Combat Malaria. Journal of Infectious Disease and Therapy	, 2015, 03, .	0.1	7
192	Nanostructured Colloidal Particles by Confined Self-Assembly of Block Copolymers in Ev Droplets. Frontiers in Materials, 2015, 2, .	vaporative	1.2	30
193	Synthesis and Characterization of New Thiolated Chitosan Nanoparticles Obtained by Id Method. International Journal of Polymer Science, 2015, 2015, 1-18.	onic Gelation	1.2	63
195	Development and optimization of quercetin-loaded PLGA nanoparticles by experimenta Medicine and Pharmacy Reports, 2015, 88, 214-223.	l design.	0.2	37
196	A Review on Materials Derived from Polystyrene and Different Types of Nanoparticles. Polymer-Plastics Technology and Engineering, 2015, 54, 1819-1849.		1.9	10
197	Colored single-chain polymeric nanoparticles via intramolecular copper phthalocyanine Polymer Chemistry, 2015, 6, 3392-3397.	formation.	1.9	42
198	Potential applications of curcumin and curcumin nanoparticles: from traditional therape modern nanomedicine. Nanotechnology Reviews, 2015, 4, 161-172.	eutics to	2.6	60
199	Intracellular Degradable Hydrogel Cubes and Spheres for Anti-Cancer Drug Delivery. AC Materials & Interfaces, 2015, 7, 13633-13644.	S Applied	4.0	72
200	Nanoparticle formulation by Büchi B-90 Nano Spray Dryer for ora Drug Design, Development and Therapy, 2015, 9, 273.	l mucoadhesion.	2.0	45
201	Hyperbranched Polydendrons. Springer Theses, 2015, , .		0.0	2
202	An experimental study on the synthesis of poly(vinyl pivalate)-based magnetic nanocon through suspension polymerization process. European Polymer Journal, 2015, 68, 441-4		2.6	20
203	Advantages and challenges of the spray-drying technology for the production of pure d and drug-loaded polymeric carriers. Advances in Colloid and Interface Science, 2015, 22	rug particles 23, 40-54.	7.0	447
204	Design and Synthesis of Triblock Copolymers for Creating Complex Secondary Structur Orthogonal Self-Assembly. Macromolecules, 2015, 48, 8921-8932.	es by	2.2	58
205	One-step formation and sterilization of gellan and hyaluronan nanohydrogels using aut Journal of Materials Science: Materials in Medicine, 2015, 26, 5362.	oclave.	1.7	23
206	Enzymeâ€assisted formation of hybrid biopolymer hydrogels incorporating active phennanospheres. Engineering in Life Sciences, 2015, 15, 416-424.	olic	2.0	13
207	Synthetic (Organic) Nanoparticles Induced Lung Cancer Diagnosis and Therapy. Spring Molecular Science, 2015, , 27-37.	er Briefs in	0.1	0
208	Diblock copolymer micelles as surface-functionalized particles and direct decoration of nanoparticles on their surface. Polymer, 2015, 61, 15-19.		1.8	6
209	Industrial applications of nanoparticles. Chemical Society Reviews, 2015, 44, 5793-580	5	18.7	636

#	Article	IF	CITATIONS
210	Thermoresponsive Polymer Nanoparticles Based on Viologen Cavitands. ChemPlusChem, 2015, 80, 217-222.	1.3	16
211	Cancer nanomedicine: from targeted delivery to combination therapy. Trends in Molecular Medicine, 2015, 21, 223-232.	3.5	578
212	Production methods and stabilization strategies for polymer-based nanoparticles and microparticles for parenteral delivery of peptides and proteins. Expert Opinion on Drug Delivery, 2015, 12, 1311-1331.	2.4	39
213	An automated multidimensional thin film stretching device for the generation of anisotropic polymeric micro―and nanoparticles. Journal of Biomedical Materials Research - Part A, 2015, 103, 2747-2757.	2.1	32
214	Chitosan nanoparticles loaded the herbicide paraquat: The influence of the aquatic humic substances on the colloidal stability and toxicity. Journal of Hazardous Materials, 2015, 286, 562-572.	6.5	66
215	Intelligent nanoparticles for advanced drug delivery in cancer treatment. Current Opinion in Chemical Engineering, 2015, 7, 84-92.	3.8	90
216	Preparation of nanoemulsions containing unsaturated fatty acid concentrate–chitosan capsules. Journal of Colloid and Interface Science, 2015, 445, 137-142.	5.0	32
217	Redox-Sensitive Polymeric Nanoparticles for Intracellular Drug Delivery. Frontiers in Nanobiomedical Research, 2015, , 21-48.	0.1	0
218	A Review on Preparation, Properties and Applications of Polymeric Nanoparticle-Based Materials. Polymer-Plastics Technology and Engineering, 2015, 54, 325-341.	1.9	113
219	Edible Bio-Based Nanostructures: Delivery, Absorption and Potential Toxicity. Food Engineering Reviews, 2015, 7, 491-513.	3.1	41
220	Highly fluorescent polymeric nanoparticles based on melamine for facile detection of TNT in soil. Journal of Materials Chemistry A, 2015, 3, 10069-10076.	5.2	46
221	Development of phenylboronic acid-functionalized nanoparticles for emodin delivery. Journal of Materials Chemistry B, 2015, 3, 3840-3847.	2.9	25
222	Particles that slide over the water surface: Synthesis and characterization of iron oxides particles coated with PDMS, with hydrophobic and magnetic properties. Materials Chemistry and Physics, 2015, 162, 100-105.	2.0	10
223	Polymer nanoparticles as a tool for the exfoliation of graphene sheets. Materials Letters, 2015, 158, 186-189.	1.3	36
224	Facile synthesis of large scale and narrow particle size distribution polymer particles via control particle coagulation during one-step emulsion polymerization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 484, 81-88.	2.3	22
225	Functionalization of marine materials for drug delivery systems. , 2015, , 109-121.		1
226	Preparation of biodegradable polymeric nanoparticles for pharmaceutical applications using glass capillary microfluidics. Chemical Engineering Science, 2015, 137, 119-130.	1.9	52
227	A rational approach towards the design of chitosan-based nanoparticles obtained by ionotropic gelation. Colloids and Surfaces B: Biointerfaces, 2015, 135, 99-108.	2.5	27

#	Article	IF	CITATIONS
228	Suspension "click―polymerizations: thiol-ene polymer particles prepared with natural gum stabilizers. Colloid and Polymer Science, 2015, 293, 2385-2394.	1.0	15
229	Marine Anthropogenic Litter. , 2015, , .		411
230	Thermosensitive mixed shell polymeric micelles decorated with gold nanoparticles at the outmost surface: tunable surface plasmon resonance and enhanced catalytic properties with excellent colloidal stability. RSC Advances, 2015, 5, 47458-47465.	1.7	21
231	Study on the condensed state physics of poly($\hat{l}\mu$ -caprolactone) nano-aggregates in aqueous dispersions. Journal of Colloid and Interface Science, 2015, 450, 264-271.	5.0	6
232	Preparation of size-controlled polymer particles by polymerization of O/W emulsion monomer droplets obtained through phase inversion temperature emulsification using amphiphilic comb-like block polymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482, 68-78.	2.3	21
233	Facile Synthesis of Fluorescent Polymer Nanoparticles by Covalent Modification–Nanoprecipitation of Amineâ€Reactive Ester Polymers. Macromolecular Rapid Communications, 2015, 36, 1089-1095.	2.0	19
234	Solvent selection causes remarkable shifts of the "Ouzo region―for poly(lactide-co-glycolide) nanoparticles prepared by nanoprecipitation. Nanoscale, 2015, 7, 9215-9221.	2.8	57
235	New concepts to fight oxidative stress: nanosized three-dimensional supramolecular antioxidant assemblies. Expert Opinion on Drug Delivery, 2015, 12, 1527-1545.	2.4	16
236	Focused Ultrasound as a Scalable and Contact-Free Method to Manufacture Protein-Loaded PLGA Nanoparticles. Pharmaceutical Research, 2015, 32, 2995-3006.	1.7	13
237	Charge-Controlled Nanoprecipitation as a Modular Approach to Ultrasmall Polymer Nanocarriers: Making Bright and Stable Nanoparticles. ACS Nano, 2015, 9, 5104-5116.	7.3	107
238	Preparation, characterization and release kinetics of ethylcellulose nanoparticles encapsulating ethylvanillin as a model functional component. Journal of Functional Foods, 2015, 14, 726-735.	1.6	32
239	Design of Micelle Nanocontainers Based on PDMAEMA-b-PCL-b-PDMAEMA Triblock Copolymers for the Encapsulation of Amphotericin B. AAPS PharmSciTech, 2015, 16, 1069-1078.	1.5	22
240	Mastering Nano-objects with Photoswitchable Molecules for Nanotechnology Applications. Nano-optics and Nanophotonics, 2015, , 159-179.	0.2	1
241	Preparation of poly(methyl methacrylate)/polystyrene/poly(acrylonitrile-co-butadiene) tri-layer core–shell nanoparticles and their postpolymerization modification via catalytic latex hydrogenation. RSC Advances, 2015, 5, 44483-44491.	1.7	4
242	Novel nanosized water soluble fluorescent micelles with embedded perylene diimide fluorophores for potential biomedical applications: Cell permeability, localization and cytotoxicity. Materials Science and Engineering C, 2015, 51, 7-15.	3.8	18
243	High Sulfur Content Polymer Nanoparticles Obtained from Interfacial Polymerization of Sodium Polysulfide and 1,2,3â€īrichloropropane in Water. Macromolecular Rapid Communications, 2015, 36, 1103-1107.	2.0	29
244	ROP and ATRP Fabricated Dual Targeted Redox Sensitive Polymersomes Based on pPEGMA-PCL-ss-PCL-pPEGMA Triblock Copolymers for Breast Cancer Therapeutics. ACS Applied Materials & Interfaces, 2015, 7, 9211-9227.	4.0	70
245	Novel Hybrids of Polystyrene Nanoparticles and Silica Nanoparticles-Grafted-Graphite Via Modified Technique. Polymer-Plastics Technology and Engineering, 2015, 54, 1122-1134.	1.9	9

#	Article	IF	CITATIONS
246	Design attributes of long-circulating polymeric drug delivery vehicles. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 97, 304-317.	2.0	49
247	Highly monodisperse, lanthanide ontaining polystyrene nanoparticles as potential standard reference materials for environmental "nano―fate analysis. Journal of Applied Polymer Science, 2015, 132, .	1.3	37
248	Recent advancement of gelatin nanoparticles in drug and vaccine delivery. International Journal of Biological Macromolecules, 2015, 81, 317-331.	3.6	199
249	Organic solvent-free low temperature method of preparation for self assembled amphiphilic poly(lµ-caprolactone)–poly(ethylene glycol) block copolymer based nanocarriers for protein delivery. Colloids and Surfaces B: Biointerfaces, 2015, 135, 510-517.	2.5	30
250	Environmentally adaptable pathway to emulsion polymerization for monodisperse polymer nanoparticle synthesis. Polymer, 2015, 77, 64-69.	1.8	21
251	Control of polymeric nanoparticle size to improve therapeutic delivery. Journal of Controlled Release, 2015, 219, 536-547.	4.8	257
253	Effect of Cross-Linking on the Structure and Growth of Polymer Films Prepared by Interfacial Polymerization. Langmuir, 2015, 31, 12279-12290.	1.6	23
254	Pseudotannins self-assembled into antioxidant complexes. Soft Matter, 2015, 11, 7783-7791.	1.2	7
255	Polymer Nanoparticle Assemblies: A Versatile Route to Functional Mesostructures. Macromolecules, 2015, 48, 6353-6368.	2.2	50
256	Synthesis of polyurea–polyether nanoparticles via spontaneous nanoprecipitation. RSC Advances, 2015, 5, 41668-41676.	1.7	8
257	Synthesis, characterization and ultrasonic study of aqueous suspensions containing polymeric nano particles of poly (L-lactide). Journal of Molecular Liquids, 2015, 211, 885-891.	2.3	2
258	On the use of nanotechnology-based strategies for association of complex matrices from plant extracts. Revista Brasileira De Farmacognosia, 2015, 25, 426-436.	0.6	68
259	The isotope method for the determination of stoichiometry between compounds forming the polypyrrole and glucose oxidase composite. Physical Chemistry Chemical Physics, 2015, 17, 2252-2258.	1.3	4
260	Preparation of Stimuli-Responsive Functionalized Latex Nanoparticles: The Effect of Spiropyran Concentration on Size and Photochromic Properties. Langmuir, 2015, 31, 10672-10682.	1.6	77
261	Degradable polymeric nanoparticles by aggregation of thermoresponsive polymers and "click― chemistry. Nanoscale, 2015, 7, 16823-16833.	2.8	13
262	Biodistribution of size-selected lyophilisomes in mice. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 141-151.	2.0	4
263	Catanionic drug-derivative nano-objects constructed by chlorambucil and its derivative for efficient leukaemia therapy. Colloids and Surfaces B: Biointerfaces, 2015, 136, 1081-1088.	2.5	7
264	In Vitro and In Vivo Evaluation of Nanoparticles Prepared by Nano Spray Drying for Stomach Mucoadhesive Drug Delivery. Drying Technology, 2015, 33, 1199-1209.	1.7	19

#	ARTICLE Synthesis and micellization properties of triblock copolymers PDMAEMA-b-PCL-b-PDMAEMA and their	IF	CITATIONS
266	applications in the fabrication of amphotericin B-loaded nanocontainers. Colloid and Polymer Science, 2015, 293, 913-923.	1.0	23
267	Diagnostic imaging and therapeutic application of nanoparticles targeting the liver. Journal of Materials Chemistry B, 2015, 3, 939-958.	2.9	126
268	Novel conducting nanocomposite based on polypyrrole and modified poly(styreneâ€ <i>alt</i> â€maleic) Tj ETQq sorbent activity. Polymer Composites, 2015, 36, 138-144.	0 0 0 rgBT 2.3	/Overlock 10 24
269	Oral delivery of capsaicin using MPEG-PCL nanoparticles. Acta Pharmacologica Sinica, 2015, 36, 139-148.	2.8	63
270	Formation of hydrophilic nanofibers from nanoemulsions through electrospinning. International Journal of Pharmaceutics, 2015, 478, 172-179.	2.6	42
271	Synthesis and characterization of latex nanoparticles using a visible-light photoinitiating system in reverse micelles. Colloid and Polymer Science, 2015, 293, 625-632.	1.0	11
272	ROS-induced biodegradable polythioketal nanoparticles for intracellular delivery of anti-cancer therapeutics. Journal of Industrial and Engineering Chemistry, 2015, 21, 1137-1142.	2.9	50
274	Stimuliâ€Responsive Polymeric Nanoparticles for Nanomedicine. ChemMedChem, 2015, 10, 24-38.	1.6	133
275	Structure–property relationship studies of copper(I) complexes of nanosized hypodentate ligands and evaluation of their antitumor and antimicrobial activities. Journal of Coordination Chemistry, 2015, 68, 241-260.	0.8	14
276	Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chemical Society Reviews, 2015, 44, 790-814.	18.7	438
277	Functional, sub-100 nm polymer nanoparticles <i>via</i> thiol–ene miniemulsion photopolymerization. Polymer Chemistry, 2015, 6, 5625-5632.	1.9	52
278	Potential efficacy of dopamine loadedâ€₽VP/PAA nanogel in experimental models of Parkinsonism: Possible disease modifying activity. Journal of Biomedical Materials Research - Part A, 2015, 103, 1713-1720.	2.1	37
279	Magnetic zero-valent metal polymer nanoparticles: Current trends, scope, and perspectives. Progress in Polymer Science, 2015, 40, 138-147.	11.8	39
280	Preparation and evaluation of 17-allyamino-17-demethoxygeldanamycin (17-AAC)-loaded poly(lactic) Tj ETQq1 1	0.784314	rgBT /Overlo
281	PLGA micro and nanoparticles in delivery of peptides and proteins; problems and approaches. Pharmaceutical Development and Technology, 2015, 20, 385-393.	1.1	105
282	Engineered nanoparticles and organic matter: A review of the state-of-the-art. Chemosphere, 2015, 119, 608-619.	4.2	271
283	Reinvestigating nanoprecipitation via Box–Behnken design: a systematic approach. Journal of Microencapsulation, 2015, 32, 75-85.	1.2	14
284	Modeling phase equilibria in CO2+polymer systems. Journal of Supercritical Fluids, 2015, 96, 313-323.	1.6	15

#	Article	IF	CITATIONS
285	Triamcinolone acetonide–Eudragit®RS100 nanofibers and nanobeads: Morphological and physicochemical characterization. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 362-369.	1.9	25
287	Novel paradigm of design and delivery of nutraceuticals with nanoscience and technology. , 2016, , 343-385.		1
288	Development and Validation of HPLC–PDA Method for the Quantitative Determination of Diphenyl Diselenide in Poly(lactide) Nanoparticles. Current Pharmaceutical Analysis, 2016, 12, 121-128.	0.3	5
289	Polymeric nanoparticles – a novel solution for delivery of antimicrobial agents. Studia Medyczne, 2016, 1, 56-62.	0.0	26
290	An Engineering Point of View on the Use of the Hydrogels for Pharmaceutical and Biomedical Applications. , 2016, , .		2
291	Straightforward and robust synthesis of monodisperse surface-functionalized gold nanoclusters. Beilstein Journal of Nanotechnology, 2016, 7, 1278-1283.	1.5	7
292	Evaluation of a Polymer-Lipid-Polymer System Utilising Hybrid Nanoparticles of Dapsone as a Novel Antiacne Agent. Current Drug Therapy, 2016, 11, 86-100.	0.2	16
293	SLNs can Serve as the New Brachytherapy Seed: Determining Influence of Surfactants on Particle Size of Solid Lipid Microparticles and Development of Hydrophobised Copper Nanoparticles for Potential Insertion. Journal of Chemical Engineering & Process Technology, 2016, 7, .	0.1	6
294	Stem Cell Tracking with Nanoparticles for Regenerative Medicine Purposes: An Overview. Stem Cells International, 2016, 2016, 1-23.	1.2	71
295	Nanotechnology Based Approaches for Enhancing Oral Bioavailability of Poorly Water Soluble Antihypertensive Drugs. Scientifica, 2016, 2016, 1-11.	0.6	97
296	Synthesis, Morphology, and Optical Properties of Au/CdS Hybrid Nanocomposites Stabilized by Branched Polymer Matrices. Journal of Nanomaterials, 2016, 2016, 1-9.	1.5	6
297	Nanopreparations for skin cancer therapy. , 2016, , 1-28.		6
298	Seaweed Polysaccharide-Based Nanoparticles: Preparation and Applications for Drug Delivery. Polymers, 2016, 8, 30.	2.0	135
299	Initiator Systems Effect on Particle Coagulation and Particle Size Distribution in One-Step Emulsion Polymerization of Styrene. Polymers, 2016, 8, 55.	2.0	37
300	α-Tocopherol loaded thermosensitive polymer nanoparticles: preparation, in vitro release and antioxidant properties. Polimeros, 2016, 26, 304-312.	0.2	6
301	Encapsulation of nutraceuticals in novel delivery systems. , 2016, , 305-342.		2
302	PLGA Nanoparticles and Their Versatile Role in Anticancer Drug Delivery. Critical Reviews in Therapeutic Drug Carrier Systems, 2016, 33, 159-193.	1.2	69
303	Polymeric Ionic Liquid Nanoparticle Emulsions as a Corrosion Inhibitor in Anticorrosion Coatings. ACS Omega, 2016, 1, 29-40.	1.6	31

#	Article	IF	CITATIONS
304	Reversible dissolution/formation of polymer nanoparticles controlled by visible light. Nanoscale, 2016, 8, 14070-14073.	2.8	23
305	Transverse axis morphological control for tailored gold nanorod (GNR) synthesis. RSC Advances, 2016, 6, 63634-63641.	1.7	5
306	Core@shell Poly(<i>n</i> -butylacrylate)@polystyrene Nanoparticles: Baroplastic Force-Responsiveness in Presence of Strong Phase Separation. Macromolecular Rapid Communications, 2016, 37, 584-589.	2.0	17
307	Fluorescent Polymer Nanoparticles Based on Dyes: Seeking Brighter Tools for Bioimaging. Small, 2016, 12, 1968-1992.	5.2	487
308	Two-Photon Induced Fluorescence Energy Transfer in Polymeric Nanocapsules Containing CdSexS1–x/ZnS Core/Shell Quantum Dots and Zinc(II) Phthalocyanine. Journal of Physical Chemistry C, 2016, 120, 15460-15470.	1.5	25
309	Shaping the future of nanomedicine: anisotropy in polymeric nanoparticle design. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 191-207.	3.3	56
310	Modular synthesis of functional polymer nanoparticles from a versatile platform based on poly(pentafluorophenylmethacrylate). Journal of Polymer Science Part A, 2016, 54, 1895-1901.	2.5	5
311	Polymeric nanoparticles: the future of nanomedicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 271-299.	3.3	328
312	Formation of size-tuneable biodegradable polymeric nanoparticles by solvent displacement method using micro-engineered membranes fabricated by laser drilling and electroforming. Chemical Engineering Journal, 2016, 304, 703-713.	6.6	21
313	Surfactant-free HEMA crystal colloidal paint for structural color contact lens. Journal of Materials Chemistry B, 2016, 4, 5222-5227.	2.9	26
314	Development of biodegradable polymeric nanoparticles for encapsulation, delivery, and improved antifungal performance of natamycin. Journal of Applied Polymer Science, 2016, 133, .	1.3	8
315	Production of microparticles of PHBV polymer impregnated with progesterone by supercritical fluid technology. Canadian Journal of Chemical Engineering, 2016, 94, 1336-1341.	0.9	17
316	Application of nanotechnology for enhancing oil recovery – A review. Petroleum, 2016, 2, 324-333.	1.3	250
317	Preparation of the amphiphilic copolymer of N-vinylpyrrolidone with triethylene glycol dimethacrylate nanoparticles and the study of their properties in vitro. Russian Chemical Bulletin, 2016, 65, 2097-2102.	0.4	22
318	Two-Stage Growth of Polymer Nanoparticles at the Liquid–Vapor Interface by Vapor-Phase Polymerization. Langmuir, 2016, 32, 11014-11020.	1.6	12
321	Critical adsorption of copolymer tethered on selective surfaces. Journal of Chemical Physics, 2016, 144, 164901.	1.2	5
322	Non-Hydrothermal Synthesis of Cu(I)-Microleaves from Cu(II)-Nanorods. ChemistrySelect, 2016, 1, 6606-6615.	0.7	3
324	Shape control of self-organized porous silica submicron particles and their strength evaluation. Japanese Journal of Applied Physics, 2016, 55, 06GP12.	0.8	3

