Removal of phosphate from aqueous solution by biochadigested sugar beet tailings

Journal of Hazardous Materials 190, 501-507

DOI: 10.1016/j.jhazmat.2011.03.083

Citation Report

#	Article	IF	CITATIONS
1	Enhanced Lead Sorption by Biochar Derived from Anaerobically Digested Sugarcane Bagasse. Separation Science and Technology, 2011, 46, 1950-1956.	1.3	206
2	Chemical activation of gasification carbon residue for phosphate removal. , 2012, , .		4
3	Adsorption of arsenic (V) and phosphate onto MgAlNO <inf>3</inf> -LDHs. , 2012, , .		1
4	Kinetics of Carbon Mineralization of Biochars Compared with Wheat Straw in Three Soils. Journal of Environmental Quality, 2012, 41, 1210-1220.	1.0	81
5	Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chemical Engineering Journal, 2012, 210, 26-32.	6.6	521
6	Synthesis, characterization, and environmental implications of graphene-coated biochar. Science of the Total Environment, 2012, 435-436, 567-572.	3.9	189
7	The use of biochar to reduce soil PCB bioavailability to Cucurbita pepo and Eisenia fetida. Science of the Total Environment, 2012, 437, 76-82.	3.9	88
8	Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chemical Engineering Journal, 2012, 200-202, 673-680.	6.6	578
9	Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresource Technology, 2012, 110, 50-56.	4.8	627
10	Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation. Journal of Hazardous Materials, 2012, 209-210, 408-413.	6.5	229
11	Sorption and desorption of phosphate on biochar and biochar–soil mixtures. Soil Use and Management, 2013, 29, 306-314.	2.6	97
12	Retention of phosphorous ions on natural and engineered waste pumice: Characterization, equilibrium, competing ions, regeneration, kinetic, equilibrium and thermodynamic study. Applied Surface Science, 2013, 284, 419-431.	3.1	63
13	The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere, 2013, 91, 1612-1619.	4.2	353
14	Interactions between carbon nanotubes and sulfonamide antibiotics in aqueous solutions under various physicochemical conditions. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2013, 48, 1136-1144.	0.9	24
15	Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: Characterization and phosphate removal potential. Bioresource Technology, 2013, 138, 8-13.	4.8	257
16	Engineered Biochar Reclaiming Phosphate from Aqueous Solutions: Mechanisms and Potential Application as a Slow-Release Fertilizer. Environmental Science & Environmental Science & 2013, 47, 8700-8708.	4.6	595
17	Filtration of engineered nanoparticles in carbon-based fixed bed columns. Chemical Engineering Journal, 2013, 220, 221-227.	6.6	30
18	Statistical optimization and kinetic studies on removal of Zn2+ using functionalized carbon nanotubes and magnetic biochar. Journal of Environmental Chemical Engineering, 2013, 1, 486-495.	3.3	96

#	Article	IF	Citations
19	Characteristics and nutrient values of biochars produced from giant reed at different temperatures. Bioresource Technology, 2013, 130, 463-471.	4.8	301
20	Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants. Journal of Zhejiang University: Science B, 2013, 14, 1152-1161.	1.3	159
21	Sorption of heavy metals on chitosan-modified biochars and its biological effects. Chemical Engineering Journal, 2013, 231, 512-518.	6.6	325
22	Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures. Geoderma, 2013, 193-194, 122-130.	2.3	434
23	Phosphate removal ability of biochar/MgAl-LDH ultra-fine composites prepared by liquid-phase deposition. Chemosphere, 2013, 92, 1042-1047.	4.2	232
24	Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite. Chemical Engineering Journal, 2013, 226, 286-292.	6.6	389
25	Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresource Technology, 2013, 130, 457-462.	4.8	563
26	Biochar Diminishes Nitrous Oxide and Nitrate Leaching from Diverse Nutrient Sources. Journal of Environmental Quality, 2013, 42, 672-682.	1.0	61
27	Application of Magnesium Modified Corn Biochar for Phosphorus Removal and Recovery from Swine Wastewater. International Journal of Environmental Research and Public Health, 2014, 11, 9217-9237.	1.2	177
28	Biochar can be used to capture essential nutrients from dairy wastewater and improve soil physico-chemical properties. Solid Earth, 2014, 5, 953-962.	1.2	84
29	Effects of amendments and fertilization on plant growth, nitrogen and phosphorus availability in rehabilitated highly alkaline bauxiteâ€processing residue sand. Soil Use and Management, 2014, 30, 198-208.	2.6	13
30	The impact of activated carbon on <scp>NO₃^{â^'}â€N</scp> , <scp>NH₄⁺â€N</scp> , <scp>P</scp> and <scp>K</scp> leaching in relation to fertilizer use. European Journal of Soil Science, 2014, 65, 120-127.	1.8	26
31	Evaluation of Biochar as a Potential Filter Media for the Removal of Mixed Contaminants from Urban Storm Water Runoff. Journal of Environmental Engineering, ASCE, 2014, 140, .	0.7	121
32	Study on Iron Filings Combined with Biological Carbon Derived from Chicken Manure Forming Internal Electrolysis to Treat Dyeing Wastewater of Disperse Blue E-4R. Advanced Materials Research, 0, 955-959, 2205-2211.	0.3	0
33	Synthesis of palm oil empty fruit bunch magnetic pyrolytic char impregnating with FeCl3 by microwave heating technique. Biomass and Bioenergy, 2014, 61, 265-275.	2.9	99
34	Biochar as a sustainable electrode material for electricity production in microbial fuel cells. Bioresource Technology, 2014, 157, 114-119.	4.8	279
35	Phosphorus Sorption and Availability from Biochars and Soil/ <scp>B</scp> iochar Mixtures. Clean - Soil, Air, Water, 2014, 42, 626-634.	0.7	238
36	Surface characterization of maize-straw-derived biochars and their sorption performance for MTBE and benzene. Environmental Earth Sciences, 2014, 71, 5195-5205.	1.3	30