#	Article	IF	CITATIONS
325	Formation of Wellâ€Defined Polymer Particles in the Subâ€100 nm Size Range by Using Amphiphilic Block Copolymer Surfactants and a Microemulsion Approach. Macromolecular Chemistry and Physics, 2016, 217, 1704-1711.	1.1	10
326	Preparation of Polymer Nanoparticles by the Emulsification-Solvent Evaporation Method: From Vanderhoff's Pioneer Approach to Recent Adaptations. , 2016, , 87-121.		11
327	Preparation of poly(styreneâ€ <i>co</i> â€butadiene) fine latex via a gemini surfactantâ€induced lowâ€temperature initiation semibatch emulsion polymerization system. Journal of Polymer Science Part A, 2016, 54, 1669-1678.	2.5	6
328	Synthesis of large-scale, monodisperse latex particles via one-step emulsion polymerization through in situ charge neutralization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 500, 127-136.	2.3	15
329	Short peptide based nanotubes capable of effective curcumin delivery for treating drug resistant malaria. Journal of Nanobiotechnology, 2016, 14, 26.	4.2	40
330	Investigating the antibacterial potential of agarose nanoparticles synthesized by nanoprecipitation technology. Polish Journal of Chemical Technology, 2016, 18, 9-12.	0.3	10
332	Polylactic acid and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nano and microparticles for packaging bioplastic composites. Polymer Bulletin, 2016, 73, 3485-3502.	1.7	13
333	Production of polystyrene-based scintillation microspheres for the measurement of radioactivity by spray-drying. Journal of Radioanalytical and Nuclear Chemistry, 2016, 308, 789-799.	0.7	2
334	Indium oxide: A transparent, conducting ferromagnetic semiconductor for spintronic applications. Journal of Magnetism and Magnetic Materials, 2016, 416, 66-74.	1.0	47
335	Smart Polymeric-Based Microencapsulation: A Promising Synergic Combination. , 2016, , 577-604.		1
336	Nanoparticles and DNA $\hat{a} \in$ a powerful and growing functional combination in bionanotechnology. Nanoscale, 2016, 8, 9037-9095.	2.8	181
337	Interaction between Cationic Micelles and Hyaluronan. Materials Science Forum, 0, 851, 26-31.	0.3	0
338	Plant extracts: from encapsulation to application. Expert Opinion on Drug Delivery, 2016, 13, 1165-1175.	2.4	71
339	Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chemical Reviews, 2016, 116, 5338-5431.	23.0	1,333
340	Structural analysis of nanosystems: Solid Sorbitan esters Nanoparticles (SSN) as a case study. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 104, 189-199.	2.0	5
341	An in-vivo study for targeted delivery of copper-organic complex to breast cancer using chitosan polymer nanoparticles. Materials Science and Engineering C, 2016, 68, 327-337.	3.8	56
342	Therapeutic polymeric nanoparticles and the methods of making and using thereof: a patent evaluation of WO2015036792. Expert Opinion on Therapeutic Patents, 2016, 26, 751-755.	2.4	2
343	Biodegradable polymers as wall materials to the synthesis of bioactive compound nanocapsules. Trends in Food Science and Technology, 2016, 53, 23-33.	7.8	51

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
344	Development and characterization of polyethylenimine nanocarriers processed by an inductive thermospraying technique. Macromolecular Research, 2016, 24, 522-528.	1.0	0
345	Nano-size Polymers. , 2016, , .		16
346	Overview of Polyester Nanosystems for Nasal Administration. , 2016, , 291-351.		1
347	Nano-size Polymers via Precipitation of Polymer Solutions. , 2016, , 251-282.		5
348	Nanoparticles: Surface Modification. , 0, , 5569-5584.		1
349	Physical and Chemical Nature of Nanoparticles. , 2016, , 15-27.		12
350	From lignin association to nano-/micro-particle preparation: extracting higher value of lignin. Green Chemistry, 2016, 18, 5693-5700.	4.6	203
351	Threeâ€dimensional thermal annealing: An unconventional method to fabricate monodisperse polymer nanoparticles from polymer films. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2471-2475.	2.4	0
352	Delivery systems of antimicrobial compounds to food. Trends in Food Science and Technology, 2016, 57, 165-177.	7.8	71
353	Effect of different polymers on morphology and particle size of silver nanoparticles synthesized by modified polyol method. Superlattices and Microstructures, 2016, 98, 267-275.	1.4	17
354	Prostate Cancer Imaging and Therapy: Potential Role of Nanoparticles. Journal of Nuclear Medicine, 2016, 57, 105S-110S.	2.8	8
355	Medroxyprogesterone-encapsulated poly(3-hydroxybutirate-co-3-hydroxyvalerate) nanoparticles using supercritical fluid extraction of emulsions. Journal of Supercritical Fluids, 2016, 118, 79-88.	1.6	20
356	Overview of Methods of Making Polyester Nano- and Microparticulate Systems for Drug Delivery. , 2016, , 81-123.		1
357	Nanodielectrics. , 2016, , 695-727.		0
358	Semicontinuous microemulsion polymerization. Current Opinion in Colloid and Interface Science, 2016, 25, 83-88.	3.4	19
359	Micro and nanoparticles of native and modified cassava starches as carriers of the antimicrobial potassium sorbate. Starch/Staerke, 2016, 68, 1038-1047.	1.1	7
360	Amphiphilic poly-N-vynilpyrrolidone nanoparticles: Cytotoxicity and acute toxicity study. Food and Chemical Toxicology, 2016, 96, 273-279.	1.8	26
361	Synthesis and evaluation of alendronate-modified gelatin biopolymer as a novel osteotropic nanocarrier for gene therapy. Nanomedicine, 2016, 11, 2251-2273.	1.7	31

#	Article	IF	CITATIONS
362	Co-encapsulation of tamoxifen citrate and quercetin using 2HP-Î ² -cyclodextrin: a response surface experimental design. RSC Advances, 2016, 6, 111517-111525.	1.7	10
363	Solvent evaporation and spray drying technique for micro- and nanospheres/particles preparation: A review. Drying Technology, 2016, 34, 1758-1772.	1.7	77
364	<i>In vitro/in vivo</i> evaluation of gamma-aminobutyric acid-loaded <i>N</i> , <i>N</i> -dimethylacrylamide-based pegylated polymeric nanoparticles for brain delivery to treat epilepsy. Journal of Microencapsulation, 2016, 33, 625-635.	1.2	25
365	Biodegradable polymeric nanostructures in therapeutic applications: opportunities and challenges. RSC Advances, 2016, 6, 94325-94351.	1.7	51
366	Nanocarriers in cosmetology. , 2016, , 363-393.		7
367	Dense stable suspensions of medium-chain-length poly(3-hydroxyalkanoate) nanoparticles. European Polymer Journal, 2016, 84, 137-146.	2.6	2
368	Hydrophilic nanoparticles packed in oral tablets can improve the plasma profile of short half-life hydrophobic drugs. RSC Advances, 2016, 6, 94896-94904.	1.7	10
370	Microporous Polymer Particles via Phase Inversion in Microfluidics: Impact of Nonsolvent Quality. Langmuir, 2016, 32, 8131-8140.	1.6	27
371	Fabrication of surfactant-free quercetin-loaded PLGA nanoparticles: evaluation of hepatoprotective efficacy by nuclear scintigraphy. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	3
372	Formulation and in vitro evaluation of polymeric enteric nanoparticles as dermal carriers with pH-dependent targeting potential. European Journal of Pharmaceutical Sciences, 2016, 92, 98-109.	1.9	44
373	Reduction-controlled substrate release from a polymer nanosphere based on a viologen-cavitand. RSC Advances, 2016, 6, 70072-70076.	1.7	6
374	Exploring nanoencapsulation ofÂaroma and flavors as new frontier in food technology. , 2016, , 47-88.		3
375	Nano-formulations of drugs: Recent developments, impact and challenges. Biochimie, 2016, 128-129, 99-112.	1.3	146
376	Synthesis of well-defined core–shell nanoparticles based on bifunctional poly(2-oxazoline) macromonomer surfactants and a microemulsion polymerization process. RSC Advances, 2016, 6, 99752-99763.	1.7	24
377	Nanogels: Chemical Approaches to Preparation. , 2016, , 5266-5293.		11
378	In situ charge neutralization-controlled particle coagulation and its effects on the particle size distribution in the one-step emulsion polymerization. European Polymer Journal, 2016, 83, 278-287.	2.6	18
379	Increased cellular uptake of lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles due to surface modification with folic acid. Journal of Materials Science: Materials in Medicine, 2016, 27, 185.	1.7	14
380	Synthesis of poly(3-hydroxybutyrate) nanospheres and deposition thereof into porous thin film. Materials Research Express, 2016, 3, 105042.	0.8	26

#	Article	IF	CITATIONS
381	Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells. Scientific Reports, 2016, 6, 24929.	1.6	163
382	Interaction Potential between Biological Sensing Nanoparticles Determined by Combining Small-Angle X-ray Scattering and Model-Potential-Free Liquid Theory. Journal of Physical Chemistry C, 2016, 120, 25564-25571.	1.5	5
383	Preparation of small and photoresponsive polymer nanoparticles by intramolecular crosslinking of reactive star azo-polymers. Reactive and Functional Polymers, 2016, 109, 56-63.	2.0	8
384	Polymeric nanoparticles for colon cancer therapy: overview and perspectives. Journal of Materials Chemistry B, 2016, 4, 7779-7792.	2.9	93
385	Morphology directing synthesis of 1-aminopyrene microstructures and its super quenching effect towards nitro aromatics. Journal of Molecular Liquids, 2016, 221, 358-367.	2.3	22
386	Vitamin E-Oligo(methyl diglycol <scp>l</scp> -glutamate) as a Biocompatible and Functional Surfactant for Facile Preparation of Active Tumor-Targeting PLGA Nanoparticles. Biomacromolecules, 2016, 17, 2367-2374.	2.6	34
387	Synthesis of nano-sized polyindole via emulsion polymerization and doping. Synthetic Metals, 2016, 219, 142-153.	2.1	63
388	Green synthesized Fe3O4 nanoparticles as a magnetic core to prepare poly 1, 4 phenylenediamine nanocomposite: employment for fast adsorption of lead ions and azo dye. Desalination and Water Treatment, 2016, 57, 28875-28886.	1.0	3
389	Preparation of chitosan nanoparticles by nanoprecipitation and their ability as a drug nanocarrier. RSC Advances, 2016, 6, 59250-59256.	1.7	72
390	Microfluidic nanoprecipitation systems for preparing pure drug or polymeric drug loaded nanoparticles: an overview. Expert Opinion on Drug Delivery, 2016, 13, 1447-1460.	2.4	85
391	Fabrication of multipotent poly-para-xylylene particles in controlled nanoscopic dimensions. Colloids and Surfaces B: Biointerfaces, 2016, 139, 259-268.	2.5	7
392	PLA micro- and nano-particles. Advanced Drug Delivery Reviews, 2016, 107, 176-191.	6.6	241
393	From a ring polymer to a tribridged multicyclic nanoconstruct. Polymer, 2016, 97, 543-549.	1.8	0
394	Effects of nonâ€solvent and starch solution on formation of starch nanoparticles by nanoprecipitation. Starch/Staerke, 2016, 68, 258-263.	1.1	50
395	Adsorption and removal of diethyl phthalate from aqueous media with poly(hydroxyethyl) Tj ETQq0 0 0 rgBT /Ove	rlock 10 T	f 50 182 Td
396	Surfactantâ€directed morphology of crossâ€linked styrene―or vinylbenzyl chlorideâ€based materials. Journal of Applied Polymer Science, 2016, 133, .	1.3	3
397	Amphotericin B-loaded polymeric nanoparticles: formulation optimization by factorial design. Pharmaceutical Development and Technology, 2016, 21, 140-146.	1.1	16

#	Article	IF	CITATIONS
399	Co-delivery of rapamycin- and piperine-loaded polymeric nanoparticles for breast cancer treatment. Drug Delivery, 2016, 23, 2608-2616.	2.5	108
400	Overview on Polymeric Drug Delivery Systems. SpringerBriefs in Applied Sciences and Technology, 2016, , 35-59.	0.2	1
401	Polymeric Nano (and Micro) Particles as Carriers for Enhanced Skin Penetration. , 2016, , 187-199.		7
402	Controlled Drug Delivery Systems. SpringerBriefs in Applied Sciences and Technology, 2016, , .	0.2	2
403	Single-chain polybutadiene organometallic nanoparticles: an experimental and theoretical study. Chemical Science, 2016, 7, 1773-1778.	3.7	28
404	Drug delivery to macrophages: Challenges and opportunities. Journal of Controlled Release, 2016, 240, 202-211.	4.8	96
405	Polymeric nanocarriers incorporating near-infrared absorbing agents for potent photothermal therapy of cancer. Polymer Journal, 2016, 48, 589-603.	1.3	57
406	Role of nanostructured polymers on the improvement of electrical response-based relative humidity sensors. Sensors and Actuators B: Chemical, 2016, 225, 96-108.	4.0	83
407	Polymeric Nanosystems for Targeted Theranostics. , 2016, , 205-227.		2
408	Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. Nano Convergence, 2016, 3, 1.	6.3	296
409	Nanospheres based on PLGA/amphiphilic cyclodextrin assemblies as potential enhancers of Methylene Blue neuroprotective effect. RSC Advances, 2016, 6, 16720-16729.	1.7	21
410	Blue-emitting poly(1,1′-binaphthol butyl ether) nanospheres via the nonsolvent vapor method. Polymer Bulletin, 2016, 73, 2843-2854.	1.7	4
411	Role of highly branched, high molecular weight polymer structures in directing uniform polymer particle formation during nanoprecipitation. Chemical Communications, 2016, 52, 3915-3918.	2.2	8
412	Modular metal–carbon stabilized palladium nanoparticles for the catalytic hydrogenation of N-heterocycles. Tetrahedron Letters, 2016, 57, 329-332.	0.7	18
413	Preparation of phylloquinone-loaded poly(lactic acid)/hydroxyapatite core–shell particles and their drug release behavior. Advanced Powder Technology, 2016, 27, 903-907.	2.0	12
414	Design of an Inflammation-Sensitive Polyelectrolyte-Based Topical Drug Delivery System for Arthritis. AAPS PharmSciTech, 2016, 17, 1075-1085.	1.5	11
415	Acetylated cashew gum-based nanoparticles for transdermal delivery of diclofenac diethyl amine. Carbohydrate Polymers, 2016, 143, 254-261.	5.1	53
416	Atorvastatin calcium loaded PCL nanoparticles: development, optimization, in vitro and in vivo assessments. RSC Advances, 2016, 6, 16520-16532.	1.7	13

#	Article	IF	CITATIONS
417	Synthesis and morphology control of raspberry-like poly(ethylene terephthalate)/polyacrylonitrile microspheres. Chinese Chemical Letters, 2016, 27, 195-199.	4.8	2
418	A new biodegradable polymeric nanoparticle formulation containing Syzygium cumini: Phytochemical profile, antioxidant and antifungal activity and in vivo toxicity. Industrial Crops and Products, 2016, 83, 400-407.	2.5	38
419	Light-Controlled Radical Polymerization: Mechanisms, Methods, and Applications. Chemical Reviews, 2016, 116, 10167-10211.	23.0	883
420	Self-assembly of poly(p-phenylene)-based flower-like 3D micro-nanostructures. Reactive and Functional Polymers, 2016, 101, 75-81.	2.0	9
421	(Pyridyl)benzoazole palladium(<scp>ii</scp>) complexes as homogeneous catalysts in hydrogenation of alkenes and alkynes. Catalysis Science and Technology, 2016, 6, 5069-5078.	2.1	20
422	Theranostic liposomes containing conjugated polymer dots and doxorubicin for bio-imaging and targeted therapeutic delivery. RSC Advances, 2016, 6, 1945-1957.	1.7	28
423	Physical Characterization of Titanium Dioxide Nanofiber Prepared by Electrospinning Method. Advanced Materials Research, 2016, 1133, 386-390.	0.3	0
424	Smart nanogels at the air/water interface: structural studies by neutron reflectivity. Nanoscale, 2016, 8, 4951-4960.	2.8	50
425	Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. , 2016, , .		34
426	Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Materials Science and Engineering C, 2016, 60, 569-578.	3.8	530
427	Synthesis of ZnPc loaded poly(methyl methacrylate) nanoparticles via miniemulsion polymerization for photodynamic therapy in leukemic cells. Materials Science and Engineering C, 2016, 60, 458-466.	3.8	41
428	Nanotechnology: Effective topical delivery systems. Asian Journal of Pharmaceutical Sciences, 2016, 11, 16-17.	4.3	5
429	Intramolecular Cross-Linking Methodologies for the Synthesis of Polymer Nanoparticles. Chemical Reviews, 2016, 116, 878-961.	23.0	321
430	Supramolecular Assemblies from Poly(phenylacetylene)s. Chemical Reviews, 2016, 116, 1242-1271.	23.0	233
431	Development and characterization of pH responsive polymeric nanoparticles of SN-38 for colon cancer. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 1824-1834.	1.9	14
432	Development of polystyreneÂbased nanoparticles ionsÂexchange resin for water purification applications. Desalination and Water Treatment, 2016, 57, 14810-14823.	1.0	15
433	Nano- and Micro-Particles by Nanoprecipitation: Possible Application in the Food and Agricultural Industries. International Journal of Food Properties, 2016, 19, 1912-1923.	1.3	72
434	The Viscosity of Nanofluids: A Review of the Theoretical, Empirical, and Numerical Models. Heat Transfer Engineering, 2016, 37, 387-421.	1.2	178

#	Article	IF	CITATIONS
435	Comparative Evaluation of Nimesulide-Loaded Nanoparticles for Anticancer Activity Against Breast Cancer Cells. AAPS PharmSciTech, 2017, 18, 393-403.	1.5	20
436	Poly(3-hexylthiophene) Nanoparticles Containing Thiophene- <i>S</i> , <i>S</i> -dioxide: Tuning of Dimensions, Optical and Redox Properties, and Charge Separation under Illumination. ACS Nano, 2017, 11, 1991-1999.	7.3	31
437	High efficiency and low cost preparation of size controlled starch nanoparticles through ultrasonic treatment and precipitation. Food Chemistry, 2017, 227, 369-375.	4.2	80
438	Will Nanotechnology Bring New Hope for Gene Delivery?. Trends in Biotechnology, 2017, 35, 434-451.	4.9	97
439	Morphology control of conducting polypyrrole nanostructures via operational conditions in the emulsion polymerization. Journal of Applied Polymer Science, 2017, 134, .	1.3	42
440	Cyclomatrix polyphosphazenes frameworks (Cyclo-POPs) and the related nanomaterials: Synthesis, assembly and functionalisation. Materials Today Communications, 2017, 11, 38-60.	0.9	44
441	Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications. Surface Science Reports, 2017, 72, 1-58.	3.8	419
442	Hydrophobic Nanoparticles Reduce the β-Sheet Content of SEVI Amyloid Fibrils and Inhibit SEVI-Enhanced HIV Infectivity. Langmuir, 2017, 33, 2596-2602.	1.6	11
444	Facile synthesis of large sized and monodispersed polymer particles using particle coagulation mechanism: an overview. Colloid and Polymer Science, 2017, 295, 749-757.	1.0	11
445	Advances in Food Nanotechnology. , 2017, , 11-38.		17
445 446	Advances in Food Nanotechnology., 2017, , 11-38. Effect of ligand on particle size and morphology of nanostructures synthesized by thermal decomposition of coordination compounds. Advances in Colloid and Interface Science, 2017, 243, 86-104.	7.0	17 36
	Effect of ligand on particle size and morphology of nanostructures synthesized by thermal decomposition of coordination compounds. Advances in Colloid and Interface Science, 2017, 243,	7.0 2.5	
446	Effect of ligand on particle size and morphology of nanostructures synthesized by thermal decomposition of coordination compounds. Advances in Colloid and Interface Science, 2017, 243, 86-104. Antitumor activity of intratracheal inhalation of temozolomide (TMZ) loaded into gold nanoparticles		36
446 447	Effect of ligand on particle size and morphology of nanostructures synthesized by thermal decomposition of coordination compounds. Advances in Colloid and Interface Science, 2017, 243, 86-104. Antitumor activity of intratracheal inhalation of temozolomide (TMZ) loaded into gold nanoparticles and/or liposomes against urethane-induced lung cancer in BALB/c mice. Drug Delivery, 2017, 24, 599-607. Fluorinated oligo(ethylene glycol) methacrylate-based copolymers: Tuning of self assembly properties	2.5	36 64
446 447 448	Effect of ligand on particle size and morphology of nanostructures synthesized by thermal decomposition of coordination compounds. Advances in Colloid and Interface Science, 2017, 243, 86-104. Antitumor activity of intratracheal inhalation of temozolomide (TMZ) loaded into gold nanoparticles and/or liposomes against urethane-induced lung cancer in BALB/c mice. Drug Delivery, 2017, 24, 599-607. Fluorinated oligo(ethylene glycol) methacrylate-based copolymers: Tuning of self assembly properties and relationship with rheological behavior. Polymer, 2017, 112, 169-179.	2.5 1.8	36 64 15
446 447 448 449	Effect of ligand on particle size and morphology of nanostructures synthesized by thermal decomposition of coordination compounds. Advances in Colloid and Interface Science, 2017, 243, 86-104. Antitumor activity of intratracheal inhalation of temozolomide (TMZ) loaded into gold nanoparticles and/or liposomes against urethane-induced lung cancer in BALB/c mice. Drug Delivery, 2017, 24, 599-607. Fluorinated oligo(ethylene glycol) methacrylate-based copolymers: Tuning of self assembly properties and relationship with rheological behavior. Polymer, 2017, 112, 169-179. Protein-based nanoparticles: From preparation to encapsulation of active molecules. International Journal of Pharmaceutics, 2017, 522, 172-197.	2.5 1.8 2.6	36 64 15 258
446 447 448 449 450	 Effect of ligand on particle size and morphology of nanostructures synthesized by thermal decomposition of coordination compounds. Advances in Colloid and Interface Science, 2017, 243, 86-104. Antitumor activity of intratracheal inhalation of temozolomide (TMZ) loaded into gold nanoparticles and/or liposomes against urethane-induced lung cancer in BALB/c mice. Drug Delivery, 2017, 24, 599-607. Fluorinated oligo(ethylene glycol) methacrylate-based copolymers: Tuning of self assembly properties and relationship with rheological behavior. Polymer, 2017, 112, 169-179. Protein-based nanoparticles: From preparation to encapsulation of active molecules. International Journal of Pharmaceutics, 2017, 522, 172-197. Preparation and characterization of carvedilol-loaded poly(<scp>,<scp>,<scp> </scp>, lactide nanoparticles as a sustained-release system. International Journal of Polymeric Biomaterials, 2017, 66, 717-725.</scp></scp> One-step preparation of conjugated homopolymer sub-microspheres <i>via</i>	2.5 1.8 2.6 1.8	36 64 15 258 6

#	Article	IF	CITATIONS
454	A microreactor-based continuous process for controlled synthesis of poly-methyl-methacrylate-methacrylic acid (PMMA) nanoparticles. Journal of Materials Chemistry B, 2017, 5, 3404-3417.	2.9	24
455	Continuous production of polymer nanoparticles using a membrane-based flow cell. Journal of Colloid and Interface Science, 2017, 501, 150-155.	5.0	7
456	ß-Amido Acid Functionalised Superparamagnetic Iron Oxide Nanoparticles as a Novel Carrier for Efficient Delivery of Doxorubicine. Journal of Chemical Research, 2017, 41, 129-135.	0.6	0
457	Dextran Nanoparticles Cross‣inked in Aqueous and Aqueous/Alcoholic Media. Macromolecular Chemistry and Physics, 2017, 218, 1600523.	1.1	10
458	Supramolecular assemblies of lignin into nano- and microparticles. MRS Bulletin, 2017, 42, 371-378.	1.7	70
459	Investigation of nanocarriers and excipients for preparation of nanoembedded microparticles. International Journal of Pharmaceutics, 2017, 526, 300-308.	2.6	11
460	Electrically conducting polymeric microspheres comprised of sulfonated polystyrene cores coated with poly(3,4-ethylenedioxythiophene). Colloid and Polymer Science, 2017, 295, 1049-1058.	1.0	6
461	Self-assembled dehydropeptide nano carriers for delivery of ornidazole and curcumin. Colloids and Surfaces B: Biointerfaces, 2017, 155, 332-340.	2.5	18
462	Metal-surfactant interaction as a tool to control the catalytic selectivity of Pd catalysts. Applied Catalysis A: General, 2017, 529, 32-39.	2.2	9
463	Polymeric nanoparticles: Promising platform for drug delivery. International Journal of Pharmaceutics, 2017, 528, 675-691.	2.6	425
464	Polymeric nanoparticles: A study on the preparation variables and characterization methods. Materials Science and Engineering C, 2017, 80, 771-784.	3.8	402
465	Soft nanocomposites of gelatin and poly(3-hydroxybutyrate) nanoparticles for dual drug release. Colloids and Surfaces B: Biointerfaces, 2017, 157, 191-198.	2.5	35
466	Advances in drug delivery systems based on synthetic poly(hydroxybutyrate) (co)polymers. Progress in Polymer Science, 2017, 73, 1-31.	11.8	74
467	Fulvestrant-loaded polymer-based nanoparticles for local drug delivery: Preparation and inÂvitro characterization. Journal of Drug Delivery Science and Technology, 2017, 40, 73-82.	1.4	15
468	Allâ€Aqueous Nanoprecipitation: Spontaneous Formation of Hydrogenâ€Bonded Nanoparticles and Nanocapsules Mediated by Phase Separation of Poly(<i>N</i> â€Isopropylacrylamide). Macromolecular Rapid Communications, 2017, 38, 1700242.	2.0	11
469	Fabrication of poly(ε-caprolactone) (PCL) particles with non-spherical geometries via selective dewetting and deposition of the polymer. Colloid and Polymer Science, 2017, 295, 1475-1484.	1.0	5
470	Skin cancer: symptoms, mechanistic pathways and treatment rationale for therapeutic delivery. Therapeutic Delivery, 2017, 8, 265-287.	1.2	13
471	Nanoparticles for bone tissue engineering. Biotechnology Progress, 2017, 33, 590-611.	1.3	149

#	Article	IF	CITATIONS
472	Synthesis of an efficient Pyrene based AIE active functional material for selective sensing of 2,4,6-trinitrophenol. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 342, 1-14.	2.0	57
473	An overview of carboxymethyl derivatives of chitosan: Their use as biomaterials and drug delivery systems. Materials Science and Engineering C, 2017, 77, 1349-1362.	3.8	182
474	Crystallization-Driven Formation of Diversified Assemblies for Supramolecular Poly(lactic acid)s in Solution. Crystal Growth and Design, 2017, 17, 2498-2506.	1.4	23
475	Preparation of microparticles through co-flowing of partially miscible liquids. Chemical Engineering Journal, 2017, 320, 144-150.	6.6	13
476	Synthesis of poly(<i>o</i> -phenylenediamine) nanofiber with novel structure and properties. Polymers for Advanced Technologies, 2017, 28, 797-804.	1.6	34
477	Unimolecular branched block copolymer nanoparticles in methanol for the preparation of poorly water-soluble drug nanoparticles. Journal of Materials Chemistry B, 2017, 5, 423-427.	2.9	7
478	Dyeâ€containing nonaqueous dispersions derived from methanolâ€soluble polymers stabilized by block–random copolymer surfactant. Journal of Applied Polymer Science, 2017, 134, .	1.3	0
479	Obtaining nonspherical poly(alkylcyanoacrylate) nanoparticles by the stretching method applied with a marketed water-soluble film. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 416-424.	1.8	11
480	Fluorescent Labeling and Biodistribution of Latex Nanoparticles Formed by Surfactantâ€Free RAFT Emulsion Polymerization. Macromolecular Bioscience, 2017, 17, 1600366.	2.1	26
481	Atomically precise organomimetic cluster nanomolecules assembled via perfluoroaryl-thiol SNAr chemistry. Nature Chemistry, 2017, 9, 333-340.	6.6	201
482	Alternative Synthesis Route of Biocompatible Polyvinylpyrrolidone Nanoparticles and Their Effect on Pathogenic Microorganisms. Molecular Pharmaceutics, 2017, 14, 221-233.	2.3	10
483	Development of hydrophilic poly(N-vinylpyrrolidone) nanoparticles via inverse miniemulsion polymerization technique. AlP Conference Proceedings, 2017, , .	0.3	1
484	Fluorescent Glyco Single-Chain Nanoparticle-Decorated Nanodiamonds. ACS Macro Letters, 2017, 6, 1168-1174.	2.3	30
485	Nanoformulation and Application of Phytochemicals as Antimicrobial Agents. , 2017, , 61-82.		11
486	Polymerization of alkyl methacrylate nanoemulsions made by the phase inversion temperature method. Colloid and Polymer Science, 2017, 295, 2243-2249.	1.0	3
487	Green feasible route preparation for PMMA vs PS: Its properties for photonic crystal application. AIP Conference Proceedings, 2017, , .	0.3	1
488	Formation of hydrophobic drug nanoparticles via ambient solvent evaporation facilitated by branched diblock copolymers. International Journal of Pharmaceutics, 2017, 533, 245-253.	2.6	9
489	Self-aggregates of 3,6-O,O'-dimyristoylchitosan derivative are effective in enhancing the solubility and intestinal permeability of camptothecin. Carbohydrate Polymers, 2017, 177, 178-186.	5.1	21

#	Article	IF	CITATIONS
490	Simultaneous control of size and surface functionality of silica particle via growing method. Advanced Powder Technology, 2017, 28, 2914-2920.	2.0	16
491	Preparation of Particulate Polymeric Therapeutics for Medical Applications. Small Methods, 2017, 1, 1700147.	4.6	27
492	Nanoparticle Analysis by Online Comprehensive Two-Dimensional Liquid Chromatography combining Hydrodynamic Chromatography and Size-Exclusion Chromatography with Intermediate Sample Transformation. Analytical Chemistry, 2017, 89, 9167-9174.	3.2	48
493	Formulation and in-vitro evaluation of pantoprazole loaded pH-sensitive polymeric nanoparticles. Future Journal of Pharmaceutical Sciences, 2017, 3, 103-117.	1.1	15
494	Recent advances in delivery of antifungal agents for therapeutic management of candidiasis. Biomedicine and Pharmacotherapy, 2017, 96, 1478-1490.	2.5	55
495	Tailoring Fluorescence Brightness and Switching of Nanoparticles through Dye Organization in the Polymer Matrix. ACS Applied Materials & Interfaces, 2017, 9, 43030-43042.	4.0	61
496	Calcinationâ€Dependent Morphology Transformation of Solâ€Gel―Synthesized MgO Nanoparticles. ChemistrySelect, 2017, 2, 10393-10404.	0.7	28
497	Surface Wrinkling and Porosity of Polymer Particles toward Biological and Biomedical Applications. Advanced Materials Interfaces, 2017, 4, 1700929.	1.9	20
498	Nanoprecipitation of particles by atomization of a polymer solution in circulating medium. Materials Research Express, 2017, 4, 105040.	0.8	2
499	Characterizing Single Polymeric and Protein Nanoparticles with Surface Plasmon Resonance Imaging Measurements. ACS Nano, 2017, 11, 7447-7456.	7.3	46
500	Biodegradable nanoparticles for improved kidney bioavailability of rhein: preparation, characterization, plasma, and kidney pharmacokinetics. Drug Development and Industrial Pharmacy, 2017, 43, 1885-1891.	0.9	16
501	The binary complex of poly(PEGMA-co-MAA) hydrogel and PLGA nanoparticles as a novel oral drug delivery system for ibuprofen delivery. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1874-1887.	1.9	14
502	Advances on the formulation of proteins using nanotechnologies. Journal of Drug Delivery Science and Technology, 2017, 42, 155-180.	1.4	26
503	Two-step reprecipitation method with size and zeta potential controllability for synthesizing semiconducting polymer nanoparticles. Colloid and Polymer Science, 2017, 295, 1153-1164.	1.0	13
504	A novel method for constructing continuous intrinsic surfaces of nanoparticles. Journal of Molecular Modeling, 2017, 23, 219.	0.8	10
505	Preparation of nanoâ€encapsulated polyethylene wax particles for color toner by <i>in situ</i> emulsion polymerization. Journal of Applied Polymer Science, 2017, 134, .	1.3	10
506	Influence of surfactants on depsipeptide submicron particle formation. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 116, 61-65.	2.0	5
507	Atrial natriuretic peptide-conjugated chitosan-hydrazone-mPEG copolymer nanoparticles as pH-responsive carriers for intracellular delivery of prednisone. Carbohydrate Polymers, 2017, 157, 1677-1686.	5.1	22

	CHANON	ILPORT	
#	ARTICLE	IF	CITATIONS
508	Polyhydroxyalkanoate-based drug delivery systems. Polymer International, 2017, 66, 617-622.	1.6	31
509	Chemical Modification of Nano Polyacrylonitrile Prepared by Emulsion Polymerization Induced by Gamma Radiation and Their Use for Removal of Some Metal Ions. Journal of Polymers and the Environment, 2017, 25, 343-348.	2.4	33
510	Layerâ€by‣ayer Coating of Solid Drug Cores: A Versatile Method to Improve Stability, Control Release and Tune Surface Properties. Macromolecular Bioscience, 2017, 17, 1600228.	2.1	15
511	Preparation, physicochemical characterization and antioxidant activity of diphenyl diselenide-loaded poly(lactic acid) nanoparticles. Journal of Trace Elements in Medicine and Biology, 2017, 39, 176-185.	1.5	12
512	Gelatin nanoparticles: a potential candidate for medical applications. Nanotechnology Reviews, 2017, 6, 191-207.	2.6	117
513	Development and characterisation of HPMC films containing PLA nanoparticles loaded with green tea extract for food packaging applications. Carbohydrate Polymers, 2017, 156, 108-117.	5.1	94
514	4. Recent advances in "bioartificial polymeric materials―based nanovectors. , 2017, , 113-138.		0
515	Nanoencapsulation of Spice Oils. , 2017, , 179-207.		1
516	Future trends and emerging issues for nanodelivery systems in oral and oropharyngeal cancer. International Journal of Nanomedicine, 2017, Volume 12, 4593-4606.	3.3	36
517	Bioengineered nanomaterials for chemotherapy. , 2017, , 23-49.		8
518	Nanocapsule formation by cyclodextrins. , 2017, , 187-261.		8
519	Synthetic Polymer-Based Nanoparticles: Intelligent Drug Delivery Systems. , 2017, , .		2
520	Nanocarriers and Their Potential Application as Antimicrobial Drug Delivery. , 2017, , 169-202.		3
521	Preparation of Protein Nanoparticles Using NTA End Functionalized Polystyrenes on the Interface of a Multi-Laminated Flow Formed in a Microchannel. Micromachines, 2017, 8, 10.	1.4	3
522	Electrostatic Self-Assembled Chitosan-Pectin Nano- and Microparticles for Insulin Delivery. Molecules, 2017, 22, 1707.	1.7	90
523	Synthesis, Morphologies and Building Applications of Nanostructured Polymers. Polymers, 2017, 9, 506.	2.0	30
524	Polymeric Nanoparticles in Targeting and Delivery of Drugs. , 2017, , 223-255.		12
525	Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. International Journal of Nanomedicine, 2017, Volume 12, 7291-7309.	3.3	984

#	Article	IF	Citations
526	Nanobody-Based Delivery Systems for Diagnosis and Targeted Tumor Therapy. Frontiers in Immunology, 2017, 8, 1442.	2.2	126
527	Optimizing Delivery Characteristics of Curcumin as a Model Drug via Tailoring Mean Diameter Ranges of Cellulose Beads. International Journal of Polymer Science, 2017, 2017, 1-10.	1.2	9
528	Green Intelligent Nanomaterials by Design (Using Nanoparticulate/2D-Materials Building Blocks) Current Developments and Future Trends. , 2017, , .		1
529	Sustainable Delivery Systems Through Green Nanotechnology. , 2017, , 17-32.		29
530	Aerosol Delivery of siRNA to the Lungs. Part 2: Nanocarrier-based Delivery Systems. KONA Powder and Particle Journal, 2017, 34, 44-69.	0.9	19
531	POLYMERIC NANOPARTICLES FOR IMPROVED BIOAVAILABILITY OF CILNIDIPINE. International Journal of Pharmacy and Pharmaceutical Sciences, 2017, 9, 129.	0.3	6
532	Recent advances in "bioartificial polymeric materials―based nanovectors. ChemistrySelect, 2017, 2, .	0.7	0
533	NANOPARTICLES: AN OVERVIEW OF THE PREPARATION METHODS FROM PREFORMED POLYMERS. Istituto Lombardo - Accademia Di Scienze E Lettere - Incontri Di Studio, 0, , .	0.0	4
534	Development of polycationic amphiphilic cyclodextrin nanoparticles for anticancer drug delivery. Beilstein Journal of Nanotechnology, 2017, 8, 1457-1468.	1.5	38
535	Multifunctional nanostructured biopolymeric materials for therapeutic applications. , 2017, , 107-135.		1
536	PREPARATION AND CHARACTERIZATION OF CEFTRIAXONE SODIUM ENCAPSULATED CHITOSAN NANOPARTICLES. International Journal of Applied Pharmaceutics, 2017, 9, 10.	0.3	24
537	Rational Design of Nanosized Light Elements for Hydrogen Storage: Classes, Synthesis, Characterization, and Properties. Advanced Materials Technologies, 2018, 3, 1700298.	3.0	34
538	Organic nanoparticles of acetohydrazides as novel inhibitors for mild steel corrosion. New Journal of Chemistry, 2018, 42, 5914-5922.	1.4	19
539	Redox-responsive solid lipid microparticles composed of octadecyl acrylate and allyl disulfide. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 476-490.	1.9	3
540	Emulsionâ€polymerized polyindole nanoparticles and their electrorheology. Journal of Applied Polymer Science, 2018, 135, 46384.	1.3	25
541	The evolution of artificial light actuators in living systems: from planar to nanostructured interfaces. Chemical Society Reviews, 2018, 47, 4757-4780.	18.7	70
542	Nanoencapsulation of phase change materials for advanced thermal energy storage systems. Chemical Society Reviews, 2018, 47, 4156-4175.	18.7	388
543	Ramizol® encapsulation into extended release PLGA micro- and nanoparticle systems for subcutaneous and intramuscular administration: in vitro and in vivo evaluation. Drug Development and Industrial Pharmacy, 2018, 44, 1451-1457.	0.9	15

#	Article	IF	CITATIONS
544	Characterization of amylose nanoparticles prepared via nanoprecipitation: Influence of chain length distribution. Carbohydrate Polymers, 2018, 194, 154-160.	5.1	17
545	Unravelling the Excellent Chemical Stability and Bioavailability of Solvent Responsive Curcumin-Loaded 2-Ethyl-2-oxazoline-grad-2-(4-dodecyloxyphenyl)-2-oxazoline Copolymer Nanoparticles for Drug Delivery. Biomacromolecules, 2018, 19, 2459-2471.	2.6	34
546	Hollow polymer nanocapsules: synthesis, properties, and applications. Polymer Chemistry, 2018, 9, 2059-2081.	1.9	58
547	State of the art of polymeric nanoparticles as carrier systems with agricultural applications: a minireview. Energy, Ecology and Environment, 2018, 3, 137-148.	1.9	71
548	Rational Design of an Amphiphilic Chlorambucil Prodrug Realizing Self-Assembled Micelles for Efficient Anticancer Therapy. ACS Biomaterials Science and Engineering, 2018, 4, 973-980.	2.6	20
549	Aggregation induced emission based "turn-off―fluorescent chemosensor for selective and swift sensing of mercury (II) ions in water. Sensors and Actuators B: Chemical, 2018, 263, 347-359.	4.0	99
550	Polymeric Nanocomposites (PNCs) for Wastewater Remediation: An Overview. Polymer-Plastics Technology and Engineering, 2018, 57, 1801-1827.	1.9	24
551	Poly(lactic- <i>co</i> -glycolic acid): The most ardent and flexible candidate in biomedicine!. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 1028-1049.	1.8	20
552	A multifunctional material based on co-electrospinning for developing biosensors with optical oxygen transduction. Analytica Chimica Acta, 2018, 1015, 66-73.	2.6	17
553	Self-immolative chemistry in nanomedicine. Chemical Engineering Journal, 2018, 340, 24-31.	6.6	37
554	Doxorubicin and rhein loaded nanomicelles attenuates multidrug resistance in human ovarian cancer. Biochemical and Biophysical Research Communications, 2018, 498, 178-185.	1.0	25
555	Preparation of conjugated poly(p-phenylene) hierarchical microspheres by nonsolvent vapor self-assembly and their fluorescent detection of metal ions. Reactive and Functional Polymers, 2018, 122, 33-41.	2.0	6
556	Application of elastin-based nanoparticles displaying antibody binding domains for a homogeneous immunoassay. Analytical Biochemistry, 2018, 544, 72-79.	1.1	8
557	Finding key nanoprecipitation variables for achieving uniform polymeric nanoparticles using neurofuzzy logic technology. Drug Delivery and Translational Research, 2018, 8, 1797-1806.	3.0	19
558	Polyhydroxybutyrate production from marine source and its application. International Journal of Biological Macromolecules, 2018, 111, 102-108.	3.6	58
559	Prism coupler-based sensor system for simultaneous screening of synthetic glucocorticosteroid as doping control agent. Sensors and Actuators B: Chemical, 2018, 260, 432-444.	4.0	16
560	Agglomeration behavior of petal-shaped cerium carbonate with different operating conditions. Rare Metals, 2018, 37, 154-160.	3.6	1
561	Alginates and Their Biomedical Applications. Springer Series in Biomaterials Science and Engineering, 2018, , .	0.7	25

#	Article	IF	CITATIONS
562	Development of transdermal vitamin D3 (VD3) delivery system using combinations of PLGA nanoparticles and microneedles. Drug Delivery and Translational Research, 2018, 8, 281-290.	3.0	37
563	New insights on in situ charge neutralization governing particle size distribution in macroemulsion polymerization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 540, 242-248.	2.3	3
564	Garlic oil–loaded PLGA nanoparticles with controllable size and shape and enhanced antibacterial activities. Journal of Applied Polymer Science, 2018, 135, 46133.	1.3	21
565	Recent insights in the use of nanocarriers for the oral delivery of bioactive proteins and peptides. Peptides, 2018, 101, 112-123.	1.2	71
566	Synthesis of Subâ€100 nm Glycosylated Nanoparticles via a One Step, Free Radical, and Surfactant Free Emulsion Polymerization. Macromolecular Rapid Communications, 2018, 39, e1800122.	2.0	4
567	UV/IR Dual-Wavelength Photodetector Design Based on ZnO/PMMA/PbSe Nanocomposites. IEEE Nanotechnology Magazine, 2018, 17, 574-581.	1.1	6
568	Thermoresponsive polymeric nanoparticles based on poly(2â€oxazoline)s and tannic acid. Journal of Polymer Science Part A, 2018, 56, 1520-1527.	2.5	11
569	Preparation and characterization of nano and micro particles of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) via emulsification/solvent evaporation and nanoprecipitation techniques. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	17
570	Biotin-functionalized targeted polydiacetylene micelles. Chemical Communications, 2018, 54, 3613-3616.	2.2	30
571	Preparation of starch nanoparticles loaded with quercetin using nanoprecipitation technique. International Journal of Biological Macromolecules, 2018, 114, 426-433.	3.6	100
572	Design of polymer particle dispersions (latexes) in the course of radical heterophase polymerization for biomedical applications. Colloids and Surfaces B: Biointerfaces, 2018, 166, 303-322.	2.5	11
573	Targeted delivery of monoclonal antibody conjugated docetaxel loaded PLGA nanoparticles into EGFR overexpressed lung tumour cells. Journal of Microencapsulation, 2018, 35, 204-217.	1.2	123
574	Production of polycaprolactone nanoparticles with low polydispersity index in a tubular recirculating system by using a multifactorial design of experiments. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	6
575	Development and effect of storage on the stability of enriched flavonoid fraction of <i>Cecropia glaziovii</i> -loaded PLGA nanoparticles. Pharmaceutical Development and Technology, 2018, 23, 998-1006.	1.1	4
576	Synthesis and characterization of chitosan-grafted-polycaprolactone micelles for modulate intestinal paclitaxel delivery. Drug Delivery and Translational Research, 2018, 8, 387-397.	3.0	36
577	Synthesis, characterization and application of gelatin-g-polyacrylonitrile and its nanoparticles. Polymer Bulletin, 2018, 75, 1403-1416.	1.7	3
578	Development of a Novel Polymeric Nanocomposite Complex for Drugs with Low Bioavailability. AAPS PharmSciTech, 2018, 19, 303-314.	1.5	16
579	Assessment of formulation parameters needed for successful vitamin C entrapped polycaprolactone nanoparticles. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 942-950	1.8	10