#	ARTICLE	IF	CITATIONS
37	Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood. Chemical Engineering Journal, 2014, 249, 174-179.	6.6	303
38	Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – A critical review. Bioresource Technology, 2014, 160, 191-202.	4.8	1,736
39	Removal of phosphate and nitrate over a modified carbon residue from biomass gasification. Chemical Engineering Research and Design, 2014, 92, 1923-1933.	2.7	52
40	Characterization and environmental applications of clay–biochar composites. Chemical Engineering Journal, 2014, 242, 136-143.	6.6	313
41	Synthesis, characterization, and dye sorption ability of carbon nanotube–biochar nanocomposites. Chemical Engineering Journal, 2014, 236, 39-46.	6.6	276
42	Ca and Fe modified biochars as adsorbents of arsenic and chromium in aqueous solutions. Journal of Environmental Management, 2014, 146, 444-450.	3.8	170
43	Use of refuse-derived fuel waste for the adsorption of 4-chlorophenol and dyes from aqueous solution: Equilibrium and kinetics. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 2628-2639.	2.7	26
44	<i>Escherichia coli</i> Removal in Biochar-Augmented Biofilter: Effect of Infiltration Rate, Initial Bacterial Concentration, Biochar Particle Size, and Presence of Compost. Environmental Science & Environmental &	4.6	112
45	A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces. Soil Biology and Biochemistry, 2014, 77, 252-260.	4.2	184
46	Phenolic Acid Sorption to Biochars from Mixtures of Feedstock Materials. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	10
47	Removal of Phosphate from Eutrophic Lakes through Adsorption by in Situ Formation of Magnesium Hydroxide from Diatomite. Environmental Science & Envir	4.6	213
48	Self-assembly of needle-like layered double hydroxide (LDH) nanocrystals on hydrochar: characterization and phosphate removal ability. RSC Advances, 2014, 4, 28171.	1.7	57
49	Effects of biochars and hydrochars produced from lignocellulosic and animal manure on fertility of a Mollisol and Entisol. Soil Use and Management, 2014, 30, 175-181.	2.6	21
50	Efficacy of biochar to remove Escherichia coli from stormwater under steady and intermittent flow. Water Research, 2014, 61, 288-296.	5.3	132
51	Kinetic and thermodynamic behavior of the batch adsorption of phosphate from aqueous solutions onto environmentally friendly barbecue bamboo charcoal. Desalination and Water Treatment, 2014, 52, 7248-7257.	1.0	6
52	Effect of Biochar on Nutrient Leaching in a Young Apple Orchard. Journal of Environmental Quality, 2015, 44, 1273-1282.	1.0	34
53	Enhanced Nitrate and Phosphate Removal in a Denitrifying Bioreactor with Biochar. Journal of Environmental Quality, 2015, 44, 605-613.	1.0	76
54	Performance of biochar and filtralite as polishing step for on-site greywater treatment plant. Management of Environmental Quality, 2015, 26, 607-625.	2.2	14

#	Article	IF	Citations
55	Removal of phosphate and nitrate from aqueous solution using seagrass Cymodocea rotundata beads. African Journal of Biotechnology, 2015, 14, 1393-1400.	0.3	17
56	Interaction between phosphate and acid-activated neutralized red mud during adsorption process. Applied Surface Science, 2015, 356, 128-134.	3.1	55
57	Engineered graphene–nanoparticle aerogel composites for efficient removal of phosphate from water. Journal of Materials Chemistry A, 2015, 3, 6844-6852.	5.2	88
58	Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes). Journal of Environmental Management, 2015, 153, 68-73.	3.8	258
59	Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 2015, 125, 70-85.	4.2	1,324
60	Phosphorus recovery from biogas fermentation liquid by Ca–Mg loaded biochar. Journal of Environmental Sciences, 2015, 29, 106-114.	3.2	140
61	Evaluation of phosphorus adsorption capacity of sesame straw biochar on aqueous solution: influence of activation methods and pyrolysis temperatures. Environmental Geochemistry and Health, 2015, 37, 969-983.	1.8	112
62	Sorption of arsenate onto magnetic iron–manganese (Fe–Mn) biochar composites. RSC Advances, 2015, 5, 67971-67978.	1.7	78
63	Biochar increases arbuscular mycorrhizal plant growth enhancement and ameliorates salinity stress. Applied Soil Ecology, 2015, 96, 114-121.	2.1	154
64	A novel approach for preparation of modified-biochar derived from marine macroalgae: Dual purpose electro-modification for improvement of surface area and metal impregnation. Bioresource Technology, 2015, 191, 342-345.	4.8	88
65	Coagulation of phosphorus: effects of Al(III) species (Al _a , Al _b , and) Tj ETQq0 0 0 rgBT /	Overlock 1.0	10 Jf 50 342
66	Kinetic study on phosphate removal from aqueous solution by biochar derived from peanut shell as renewable adsorptive media. International Journal of Environmental Science and Technology, 2015, 12, 3363-3372.	1.8	133
67	Engineered Biochar from Biofuel Residue: Characterization and Its Silver Removal Potential. ACS Applied Materials & Divergences, 2015, 7, 10634-10640.	4.0	98
68	Phosphate Adsorption onto Granular-Acid-Activated-Neutralized Red Mud: Parameter Optimization, Kinetics, Isotherms, and Mechanism Analysis. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	17
69	Removal of aqueous ammonium by biochars derived from agricultural residuals at different pyrolysis temperatures. Chemical Speciation and Bioavailability, 2015, 27, 92-97.	2.0	73
70	Physical activation of carbon residue from biomass gasification: Novel sorbent for the removal of phosphates and nitrates from aqueous solution. Journal of Industrial and Engineering Chemistry, 2015, 21, 1354-1364.	2.9	141
71	Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresource Technology, 2015, 175, 391-395.	4.8	535
72	Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4+), nitrate (NO3â^'), and phosphate (PO43â''). Chemosphere, 2015, 119, 646-653.	4.2	361