#	Article	IF	Citations
580	A review of recent progress in drug and protein encapsulation: Approaches, applications and challenges. Materials Science and Engineering C, 2018, 83, 233-246.	3.8	80
581	Formulation and evaluation of pH-sensitive rutin nanospheres against colon carcinoma using HCT-116 cell line. Journal of Advanced Research, 2018, 9, 17-26.	4.4	65
582	Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. International Biodeterioration and Biodegradation, 2018, 126, 45-56.	1.9	456
583	Coâ€Delivery of Drugs and Genes Using Polymeric Nanoparticles for Synergistic Cancer Therapeutic Effects. Advanced Healthcare Materials, 2018, 7, 1700886.	3.9	96
584	Preparation of polycaprolactone nanoparticles via supercritical carbon dioxide extraction of emulsions. Drug Delivery and Translational Research, 2018, 8, 1790-1796.	3.0	35
585	Formulation and characterization of poly(propylacrylic acid)/poly(lacticâ€coâ€glycolic acid) blend microparticles for pHâ€dependent membrane disruption and cytosolic delivery. Journal of Biomedical Materials Research - Part A, 2018, 106, 1022-1033.	2.1	11
586	Multivariate analysis for the optimization of microfluidics-assisted nanoprecipitation method intended for the loading of small hydrophilic drugs into PLGA nanoparticles. International Journal of Pharmaceutics, 2018, 536, 165-177.	2.6	69
587	Largeâ€Scale Preparation of Polymer Nanocarriers by Highâ€Pressure Microfluidization. Macromolecular Materials and Engineering, 2018, 303, 1700505.	1.7	21
588	Responsive crosslinked polymer nanogels for imaging and therapeutics delivery. Journal of Materials Chemistry B, 2018, 6, 210-235.	2.9	85
589	Immunogenicity of Vibrio cholerae outer membrane vesicles secreted at various environmental conditions. Vaccine, 2018, 36, 322-330.	1.7	27
590	Colloidal polymer particles as catalyst carriers and phase transfer agents in multiphasic hydroformylation reactions. Journal of Colloid and Interface Science, 2018, 513, 638-646.	5.0	10
591	The role of hydrophobic modification on hyaluronic acid dynamics and self-assembly. Carbohydrate Polymers, 2018, 182, 132-141.	5.1	60
592	Preparation of air stable nanoscale zero valent iron functionalized by ethylene glycol without inert condition. Chemical Engineering Journal, 2018, 336, 112-122.	6.6	38
593	A new formulation of poly(MAOTIB) nanoparticles as an efficient contrast agent for in vivo X-ray imaging. Acta Biomaterialia, 2018, 66, 200-212.	4.1	16
594	Overview of preparation methods of polymeric and lipid-based (niosome, solid lipid, liposome) nanoparticles: A comprehensive review. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 383-400.	1.8	141
595	Utilization of Apatinib-Loaded Nanoparticles for the Treatment of Ocular Neovascularization. Current Drug Delivery, 2018, 16, 153-163.	0.8	12
596	Preparation and Application in Drug Storage and Delivery of Agarose Nanoparticles. International Journal of Polymer Science, 2018, 2018, 1-9.	1.2	17
597	NANOPARTICLES: A PROMISING DRUG DELIVERY APPROACH. Asian Journal of Pharmaceutical and Clinical Research, 2018, 11, 30.	0.3	14

#	Article	IF	CITATIONS
598	Recent Advances in Polymeric Nanosystems for Treating Cutaneous Melanoma and Its Metastasis. Current Pharmaceutical Design, 2018, 23, 5301-5314.	0.9	6
600	Recent advances in application of nanotechnology in chemical enhanced oil recovery: Effects of nanoparticles on wettability alteration, interfacial tension reduction, and flooding. Egyptian Journal of Petroleum, 2018, 27, 1371-1383.	1.2	167
601	Impacts of Chemical Variables on the Encapsulated Corticoids in Poly-Îμ-caprolactone Nanoparticles and Statistical Biological Analysis. Russian Journal of Applied Chemistry, 2018, 91, 1165-1171.	0.1	7
602	Nanomaterials: What Are They, Why They Cause Ecotoxicity, and How This Can Be Dealt With?. , 2018, , 3-18.		4
603	N-(2-Hydroxy)-propyl-3-trimethylammonium, O-Mysristoyl Chitosan Enhances the Solubility and Intestinal Permeability of Anticancer Curcumin. Pharmaceutics, 2018, 10, 245.	2.0	19
604	Synthesis and characterization of hydrophilic polymer nanoparticles using n-isopropylacrylamide (NIPAM) via emulsion polymerization technique. IOP Conference Series: Materials Science and Engineering, 2018, 440, 012008.	0.3	3
605	Multifunctional polymer dispersions for biomedical assays obtained by heterophase radical polymerization. Russian Chemical Bulletin, 2018, 67, 1759-1780.	0.4	3
606	Molecular imaging with nanoparticles: the dwarf actors revisited 10Âyears later. Histochemistry and Cell Biology, 2018, 150, 733-794.	0.8	13
607	Conductive and Tough Hydrogels Based on Biopolymer Molecular Templates for Controlling in Situ Formation of Polypyrrole Nanorods. ACS Applied Materials & Interfaces, 2018, 10, 36218-36228.	4.0	181
608	Theranostic polymeric nanoparticles for NIR imaging and photodynamic therapy. International Journal of Pharmaceutics, 2018, 551, 329-338.	2.6	56
609	Menthol-loaded PLGA Micro and Nanospheres: Synthesis, Characterization and Degradation in Artificial Saliva. Materials Research, 2018, 21, .	0.6	12
610	Sensor-Based Real-Time Detection in Vulcanization Control Using Machine Learning and Pattern Clustering. Sensors, 2018, 18, 3123.	2.1	4
611	Nanoparticle-Mediated Combination Therapy: Two-in-One Approach for Cancer. International Journal of Molecular Sciences, 2018, 19, 3264.	1.8	226
613	New Combination/Application of Polymer-Based Nanoparticles for Biomedical Engineering. Advances in Experimental Medicine and Biology, 2018, 1078, 271-290.	0.8	4
614	Development and characterization of PLGA nanoparticles containing antibiotics. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	19
617	Emulsion Polymerization Mechanism. , 0, , .		10
618	Formulation of Pomegranate Seed Oil: A Promising Approach of Improving Stability and Health-Promoting Properties. European Journal of Lipid Science and Technology, 2018, 120, 1800177.	1.0	4
619	Controlled polymerizations using metal–organic frameworks. Chemical Communications, 2018, 54, 11843-11856.	2.2	81

#	Article	IF	CITATIONS
620	Surface-Functionalized Polystyrene Latexes Using Itaconate-Based Surfmers. Langmuir, 2018, 34, 11729-11737.	1.6	5
621	Synthesis and Functionalization of Nanomaterials. Springer Series in Materials Science, 2018, , 15-55.	0.4	12
622	Polymer in MOF Nanospace: from Controlled Chain Assembly to New Functional Materials. Israel Journal of Chemistry, 2018, 58, 995-1009.	1.0	18
623	Directing the nanoparticle formation by the combination with small molecular assembly and polymeric assembly for topical suppression of ocular inflammation. International Journal of Pharmaceutics, 2018, 551, 223-231.	2.6	16
624	Nano spray drying: A novel technique to prepare well-defined surface coatings for medical implants. Journal of Drug Delivery Science and Technology, 2018, 48, 145-151.	1.4	14
625	Nano-scale drug delivery systems for antiarrhythmic agents. European Journal of Medicinal Chemistry, 2018, 157, 1153-1163.	2.6	58
626	Nanoparticles Carrying Biological Molecules: Recent Advances and Applications. KONA Powder and Particle Journal, 2018, 35, 89-111.	0.9	40
627	Nanoparticle synthesis <i>via</i> bubbling vapor precursors in bulk liquids. Nanoscale, 2018, 10, 12196-12203.	2.8	2
628	Delivering miRNA modulators for cancer treatment. , 2018, , 517-565.		4
629	Proteinâ€Based Nanoparticles for the Delivery of Enzymes with Antibacterial Activity. Macromolecular Rapid Communications, 2018, 39, e1800186.	2.0	19
630	Multilayer biopolymer/poly(ε-caprolactone)/polycation nanoparticles. Iranian Polymer Journal (English) Tj ETQqO	0 0 rgBT /	Overlock 10 ⁻
631	Responsive polymer nanoparticles for drug delivery applications. , 2018, , 289-320.		17
632	A practical framework for implementing Quality by Design to the development of topical drug products: Nanosystem-based dosage forms. International Journal of Pharmaceutics, 2018, 548, 385-399.	2.6	31
633	mPEG-co-PCL nanoparticles: The influence of hydrophobic segment on methotrexate drug delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 142-149.	2.3	29
634	Broadening of appropriate demulsifier dosage range for latex-containing wastewater by sulfate addition. Frontiers of Environmental Science and Engineering, 2018, 12, 1.	3.3	1
635	Fabrication of polymeric core-shell nanostructures. , 2018, , 1-49.		1
636	Ultrasound assisted synthesis of guar gum-zero valent iron nanocomposites as a novel catalyst for the treatment of pollutants. Carbohydrate Polymers, 2018, 199, 41-50.	5.1	40
637	Singlet Fission in Core–Shell Micelles of End-Functionalized Polymers. Chemistry of Materials, 2018, 30, 4409-4421.	3.2	16

		CITATION R	EPORT	
#	Article		IF	CITATIONS
638	Biosynthesis of Nanoparticles by Penicillium and Their Medical Applications. , 2018, , 23	35-246.		3
639	Active Ester Containing Surfmer for One-Stage Polymer Nanoparticle Surface Functiona Mini-Emulsion Polymerization. Polymers, 2018, 10, 408.	alization in	2.0	6
640	Engineered polyester-PEG nanoparticles prepared through a "grafting through―str post-functionalization via Michael type addition. Reactive and Functional Polymers, 201	rategy and 18, 131, 164-173.	2.0	8
641	Top-down fabrication of shape-controlled, monodisperse nanoparticles for biomedical a Advanced Drug Delivery Reviews, 2018, 132, 169-187.	pplications.	6.6	135
642	Antimicrobial Peptides and Nanotechnology, Recent Advances and Challenges. Frontier Microbiology, 2018, 9, 855.	s in	1.5	151
643	Drug delivery systems based on nonimmunogenic biopolymers. , 2018, , 317-344.			14
644	The Emerging Role of Multifunctional Theranostic Materials in Cancer Nanomedicine. , 2	2018, , 1-31.		8
645	Polymer nanoparticle carriers in drug delivery systems. , 2018, , 217-237.			10
646	Techno-Economic Assessment, Scalability, and Applications of Aerosol Lignin Micro- and Nanoparticles. ACS Sustainable Chemistry and Engineering, 2018, 6, 11853-11868.	t	3.2	95
647	A State-of-the-Art Review of Nanoparticles Application in Petroleum with a Focus on En Recovery. Applied Sciences (Switzerland), 2018, 8, 871.	hanced Oil	1.3	183
648	Strategies to combine ROP with ATRP or RAFT polymerization for the synthesis of biode polymeric nanoparticles for biomedical applications. Polymer Chemistry, 2018, 9, 4084	2gradable -4099.	1.9	58
649	Protein Polymer-Based Nanoparticles: Fabrication and Medical Applications. Internation Molecular Sciences, 2018, 19, 1717.	al Journal of	1.8	146
650	Stronger host–guest binding does not necessarily give brighter particles: a case stud AIEE-tunable and size-tunable supraspheres. Chemical Communications, 2018, 54, 927	y on polymeric 4-9277.	2.2	25
651	Hyaluronic Acid Decorated Naringenin Nanoparticles: Appraisal of Chemopreventive an Potential for Lung Cancer. Pharmaceutics, 2018, 10, 33.	d Curative	2.0	93
652	Enzymes and nanoparticles: Modulation of enzymatic activity via nanoparticles. Interna of Biological Macromolecules, 2018, 118, 1833-1847.	itional Journal	3.6	128
653	Design and Characterization of Polymeric Nanoparticles of Pioglitazone Hydrochloride Effect of Formulation Variables Using QbD Approach. Current Nanomaterials, 2018, 2,	and Study the 162-168.	0.2	4
654	Zein Nanoparticles and Strategies to Improve Colloidal Stability: A Mini-Review. Frontie Chemistry, 2018, 6, 6.	rs in	1.8	115
655	Anthraceneâ€Based Colloidal Polymer Nanoparticles: Their Photochemical Ligation and Coating Applications. Particle and Particle Systems Characterization, 2018, 35, 180003		1.2	4

#	Article	IF	CITATIONS
656	Nanoparticles-Based Systems for Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, 2018, 1059, 209-217.	0.8	6
657	Nanotechnology-based drug delivery systems. , 2018, , 39-79.		12
658	Hydrothermal Addition Polymerization for Ultrahigh‥ield Carbonized Polymer Dots with Room Temperature Phosphorescence via Nanocomposite. Chemistry - A European Journal, 2018, 24, 11303-11308.	1.7	117
659	Polymeric nanoparticles and sponges in the control and stagnation of bleeding and wound healing. , 2018, , 189-219.		2
660	Core–shell nanoparticles as a drug delivery platform for tumor targeting. , 2018, , 387-448.		8
661	Nanotechnology applications in drug controlled release. , 2018, , 81-116.		43
662	Cell and organ drug targeting. , 2018, , 1-66.		4
663	Preparation and Optimization of Chitosan/pDNA Nanoparticles Using Electrospray. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2019, 89, 931-937.	0.4	8
664	Rational Design of Nanoparticles to Overcome Poor Tumor Penetration and Hypoxia-Induced Chemotherapy Resistance: Combination of Optimizing Size and Self-Inducing High Level of Reactive Oxygen Species. ACS Applied Materials & Interfaces, 2019, 11, 31743-31754.	4.0	32
665	Potential Use of Polymeric Particles for theÂRegulation of Plant Growth. , 2019, , 45-66.		2
666	Predicting the drug loading efficiency into hybrid nanocarriers based on PLGA-vegetable oil using molecular dynamic simulation approach and Flory-Huggins theory. Journal of Drug Delivery Science and Technology, 2019, 53, 101203.	1.4	7
667	New Insight into Cluster Aggregation Mechanism during Polymerization-Induced Self-Assembly by Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2019, 123, 6609-6617.	1.2	24
668	Examples of Nanomaterials with Various Morphologies. Advanced Structured Materials, 2019, , 141-164.	0.3	2
669	Biological activities of chitosan and prepared chitosan-tripolyphosphate nanoparticles using ionic gelation method against various pathogenic bacteria and fungi strains. Biologia (Poland), 2019, 74, 1561-1568.	0.8	16
670	Pickering emulsions: Preparation processes, key parameters governing their properties and potential for pharmaceutical applications. Journal of Controlled Release, 2019, 309, 302-332.	4.8	250
671	BODIPY-loaded polymer nanoparticles: chemical structure of cargo defines leakage from nanocarrier in living cells. Journal of Materials Chemistry B, 2019, 7, 5199-5210.	2.9	43
672	Investigation of structure and rheological behavior of a new epoxy polymer pentaglycidyl ether pentabisphenol A of phosphorus and of its composite with natural phosphate. SN Applied Sciences, 2019, 1, 1.	1.5	47
673	Polypeptide Nanoparticles Obtained from Emulsion Polymerization of Amino Acid <i>N</i> -Carboxyanhydrides. Journal of the American Chemical Society, 2019, 141, 12522-12526.	6.6	50

	Сітатіс	on Report	
#	Article	IF	CITATIONS
674	Techniques for Elaboration of Nanomaterials. Advanced Structured Materials, 2019, , 355-391.	0.3	1
675	Organic polymer particles for biomedical applications. , 2019, , 59-111.		3
676	Single-Dimer Formation Rate Reveals Heterogeneous Particle Surface Reactivity. Langmuir, 2019, 35, 14272-14281.	1.6	2
677	A Novel Nanoscaled Chemo Dye–Based Sensor for the Identification of Volatile Organic Compounds During the Mildewing Process of Stored Wheat. Food Analytical Methods, 2019, 12, 2895-2907.	1.3	17
678	Nanoformulated Delivery Systems of Essential Nutraceuticals and Their Applications. , 2019, , .		2
679	MicroRNA delivery through nanoparticles. Journal of Controlled Release, 2019, 313, 80-95.	4.8	235
680	Influence of the method of preparation on the characteristics and performance of cholesterol-based polymeric nanoparticles for redox-triggered release of doxorubicin in tumor cells. International Journal of Pharmaceutics, 2019, 571, 118701.	2.6	5
681	Nanoparticle-mediated approaches for Alzheimer's disease pathogenesis, diagnosis, and therapeutics. Journal of Controlled Release, 2019, 314, 125-140.	4.8	43
682	<p>Impact Of Underlying Pulmonary Diseases On Treatment Outcomes In Early-Stage Non-Small Cell Lung Cancer Treated With Definitive Radiotherapy</p> . International Journal of COPD, 2019, Volume 14, 2273-2281.	0.9	14
683	Preparation and characterization of dithiocarbazate Schiff base–loaded poly(lactic acid) nanoparticles and analytical validation for drug quantification. Colloid and Polymer Science, 2019, 297, 1465-1475.	1.0	4
684	Biomedical Applications of Nanoparticles. , 2019, , 113-132.		21
685	Poly(lactic acid) and poly(lactic-co-glycolic) acid nanoparticles: versatility in biomedical applications. , 2019, , 199-216.		3
686	Incorporation of doxorubicin in different polymer nanoparticles and their anticancer activity. Beilstein Journal of Nanotechnology, 2019, 10, 2062-2072.	1.5	20
687	In Vitro Investigation of Controlled Release of Ciprofloxacin and Its <i>β</i> yclodextrin Inclusion Complex from Gelatin Grafted Poly(vinyl alcohol) (GPVA) Nanoparticles. ChemistrySelect, 2019, 4, 11337-11345.	0.7	2
688	Aqueous Carbon Quantum Dot-Embedded PC60-PC ₆₁ BM Nanospheres for Ecological Fluorescent Printing: Contrasting Fluorescence Resonance Energy-Transfer Signals between Watermelon-like and Random Morphologies. Journal of Physical Chemistry Letters, 2019, 10, 6525-6535.	2.1	17
689	Biocompatible Polymer Nanoparticles for Drug Delivery Applications in Cancer and Neurodegenerative Disorder Therapies. Journal of Functional Biomaterials, 2019, 10, 4.	1.8	291
690	Timing of Heparin Addition to the Biomolecular Corona Influences the Cellular Uptake of Nanocarriers. Biomacromolecules, 2019, 20, 3724-3732.	2.6	4
691	Preparation of Poly(methyl methacrylate) Nanoparticles 15–50 nm in Diameter from Submicrometer-Sized Latex Particles. Russian Journal of Applied Chemistry, 2019, 92, 946-951.	0.1	Ο

#	Article	IF	CITATIONS
692	Study on influence of polymer and surfactant on in vitro performance of biodegradable aqueous-core nanocapsules of tenofovirdisoproxil fumarate by response surface methodology. Brazilian Journal of Pharmaceutical Sciences, 0, 55, .	1.2	13
693	Promoting Noncovalent Intermolecular Interactions Using a C ₆₀ Core Particle in Aqueous PC60s-Covered Colloids for Ultraefficient Photoinduced Particle Activity. ACS Applied Materials & Interfaces, 2019, 11, 38798-38807.	4.0	3
694	Aggregation-induced emission–based highly selective â€~turn-off' fluorogenic chemosensor for robust quantification of explosive picric acid in aqueous and solid states. Materials Today Chemistry, 2019, 14, 100193.	1.7	11
695	Applications of Polymeric Nanoparticles in Food Sector. , 2019, , 345-359.		4
697	Interactions of Self-Assembled Bletilla Striata Polysaccharide Nanoparticles with Bovine Serum Albumin and Biodistribution of Its Docetaxel-Loaded Nanoparticles. Pharmaceutics, 2019, 11, 43.	2.0	15
698	Polymer Composite Strategies in Cancer Therapy, Augment Stem Cell Osteogenesis, Diagnostics in the Central Nervous System, and Drug Delivery. Lecture Notes in Bioengineering, 2019, , 235-270.	0.3	0
699	Polymer Nanocomposites in Biomedical Engineering. Lecture Notes in Bioengineering, 2019, , .	0.3	17
700	Perspectives on the future of multi-dimensional platforms. Faraday Discussions, 2019, 218, 72-100.	1.6	17
701	Pharmaceutical and Biomedical Applications of Polymers. , 2019, , 203-267.		25
702	Self-assembly of stimuli-responsive imine-linked calix[4]arene nanocapsules for targeted camptothecin delivery. Chemical Communications, 2019, 55, 8876-8879.	2.2	24
703	PolyBall: A new adsorbent for the efficient removal of endotoxin from biopharmaceuticals. Scientific Reports, 2019, 9, 8867.	1.6	25
704	Are Nanocarriers Effective for the Diagnosis and Treatment of Pancreatic Cancer?. , 2019, , 159-174.		2
705	Traditional Chinese medicine combined with hepatic targeted drug delivery systems: A new strategy for the treatment of liver diseases. Biomedicine and Pharmacotherapy, 2019, 117, 109128.	2.5	44
706	Nanoengineered chlorin e6 conjugated with hydrogel for photodynamic therapy on cancer. Colloids and Surfaces B: Biointerfaces, 2019, 181, 778-788.	2.5	23
707	Micelle-Encapsulated Fluorescent Probe: Chemoselective and Enantioselective Recognition of Lysine in Aqueous Solution. Organic Letters, 2019, 21, 4777-4781.	2.4	20
708	Enzymatic Formation of Polyaniline, Polypyrrole, and Polythiophene Nanoparticles with Embedded Clucose Oxidase. Nanomaterials, 2019, 9, 806.	1.9	33
709	Effect of Gelling Agent and Calcination Temperature in Sol–Gel Synthesized MgO Nanoparticles. Protection of Metals and Physical Chemistry of Surfaces, 2019, 55, 288-301.	0.3	8
710	Particle Size Control in Miniemulsion Polymerization via Membrane Emulsification. Macromolecules, 2019, 52, 4492-4499.	2.2	27

CITATION REPC	

#	Article	IF	CITATIONS
711	Nanoparticles based on a PEGylated methacrylate copolymer as vehicles for hydrophilic antimicrobial additives: a study on chemical interactions with a benzoic acid probe molecule. Colloid and Polymer Science, 2019, 297, 809-820.	1.0	2
712	Polyhydroxyalkanoate (PHA): applications in drug delivery and tissue engineering. Expert Review of Medical Devices, 2019, 16, 467-482.	1.4	106
713	Controlling Size and Fluorescence of Dye-Loaded Polymer Nanoparticles through Polymer Design. Langmuir, 2019, 35, 7009-7017.	1.6	31
714	Nanoscaled Dispersed Systems Used in Drug-Delivery Applications. , 2019, , 437-468.		15
715	Micro/nanoparticles containing potassium sorbate obtained by the dialysis technique: Effect of starch concentration and starch ester type on the particle properties. Food Hydrocolloids, 2019, 95, 540-550.	5.6	15
716	Polymeric Nanoparticles in Gene Therapy: New Avenues of Design and Optimization for Delivery Applications. Polymers, 2019, 11, 745.	2.0	198
717	Direct visualization of the ouzo zone through aggregation-induced dye emission for the synthesis of highly monodispersed polymeric nanoparticles. Materials Chemistry Frontiers, 2019, 3, 1375-1384.	3.2	21
718	Scalable fabrication of metal–phenolic nanoparticles by coordination-driven flash nanocomplexation for cancer theranostics. Nanoscale, 2019, 11, 9410-9421.	2.8	33
719	Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1871, 419-433.	3.3	151
720	New phosphazene nanospheres anchored Fe(III), Co(II) and Cu(II) Schiff base complexes as efficient catalysts in oxidation of phenol. Journal of the Iranian Chemical Society, 2019, 16, 1761-1771.	1.2	2
721	Formation of Polyaniline and Polypyrrole Nanocomposites with Embedded Glucose Oxidase and Gold Nanoparticles. Polymers, 2019, 11, 377.	2.0	57
722	Natural biodegradable polymers based nano-formulations for drug delivery: A review. International Journal of Pharmaceutics, 2019, 561, 244-264.	2.6	380
723	Solvent Magic for Organic Particles. ACS Nano, 2019, 13, 2675-2680.	7.3	36
724	<i>In vivo</i> imaging and biodistribution of near infrared dye loaded brain-metastatic-breast-cancer-cell-membrane coated polymeric nanoparticles. Nanotechnology, 2019, 30, 265101.	1.3	38
725	UV–Vis spectroscopic quantification of residual acetone during the development of nanoparticulate drug delivery systems. Pharmaceutical Development and Technology, 2019, 24, 751-760.	1.1	2
726	Organic photonic nanostructures. , 2019, , 111-138.		0
727	Nanomaterials and Plant Potential: An Overview. , 2019, , 3-29.		45
728	Harnessing Dendritic Cells for Poly (D,L-lactide-co-glycolide) Microspheres (PLGA MS)—Mediated Anti-tumor Therapy. Frontiers in Immunology, 2019, 10, 707.	2.2	53

#	Article	IF	CITATIONS
729	An update on polymer-lipid hybrid systems for improving oral drug delivery. Expert Opinion on Drug Delivery, 2019, 16, 507-524.	2.4	38
730	Delivering Combination Chemotherapies and Targeting Oncogenic Pathways via Polymeric Drug Delivery Systems. Polymers, 2019, 11, 630.	2.0	26
731	Biotin and arginine modified hydroxypropyl-β-cyclodextrin nanoparticles as novel drug delivery systems for paclitaxel. Carbohydrate Polymers, 2019, 216, 129-139.	5.1	64
732	Overview of electronic ink and methods of production for use in electronic displays. Optics and Laser Technology, 2019, 117, 38-51.	2.2	22
733	Encapsulated functionalized stereocomplex PLA particles: An effective system to support mucolytic enzymes. Colloids and Surfaces B: Biointerfaces, 2019, 179, 190-198.	2.5	26
734	pH-Responsive Polymers: Properties, Synthesis, and Applications. , 2019, , 45-86.		4
735	Analysis of charged acrylic particles by on-line comprehensive two-dimensional liquid chromatography and automated data-processing. Analytica Chimica Acta, 2019, 1054, 184-192.	2.6	14
736	Enhancing Curcumin Oral Bioavailability Through Nanoformulations. European Journal of Drug Metabolism and Pharmacokinetics, 2019, 44, 459-480.	0.6	92
737	Corrosion performance of polyurethane hybrid coatings with encapsulated inhibitor. Progress in Organic Coatings, 2019, 130, 235-243.	1.9	33
738	Development of inhalable curcumin loaded Nano-in-Microparticles for bronchoscopic photodynamic therapy. European Journal of Pharmaceutical Sciences, 2019, 132, 63-71.	1.9	30
739	Supercritical Assisted Electrospray: An Improved Micronization Process. Polymers, 2019, 11, 244.	2.0	40
740	Comparative Study of Polymer Nanoparticles on the Basis of Caprolactone–Polyvinyl Alcohol Mixtures with an Encapsulated Antitumor Preparation by Atomic Force Microscopy, X-Ray Diffraction, and Dynamic Light Scattering. Technical Physics, 2019, 64, 1729-1737.	0.2	0
741	Nanoparticle and polymeric nanoparticle-based targeted drug delivery systems. , 2019, , 191-240.		9
742	Applications of polymer-based nanoparticles in vaccine field. Nanotechnology Reviews, 2019, 8, 143-155.	2.6	54
743	Recent progress of glycopolymer synthesis for biomedical applications. Biomaterials Science, 2019, 7, 4848-4872.	2.6	62
744	Processing nanoporous organic polymers in liquid amines. Beilstein Journal of Nanotechnology, 2019, 10, 1844-1850.	1.5	3
745	In Vitro Antifungal and Antivirulence Activities of Biologically Synthesized Ethanolic Extract of Propolis-Loaded PLGA Nanoparticles against <i>Candida albicans</i> . Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-14.	0.5	35
746	Exfoliated Graphene Sheets: Polymer Nanoparticles as a Tool and Their Antiâ€Proliferative Activity. ChemistrySelect, 2019, 4, 13204-13209.	0.7	7

#	Article	IF	CITATIONS
747	An invisible private 2D barcode design and implementation with tunable fluorescent nanoparticles. RSC Advances, 2019, 9, 37292-37299.	1.7	4
749	Mammalianâ€Cellâ€Driven Polymerisation of Pyrrole. ChemBioChem, 2019, 20, 1008-1013.	1.3	18
750	The effect of synthesis conditions and tunable hydrophilicity on the drug encapsulation capability of PLA and PLGA nanoparticles. Colloids and Surfaces B: Biointerfaces, 2019, 176, 212-218.	2.5	28
751	pH-sensitive Eudragit® L 100 nanoparticles promote cutaneous penetration and drug release on the skin. Journal of Controlled Release, 2019, 295, 214-222.	4.8	49
752	Conjugated Polymer Nanoparticles Having Modified Band Gaps Assembled into Nano- and Micropatterned Organic Light-Emitting Diodes. ACS Applied Nano Materials, 2019, 2, 577-585.	2.4	7
753	Reactive nanoparticles with activated ester moieties from cellulose acetate phthalate derivatives. Cellulose, 2019, 26, 475-490.	2.4	8
754	A study on the molecular existing interactions in nanoherbicides: A chitooligosaccharide/tripolyphosphate loaded with paraquat case. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 562, 220-228.	2.3	12
755	Mechanism and Factors Influencing Formation and Stability of Chitosan/Lignosulfonate Nanoparticles. Macromolecular Chemistry and Physics, 2019, 220, 1800338.	1.1	14
756	Distinctive impact of polystyrene nano-spherules as an emergent pollutant toward the environment. Environmental Science and Pollution Research, 2019, 26, 1537-1547.	2.7	32
757	Synthesis and Bioconjugation of Hybrid Nanostructures for Biomedical Applications. , 2019, , 17-41.		16
758	Nanocarriers and Their Loading Strategies. Advanced Healthcare Materials, 2019, 8, e1801002.	3.9	124
759	Nanotechnology: Applications in Energy, Drug and Food. , 2019, , .		8
760	Mechanism for the Nano-Based Drug Delivery System. , 2019, , 219-263.		17
761	Multi-response optimization in impregnation of chitosan nanoparticles on polyester fabric. Polymer Bulletin, 2019, 76, 3039-3058.	1.7	6
762	Molecular bionics – engineering biomaterials at the molecular level using biological principles. Biomaterials, 2019, 192, 26-50.	5.7	35
763	Kinetic Control in Synthesis of Polymers Using Nanoporous Metal-Organic Frameworks. , 2019, , 185-204.		1
764	A Critical Review of the Properties and Analytical Methods for the Determination of Curcumin in Biological and Pharmaceutical Matrices. Critical Reviews in Analytical Chemistry, 2019, 49, 138-149.	1.8	72
765	Nanoengineered biomaterials for retinal repair. , 2019, , 215-264.		5

	CITATION	Report	
#	Article	IF	CITATIONS
766	Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 2019, 12, 908-931.	2.3	3,638
767	Synthesis, characterization, and functionalization of ZnO nanoparticles by N-(trimethoxysilylpropyl) ethylenediamine triacetic acid (TMSEDTA): Investigation of the interactions between Phloroglucinol and ZnO@TMSEDTA. Arabian Journal of Chemistry, 2019, 12, 4340-4347.	2.3	43
768	Polymerizable dye for colored particles synthesis with potential use in immunoassays. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 798-809.	1.8	1
769	Investigation in Sono-photocatalysis Process Using Doped Catalyst and Ferrite Nanoparticles for Wastewater Treatment. Environmental Chemistry for A Sustainable World, 2020, , 171-194.	0.3	6
770	Nanophotocatalysis and Environmental Applications. Environmental Chemistry for A Sustainable World, 2020, , .	0.3	7
771	Polymeric nanoparticles of poly(2-oxazoline), tannic acid and doxorubicin for controlled release and cancer treatment. Chinese Chemical Letters, 2020, 31, 501-504.	4.8	10
772	Production and computational fluid dynamics-based modeling of PMMA nanoparticles impregnated with ivermectin by a supercritical antisolvent process. Journal of CO2 Utilization, 2020, 35, 47-58.	3.3	13
773	Development of fully formulated eco-friendly nanolubricant from sesame oil. Applied Nanoscience (Switzerland), 2020, 10, 577-586.	1.6	17
774	Recent trends in the development of nano-bioactive compounds and delivery systems. , 2020, , 409-431.		8
775	In situ visualization and real-time tracking of emulsion and miniemulsion polymerization at the microscale via fluorescence imaging. Chemical Engineering Science, 2020, 211, 115288.	1.9	8
776	Controlled radical polymerization in dispersed systems for biological applications. Progress in Polymer Science, 2020, 102, 101209.	11.8	72
778	Configuration-Controllable Polymeric Nanovehicles Self-Assembled in Pixel Grids under an Electric Field. ACS Applied Materials & Interfaces, 2020, 12, 4052-4060.	4.0	0
779	Nano-engineered Adsorbent for the Removal of Dyes from Water: A Review. Current Analytical Chemistry, 2020, 16, 14-40.	0.6	148
780	Transforming lanthanide and actinide chemistry with nanoparticles. Nanoscale, 2020, 12, 1339-1348.	2.8	42
781	Coatingâ€Sheddable CD44â€Targeted Poly(d , l â€lactide―co â€glycolide) Nanomedicines Fabricated by Us Photoclickâ€Crosslinkable Surfactant. Advanced Therapeutics, 2020, 3, 1900160.	ing 1.6	0
782	Aggregation and stability of nanoscale plastics in aquatic environment. Water Research, 2020, 171, 115401.	5.3	90
783	Industrial polymer synthesis using supercritical carbon dioxide. , 2020, , 435-453.		2
784	The role of physicochemical properties in the nanoprecipitation of cellulose acetate. Carbohydrate Polymers, 2020, 230, 115628.	5.1	6

#	Article	IF	Citations
785	Crystalline phase-dependent toxicity of aluminum oxide nanoparticles toward Daphnia magna and ecological risk assessment. Environmental Research, 2020, 182, 108987.	3.7	26
786	One-pot fabrication of polymer micro/nano-discs via phase separation and a roll-to-roll coating process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124274.	2.3	8
787	Polymeric Nanoparticles. , 2020, , 303-324.		23
788	Smart hybrid coatings for corrosion protection applications. , 2020, , 289-306.		2
789	Incorporation of Ru(II) Polypyridyl Complexes into Nanomaterials for Cancer Therapy and Diagnosis. Advanced Materials, 2020, 32, e2003294.	11.1	45
790	Docetaxel: An update on its molecular mechanisms, therapeutic trajectory and nanotechnology in the treatment of breast, lung and prostate cancer. Journal of Drug Delivery Science and Technology, 2020, 60, 101959.	1.4	42
791	Preparation and characterization of dexamethasone polymeric nanoparticle by membrane emulsification method. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	5
792	Polymer Based Nanomaterials for Strategic Applications in Animal Food Value Chains. Food Reviews International, 2022, 38, 1577-1606.	4.3	10
793	Comprehensive Survey on Nanobiomaterials for Bone Tissue Engineering Applications. Nanomaterials, 2020, 10, 2019.	1.9	34
794	Towards a Continuous Manufacturing Process of Protein-Loaded Polymeric Nanoparticle Powders. AAPS PharmSciTech, 2020, 21, 269.	1.5	5
795	Chemiresistive sensing of arsenic ion in water by thin film of poly(m-aminophenol) nano-fiber. Journal of Environmental Chemical Engineering, 2020, 8, 104536.	3.3	1
796	A highly colorimetric photonic film composed of non-close-packed melanin-like colloidal arrays. Journal of Colloid and Interface Science, 2020, 580, 573-582.	5.0	8
797	Development and characterization of nano- flux welding powder from calcined coconut shell ash admixture with FeO particles. Journal of Materials Research and Technology, 2020, 9, 9232-9241.	2.6	24
798	Amphiphilic biodegradable co-networks of Poly(butylene succinate)-Poly(ethylene glycol) chains for nano-gelation via Click chemistry and its potential dispersant for multi-walled carbon nanotubes. Polymer Degradation and Stability, 2020, 179, 109266.	2.7	9
799	Polymeric Nanoparticle-Based Vaccine Adjuvants and Delivery Vehicles. Current Topics in Microbiology and Immunology, 2020, 433, 29-76.	0.7	12
800	Potent in vivo antimalarial activity of water-soluble artemisinin nano-preparations. RSC Advances, 2020, 10, 36201-36211.	1.7	5
801	Crown Ether-Assisted Synthesis of Polystyrene Nanoparticles: Implications for Biomedicine and Electronics. ACS Applied Nano Materials, 2020, 3, 10787-10795.	2.4	7
802	FORMULATION AND EVALUATION OF ETHAMBUTOL POLYMERIC NANOPARTICLES. International Journal of Applied Pharmaceutics, 0, , 207-217.	0.3	2

#	Article	IF	CITATIONS
803	Biomedical applications of bionanocomposites. , 2020, , 457-483.		1
804	Drug-loaded polymeric nanoparticles: a review. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 1-13.	1.8	56
805	Phytonanotechnology: A new horizon for the food industry. , 2020, , 221-244.		1
806	Development, optimization, and evaluation of PEGylated brucine-loaded PLGA nanoparticles. Drug Delivery, 2020, 27, 1134-1146.	2.5	48
807	Aptamers in Biotechnology. Advances in Biochemical Engineering/Biotechnology, 2020, , .	0.6	1
808	Biodegradable diblock copolymeric PEG-PCL nanoparticles: Synthesis, characterization and applications as anticancer drug delivery agents. Polymer, 2020, 207, 122901.	1.8	49
809	Nanoparticles Formulations of Artemisinin and Derivatives as Potential Therapeutics for the Treatment of Cancer, Leishmaniasis and Malaria. Pharmaceutics, 2020, 12, 748.	2.0	25
810	Size Control of Polystyrene Nanoparticles Synthesized in Melamine Foam. Industrial & Engineering Chemistry Research, 2020, 59, 17927-17933.	1.8	4
811	Bio-Based Nanoparticles as a Carrier of \hat{l}^2 -Carotene: Production, Characterisation and In Vitro Gastrointestinal Digestion. Molecules, 2020, 25, 4497.	1.7	24
812	Enabling intensification of multiphase chemical processes with additive manufacturing. Advances in Colloid and Interface Science, 2020, 285, 102294.	7.0	4
813	Enhancing optical functionality by co-loading NaYF4:Yb,Er and CdSe QDs in a single core-shell nanocapsule. Journal of Materials Chemistry C, 2020, 8, 14796-14804.	2.7	1
814	Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chemistry Letters and Reviews, 2020, 13, 223-245.	2.1	361
815	Potential and Applications of Nanocarriers for Efficient Delivery of Biopharmaceuticals. Pharmaceutics, 2020, 12, 1184.	2.0	55
816	Tailoring of nanoparticles for chemical enhanced oil recovery activities: a review. International Journal of Nanomanufacturing, 2020, 16, 107.	0.3	9
817	Alginate Nanoformulation: Influence of Process and Selected Variables. Pharmaceuticals, 2020, 13, 335.	1.7	76
818	Nanometerâ€sized, rodâ€like, ligandâ€containing tryptophan complexes: Anion influence–structural geometry–antitumor activity correlations. Applied Organometallic Chemistry, 2020, 34, e5679.	1.7	1
819	Starch nanoparticles prepared by enzymatic hydrolysis and self-assembly of short-chain glucans. Food Science and Biotechnology, 2020, 29, 585-598.	1.2	18
820	Fluorescent nanoparticles for sensing. Frontiers of Nanoscience, 2020, 16, 117-149.	0.3	16

	CITATION R	EPORT	
#	Article	IF	CITATIONS
821	Natural polymers for natural hair: the smart use of an innovative nanocarrier. , 2020, , 267-285.		0
822	Current advances in the development of novel polymeric nanoparticles for the treatment of neurodegenerative diseases. Nanomedicine, 2020, 15, 1239-1261.	1.7	68
823	Facile synthesis and nanoscale features of a nanostructured nordihydroguaiaretic acid analog for therapeutic applications. Journal of Nanobiotechnology, 2020, 18, 74.	4.2	4
824	Ionic liquid–based colloidal nanoparticles: applications in organic synthesis. , 2020, , 279-299.		7
825	Application of Nanomaterials in the Diagnosis and Treatment of Genetic Disorders. , 2020, , 125-146.		9
826	Pectins as a universal medicine. Fìtoterapìâ, 2020, 146, 104676.	1.1	60
827	Applications of Nanomaterials in Human Health. , 2020, , .		21
828	Mucoadhesive Micro-/Nano Carriers in Ophthalmic Drug Delivery: an Overview. BioNanoScience, 2020, 10, 564-582.	1.5	27
829	A brief review concerning the latest advances in the influence of nanoparticle reinforcement into polymeric-matrix biomaterials. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 1869-1893.	1.9	16
830	Stability and structural properties of bee pollen protein hydrolysate microencapsulated using maltodextrin and whey protein concentrate. Heliyon, 2020, 6, e03731.	1.4	21
831	An efficient fluorescent aggregates for selective recognition of 4-nitrophenol based on 9,10-dihydrobenzo[a]pyrene-7(8 H)-one. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 400, 112692.	2.0	3
832	Utilization of size-tunable hollow silica nanospheres for building thermal insulation applications. Journal of Building Engineering, 2020, 31, 101336.	1.6	8
833	Aptamer-Modified Nanoparticles in Medical Applications. Advances in Biochemical Engineering/Biotechnology, 2020, 174, 161-193.	0.6	13
834	Preparation and applications of hydrophobic multicomponent based redispersible polymer powder: A review. Construction and Building Materials, 2020, 247, 118579.	3.2	39
835	Synthesis of nanoparticles composed of a poly(methylmethacrylate-co-laurylmethacrylate) core and a polysiloxane shell as vehicles for limonene. Reactive and Functional Polymers, 2020, 151, 104571.	2.0	1
836	Application of PLGA nano/microparticle delivery systems for immunomodulation and prevention of allotransplant rejection. Expert Opinion on Drug Delivery, 2020, 17, 767-780.	2.4	17
837	Therapeutic Applications of Curcumin Nanomedicine Formulations in Cardiovascular Diseases. Journal of Clinical Medicine, 2020, 9, 746.	1.0	57
839	Natural Polymeric Materials as a Vehicle for Antibiotics. , 2020, , 51-64.		0

#	Article	IF	CITATIONS
840	Protein-Based Nanoparticles as Drug Delivery Systems. Pharmaceutics, 2020, 12, 604.	2.0	268
841	Bottomâ€Up Design of Composite Supraparticles for Powderâ€Based Additive Manufacturing. Small, 2020, 16, e2002076.	5.2	22
842	Principles of nanosized drug delivery systems. , 2020, , 3-25.		6
843	Synthesis of sub-100Ânm PMMA nanoparticles initiated by ammonium persulfate/ascorbic acid in acetone-water mixture. Colloid and Polymer Science, 2020, 298, 225-232.	1.0	2
844	Fluoropolymer Nanoparticles Prepared Using Trifluoropropene Telomer Based Fluorosurfactants. Langmuir, 2020, 36, 1754-1760.	1.6	6
845	Nanoparticles Based on Hydrophobic Polysaccharide Derivatives—Formation Principles, Characterization Techniques, and Biomedical Applications. Macromolecular Bioscience, 2020, 20, e1900415.	2.1	69
846	PLGA nanoparticle preparations by emulsification and nanoprecipitation techniques: effects of formulation parameters. RSC Advances, 2020, 10, 4218-4231.	1.7	133
847	Microfluidic-assisted polymer-protein assembly to fabricate homogeneous functionalnanoparticles. Materials Science and Engineering C, 2020, 111, 110768.	3.8	43
848	Diclofenac sodium loaded PLGA nanoparticles for inflammatory diseases with high anti-inflammatory properties at low dose: Formulation, characterization and in vivo HET-CAM analysis. Microvascular Research, 2020, 130, 103991.	1.1	34
850	Enhanced efficacy in drug-resistant cancer cells through synergistic nanoparticle mediated delivery of cisplatin and decitabine. Nanoscale Advances, 2020, 2, 1177-1186.	2.2	14
851	Stimuli Responsive In Situ Gelling Systems Loaded with PLGA Nanoparticles of Moxifloxacin Hydrochloride for Effective Treatment of Periodontitis. AAPS PharmSciTech, 2020, 21, 76.	1.5	24
852	A novel strategy for glioblastoma treatment combining alpha-cyano-4-hydroxycinnamic acid with cetuximab using nanotechnology-based delivery systems. Drug Delivery and Translational Research, 2020, 10, 594-609.	3.0	26
853	Polymer-based nanocontainers for drug delivery. , 2020, , 271-285.		3
854	Platinum Nanoparticles Obtained at Mild Conditions on S-Layer Protein/Polymer Particle Supports. Langmuir, 2020, 36, 1201-1211.	1.6	9
855	Synthesis of monolithic shape-stabilized phase change materials with high mechanical stability <i>via</i> a porogen-assisted <i>in situ</i> sol–gel process. RSC Advances, 2020, 10, 3072-3083.	1.7	21
856	Antioxidants in Cancer Therapy: Recent Trends in Application of Nanotechnology for Enhanced Delivery. Scientia Pharmaceutica, 2020, 88, 5.	0.7	10
857	Facile preparation of zein nanoparticles with tunable surface hydrophobicity and excellent colloidal stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 591, 124554.	2.3	27
858	Babassu mesocarp (Orbignya phalerata Mart) nanoparticle-based biosensors for indirect sulfite detection in industrial juices. Journal of Solid State Electrochemistry, 2020, 24, 1143-1155.	1.2	5

ARTICLE IF CITATIONS On-chip controlled synthesis of polycaprolactone nanoparticles using continuous-flow microfluidic 859 1.2 18 devices. Journal of Flow Chemistry, 2020, 10, 533-543. Nanotechnological approaches for delivery of antiinflammatory drugs., 2020, 211-226. 860 Mechanism of size effects of a filler on the wear behavior of ultrahigh molecular weight 861 1.7 9 polyethylene. Chinese Journal of Chemical Engineering, 2020, 28, 1950-1963. Size-Tailored Physicochemical Properties of Monodisperse Polystyrene Nanoparticles and the Nanocomposites Made Thereof. Scientific Reports, 2020, 10, 5191. Formula-Driven, Size-Tunable Synthesis of PMMA Nanoparticles by Varying Surfactant Concentration. 863 1.3 2 Materials, 2020, 13, 1834. Polyethylene glycol functionalised Ag NPs based optical probe for the selective and sensitive detection of Hg(II). Journal of Molecular Liquids, 2020, 307, 112978. 864 2.3 Poly(ethyl acrylate-<i>co</i>-methyl Methacrylate-<i>co</i>-trimethylammoniethyl methacrylate) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 ! 865 2.6 16 Seeds Oil: a Versatile Antidiabetic Agent. Biomacromolecules, 2020, 21, 4442-4456. Polymeric Nanogels for Theranostic Applications: A Mini-Review. Current Nanoscience, 2020, 16, 392-398. 867 Polymer Colloids from Step-Growth Thiol-X Polymerizations. Polymer Reviews, 2021, 61, 54-79. 5.3 7 Nanoparticulate Drug Delivery to the Retina. Molecular Pharmaceutics, 2021, 18, 506-521. 2.3 Emulsion Polymerizations for a Sustainable Preparation of Efficient TEMPOâ€based Electrodes. 869 3.6 23 ChemSusChem, 2021, 14, 449-455. Polyetherimide nanoparticle preparation from a polyetherimide/dimethyl sulfoxide solution by a 0.6 simplified cooling-down method. Polymer-Plastics Technology and Materials, 2021, 60, 453-461. Synthesis of polymer nanoparticles based highly selective membranes by mini-emulsion polymerization for dehydration of 1,4 dioxane and recovery of ethanol from water by pervaporation. Journal of 871 4.1 14 Membrane Science, 2021, 617, 118646. Nanoparticles/nanoplatform to carry and deliver the drug molecules to the target site., 2021,, 872 249-266. 873 Nanoparticles and prostate cancer., 2021, , 275-318. 4 The influence of PBAT content in the nanocapsules preparation and its effect in essential oils release. 874 4.2 Food Chemistry, 2021, 344, 128611. An innovative approach to fabricate a thermosensitive melatoninâ€loaded conductive pluronic/chitosan 875 1.36 hydrogel for myocardial tissue engineering. Journal of Applied Polymer Science, 2021, 138, app50327. Microneedle Array Patches Integrated with Nanoparticles for Therapy and Diagnosis. Small 876 Structures, 2021, 2, 2000097.