#	Article	IF	CITATIONS
73	Characteristics and Applications of Biochar for Environmental Remediation: A Review. Critical Reviews in Environmental Science and Technology, 2015, 45, 939-969.	6.6	362
74	Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Research, 2015, 68, 206-216.	5.3	448
75	Granulation and ferric oxides loading enable biochar derived from cotton stalk to remove phosphate from water. Bioresource Technology, 2015, 178, 119-125.	4.8	154
76	LEACHING BEHAVIOUR OF Cs-134 IMMOBILISED IN CEMENT-BIOCHAR MATRIX. Jurnal Teknologi (Sciences) Tj ET	Qq1 _{.3} 1 0.7	84314 rgBT
77	Bacteria Removal from Stormwater Runoff Using Tree Filters: A Comparison of a Conventional and an Innovative System. Water (Switzerland), 2016, 8, 76.	1.2	16
78	Removal of nitrate from aqueous solution by modified sugarcane bagasse biochar. Ecological Engineering, 2016, 95, 101-111.	1.6	184
79	Efficient arsenate removal by magnetite-modified water hyacinth biochar. Environmental Pollution, 2016, 216, 575-583.	3.7	168
80	Adsorption of phosphate from aqueous solution on to pyrolyzed drinking water treatment residuals: Statistical process optimization, equilibrium, and kinetic analysis. Environmental Progress and Sustainable Energy, 2016, 35, 1035-1046.	1.3	2
81	Leaching properties of Cs-134 from spent ion exchange resins solidified in cement-biochar matrix. AIP Conference Proceedings, 2016, , .	0.3	1
82	Phosphorus sorption kinetics and sorption capacity in agricultural drainage ditch sediments in reclaimed land, Kasaoka Bay, Japan. Water Quality Research Journal of Canada, 2016, 51, 388-398.	1.2	3
83	Synthesis of Mg-Decorated Carbon Nanocomposites from MesoCarbon MicroBeads (MCMB) Graphite: Application for Wastewater Treatment. ACS Omega, 2016, 1, 417-423.	1.6	20
84	Potential Application of Biochar for Bioremediation of Contaminated Systems. , 2016, , 221-246.		11
85	Biochar in European Soils and Agriculture. , 0, , .		38
86	High efficiency and selectivity of MgFe-LDH modified wheat-straw biochar in the removal of nitrate from aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 2016, 63, 312-317.	2.7	137
87	Roles of biochar in improving phosphorus availability in soils: A phosphate adsorbent and a source of available phosphorus. Geoderma, 2016, 276, 1-6.	2.3	209
88	Experimental and modeling study on adsorption of cationic methylene blue dye onto mesoporous biochars prepared from agrowaste. Desalination and Water Treatment, 2016, 57, 27199-27212.	1.0	59
89	Effectiveness and mechanisms of ammonium adsorption on biochars derived from biogas residues. RSC Advances, 2016, 6, 88373-88381.	1.7	44
90	Phosphorus Removal from Aqueous Solution by Pre- or Post-Modified Biochars Derived from Agricultural Residues. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	30

#	Article	IF	CITATIONS
91	Designing advanced biochar products for maximizing greenhouse gas mitigation potential. Critical Reviews in Environmental Science and Technology, 2016, 46, 1367-1401.	6.6	86
92	Mesocarbon Microbead Carbon-Supported Magnesium Hydroxide Nanoparticles: Turning Spent Li-ion Battery Anode into a Highly Efficient Phosphate Adsorbent for Wastewater Treatment. ACS Applied Materials & Samp; Interfaces, 2016, 8, 21315-21325.	4.0	88
93	Adsorption of arsenic, phosphorus and chromium by bismuth impregnated biochar: Adsorption mechanism and depleted adsorbent utilization. Chemosphere, 2016, 164, 32-40.	4.2	213
94	Removal of phosphate from aqueous solution by SiO ₂ –biochar nanocomposites prepared by pyrolysis of vermiculite treated algal biomass. RSC Advances, 2016, 6, 83534-83546.	1.7	56
95	Utilization of LDH-based materials as potential adsorbents and photocatalysts for the decontamination of dyes wastewater: a review. RSC Advances, 2016, 6, 79415-79436.	1.7	141
96	Synthesis of a ferric hydroxide-coated cellulose nanofiber hybrid for effective removal of phosphate from wastewater. Carbohydrate Polymers, 2016, 154, 40-47.	5.1	79
97	Adsorption characteristics of Pb2+ on natural black carbon extracted from different grain-size lake sediments. Environmental Science and Pollution Research, 2016, 23, 23911-23919.	2.7	2
98	Biosorbents based on agricultural wastes for ionic liquid removal: An approach to agricultural wastes management. Chemosphere, 2016, 165, 94-99.	4.2	33
99	Pyrolysis temperature and steam activation effects on sorption of phosphate on pine sawdust biochars in aqueous solutions. Chemical Speciation and Bioavailability, 2016, 28, 42-50.	2.0	83
100	Biochar applications and modern techniques for characterization. Clean Technologies and Environmental Policy, 2016, 18, 1457-1473.	2.1	112
101	The effects of rice husk char on ammonium, nitrate and phosphate retention and leaching in loamy soil. Geoderma, 2016, 277, 61-68.	2.3	103
102	Plam oil empty fruit bunch based magnetic biochar composite comparison for synthesis by microwave-assisted and conventional heating. Journal of Analytical and Applied Pyrolysis, 2016, 120, 521-528.	2.6	69
103	Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere, 2016, 148, 276-291.	4.2	959
104	Removal of levofloxacin from aqueous solution using rice-husk and wood-chip biochars. Chemosphere, 2016, 150, 694-701.	4.2	119
105	Sewage sludge biochar: Nutrient composition and its effect on the leaching of soil nutrients. Geoderma, 2016, 267, 17-23.	2.3	200
106	Production of biochars from Ca impregnated ramie biomass (Boehmeria nivea (L.) Gaud.) and their phosphate removal potential. RSC Advances, 2016, 6, 5871-5880.	1.7	82
107	Co-contamination of Cu and Cd in paddy fields: Using periphyton to entrap heavy metals. Journal of Hazardous Materials, 2016, 304, 150-158.	6.5	58
108	Copper(II) removal potential from aqueous solution by pyrolysis biochar derived from anaerobically digested algae-dairy-manure and effect of KOH activation. Journal of Environmental Chemical Engineering, 2016, 4, 365-372.	3.3	124