#	Article	IF	CITATIONS
877	Synthesis, characterization, and biological applications of semiconducting polythiopheneâ€based nanoparticles. View, 2021, 2, 2020086.	2.7	22
878	Microchannel geometry vs flow parameters for controlling nanoprecipitation of polymeric nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611, 125774.	2.3	13
879	Facile fabrication of elongated polymer micro/nano discs and their surface adhesiveness. Journal of Applied Polymer Science, 2021, 138, 49798.	1.3	2
880	Sustainedâ€release ibuprofen prodrug particle: Emulsifier and initiator regulate the diameter and distribution. Journal of Applied Polymer Science, 2021, 138, 49779.	1.3	1
881	Conducting polymer-based nanocomposites: Structuration, compatibilizing effect, conductivity, and physical properties. , 2021, , 27-56.		1
882	Application of Nanotechnology in the COVID-19 Pandemic. International Journal of Nanomedicine, 2021, Volume 16, 623-649.	3.3	60
883	Overview of Nano-Strategies for Combating Cancer. Advances in Medical Technologies and Clinical Practice Book Series, 2021, , 250-270.	0.3	0
884	Advances in Bio-Based Polymers for Colorectal Cancer Treatment: Hydrogels and Nanoplatforms. Gels, 2021, 7, 6.	2.1	15
885	Fabrication of nanoparticles for bone regeneration: new insight into applications of nanoemulsion technology. Journal of Materials Chemistry B, 2021, 9, 5221-5244.	2.9	23
886	Adsorbent. Interface Science and Technology, 2021, 33, 71-210.	1.6	24
886 887	Adsorbent. Interface Science and Technology, 2021, 33, 71-210. Nanomaterial-based advanced oxidation processes for degradation of waste pollutants. , 2021, , 811-831.	1.6	24
		1.6	
887	Nanomaterial-based advanced oxidation processes for degradation of waste pollutants. , 2021, , 811-831.	1.6	1
887 888	Nanomaterial-based advanced oxidation processes for degradation of waste pollutants. , 2021, , 811-831. Chitosan-based bionanocomposite in regenerative medicine. , 2021, , 169-185. Ink-jet-printed semiconductor electrochromic nanoparticles: Development and applications in	1.6	1
887 888 889	Nanomaterial-based advanced oxidation processes for degradation of waste pollutants. , 2021, , 811-831. Chitosan-based bionanocomposite in regenerative medicine. , 2021, , 169-185. Ink-jet-printed semiconductor electrochromic nanoparticles: Development and applications in electrochromism. , 2021, , 407-437. Use of Nanoparticles in Delivery of Nucleic Acids for Melanoma Treatment. Methods in Molecular		1 1 1
887 888 889 890	Nanomaterial-based advanced oxidation processes for degradation of waste pollutants. , 2021, , 811-831. Chitosan-based bionanocomposite in regenerative medicine. , 2021, , 169-185. Ink-jet-printed semiconductor electrochromic nanoparticles: Development and applications in electrochromism. , 2021, , 407-437. Use of Nanoparticles in Delivery of Nucleic Acids for Melanoma Treatment. Methods in Molecular Biology, 2021, 2265, 591-620.		1 1 1 9
887 888 889 890 891	Nanomaterial-based advanced oxidation processes for degradation of waste pollutants. , 2021, , 811-831. Chitosan-based bionanocomposite in regenerative medicine. , 2021, , 169-185. Ink-jet-printed semiconductor electrochromic nanoparticles: Development and applications in electrochromism. , 2021, , 407-437. Use of Nanoparticles in Delivery of Nucleic Acids for Melanoma Treatment. Methods in Molecular Biology, 2021, 2265, 591-620. Polymer and lipid-based nanoparticles to deliver RNAi and CRISPR systems. , 2021, , 635-659. Advanced drug delivery applications of self-assembled nanostructures and polymeric nanoparticles. ,		1 1 1 9 0

#	Article	IF	CITATIONS
896	Investigating the effect of nonionic surfactant on the silica nanoparticles formation and morphology in a microfluidic reactor. Journal of Flow Chemistry, 2021, 11, 737-750.	1.2	3
897	Probing sedimentation non-ideality of particulate systems using analytical centrifugation. Soft Matter, 2021, 17, 2803-2814.	1.2	6
898	Organic nanocarriers for targeted delivery of anticancer agents. , 2021, , 467-497.		1
899	Anionic/nonionic surfactants for controlled synthesis of highly concentrated sub-50 nm polystyrene spheres. Nanoscale Advances, 2021, 3, 5626-5635.	2.2	6
900	Encapsulation methods of active molecules for drug delivery. , 2021, , 289-306.		4
901	A facile fabrication of conjugated fluorescent nanoparticles and micro-scale patterned encryption via high resolution inkjet printing. Nanoscale, 2021, 13, 14337-14345.	2.8	6
902	Fundamentals of Nanocarriers and Drug Targeting. , 2021, , 3-42.		1
903	Nanoparticles for Biofilm Control. Environmental and Microbial Biotechnology, 2021, , 227-247.	0.4	1
904	Polymeric Nanoparticles. Nanomedicine and Nanotoxicology, 2021, , 1-17.	0.1	0
905	Solvent Emulsification Evaporation and Solvent Emulsification Diffusion Techniques for Nanoparticles. , 2021, , 287-300.		4
906	Occupational health and safety measures of multifunctional nanoparticles in biomedical research and beyond. , 2021, , 571-609.		0
907	Polycaprolactone Nanoparticles as Promising Candidates for Nanocarriers in Novel Nanomedicines. Pharmaceutics, 2021, 13, 191.	2.0	34
909	Review of Waterborne Organic Semiconductor Colloids for Photovoltaics. ACS Nano, 2021, 15, 3927-3959.	7.3	39
910	Development of calixarene-based drug nanocarriers. Journal of Molecular Liquids, 2021, 325, 115246.	2.3	38
911	Effects of metal nanoparticle-mediated treatment on seed quality parameters of different crops. Naunyn-Schmiedeberg's Archives of Pharmacology, 2021, 394, 1067-1089.	1.4	22
912	The Role of PVA Surfactant on Magnetic Properties of MnFe2O4 Nanoparticles Synthesized by Sol-Gel Hydrothermal Method. Journal of Superconductivity and Novel Magnetism, 2021, 34, 1397-1408.	0.8	13
913	Improved gene delivery to K-562 leukemia cells by lipoic acid modified block copolymer micelles. Journal of Nanobiotechnology, 2021, 19, 70.	4.2	14
914	Systemic Immunotherapy with Micellar Resiquimod–Polymer Conjugates Triggers a Robust Antitumor Response in a Breast Cancer Model. Advanced Healthcare Materials, 2021, 10, e2100008.	3.9	15

#	Article	IF	CITATIONS
915	Formulation of stabilizer-free, nontoxic PLGA and elastin-PLGA nanoparticle delivery systems. International Journal of Pharmaceutics, 2021, 597, 120340.	2.6	16
916	A Review on Designing Poly (Lactic-co-glycolic Acid) Nanoparticles as Drug Delivery Systems. Pharmaceutical Nanotechnology, 2021, 9, 36-50.	0.6	20
917	Preparation of agarose xerogel nanoparticles by solvent evaporation from water nanodroplets. Polymer Journal, 2021, 53, 815-821.	1.3	2
918	Development of Nanonized Nitrendipine and Its Transformation into Nanoparticulate Oral Fast Dissolving Drug Delivery System. AAPS PharmSciTech, 2021, 22, 113.	1.5	4
919	Development of paclitaxel-loaded poly(lactic acid)/hydroxyapatite core–shell nanoparticles as a stimuli-responsive drug delivery system. Royal Society Open Science, 2021, 8, 202030.	1.1	23
920	Preparation, Physical Properties, and Applications of Water-Based Functional Polymer Inks. Polymers, 2021, 13, 1419.	2.0	4
921	Design of 99mTc radiolabeled gemcitabine polymeric nanoparticles as drug delivery system and in vivo evaluation. Materials Chemistry and Physics, 2021, 263, 124380.	2.0	4
922	Nanotechnology-Based Drug Delivery to Improve the Therapeutic Benefits of NRF2 Modulators in Cancer Therapy. Antioxidants, 2021, 10, 685.	2.2	28
923	Nanoparticles as a Tool for Broadening Antifungal Activities. Current Medicinal Chemistry, 2021, 28, 1841-1873.	1.2	11
924	Impact of PVA modified sulfonated poly (arylene ether ketone) copolymers as proton exchange membranes on fuel cell parameters. Journal of Chemical Sciences, 2021, 133, 1.	0.7	2
925	Polymeric Particulates of Controlled Rigidity for Biomedical Applications. ACS Applied Polymer Materials, 2021, 3, 2274-2289.	2.0	9
926	Resistance and Adaptation of Bacteria to Non-Antibiotic Antibacterial Agents: Physical Stressors, Nanoparticles, and Bacteriophages. Antibiotics, 2021, 10, 435.	1.5	36
927	Evaluation of Drug-Loading Ability of Poly(Lactic Acid)/Hydroxyapatite Core–Shell Particles. Materials, 2021, 14, 1959.	1.3	3
928	Experimental investigation on the cooling performance of polystyrene encapsulated n-Docosane based nanofluid in mini channel heat sink. Heat and Mass Transfer, 2021, 57, 1717-1735.	1.2	5
929	Synthesis of chitosan grafted polymethyl methacrylate nanopolymers and its effect on polyvinyl chloride membrane for acetone recovery by pervaporation. Carbohydrate Polymers, 2021, 258, 117704.	5.1	14
930	Degradation Behavior of Polymers Used as Coating Materials for Drug Delivery—A Basic Review. Polymers, 2021, 13, 1272.	2.0	47
931	Synthesis and Characterization of Diosgenin Encapsulated Poly-Îμ-Caprolactone-Pluronic Nanoparticles and Its Effect on Brain Cancer Cells. Polymers, 2021, 13, 1322.	2.0	31
932	TRİİYODOANİLİN'İN SENTEZLENMESİ, NANOSÜSPANSİYONLARININ HAZIRLANMASI, İN VİT RADYOKONTRAST ÖZELLİKI FRİNİN İNCELENMESİ, Ankara Universitesi Eczacilik Fakultesi Dergisi, 0, , 9	RO KARAK	TERİZASYO

ARTICLE IF CITATIONS # Preparation of Polyetherimide Nanoparticles by a Droplet Evaporation-Assisted Thermally Induced 933 2.0 10 Phase-Separation Method. Polymers, 2021, 13, 1548. Microfluidic-assisted nanoprecipitation of biodegradable nanoparticles composed of PTMC/PCL 934 (co)polymers, tannic acid and doxorubicin for cancer treatment. Colloids and Surfaces B: 2.5 Biointerfaces, 2021, 201, 111598. Nanoparticle delivery system, highly active antiretroviral therapy, and testicular morphology: The 935 1.1 12 role of stereology. Pharmacology Research and Perspectives, 2021, 9, e00776. Polystyrene nanoparticles prepared by nanoprecipitation: A recyclable template for fabricating hollow silica. Journal of Industrial and Engineering Chemistry, 2021, 97, 307-315. Synthesis of Starch Nanoparticles and Their Applications for Bioactive Compound Encapsulation. 937 1.3 26 Ápplied Sciences (Switzerland), 2021, 11, 4547. Liquid Phase Electron Microscopy Provides Opportunities in Polymer Synthesis and Manufacturing. Macromolecules, 2021, 54, 4986-4996. 2.2 Understanding of supramolecular emulsion interfacial polymerization <i>in silico</i>. Journal of 939 1.2 4 Chemical Physics, 2021, 154, 184903. Tunable organic particles: An efficient approach from solvent-dependent Schiff base macrocycles. 4.8 Chinese Chemical Letters, 2021, 32, 3522-3525. Plant oils: From chemical composition to encapsulated form use. International Journal of 941 2.6 31 Pharmaceutics, 2021, 601, 120538. 942 pH-Responsive Electrospun Nanofibers and Their Applications. Polymer Reviews, 2022, 62, 351-399. 5.3 44 New Perspectives in Drug Delivery Systems for the Treatment of Tuberculosis. Current Medicinal 943 1.2 5 Chemistry, 2022, 29, 1936-1958. Polymeric nanomaterials for the development of sustainable plant food value chains. Food 944 Bioscience, 2021, 41, 100978. In Vitro Interaction of Doxorubicin-Loaded Silk Sericin Nanocarriers with MCF-7 Breast Cancer Cells 945 2.0 16 Leads to DNA Damage. Polymers, 2021, 13, 2047. Nanocarrier-based Drug Delivery System for Cancer Therapeutics: A Review of the Last Decade. Current Medicinal Chemistry, 2021, 28, 3753-3772. 946 1.2 24 Improving kidney targeting: The influence of nanoparticle physicochemical properties on kidney 947 4.8 63 interactions. Journal of Controlled Release, 2021, 334, 127-137. Interactions of nanoscale plastics with natural organic matter and silica surfaces using a quartz 948 5.3 crystal microbalance. Water Research, 2021, 197, 117066. Potential of star-shaped polymeric nanoparticles of poly(ε-carprolactone) and poly (lactic-co-glycolic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 949 0.9 0 2021, 27, 102455. Analyzing grain size distributions with the modal decomposition method: literature review and 1.6

procedures. Bulletin of Engineering Geology and the Environment, 2021, 80, 6649-6666.

#	Article	IF	CITATIONS
951	Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chemical Reviews, 2021, 121, 9243-9358.	23.0	162
952	The combination of nanotechnology and traditional Chinese medicine (TCM) inspires the modernization of TCM: review on nanotechnology in TCM-based drug delivery systems. Drug Delivery and Translational Research, 2022, 12, 1306-1325.	3.0	21
953	Interactions of core cross-linked poly(2-oxazoline) and poly(2-oxazine) micelles with immune cells in human blood. Biomaterials, 2021, 274, 120843.	5.7	26
954	Calcium pectinate and hyaluronic acid modified lactoferrin nanoparticles loaded rhein with dual-targeting for ulcerative colitis treatment. Carbohydrate Polymers, 2021, 263, 117998.	5.1	57
955	Organic Nanocarriers for Bevacizumab Delivery: An Overview of Development, Characterization and Applications. Molecules, 2021, 26, 4127.	1.7	7
956	Nanoformulations of Drugs Based on Biodegradable Lactide Copolymers with Various Molecular Structures and Architectures. Nanobiotechnology Reports, 2021, 16, 421-438.	0.2	13
957	Biomedical applications of environmental friendly poly-hydroxyalkanoates. International Journal of Biological Macromolecules, 2021, 183, 549-563.	3.6	40
958	Particle engineering principles and technologies for pharmaceutical biologics. Advanced Drug Delivery Reviews, 2021, 174, 140-167.	6.6	36
959	PLGA-based nanomedicines manufacturing: Technologies overview and challenges in industrial scale-up. International Journal of Pharmaceutics, 2021, 605, 120807.	2.6	109
960	Use of mixture design to optimize nanofabrication of dithiocarbazate–loaded polylactic acid nanoparticles. Journal of Applied Polymer Science, 2022, 139, 51504.	1.3	7
961	Design, synthesis, and antitumor activity of PLGA nanoparticles incorporating a discovered benzimidazole derivative as EZH2 inhibitor. Chemico-Biological Interactions, 2021, 344, 109530.	1.7	6
962	Degradation of polyethylene plastic in soil and effects on microbial community composition. Journal of Hazardous Materials, 2021, 416, 126173.	6.5	77
963	Thermoresponsive Copolymer Nanovectors Improve the Bioavailability of Retrograde Inhibitors in the Treatment of Leishmania Infections. Frontiers in Cellular and Infection Microbiology, 2021, 11, 702676.	1.8	0
965	Nanoparticles and Nanostructured Films with TGF-Î ² 3: Preparation, Characterization, and Efficacy. AAPS PharmSciTech, 2021, 22, 213.	1.5	0
966	Solvent impact on polymer nanoparticles prepared nanoprecipitation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625, 126928.	2.3	14
967	A mini-review of Nanocarriers in drug delivery systems. British Journal of Pharmacy, 2022, 7, .	0.1	2
968	Preparation of anisotropic multiscale micro-hydrogels via two-photon continuous flow lithography. Journal of Colloid and Interface Science, 2022, 608, 622-633.	5.0	4
969	Acetylated cashew gum and fucan for incorporation of lycopene rich extract from red guava (Psidium) Tj ETQq1 1 Biological Macromolecules, 2021, 191, 1026-1037.	l 0.784314 3.6	4 rgBT /Over 9

#	Article	IF	CITATIONS
970	Size Effects in Delamination of Poly(methyl methacrylate)–Acetone–Hexane Solution. Polymer Science - Series A, 2021, 63, 445-450.	0.4	2
971	Functionalization of gold nanoparticles by β-cyclodextrin as a probe for the detection of heavy metals in water and photocatalytic degradation of textile dye. Environmental Research, 2021, 201, 111628.	3.7	28
972	3D printed systems for colon-specific delivery of camptothecin-loaded chitosan micelles. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 167, 48-56.	2.0	19
973	Functional polymers for lithium metal batteries. Progress in Polymer Science, 2021, 122, 101453.	11.8	39
974	Recent progress in micro and nano-encapsulation of bioactive derivatives of the Brazilian genus Pterodon. Biomedicine and Pharmacotherapy, 2021, 143, 112137.	2.5	11
975	Surface engineered nanocarriers for the management of breast cancer. Materials Science and Engineering C, 2021, 130, 112441.	3.8	30
976	Biomaterials and devices for immunotherapy. , 2022, , 97-133.		0
977	Recent progress in biomass-derived carbonaceous composites for enhanced microwave absorption. Journal of Colloid and Interface Science, 2022, 606, 406-423.	5.0	47
978	Green nanomaterials and nanotechnology for the food industry. , 2022, , 215-256.		0
979	Methods for synthesis of nanobiopolymers. , 2021, , 13-35.		2
980	Ocular Drug Delivery to the Retina: Current Innovations and Future Perspectives. Pharmaceutics, 2021, 13, 108.	2.0	82
981	Formulation Development and Characterization of Withaferin-A Loaded Polymeric Nanoparticles for Alzheimer's Disease. BioNanoScience, 2021, 11, 559-566.	1.5	8
982	May nanoparticles offer chances to avoid the development of insecticide resistance in mosquitoes?. , 2021, , 549-563.		0
983	Nanocarriers for Oral Drug Delivery. Nanomedicine and Nanotoxicology, 2021, , 127-151.	0.1	2
984	Experimental treatment of Schistosomiasis mansoni using praziquantel-free and encapsulated into nanostructures. , 2021, , 379-397.		0
985	Nanoparticles and medicine. , 2021, , 21-37.		4
986	Polysaccharide nanoparticles: from fabrication to applications. Journal of Materials Chemistry B, 2021, 9, 7030-7062.	2.9	117
987	Polymer Nanoparticles and Nanomotors Modified by DNA/RNA Aptamers and Antibodies in Targeted Therapy of Cancer. Polymers, 2021, 13, 341.	2.0	27

	Сітаті	on Report	
#	Article	IF	CITATIONS
988	Implementation of the emulsification-diffusion method by solvent displacement for polystyrene nanoparticles prepared from recycled material. RSC Advances, 2021, 11, 2226-2234.	1.7	9
990	Nanotechnology: Current applications and future scope in food. Food Frontiers, 2021, 2, 3-22.	3.7	112
991	Synthetic, Natural Derived Lipid Nanoparticles and Polymeric Nanoparticles Drug Delivery Applications. Engineering Materials, 2020, , 147-165.	0.3	2
992	Nanoplastics in the Aquatic Environment. Critical Review. , 2015, , 325-340.		261
993	Nanocarriers as CNS Drug Delivery Systems for Enhanced Neuroprotection. , 2017, , 33-55.		5
994	Nanoparticulate Delivery Systems. Springer Briefs in Molecular Science, 2014, , 37-57.	0.1	1
995	Biogenic Nanomaterials and Their Applications in Agriculture. , 2020, , 489-514.		2
997	The emulsification-diffusion method to obtain polymeric nanoparticles. , 2018, , 51-83.		9
998	Effect of milling time on microstructure and properties of Nano-titanium polymer by high-energy ball milling. Applied Surface Science, 2018, 434, 1248-1256.	3.1	21
999	Co-flowing of partially miscible liquids for the generation of monodisperse microparticles. Advanced Powder Technology, 2017, 28, 2886-2892.	2.0	1
1000	Preparation of new materials by ethylene glycol modification and Al(OH)3 coating NZVI to remove sulfides in water. Journal of Hazardous Materials, 2020, 390, 122049.	6.5	26
1001	Poly(lipoic acid)-Based Nanoparticles as Self-Organized, Biocompatible, and Corona-Free Nanovectors. Biomacromolecules, 2021, 22, 467-480.	2.6	22
1002	Biomaterials-Based Opportunities to Engineer the Pulmonary Host Immune Response in COVID-19. ACS Biomaterials Science and Engineering, 2021, 7, 1742-1764.	2.6	16
1003	Surfactantâ€mediated synthesis of polyhydroxybutyrate (PHB) nanoparticles for sustained drug delivery. IET Nanobiotechnology, 2019, 13, 416-427.	1.9	9
1004	Formation and Electrochemical Characterisation of Enzyme-Assisted Formation of Polypyrrole and Polyaniline Nanocomposites with Embedded Glucose Oxidase and Gold Nanoparticles. Journal of the Electrochemical Society, 2020, 167, 165501.	1.3	34
1005	Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. Nano Convergence, 2015, 2, .	6.3	2
1006	Biosynthesized Nanoparticles and Its Implications in Agriculture. , 2019, , 257-274.		12
1007	Potential applications of curcumin and curcumin nanoparticles: from traditional therapeutics to modern nanomedicine. Nanotechnology Reviews, 2015, .	2.6	2

#	Article	IF	CITATIONS
1008	Polymeric Nanoparticles Based Topical Drug Delivery: An Overview. Asian Journal of Biomedical and Pharmaceutical Sciences, 2015, 05, 05-12.	0.1	17
1009	Literature review on Biodegradable Nanospheres for Oral and Targeted Drug Delivery. Asian Journal of Biomedical and Pharmaceutical Sciences, 2015, 05, 01-12.	0.1	8
1010	Evaluating the Antibacterial Activity of MgO Nanoparticles Synthesized from Aqueous Leaf Extract. Med One, 2019, , .	1.5	3
1011	Functional Nanogels for Biomedical Applications. Current Medicinal Chemistry, 2012, 19, 5029-5043.	1.2	79
1012	Nanocarriers: A Successful Tool to Increase Solubility, Stability and Optimise Bioefficacy of Natural Constituents. Current Medicinal Chemistry, 2019, 26, 4631-4656.	1.2	62
1013	Glycan Carriers As Glycotools for Medicinal Chemistry Applications. Current Medicinal Chemistry, 2019, 26, 6349-6398.	1.2	5
1014	In Vitro Release Test of Nano-drug Delivery Systems Based on Analytical and Technological Perspectives. Current Analytical Chemistry, 2019, 15, 373-409.	0.6	6
1015	NANOPARTICLES: A PROMISING DRUG DELIVERY APPROACH. Asian Journal of Pharmaceutical and Clinical Research, 2018, 11, 30.	0.3	2
1018	Polymeric nanoparticles: Recent development in synthesis and application. EXPRESS Polymer Letters, 2016, 10, 895-913.	1.1	80
1019	Selection of an optimal method for the preparation of dual loaded flavono polymeric nanoparticle using analytical hierarchy process. International Current Pharmaceutical Journal, 2014, 3, 247-253.	0.2	1
1020	LipiSensors: Exploiting Lipid Nanoemulsions to Fabricate Ionophore-Based Nanosensors. Biosensors, 2020, 10, 120.	2.3	7
1021	Manufacturing processes for polymeric micro and nanoparticles and their biomedical applications. AIMS Bioengineering, 2017, 4, 46-72.	0.6	11
1022	Development of pH sensitive polymeric nanoparticles of erythromycin stearate. Journal of Pharmacy and Bioallied Sciences, 2016, 8, 135.	0.2	14
1023	Synthesis of Organic Nanoparticles and their Applications in Drug Delivery and Food Nanotechnology: A Review. Journal of Nanomaterials & Molecular Nanotechnology, 2014, 03, .	0.1	22
1024	Protein Drug-Loaded Polymeric Nanoparticles. Journal of Biomedical Science and Engineering, 2014, 07, 825-832.	0.2	7
1025	Cytotoxicity and Pharmacokinetic Studies of PLGA Based Capecitabine Loaded Nanoparticles. Indian Journal of Pharmaceutical Education and Research, 2020, 54, 349-356.	0.3	6
1026	Products and Applications of Biopolymers. , 2012, , .		9
1027	Evaluation of In Vivo Transfection Efficiency of Eudragit Coated Nanoparticles of Chitosan-DNA: A pH-sensitive System Prepared for Oral DNA Delivery. Iranian Red Crescent Medical Journal, 2015, 17, e16761.	0.5	9

	Сітатіо	n Report	
#	Article	IF	Citations
1028	Commercial Nanoparticles for Stem Cell Labeling and Tracking. Theranostics, 2013, 3, 544-560.	4.6	103
1029	Nanobiomaterials Administration in Modernization of Biological Science: Current Status and Future Potential. , 2021, , 1-49.		0
1030	Nano-scale delivery: A comprehensive review of nano-structured devices, preparative techniques, site-specificity designs, biomedical applications, commercial products, and references to safety, cellular uptake, and organ toxicity. Nanotechnology Reviews, 2021, 10, 1493-1559.	2.6	18
1031	Recent trends and applications in the research and development activities of redispersible powder: a vision of twenty-first century. Polymer Bulletin, 0, , 1.	1.7	1
1032	Resveratrolâ€Loaded Poly(<scp>d</scp> , <scp>l</scp> â€Lactideâ€ <i>Co</i> â€Glycolide) Microspheres Integrated in a Hyaluronic Acid Injectable Hydrogel for Cartilage Regeneration. Advanced NanoBiomed Research, 2022, 2, .	1.7	4
1033	New amphiphilic terpolymers of N-vinylpyrrolidone with poly(ethylene glycol) methyl ether methacrylate and triethylene glycol dimethacrylate as carriers of the hydrophobic fluorescent dye. Polymer Bulletin, 0, , 1.	1.7	5
1034	Anisotropic Particles through Multilayer Assembly. Macromolecular Bioscience, 2022, 22, e2100328.	2.1	14
1035	MgF2-Based Organized Porous Inorganic Nanofluorides as Heterogeneous Catalysts for Fluorination of 2-Chloropyridine. ACS Applied Nano Materials, 2021, 4, 10601-10612.	2.4	1
1036	Potential utility of nano-based treatment approaches to address the risk of <i>Helicobacter pylori</i> . Expert Review of Anti-Infective Therapy, 2022, 20, 407-424.	2.0	11
1037	Polymeric Nanoparticles and Chitosan Gel Loading Ketorolac Tromethamine to Alleviate Pain Associated with Condyloma Acuminata during the Pre- and Post-Ablation. Pharmaceutics, 2021, 13, 1784.	2.0	8
1038	Polymeric Nanoparticles forÂTargeted Delivery ofÂBioactive Agents and Drugs. , 2013, , 593-616.		0
1041	Nanoencapsulation of Antitumor and Antituberculosis Drug Preparations with Biocompatible Polymers. Journal of Research Updates in Polymer Science, 2014, 3, 63-85.	0.3	0
1042	Mixing Dendron and PEG Initiators for the Polymerisation of Branched pHPMA and Formation of Sterically Stabilised Nanoparticles. Springer Theses, 2015, , 117-170.	0.0	0
1045	NOVA ESTRATÉGIA DE PREPARAÇÃO DE NANOPARTÃCULAS LIPÃDICAS SÓLIDAS PARA ENCAPSULAÇ COMPOSTOS HIDROFÃLICOS. , 0, , .	:ÃfO DE	0
1046	Nanomorphology, Controlled: Bulk Polymer Conversion into Nano-Sized Materials. , 0, , 5414-5436.		0
1047	Crosslinkers: Functionalized Polymeric. , 0, , 2230-2242.		0
1048	Controlled Drug Delivery: Smart and Natural Polymer Systems. , 0, , 2147-2154.		0
1049	Improvement of Proton-ExchangeMembranes Based on(1x)(H3PO2/PVA)-xTiO2. IngenierÃa Y Ciencia, 2017, 13, 153-166.	0.3	1

#	Article	IF	CITATIONS
1050	Nanogels: Chemical Approaches to Preparation. , 2017, , 1007-1034.		1
1051	Alginates in Metabolic Syndrome. Springer Series in Biomaterials Science and Engineering, 2018, , 223-235.	0.7	0
1052	Fabrication of Biodegradable Core-Shell Micro/Nanoparticles. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2018, 65, 624-628.	0.1	0
1053	Kitosan-Gümüş Nanopartikülü ve Kitosan-Gümüş-Grafen Oksit Nanokompozitinin Sentezi, Karakterizasyonu ve Antimikrobiyal Aktivitelerinin Belirlenmesi. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, 2018, 15, 208-215.	0.1	1
1054	Effects of miniemulsion operation conditions on the immobilization of BSA onto PMMA nanoparticles. Polimeros, 2019, 29, .	0.2	1
1055	Preparation of itraconazole nanoparticles and its topical nanogel: Physicochemical properties and stability studies. International Journal of Pharmaceutical Sciences and Developmental Research, 0, , 001-008.	0.7	0
1056	Strategies in Polymeric Nanoparticles and Hybrid Polymer Nanoparticles. NanoWorld Journal, 2019, 05,	0.8	6
1057	Synthesis and Characterizations of Hydrophilic pHEMA Nanoparticles via Inverse Miniemulsion Polymerization. Sains Malaysiana, 2019, 48, 1753-1759.	0.3	0
1058	Novel Drug Delivery System in Phytochemicals: Modern Era of Ancient Science. , 2020, , 175-189.		3
1059	Green Synthesis of Nanoparticles and their Possible Avenues in Environmental Application – A Review. International Journal of Current Microbiology and Applied Sciences, 2019, 8, 2644-2650.	0.0	0
1060	Nanoparticle Enhanced Optical Biosensing Technologies for Prostate Specific Antigen Biomarker Detection. IEEE Reviews in Biomedical Engineering, 2022, 15, 122-137.	13.1	4
1061	Single-chain polymeric nanoparticles using 4-armed star copolymers. Polymer, 2020, 201, 122659.	1.8	3
1062	Duodenal Histomorphological Changes in Broilers Administered poly d, l-lactic-coglycolic acid (PLGA) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Ti
1063	Role of Nanoparticles in the Management of Metabolic Disorders. Emerging Contaminants and Associated Treatment Technologies, 2021, , 409-441.	0.4	0
1064	All-organic polyamide 11/P(vinylidene fluoride–trifluoroethylene) nanocomposites with enhanced dielectric properties. Journal of Materials Science: Materials in Electronics, 0, , 1.	1.1	1
1065	Nanomaterials Based Sensors for Air Pollution Control. Environmental Chemistry for A Sustainable World, 2020, , 349-403.	0.3	3
1066	Development and Characterization of Poly-ε-caprolactone Nanocapsules Containing β-carotene Using the Nanoprecipitation Method and Optimized by Response Surface Methodology. Brazilian Archives of Biology and Technology, 0, 63, .	0.5	9
1067	Gastrointestinal Delivery of APIs from Chitosan Nanoparticles. , 0, , .		2

#	Article	IF	CITATIONS
1068	An Overview: Preparation Characterization and Applications of Nanoparticles. Journal of Drug Delivery and Therapeutics, 2020, 10, 159-167.	0.2	2
1069	Interaction of nanomaterials with microbes. , 2022, , 31-59.		0
1070	Process of biodegradation controlled by nanoparticle-based materials: mechanisms, significance, and applications. , 2022, , 61-84.		0
1071	Introduction to Nanomedicine in Drug Delivery. AAPS Advances in the Pharmaceutical Sciences Series, 2020, , 3-26.	0.2	2
1072	Nanophytomedicine: An Effective Way for Improving Drug Delivery and Bioavailability of Herbal Medicines. , 2020, , 55-70.		2
1073	Nanopharmaceuticals: Synthesis, Characterization, and Challenges. Environmental Chemistry for A Sustainable World, 2020, , 81-138.	0.3	0
1074	Lipid and Polymeric Nanoparticles: Drug Delivery Applications. Engineering Materials, 2020, , 167-230.	0.3	5
1075	Metallic Nanoparticles: Applications in Drug Delivery. , 2021, , 125-150.		0
1076	Improving the self-assembly of bioresponsive nanocarriers by engineering doped nanocarbons: a computational atomistic insight. Scientific Reports, 2021, 11, 21538.	1.6	5
1077	N â€acetylcysteine–PLGA nanoâ€conjugate: effects on cellular toxicity and uptake of gadopentate dimeglumine. IET Nanobiotechnology, 2020, 14, 470-478.	1.9	2
1078	Natural Products and Nanopharmaceuticals. Environmental Chemistry for A Sustainable World, 2021, , 113-154.	0.3	0
1079	Biodegradable Polymeric Nanoparticles for Brain-Targeted Drug Delivery. Neuromethods, 2021, , 1-27.	0.2	1
1080	Fabrication design, process technologies, and convolutions in the scale-up of nanotherapeutic delivery systems. , 2022, , 47-131.		1
1081	Size Control of Polymer Nanoparticles Using 3D Network Structure as a Reaction Field. Journal of the Society of Powder Technology, Japan, 2021, 58, 481-485.	0.0	0
1082	An Insight into the Polymeric Nanoparticles Applications in Diabetes Diagnosis and Treatment. Mini-Reviews in Medicinal Chemistry, 2023, 23, 192-216.	1.1	1
1083	Classification, Synthesis and Application of Nanoparticles Against Infectious Diseases. , 2022, , 35-58.		0
1084	Highly Efficient Synthesis of Type B Gelatin and Low Molecular Weight Chitosan Nanoparticles: Potential Applications as Bioactive Molecule Carriers and Cell-Penetrating Agents. Polymers, 2021, 13, 4078.	2.0	9
1085	Application of chitosan modified nanocarriers in breast cancer. International Journal of Biological Macromolecules, 2022, 194, 521-538.	3.6	37

#	Article	IF	CITATIONS
1086	Tailoring of Antihypertensive Drug-Loaded Nanoparticles: In Vitro, Toxicity, and Bioavailability Assessment. BioNanoScience, 2022, 12, 28-40.	1.5	2
1087	Oromucosal Alginate Films with Zein Nanoparticles as a Novel Delivery System for Digoxin. Pharmaceutics, 2021, 13, 2030.	2.0	5
1088	Micro and Nano-Plastics in the Environment: Research Priorities for the Near Future. Reviews of Environmental Contamination and Toxicology, 2021, 257, 163-218.	0.7	8
1089	Application of Nanoparticles for Environmental Remediation. Advances in Chemical and Materials Engineering Book Series, 2022, , 199-222.	0.2	0
1090	High-performance transparent nanocomposites based on robust organic nanoparticles for optoelectronic applications. Progress in Organic Coatings, 2022, 164, 106699.	1.9	1
1091	Micro (nano) plastics in wastewater: A critical review on toxicity risk assessment, behaviour, environmental impact and challenges. Chemosphere, 2022, 290, 133169.	4.2	43
1092	Highly detection of Zn (II) ion sensing and photocatalytic activities of biosynthesized AgNPs using NilgirianthusCiliatus leaf extract and its properties. Materials Research Bulletin, 2022, 149, 111715.	2.7	1
1093	Preliminary Evaluation of Pullulan Nanoparticles Loaded with Valsartan. Chemistry Proceedings, 2021, 3, 139.	0.1	1
1094	Studies on the Preparation of Nanoparticles from Betulin-Based Polyanhydrides. Engineering Proceedings, 2021, 11, .	0.4	1
1095	Surface energy properties of lignin particles studied by inverse gas chromatography and interfacial adhesion in polyester composites with electromagnetic transparency. Cellulose, 2022, 29, 2961-2973.	2.4	4
1096	Microlignin. , 2022, , 1-23.		0
1097	AIE-active macromolecules: designs, performances, and applications. Polymer Chemistry, 2021, 13, 8-43.	1.9	20
1098	Polymer Colloids for Functional Coating Applications. , 2022, , .		0
1099	Advances in Polyhydroxyalkanoate Nanocarriers for Effective Drug Delivery: An Overview and Challenges. Nanomaterials, 2022, 12, 175.	1.9	23
1100	Stimuli-responsive polymeric nanoparticles as controlled drug delivery systems. , 2022, , 87-117.		3
1101	Polymeric nanoparticles with potential applications in sensing and biosensing. , 2022, , 401-426.		1
1102	Dissymmetric Chiral Poly(diphenylacetylene)s: Secondary Structure Elucidation and Dynamic Luminescence. Angewandte Chemie - International Edition, 2022, , .	7.2	18
1103	Synthesis and functionalization of dendritic polyglycerol-based nanogels: application in T cell activation. Journal of Materials Chemistry B, 2021, 10, 96-106.	2.9	8

		CITATION REPORT	
# 1104	ARTICLE Nanoparticle Decoration of Nanocellulose for Improved Performance. , 2022, , 1-30.	IF	CITATIONS
1105	Mechanical Properties of Crystalline and Semicrystalline Polymer Systems. , 2022, , 917-927.		4
1107	Dissymmetric Chiral Poly(diphenylacetylene)s: Secondary Structure Elucidation and Dynamic Luminescence. Angewandte Chemie, 2022, 134, .	1.6	5
1108	Structureâ€Based Varieties of Polymeric Nanocarriers and Influences of Their Physicochemical Properties on Drug Delivery Profiles. Advanced Science, 2022, 9, e2105373.	5.6	80
1109	Nanoparticle mediated targeting of toll-like receptors to treat colorectal cancer. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 172, 16-30.	2.0	4
1110	Preparation and Evaluation of Eprosartan Mesylate loaded PLGA Nanostructures. Research Journal Pharmacy and Technology, 2022, , 103-112.	of 0.2	2
1111	Self-Assembled Nanostructures from Amphiphilic Sucrose-Soyates for Solubilizing Hydrophobic Gu Molecules. Langmuir, 2022, 38, 2066-2075.	est 1.6	6
1112	Detection of heavy metals, SERS and antibacterial activity of polyvinylpyrolidone modified plasmor nanoparticles. Environmental Research, 2022, 210, 112883.	iic 3.7	6
1113	Exploring Various Techniques for the Chemical and Biological Synthesis of Polymeric Nanoparticles Nanomaterials, 2022, 12, 576.	. 1.9	42
1114	An experimental study on emulsion polymerization for formation of monodisperse particles smalle than 50Anm. Colloid and Polymer Science, 2022, 300, 397-405.	1.0	3
1115	QbD Supported Optimization of the Alginate-Chitosan Nanoparticles of Simvastatin in Enhancing Anti-Proliferative Activity against Tongue Carcinoma. Gels, 2022, 8, 103.	he 2.1	17
1116	Brief Outlook on Polymeric Nanoparticles, Micelles, Niosomes, Hydrogels and Liposomes: Preparat Methods and Action. ChemistrySelect, 2022, 7, .	ve 0.7	15
1117	Efficient polycation non-viral gene delivery system with high buffering capacity and low molecular weight for primary cells: Branched poly(l²-aminoester) containing primary, secondary and tertiary amine groups. European Polymer Journal, 2022, 166, 111046.	2.6	3
1118	Thiol-Functional Polymer Nanoparticles via Aerosol Photopolymerization. Polymers, 2021, 13, 4363	3. 2.0	2
1120	Development of poly(<i>p</i> -coumaric acid) as a self-anticancer nanocarrier for efficient and bios cancer therapy. Biomaterials Science, 2022, 10, 2263-2274.	afe 2.6	11
1121	Increased block copolymer length improves intracellular availability of protein cargo. Polymer Chemistry, 2022, 13, 1901-1910.	1.9	2
1123	Recent Advances in Nanostructured Polymers. Materials Horizons, 2022, , 199-226.	0.3	1
1124	<i>Rosmarinus officinalis</i> essential oil incorporated into nanoparticles as an efficient insecticid against <i>Drosophila suzukii</i> (Diptera: Drosophilidae). Austral Entomology, 2022, 61, 265-272	2 0.8	3

#	Article	IF	CITATIONS
1126	Polymeric nanoparticles in the diagnosis and treatment of myocardial infarction: Challenges and future prospects. Materials Today Bio, 2022, 14, 100249.	2.6	10
1127	Nanoparticles for Inducing Antigen-Specific T Cell Tolerance in Autoimmune Diseases. Frontiers in Immunology, 2022, 13, 864403.	2.2	11
1129	Highly Sensitive â€~on–off' Pyrene Based AlEgen for Selective Sensing of Copper (II) Ions in Aqueous Media. Journal of Fluorescence, 2022, 32, 1059-1071.	1.3	8
1130	Nanocarrier Systems in Taste Masking. Scientia Pharmaceutica, 2022, 90, 20.	0.7	6
1132	Chirality of proteinoid nanoparticles made of lysine and phenylalanine. Polymers for Advanced Technologies, 2022, 33, 3788-3796.	1.6	2
1133	Pickering nanoemulsions and their mechanisms in enhancing oil recovery: A comprehensive review. Fuel, 2022, 319, 123667.	3.4	20
1134	Ultrasonication-induced and diluent-assisted suspension polymerization for size-controllable synthesis of polydimethylsiloxane droplets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 644, 128827.	2.3	5
1135	Microfluidics Technology for the Design and Formulation of Nanomedicines. Nanomaterials, 2021, 11, 3440.	1.9	20
1136	Engineering polymer nanoparticles using cell membrane coating technology and their application in cancer treatments: Opportunities and challenges. Nano Materials Science, 2022, 4, 295-321.	3.9	22
1137	Microfluidic-Generated Immunomodulatory Nanoparticles and Formulation-Dependent Effects on Lipopolysaccharide-Induced Macrophage Inflammation. AAPS Journal, 2022, 24, 6.	2.2	10
1138	Microfluidic-Supported Synthesis of Anisotropic Polyvinyl Methacrylate Nanoparticles via Interfacial Agents Polymer Chemistry, 0, , .	1.9	0
1139	Improved pulmonary drug delivery through nanocarriers. , 2022, , 103-133.		0
1140	Recent Fabrication Methods to Produce Polymer-Based Drug Delivery Matrices (Experimental and In) Tj ETQq0 0	0 rgBT /Ov 2.0	verlock 10 Tf
1142	Microfluidic Engineering of RGD ^[1] â€Terminated Nanocarriers Micellization and Inâ€5itu Docetaxel Encapsulation: An Atomistic Insight. ChemistrySelect, 2022, 7, .	0.7	7
1143	Delivery of triptolide: a combination of traditional Chinese medicine and nanomedicine. Journal of Nanobiotechnology, 2022, 20, 194.	4.2	20
1144	Developments in phase change material (PCM) doped energy efficient polyurethane (PU) foam for perishable food cold-storage applications: A review. Journal of Energy Storage, 2022, 50, 104620.	3.9	41
1148	Influence of the Dispersion Characteristics for Producing Thermoregulating Nano Phase Change Slurries. SSRN Electronic Journal, 0, , .	0.4	0
1149	Biogenic Synthesis of Nanoparticles and Drug Delivery Systems. Advances in Bioinformatics and Biomedical Engineering Book Series, 2022, , 1-26.	0.2	0