#	Article	IF	CITATIONS
109	Adsorption of Cd2+ and Pb2+ onto coconut shell biochar and biochar-mixed soil. Environmental Earth Sciences, 2016, 75, 1.	1.3	59
110	Investigation of phosphate adsorption by a polyethersulfone-type affinity membrane using experimental and DFT methods. Desalination and Water Treatment, 2016, 57, 25036-25056.	1.0	7
111	Mg-Enriched Engineered Carbon from Lithium-Ion Battery Anode for Phosphate Removal. ACS Applied Materials & Samp; Interfaces, 2016, 8, 2905-2909.	4.0	40
112	Removal of ammonium from aqueous solutions using alkali-modified biochars. Chemical Speciation and Bioavailability, 2016, 28, 26-32.	2.0	35
113	Biochar-supported carbon nanotube and graphene oxide nanocomposites for Pb(<scp>ii</scp>) and Cd(<scp>ii</scp>) removal. RSC Advances, 2016, 6, 24314-24319.	1.7	73
114	The removal of phosphate from aqueous solutions using two nano-structures: copper oxide and carbon tubes. Clean Technologies and Environmental Policy, 2016, 18, 817-827.	2.1	50
115	Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions. Environmental Geochemistry and Health, 2016, 38, 511-521.	1.8	55
116	A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology, 2016, 46, 406-433.	6.6	945
117	Fabrication of porosity-enhanced MgO/biochar for removal of phosphate from aqueous solution: Application of a novel combined electrochemical modification method. Bioresource Technology, 2016, 200, 1029-1032.	4.8	169
118	Engineered Streambeds for Induced Hyporheic Flow: Enhanced Removal of Nutrients, Pathogens, and Metals from Urban Streams. Journal of Environmental Engineering, ASCE, 2016, 142, .	0.7	40
119	Sustainable mechanisms of biochar derived from brewers' spent grain and sewage sludge for ammonia–nitrogen capture. Journal of Cleaner Production, 2016, 112, 3927-3934.	4.6	136
120	The Detoxification of Heavy Metals in the Phosphate Tailing-contaminated Soil through Sequential Microbial Pretreatment and Electrokinetic Remediation. Soil and Sediment Contamination, 2017, 26, 308-322.	1.1	21
121	Removal of cationic and anionic textile dyes with Moroccan natural phosphate. Journal of Environmental Chemical Engineering, 2017, 5, 2189-2199.	3.3	28
122	Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. Journal of Environmental Management, 2017, 197, 732-749.	3.8	272
123	Lactic acid fermentation of human urine to improve its fertilizing value and reduce odour emissions. Journal of Environmental Management, 2017, 198, 63-69.	3.8	29
124	Phosphate reclaim from simulated and real eutrophic water by magnetic biochar derived from water hyacinth. Journal of Environmental Management, 2017, 187, 212-219.	3.8	82
125	Life cycle environmental and economic performance of biochar compared with activated carbon: A meta-analysis. Resources, Conservation and Recycling, 2017, 118, 13-26.	5.3	311
126	Functionalizing biochar with Mg–Al and Mg–Fe layered double hydroxides for removal of phosphate from aqueous solutions. Journal of Industrial and Engineering Chemistry, 2017, 47, 246-253.	2.9	211

#	ARTICLE	IF	CITATIONS
127	Assessment of MiscanthusÂ×Âgiganteus derived biochar as copper and zinc adsorbent: Study of the effect of pyrolysis temperature, pH and hydrogen peroxide modification. Journal of Cleaner Production, 2017, 162, 1285-1296.	4.6	61
128	Phosphorus Removal from Wastewater in Biofilters with Biochar Augmented Geomedium: Effect of Biochar Particle Size. Clean - Soil, Air, Water, 2017, 45, 1600123.	0.7	3
129	The use of carbon adsorbents for the removal of perfluoroalkyl acids from potable reuse systems. Chemosphere, 2017, 184, 168-175.	4.2	90
130	Sorption, kinetics and thermodynamics of phosphate sorption onto soybean stover derived biochar. Environmental Technology and Innovation, 2017, 8, 113-125.	3.0	49
131	Aluminum and iron biomass pretreatment impacts on biochar anion exchange capacity. Carbon, 2017, 118, 422-430.	5.4	62
132	Removal of fluoride from aqueous solution by TiO2-based composites. Journal of the Taiwan Institute of Chemical Engineers, 2017, 74, 205-210.	2.7	11
133	Removal of fluoride from aqueous solution by TiO ₂ and TiO ₂ –SiO ₂ nanocomposite. Chemical Speciation and Bioavailability, 2017, 29, 25-32.	2.0	24
134	Biochar as an adsorbent for inorganic nitrogen and phosphorus removal from water: a review. Environmental Science and Pollution Research, 2017, 24, 26297-26309.	2.7	176
135	Synthesis, characterization and mechanism analysis of modified crayfish shell biochar possessed ZnO nanoparticles to remove trichloroacetic acid. Journal of Cleaner Production, 2017, 166, 1244-1252.	4.6	46
136	Sorption of heavy metal ions onto crayfish shell biochar: Effect of pyrolysis temperature, pH and ionic strength. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 114-121.	2.7	101
137	Removal of nitrate, ammonia and phosphate from aqueous solutions in packed bed filter using biochar augmented sand media. MATEC Web of Conferences, 2017, 120, 05004.	0.1	3
138	Effects of Temperature and Activation on Biochar Chemical Properties and Their Impact on Ammonium, Nitrate, and Phosphate Sorption. Journal of Environmental Quality, 2017, 46, 889-896.	1.0	34
139	Mechanistic insights of 2,4-D sorption onto biochar: Influence of feedstock materials and biochar properties. Bioresource Technology, 2017, 246, 160-167.	4.8	50
140	Pyrogenic temperature affects the particle size of biochar-supported nanoscaled zero valent iron (nZVI) and its silver removal capacity. Chemical Speciation and Bioavailability, 2017, 29, 179-185.	2.0	13
141	Effects of La-involvement on biomass pyrolysis behaviors and properties of produced biochar. Journal of Rare Earths, 2017, 35, 593-601.	2.5	16
142	Uptake of Cu ²⁺ and Zn ²⁺ from simulated wastewater using muskmelon peel biochar: Isotherm and kinetic studies. Egyptian Journal of Basic and Applied Sciences, 2017, 4, 236-248.	0.2	26
143	Phosphate recovery from liquid fraction of anaerobic digestate using four slow pyrolyzed biochars: Dynamics of adsorption, desorption and regeneration. Journal of Environmental Management, 2017, 201, 260-267.	3.8	108
144	Synthesis and Characterization of MgO Modified Diatomite for Phosphorus Recovery in Eutrophic Water. Journal of Chemical & Data, 2017, 62, 226-235.	1.0	36

#	Article	IF	CITATIONS
145	Phosphate removal by lead-exhausted bioadsorbents simultaneously achieving lead stabilization. Chemosphere, 2017, 168, 748-755.	4.2	20
146	Iron-impregnated biochars as effective phosphate sorption materials. Environmental Science and Pollution Research, 2017, 24, 463-475.	2.7	130
147	Phosphorus recovery from biogas slurry by ultrasound/H2O2 digestion coupled with HFO/biochar adsorption process. Waste Management, 2017, 60, 219-229.	3.7	45
148	Waste-art-paper biochar as an effective sorbent for recovery of aqueous Pb(II) into value-added PbO nanoparticles. Chemical Engineering Journal, 2017, 308, 863-871.	6.6	62
149	Synthesis of magnetic biochar from pine sawdust via oxidative hydrolysis of FeCl2 for the removal sulfamethoxazole from aqueous solution. Journal of Hazardous Materials, 2017, 321, 868-878.	6.5	217
150	Advances and future directions of biochar characterization methods and applications. Critical Reviews in Environmental Science and Technology, 2017, 47, 2275-2330.	6.6	194
151	Chemical activation of hickory and peanut hull hydrochars for removal of lead and methylene blue from aqueous solutions. Chemical Speciation and Bioavailability, 2017, 29, 197-204.	2.0	53
152	Recent advances in engineered biochar productions and applications. Critical Reviews in Environmental Science and Technology, 2017, 47, 2158-2207.	6.6	318
153	Adsorption of phosphate from aqueous solution using electrochemically modified biochar calcium-alginate beads: Batch and fixed-bed column performance. Bioresource Technology, 2017, 244, 23-32.	4.8	120
154	Biochar Adsorption Treatment for Typical Pollutants Removal in Livestock Wastewater: A Review. , 0, ,		13
155	Adsorption of Scandium and Neodymium on Biochar Derived after Low-Temperature Pyrolysis of Sawdust. Minerals (Basel, Switzerland), 2017, 7, 200.	0.8	19
156	Biochar: The Black Diamond for Soil Sustainability, Contamination Control and Agricultural Production., 0,,.		16
157	Phosphorus Sorption Behavior of Torrefied Agricultural Byproducts under Sonicated Versus Non-Sonicated Conditions. Sustainable Agriculture Research, 2017, 6, 1.	0.2	2
158	Simultaneous Removal of Cu and Cd From Soil and Water in \hat{A} Paddy Fields by Native Periphyton., 2017,, 323-349.		1
159	Adsorption of sulfamethoxazole by magnetic biochar: Effects of pH, ionic strength, natural organic matter and 17î±-ethinylestradiol. Science of the Total Environment, 2018, 628-629, 722-730.	3.9	126
160	Contrasting effects of biochar nanoparticles on the retention and transport of phosphorus in acidic and alkaline soils. Environmental Pollution, 2018, 239, 562-570.	3.7	88
161	Removal of ammonium from fish farms by biochar obtained from rice straw: Isotherm and kinetic studies for ammonium adsorption. Adsorption Science and Technology, 2018, 36, 1294-1309.	1.5	70
162	Adsorption of nitrate onto biochar derived from agricultural residuals. Water Science and Technology, 2018, 77, 548-554.	1.2	38