ARTICLE IF CITATIONS Development of Carboxymethyl Chitosan Nanoparticles Prepared by Ultrasound-Assisted Technique 1150 2.0 8 for a Clindamycin HCl Carrier. Polymers, 2022, 14, 1736. Synthesis of fluorescent polystyrene nanoparticles: a reproducible and scalable method., 0, 4, e22. Polymer nanoparticles (nanomedicine) for therapeutic applications., 2022, , 71-123. 0 1152 Nanopolymers in drug delivery system. Materials Today: Proceedings, 2022, 67, 25-30. 0.9 Pegylated-polycaprolactone nano-sized drug delivery platforms loaded with biocompatible silver(I) 1154 1.7 1 complexes for anticancer therapeutics. RSC Medicinal Chemistry, 0, , . Study of sonication parameters on PLA nanoparticles preparation by simple emulsion-evaporation solvent technique. European Polymer Journal, 2022, 173, 111307. 2.6 Nanosizing of polymeric particles by suppressing growth via heterocoagulation using a 3D 1156 2.1 2 micro-network reactor. Powder Technology, 2022, 405, 117530. Confined microemulsion sono-polymerization of poly(ethylene glycol) nanoparticles for targeted delivery. Chemical Communications, 2022, 58, 7777-7780. 1159 Targeting of lipid/polymeric (hybrid) nanoparticles to brain tumors., 2022, 587-622. 0 Antimicrobial Properties of Strychnos phaeotricha (Loganiaceae) Liana Bark Secondary Metabolites at the Interface of Nanosilver Particles and Nanoencapsulation by Chitosan Transport Vehicles. Journal 1.5 of Nanomaterials, 2022, 2022, 1-14. Assembly of Fluorescent Polymer Nanoparticles Using Different Microfluidic Mixers. Langmuir, 2022, 1161 9 1.6 38, 7945-7955. Bioadhesive Nanoparticles as Potent Drug Delivery Carriers. Current Medicinal Chemistry, 2023, 30, 1.2 2604-2637. Solvents drive self-assembly mechanisms and inherent properties of Kraft lignin nanoparticles 1163 5.0 21 (<50Ânm). Journal of Colloid and Interface Science, 2022, 626, 178-192. Functionalization of Nanomaterials: Synthesis and Characterization. ACS Symposium Series, 0, , 1-26. 1164 Design and evaluation of redox responsive disulfide containing resveratrol loaded nanocarrier 1165 0.9 1 anti-Cancer activity in the MDA-MB-231 cell line. Materials Today Communications, 2022, 32, 103873. Nanoparticle Decoration of Nanocellulose for Improved Performance., 2022, , 377-405. High-performance family of polymeric particles prepared from poly(phenylene oxide)-poly(hexyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 10 1167 1.0 0 Composites, 2022, 30, 096739112211046. Nanostructured pharmaceutical formulations for topical application of clove oil and eugenol., 2022,

CITATION REPORT

, 363-403.

#	Article	IF	CITATIONS
1169	Versatile and Rapid Synthesis of Polymer Nanodomes via Template- and Solvent-free Condensed Droplet Polymerization. Chemistry of Materials, 2022, 34, 5960-5970.	3.2	10
1170	Recent Advances in Nanomaterials for Diagnosis, Treatments, and Neurorestoration in Ischemic Stroke. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	7
1171	Antifungal activity of poly(lµâ€€aprolactone) nanoparticles incorporated with <i>Eucalyptus</i> essential oils against <i>Hemileia vastatrix</i> . Letters in Applied Microbiology, 0, , .	1.0	0
1172	Research progress of poly(methyl methacrylate) microspheres: Preparation, functionalization and application. European Polymer Journal, 2022, 175, 111379.	2.6	18
1173	Controlled release and targeted drug delivery with poly(lactic-co-glycolic acid) nanoparticles: reviewing two decades of research. Journal of Pharmaceutical Investigation, 2022, 52, 683-724.	2.7	34
1174	Inorganic Nanomaterials versus Polymer-Based Nanoparticles for Overcoming Neurodegeneration. Nanomaterials, 2022, 12, 2337.	1.9	10
1175	Evolution and Recent Scenario of Nanotechnology in Agriculture and Food Industries. Journal of Nanomaterials, 2022, 2022, 1-17.	1.5	24
1176	Implementation of factorial experimental design in chitosan - tripolyphosphate nanoparticles development by ionotropic gelation. International Journal of Health Sciences, 0, , .	0.0	Ο
1177	A review on nanoparticles categorization, characterization and applications in drug delivery systems. Vibrational Spectroscopy, 2022, 121, 103407.	1.2	6
1178	Gossypol-Embedded Casein Nanoparticles for Potential Targeting of Ovarian Cancer: Formulation, Characterization, and Anticancer Activity. Journal of Pharmaceutical Innovation, 2023, 18, 563-574.	1.1	2
1179	Inhalable Formulation Based on Lipid–Polymer Hybrid Nanoparticles for the Macrophage Targeted Delivery of Roflumilast. Biomacromolecules, 2022, 23, 3439-3451.	2.6	12
1180	Stabilization of Aqueous MMA Emulsions Using Mixtures of Surfactants and Implications on MMA Miniemulsion Polymerizations. Macromolecular Reaction Engineering, 2022, 16, .	0.9	1
1181	Gummy Nanoparticles with Glassy Shells in Electrostatic Nanocomposites. Langmuir, 2022, 38, 9611-9620.	1.6	1
1182	Hydrophobically Modified Abelmoschus Esculentus Polysaccharide Based Nanoparticles and Applications: A Review. Current Drug Discovery Technologies, 2022, 19, .	0.6	1
1183	A Comprehensive Review on COVID-19: Emphasis on Current Vaccination and Nanotechnology Aspects. Recent Patents on Nanotechnology, 2022, 16, .	0.7	0
1184	Biopolymer Nanoparticles for Nose-to-Brain Drug Delivery: A New Promising Approach for the Treatment of Neurological Diseases. Journal of Functional Biomaterials, 2022, 13, 125.	1.8	17
1185	Native PLGA nanoparticles regulate APP metabolism and protect neurons against β-amyloid toxicity: Potential significance in Alzheimer's disease pathology. International Journal of Biological Macromolecules, 2022, 219, 1180-1196.	3.6	9
1186	Influence of the dispersion characteristics for producing thermoregulating nano phase change slurries. Chemical Engineering Journal, 2023, 452, 139034.	6.6	4

#	Article	IF	CITATIONS
1187	Polymeric Nanoparticles and Nanocomposites as Antibacterial Agents. , 2022, , 305-328.		1
1188	Green chemistry inspired formation of bioactive stable colloidal nanosilver and its wide-spectrum functionalised properties for sustainable industrial escalation. Results in Chemistry, 2022, 4, 100533.	0.9	3
1189	Nanoparticles and Bioceramics Used in Hard Tissue Engineering. , 2022, , 21-32.		0
1190	Nanofabrication of Catechin-Loaded Alginate, Pectin, and Chitosan Polymeric Nanoparticles. Springer Protocols, 2022, , 399-422.	0.1	0
1191	A europium(<scp>iii</scp>)-based nanooptode for bicarbonate sensing – a multicomponent approach to sensor materials. Chemical Communications, 2022, 58, 9198-9201.	2.2	5
1192	Experimental Animal Models to Evaluate the Therapeutic Efficacy of Nanoformulations Against Cancer. , 2022, , 2971-2991.		0
1193	Combating atherosclerosis with nanodrug delivery approaches: from bench side to commercialization. , 2022, , 97-136.		1
1194	Nanomaterials for optical biosensors in forensic analysis. Talanta, 2023, 253, 123945.	2.9	13
1195	ENCAPSULATION AND ITS USE IN FOOD TECHNOLOGY. Veteriner Farmakoloji Ve Toksikoloji DerneÄŸi Bülteni, 2022, 13, 99-119.	0.1	0
1196	Role of Nanoparticles in Improving Stress Tolerance in Crop Plants. , 2022, , 386-394.		1
1197	Liver-specific drug delivery platforms: Applications for the treatment of alcohol-associated liver disease. World Journal of Gastroenterology, 0, 28, 5280-5299.	1.4	3
1198	Nanocarriers with Multiple Cargo Load—A Comprehensive Preparation Guideline Using Orthogonal Strategies. Macromolecular Rapid Communications, 2023, 44, .	2.0	5
1199	Development of beta-carotene-loaded poly(lactic acid)/hydroxyapatite core-shell nanoparticles for osteoblast differentiation. Journal of Asian Ceramic Societies, 2022, 10, 744-754.	1.0	1
1201	Sustained Drug Release from Smart Nanoparticles in Cancer Therapy: A Comprehensive Review. Micromachines, 2022, 13, 1623.	1.4	23
1202	Multifunctional Polymeric Nanocarriers for Targeted Brain Delivery. , 2022, , 259-305.		0
1203	Theranostic Nanoparticles in Cancer Diagnosis and Treatment. , 2022, , 179-223.		1
1204	An Overview on Macrophage Targeting: A Promising Approach. Critical Reviews in Therapeutic Drug Carrier Systems, 2023, 40, 47-92.	1.2	2
1205	Fabrication and mechanism study of the nitrocellulose aqueous dispersions by solvent displacement method. Journal of Applied Polymer Science, 2023, 140, .	1.3	4

#	Article	IF	CITATIONS
1206	Polymeric Nanoparticles for Inhaled Vaccines. Polymers, 2022, 14, 4450.	2.0	7
1207	Highâ€Performance Vitrimeric Benzoxazines for Sustainable Advanced Materials: Design, Synthesis, and Applications. Macromolecular Materials and Engineering, 2023, 308, .	1.7	8
1208	Multifunctional β-Cyclodextrin–Poly(ethylene glycol)–Cholesterol Nanomicelle for Anticancer Drug Delivery. ACS Applied Bio Materials, 2022, 5, 5418-5431.	2.3	2
1209	Polymeric nanoparticles as drug delivery systems for dementia. , 2023, , 89-114.		0
1210	Nanobiomaterials Administration in Modernization of Biological Science: CurrentÂStatus and Future Potential. , 2022, , 729-777.		0
1211	Methods to Formulate Polymeric Nanoparticles. Environmental Chemistry for A Sustainable World, 2022, , 51-74.	0.3	0
1212	Polymeric Nanoparticles thatÂEntrap Drug Combinations Targeted to Solid Tumors. Environmental Chemistry for A Sustainable World, 2022, , 213-232.	0.3	0
1213	Layer-by-layer printable nano-scale polypropylene for precise control of nanocomposite capacitor dielectric morphologies in metallised film capacitors. , 2023, 4, 100025.		2
1214	Advances in Natural Polymeric Nanoparticles for the Drug Delivery. , 0, , .		0
1215	Production of nanostructured systems: Main and innovative techniques. Drug Discovery Today, 2023, 28, 103454.	3.2	4
1217	<scp>C</scp> omputational fluid dynamic study of polycaprolactone nanoparticles precipitation in a coâ€flow capillary microâ€ŧube. Canadian Journal of Chemical Engineering, 2023, 101, 4746-4761.	0.9	1
1218	Investigation of herbal plant medicines Baishouwu on the mechanism of the digestion of body: A review. Journal of Functional Foods, 2023, 100, 105379.	1.6	1
1219	Skin absorption of inorganic nanoparticles and their toxicity: A review. European Journal of Pharmaceutics and Biopharmaceutics, 2023, 182, 128-140.	2.0	5
1220	Current nanotechnological strategies using lipids, carbohydrates, proteins and metal conjugates-based carrier systems for diagnosis and treatment of tuberculosis — A review. International Journal of Biological Macromolecules, 2023, 227, 262-272.	3.6	3
1221	Drug release using nanoparticles in the cancer cells on 2-D materials in order to target drug delivery: A numerical simulation via molecular dynamics method. Engineering Analysis With Boundary Elements, 2023, 148, 34-40.	2.0	17
1222	Thermodynamic study of the effects of nanoparticles on thermal origin: A review. Thermal Science, 2022, , 193-193.	0.5	0
1223	A Compendious Review on Biodegradable Polymeric Nanoparticles. Asian Journal of Pharmacy and Technology, 2022, , 371-381.	0.2	0
1224	Nano-Encapsulated Essential Oils as a Preservation Strategy for Meat and Meat Products Storage. Molecules, 2022, 27, 8187.	1.7	7

#	Article	IF	CITATIONS
1225	A Review on Diverging approaches to Fabricate Polymeric Nanoparticles. Asian Journal of Research in Pharmaceutical Science, 2022, , 341-344.	0.1	1
1226	A comprehensive update of siRNA delivery design strategies for targeted and effective gene silencing in gene therapy and other applications. Expert Opinion on Drug Discovery, 2023, 18, 149-161.	2.5	5
1227	Targeting of phagolysosomes containing conidia of the fungus Aspergillus fumigatus with polymeric particles. Applied Microbiology and Biotechnology, 0, , .	1.7	0
1228	Electrochemical fabrication of poly(l-alanine)-gold nanoparticle nanocomposite-modified electrode: application for determination and mechanism of antipsychotic drug olanzapine. Monatshefte FÃ1⁄4r Chemie, 2023, 154, 95-104.	0.9	5
1229	Osmotic Pressure as Driving Force for Reducing the Size of Nanoparticles in Emulsions. ACS Nano, 0, ,	7.3	0
1230	Biotechnological Applications of Nanoencapsulated Essential Oils: A Review. Polymers, 2022, 14, 5495.	2.0	12
1231	Engineered nanomedicines for augmenting the efficacy of colorectal cancer immunotherapy. Nanomedicine, 0, , .	1.7	0
1232	Inhibition of WNT signaling by conjugated microRNA nano-carriers: A new therapeutic approach for treating triple-negative breast cancer a perspective review. Critical Reviews in Oncology/Hematology, 2023, 182, 103901.	2.0	4
1233	Nanomaterials. , 2023, , 71-122.		0
1234	Crosslinked chitosan-based particles obtained by water-in-oil emulsion technique. Journal of Physics: Conference Series, 2023, 2436, 012027.	0.3	0
1235	Recent advances in mixing-induced nanoprecipitation: from creating complex nanostructures to emerging applications beyond biomedicine. Nanoscale, 2023, 15, 3594-3609.	2.8	9
1236	Introduction to polymeric nanomaterials. , 2023, , 3-25.		5
1237	Encapsulation of PI3K Inhibitor LY294002 within Polymer Nanoparticles Using Ion Pairing Flash Nanoprecipitation. Pharmaceutics, 2023, 15, 1157.	2.0	3
1238	Nitroxide-containing amphiphilic polymers prepared by simplified electrochemically mediated ATRP as candidates for therapeutic antioxidants. Polymer, 2023, 273, 125885.	1.8	1
1239	Polymer-Based Nanostructures for Pancreatic Beta-Cell Imaging and Non-Invasive Treatment of Diabetes. Pharmaceutics, 2023, 15, 1215.	2.0	0
1240	Production of polyhydroxyalkanoates from renewable resources: a review on prospects, challenges and applications. Archives of Microbiology, 2023, 205, .	1.0	8
1241	Nano based-oncolytic viruses for cancer therapy. Critical Reviews in Oncology/Hematology, 2023, 185, 103980.	2.0	8
1242	Experimental study of the rheology of cellulose nanocrystals-enhanced C22-tailed zwitterionic wormlike micelles. Journal of Molecular Liquids, 2023, 378, 121648.	2.3	0

#	Article	IF	Citations
1243	Nanomaterials for Point-of-Care Biosensors. , 2022, , 55-77.		1
1244	Polymer nanocomposites application in drilling fluids: A review. , 2023, 222, 211416.		24
1245	Effects of the polymer glass transition on the stability of nanoparticle dispersions. Soft Matter, 2023, 19, 1212-1218.	1.2	3
1246	Neural modulation with photothermally active nanomaterials. , 2023, 1, 193-207.		15
1247	Review on natural fibre composites reinforced with nanoparticles. Materials Today: Proceedings, 2023, , .	0.9	4
1248	Contributions of nanotechnology to the intraductal drug delivery for local treatment and prevention of breast cancer. International Journal of Pharmaceutics, 2023, 635, 122681.	2.6	6
1250	Unveiling the Pharmacological and Nanotechnological Facets of Daidzein: Present State-of-the-Art and Future Perspectives. Molecules, 2023, 28, 1765.	1.7	7
1251	Osteoimmunomodulatory Nanoparticles for Bone Regeneration. Nanomaterials, 2023, 13, 692.	1.9	13
1252	Theranostic polymeric nanoparticles as a new approach in cancer therapy and diagnosis: a review. Materials Today Chemistry, 2023, 29, 101400.	1.7	11
1253	Targeted Nanocarriers-based Approach For Prostate Cancer Therapy. , 2023, , 133-162.		0
1254	Development and in-vitro evaluation of chitosan and glyceryl monostearate based matrix lipid polymer hybrid nanoparticles (LPHNPs) for oral delivery of itraconazole. Heliyon, 2023, 9, e14281.	1.4	6
1255	Innovative nanomaterials for cancer diagnosis, imaging, and therapy: Drug delivery applications. Journal of Drug Delivery Science and Technology, 2023, 82, 104357.	1.4	16
1256	Phytochemical-Based Nanomaterials against Antibiotic-Resistant Bacteria: An Updated Review. Polymers, 2023, 15, 1392.	2.0	9
1257	Experimental approach to bio-waste nanoparticles suitable for radiator coolant. Advances in Materials and Processing Technologies, 0, , 1-15.	0.8	0
1258	Drug loading methods and drug release mechanisms of PLGA nanoparticles. , 2023, , 55-86.		0
1259	Aqueous processing of organic semiconductors enabled by stable nanoparticles with built-in surfactants. Nanoscale, 2023, 15, 6793-6801.	2.8	3
1260	From Meso to Macro: Controlling Hierarchical Porosity in Supraparticle Powders. Small, 2023, 19, .	5.2	3
1262	Polymeric nanosystems for cardiovascular therapeutics. , 2023, , 699-722.		0

#	Article	IF	CITATIONS
1263	Molecular imprinting and surface grafting of glycoprotein fragments in polymeric nanosystems: from cancer diagnosis to virus targeting. , 2023, , 787-841.		1
1264	Poly(lactic acid) and poly(lactic-co-glycolic acid)-based nanocarrier systems for theranostic applications. , 2023, , 13-36.		1
1265	Polycaprolactone-based nanoparticles for advanced therapeutic applications. , 2023, , 37-84.		0
1266	Synthesis and application of green solvent dispersed organic semiconducting nanoparticles. Nano Research, 2023, 16, 13419-13433.	5.8	2
1267	Knowledge-Based Design of Multifunctional Polymeric Nanoparticles. Handbook of Experimental Pharmacology, 2023, , .	0.9	0
1272	New Perspective Application and Hazards of Nanomaterial in Aquatic Environment. Environmental Contamination Remediation and Management, 2023, , 279-304.	0.5	0
1273	Polymer-nanoferrite composites: structural, transport, and magnetic properties. , 2023, , 117-140.		1
1280	Organic and inorganic nanomaterials: fabrication, properties and applications. RSC Advances, 2023, 13, 13735-13785.	1.7	17
1282	Polymeric nanomaterials with aggregation-induced emission characteristics. Materials Chemistry Frontiers, 2023, 7, 4768-4781.	3.2	2
1285	Nanotechnology in herbal medicine. , 2023, , 1-14.		0
1286	Polysaccharide-Based Nano-Delivery Systems for the Treatment of Colorectal Cancer. , 2023, , 1-26.		0
1287	Nano Drug Delivery Strategies for anÂOral Bioenhanced Quercetin Formulation. European Journal of Drug Metabolism and Pharmacokinetics, 2023, 48, 495-514.	0.6	2
1291	Micro- and Nanoparticle of Chitosan for Vitamin Encapsulation: A Nutshell Overview. , 2023, , 187-210.		0
1292	Pectin-based drug delivery systems for biomedical applications. , 2023, , 301-346.		0
1293	Processing methods and characterization techniques of sustainable polymers: Challenges and emerging technologies. , 2024, , 55-90.		0
1296	Visualization of Latent Fingerprint Using Conjugated Polymer Nanoparticles. Materials Horizons, 2023, , 157-168.	0.3	0
1299	Nanoparticles for triggering gene expression and osteoconductivity. , 2023, , 477-496.		0
1300	Nanoformulation Synthesis and Mechanisms of Interactions with Biological Systems. , 2023, , 18-35.		Ο

IF ARTICLE CITATIONS Nanoparticles in bone tissue engineering., 2023, , 427-456. 1302 0 Polymeric Nanoparticles-Based Drug Delivery Systems for Anticancer Therapy., 2023, , 499-515. Synthesis and Study on a Type of New Salt-Resistant and Slow-Expansion Gel Particles for Deep Water 1309 0 Control., 2023, , . Risk Assessment of Large-scale Nanoparticle Uses., 2023, , 193-237. Fitting models for a grain size distribution: a review. Bulletin of Engineering Geology and the 1313 1.6 0 Environment, 2023, 82, . Polymer Nanoparticles and Their Biomedical Applications., 2023, , 73-100. 1324 Nanomedicine Based Therapies Against Cancer Stem Cells. Recent Advances in Biotechnology, 2023, , 1329 0.1 0 239-273. Polymeric Nanoparticles in Drug Delivery. Advances in Medical Diagnosis, Treatment, and Care, 2023, , 0.1 137-177. 1332 Biomass Valorization for Bioenergy Production. Green Energy and Technology, 2024, , 67-104. 0.4 0 Applying polyvinyl alcohol to the preparation of various nanoparticles. Journal of Pharmaceutical 1334 2.7 Investigation, 0, , . Application of Nanofillers in Drug Delivery Industry., 2024, , 1-41. 1338 0 3D printing technology and its combination with nanotechnology in bone tissue engineering. 2.1 Biomedical Engineering Letters, 0, , . Exploring the potential role of nanotechnology as cutting-edge for management of hirsutism and gynecomastia: A paradigm in therapeutics. , 2024, , 431-458. 1340 0