#	Article	IF	CITATIONS
163	Plenty of room for carbon on the ground: Potential applications of biochar for stormwater treatment. Science of the Total Environment, 2018, 625, 1644-1658.	3.9	165
164	Phosphorus sorption capacity of biochars varies with biochar type and salinity level. Environmental Science and Pollution Research, 2018, 25, 25799-25812.	2.7	35
165	Structural Characterization of Loblolly Pine Derived Biochar by X-ray Diffraction and Electron Energy Loss Spectroscopy. ACS Sustainable Chemistry and Engineering, 2018, 6, 2621-2629.	3.2	65
166	Red mud-modified biochar reduces soil arsenic availability and changes bacterial composition. Environmental Chemistry Letters, 2018, 16, 615-622.	8.3	60
167	Evaluation and Prediction of Cadmium Removal from Aqueous Solution by Phosphate-Modified Activated Bamboo Biochar. Energy & Energy & 2018, 32, 4469-4477.	2.5	51
168	Potential roles of biological amendments for profitable grain production – A review. Agriculture, Ecosystems and Environment, 2018, 256, 34-50.	2.5	107
169	Application of Mg–Al-modified biochar for simultaneous removal of ammonium, nitrate, and phosphate from eutrophic water. Journal of Cleaner Production, 2018, 176, 230-240.	4.6	233
170	Magnetite-coated biochar as a soil phosphate filter: From laboratory to field lysimeter. Geoderma, 2018, 327, 45-54.	2.3	11
171	Enhanced Cr(VI) removal by polyethylenimine- and phosphorus-codoped hierarchical porous carbons. Journal of Colloid and Interface Science, 2018, 523, 110-120.	5.0	94
172	Evaluation of nitrate and phosphate adsorption on Al-modified biochar: Influence of Al content. Science of the Total Environment, 2018, 631-632, 895-903.	3.9	197
173	Recovery of ammonium and phosphate from urine as value-added fertilizer using wood waste biochar loaded with magnesium oxides. Journal of Cleaner Production, 2018, 187, 205-214.	4.6	174
174	Improving the sustainability of organic waste management practices in the food-energy-water nexus: A comparative review of anaerobic digestion and composting. Renewable and Sustainable Energy Reviews, 2018, 89, 151-167.	8.2	220
175	Removal of sulfamethoxazole (SMX) and sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse. Environmental Science and Pollution Research, 2018, 25, 25659-25667.	2.7	84
176	Synthesis and nutrient release patterns of a biochar-based N–P–K slow-release fertilizer. International Journal of Environmental Science and Technology, 2018, 15, 405-414.	1.8	93
177	Biosolids-Derived Biochar for Triclosan Removal from Wastewater. Environmental Engineering Science, 2018, 35, 513-524.	0.8	39
178	Engineered/designer biochar for the removal of phosphate in water and wastewater. Science of the Total Environment, 2018, 616-617, 1242-1260.	3.9	254
179	Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge. Bioresource Technology, 2018, 247, 537-544.	4.8	297
180	Phosphorus recovery and reuse by pyrolysis: Applications for agriculture and environment. Chemosphere, 2018, 194, 682-691.	4.2	101

#	Article	IF	CITATIONS
181	Lactic acid fermentation of human excreta for agricultural application. Journal of Environmental Management, 2018, 206, 890-900.	3.8	19
182	Phosphate and ammonium adsorption of sesame straw biochars produced at different pyrolysis temperatures. Environmental Science and Pollution Research, 2018, 25, 4320-4329.	2.7	35
183	Microwave digestion-assisted HFO/biochar adsorption to recover phosphorus from swine manure. Science of the Total Environment, 2018, 621, 1512-1526.	3.9	46
184	Phosphorus removal efficiency from wastewater under different loading conditions using sand biofilters augmented with biochar. International Journal of Environmental Science and Technology, 2018, 15, 927-934.	1.8	6
185	Characterization of Natural Zeolite and Chicken Manure Derived Biochar for Carbon Dioxide Adsorption in Biogas. E3S Web of Conferences, 2018, 43, 01008.	0.2	2
187	Enhanced Phosphate Removal from Water by Honeycomb-Like Microporous Lanthanum-Chitosan Magnetic Spheres. Water (Switzerland), 2018, 10, 1659.	1.2	9
189	Use of Penicillium bilaiae to improve phosphorus bioavailability of thermally treated sewage sludge – A potential novel type biofertiliser. Process Biochemistry, 2018, 69, 169-177.	1.8	13
190	Low-cost and efficient adsorbent derived from pyrolysis of <i>Jatropha curcas </i> seeds for the removal of Cu ²⁺ from aqueous solutions. Chemistry and Ecology, 2018, 34, 655-674.	0.6	3
191	Removal of Levofloxacin from aqueous solution by Magnesium-impregnated Biochar: batch and column experiments. Chemical Speciation and Bioavailability, 2018, 30, 68-75.	2.0	24
192	Enhanced removal of phosphate from aqueous solutions using a modified sludge derived biochar: Comparative study of various modifying cations and RSM based optimization of pyrolysis parameters. Journal of Environmental Management, 2018, 225, 75-83.	3.8	84
193	Treatment of Source-Separated Blackwater: A Decentralized Strategy for Nutrient Recovery towards a Circular Economy. Water (Switzerland), 2018, 10, 463.	1.2	20
194	Biochar as a Carrier of Struvite Precipitation for Nitrogen and Phosphorus Recovery from Urine. Journal of Environmental Engineering, ASCE, 2018, 144, .	0.7	23
195	High-efficient adsorption of phosphates from water by hierarchical CuAl/biomass carbon fiber layered double hydroxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 314-323.	2.3	63
196	Characteristics and batch experiments of acid- and alkali-modified corncob biomass for nitrate removal from aqueous solution. Environmental Science and Pollution Research, 2018, 25, 19932-19940.	2.7	45
197	Enhanced sorption of hexavalent chromium [Cr(VI)] from aqueous solutions by diluted sulfuric acid-assisted MgO-coated biochar composite. Chemosphere, 2018, 208, 408-416.	4.2	88
198	Kinetics, thermodynamics and mechanisms of phosphate sorption onto bottle gourd biomass modified by (3-chloro-2-hydroxypropyl) trimethylammonium chloride. Progress in Reaction Kinetics and Mechanism, 2019, 44, 267-285.	1,1	9
199	MgO-modified biochar increases phosphate retention and rice yields in saline-alkaline soil. Journal of Cleaner Production, 2019, 235, 901-909.	4.6	163
200	Phosphorus and Nitrogen Adsorption Capacities of Biochars Derived from Feedstocks at Different Pyrolysis Temperatures. Water (Switzerland), 2019, 11, 1559.	1.2	32

#	Article	IF	CITATIONS
201	Application of red-mud based ceramic media for phosphate uptake from water and evaluation of their effects on growth of Iris latifolia seedling. Science of the Total Environment, 2019, 688, 724-731.	3.9	17
202	Recent Progress on Adsorption Materials for Phosphate Removal. Recent Patents on Nanotechnology, 2019, 13, 3-16.	0.7	39
203	Biochar Phosphorus Sorption-Desorption: Potential Phosphorus Eutrophication Mitigation Strategy. , 2019, , .		0
204	Using Recycled Concrete as an Adsorbent to Remove Phosphate from Polluted Water. Journal of Environmental Quality, 2019, 48, 1489-1497.	1.0	8
205	Biochar produced from the co-pyrolysis of sewage sludge and walnut shell for ammonium and phosphate adsorption from water. Journal of Environmental Management, 2019, 249, 109410.	3.8	134
206	Simple synthesis of a swellable porous \hat{l}^2 -cyclodextrin-based polymer in the aqueous phase for the rapid removal of organic micro-pollutants from water. Green Chemistry, 2019, 21, 6062-6072.	4.6	71
207	Characteristics of biochar porosity by NMR and study of ammonium ion adsorption. Journal of Analytical and Applied Pyrolysis, 2019, 143, 104687.	2.6	27
208	Effect of phosphate concentration, anions, heavy metals, and organic matter on phosphate adsorption from wastewater using anodized iron oxide nanoflakes. Environmental Research, 2019, 171, 428-436.	3.7	53
209	Phosphorous Retention and Release by Sludgeâ€Derived Hydrochar for Potential Use as a Soil Amendment. Journal of Environmental Quality, 2019, 48, 502-509.	1.0	38
210	Synthesis of a novel magnetic <i>Caragana korshinskii</i> biochar/Mg–Al layered double hydroxide composite and its strong adsorption of phosphate in aqueous solutions. RSC Advances, 2019, 9, 18641-18651.	1.7	52
211	Synergistic adsorption-photocatalysis processes of graphitic carbon nitrate (g-C3N4) for contaminant removal: Kinetics, models, and mechanisms. Chemical Engineering Journal, 2019, 375, 122019.	6.6	80
212	Recent advancements in biochar preparation, feedstocks, modification, characterization and future applications. Environmental Technology Reviews, 2019, 8, 47-64.	2.1	75
213	Removal of Zn (II) and Cu (II) Ions from Industrial Wastewaters Using Magnetic Biochar Derived from Water Hyacinth. Journal of Engineering (United States), 2019, 2019, 1-11.	0.5	34
214	Biological treatment of organic materials for energy and nutrients productionâ€"Anaerobic digestion and composting. Advances in Bioenergy, 2019, , 121-181.	0.5	47
215	Fe ₃ O ₄ Nanoparticles Dispersed on Douglas Fir Biochar for Phosphate Sorption. ACS Applied Nano Materials, 2019, 2, 3467-3479.	2.4	111
216	Removal of ethinylestradiol by adsorption process from aqueous solutions using entrapped activated carbon in alginate biopolymer: isotherm and statistical studies. Applied Water Science, 2019, 9, 1.	2.8	21
217	Concurrent transport and removal of nitrate, phosphate and pesticides in low-cost metal- and carbon-based materials. Chemosphere, 2019, 230, 84-91.	4.2	21
218	Biochar/struvite composite as a novel potential material for slow release of N and P. Environmental Science and Pollution Research, 2019, 26, 17152-17162.	2.7	20

#	Article	IF	CITATIONS
219	Driving forces and barriers in the removal of phosphorus from water using crop residue, wood and sewage sludge derived biochars. Science of the Total Environment, 2019, 675, 623-631.	3.9	44
220	Spatially Resolved Product Speciation during Struvite Synthesis from Magnesite (MgCO ₃) Particles in Ammonium (NH ₄ ⁺) and Phosphate (PO ₄ ^{3–}) Aqueous Solutions. Journal of Physical Chemistry C, 2019, 123, 8908-8922.	1.5	17
221	Renewable Biomassâ€Derived Hierarchically Porous Carbonaceous Sponge (CS)/gâ€C ₃ N ₄ Composites as Adsorption and Photocatalytic Materials. ChemistrySelect, 2019, 4, 3233-3240.	0.7	1
222	Biochar from carrot residues chemically modified with magnesium for removing phosphorus from aqueous solution. Journal of Cleaner Production, 2019, 222, 36-46.	4.6	63
223	Effective decontamination of phosphate and ammonium utilizing novel muscovite/phillipsite composite; equilibrium investigation and realistic application. Science of the Total Environment, 2019, 667, 101-111.	3.9	94
224	Highly efficient removal of Cr(VI) and Cu(II) by biochar derived from Artemisia argyi stem. Environmental Science and Pollution Research, 2019, 26, 13221-13234.	2.7	61
225	Synthesis of industrial solid wastes/biochar composites and their use for adsorption of phosphate: From surface properties to sorption mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 571, 86-93.	2.3	72
226	A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security. Chemosphere, 2019, 227, 345-365.	4.2	204
227	Biochar-based engineered composites for sorptive decontamination of water: A review. Chemical Engineering Journal, 2019, 372, 536-550.	6.6	264
228	Biochar versus bone char for a sustainable inorganic arsenic mitigation in water: What needs to be done in future research?. Environment International, 2019, 127, 52-69.	4.8	101
229	Halloysite Nanotubes as Adsorptive Material for Phosphate Removal from Aqueous Solution. Water (Switzerland), 2019, 11, 203.	1.2	15
230	Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors. Journal of Environmental Management, 2019, 237, 128-138.	3.8	266
231	Synthesis of high surface area porous carbon from anaerobic digestate and it's electrochemical study as an electrode material for ultracapacitors. RSC Advances, 2019, 9, 36343-36350.	1.7	11
232	Biosorption of Cd2+ from aqueous solution by Ca2+/Mg2+ type Citrus paradisi Macf. peel biosorbents. Water Science and Technology, 2019, 80, 1205-1212.	1.2	5
233	Fast adsorption of phosphate (PO4â^') from wastewater using glauconite. Water Science and Technology, 2019, 80, 1643-1653.	1.2	18
234	Assembling biochar with various layered double hydroxides for enhancement of phosphorus recovery. Journal of Hazardous Materials, 2019, 365, 665-673.	6.5	216
235	Biochars and Biochar Composites. , 2019, , 169-209.		28
236	Influence of poultry litter and biochar on soil water dynamics and nutrient leaching from a very fine sandy loam soil. Soil and Tillage Research, 2019, 189, 44-51.	2.6	41

#	Article	IF	CITATIONS
237	Biochar synthesized via pyrolysis of Broussonetia papyrifera leaves: mechanisms and potential applications for phosphate removal. Environmental Science and Pollution Research, 2019, 26, 6565-6575.	2.7	17
238	Reclaiming phosphorus from secondary treated municipal wastewater with engineered biochar. Chemical Engineering Journal, 2019, 362, 460-468.	6.6	136
239	Adsorption mechanisms of chromate and phosphate on hydrotalcite: A combination of macroscopic and spectroscopic studies. Environmental Pollution, 2019, 247, 180-187.	3.7	27
240	A pilot level approach to remove anionic species from industrial effluents using a novel carbonate-steam pyrolysed activated charcoal system. Advanced Powder Technology, 2019, 30, 98-110.	2.0	5
241	Adsorption characteristics of ammonium ion onto hydrous biochars in dilute aqueous solutions. Bioresource Technology, 2019, 272, 465-472.	4.8	79
242	Production and characterization of H2S and PO43â^ carbonaceous adsorbents from anaerobic digested fibers. Biomass and Bioenergy, 2019, 120, 339-349.	2.9	27
243	Designing biochar properties through the blending of biomass feedstock with metals: Impact on oxyanions adsorption behavior. Chemosphere, 2019, 214, 743-753.	4.2	44
244	Modification of tea biochar with Mg, Fe, Mn and Al salts for efficient sorption of PO43â° and Cd2+ from aqueous solutions. Journal of Water Reuse and Desalination, 2019, 9, 57-66.	1.2	39
245	Relation between biochar physicochemical characteristics on the adsorption of fluoride, nitrite, and nitrate anions from aqueous solution. Particulate Science and Technology, 2019, 37, 118-122.	1.1	6
246	Almond and walnut shell-derived biochars affect sorption-desorption, fractionation, and release of phosphorus in two different soils. Chemosphere, 2020, 241, 124888.	4.2	33
247	Probing the efficiency of magnetically modified biomass-derived biochar for effective phosphate removal. Journal of Environmental Management, 2020, 253, 109730.	3.8	107
248	Phosphogypsum as a novel modifier for distillers grains biochar removal of phosphate from water. Chemosphere, 2020, 238, 124684.	4.2	97
249	Performance and prospects of different adsorbents for phosphorus uptake and recovery from water. Chemical Engineering Journal, 2020, 381, 122566.	6.6	333
250	A review of biochar-based sorbents for separation of heavy metals from water. International Journal of Phytoremediation, 2020, 22, 111-126.	1.7	110
251	Nitrogen doped char from anaerobically digested fiber for phosphate removal in aqueous solutions. Chemosphere, 2020, 240, 124889.	4.2	40
252	MgFe2O4-biochar based lanthanum alginate beads for advanced phosphate removal. Chemical Engineering Journal, 2020, 387, 123305.	6.6	88
253	Potassium-iron rice straw biochar composite for sorption of nitrate, phosphate, and ammonium ions in soil for timely and controlled release. Science of the Total Environment, 2020, 712, 136337.	3.9	75
254	Polyethyleneimine-modified biochar for enhanced phosphate adsorption. Environmental Science and Pollution Research, 2020, 27, 7420-7429.	2.7	31

#	Article	IF	CITATIONS
255	Enhanced H2O2 activation and sulfamethoxazole degradation by Fe-impregnated biochar. Chemical Engineering Journal, 2020, 385, 123921.	6.6	71
256	Organic soil additives for the remediation of cadmium contaminated soils and their impact on the soil-plant system: A review. Science of the Total Environment, 2020, 707, 136121.	3.9	108
257	Enhanced removal of phosphate and ammonium by MgO-biochar composites with NH3·H2O hydrolysis pretreatment. Environmental Science and Pollution Research, 2020, 27, 7493-7503.	2.7	30
258	Current advancement and future prospect of biosorbents for bioremediation. Science of the Total Environment, 2020, 709, 135895.	3.9	165
259	Mechanism of orthophosphate (PO <mml:math)="" 0<="" etqq0="" td="" tj="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>0 0 rgBT /O 3.0</td><td>Overlock 10 Ti 47</td></mml:math>	0 0 rgBT /O 3.0	Overlock 10 Ti 47
260	different biochars. Environmental Technology and Innovation, 2020, 17, 100572. Adsorption of sulfate ion from water by zirconium oxide-modified biochar derived from pomelo peel. Science of the Total Environment, 2020, 708, 135092.	3.9	64
261	Different effects of N2-flow and air-limited pyrolysis on bamboo-derived biochars' nitrogen and phosphorus release and sorption characteristics. Science of the Total Environment, 2020, 711, 134828.	3.9	12
262	Magnetic bio-activated carbon production from lignin via a streamlined process and its use in phosphate removal from aqueous solutions. Science of the Total Environment, 2020, 708, 135069.	3.9	42
263	Waste shrimp shell-derived hydrochar as an emergent material for methyl orange removal in aqueous solutions. Environment International, 2020, 134, 105340.	4.8	69
264	Characteristics and mechanisms of phosphorous adsorption by rape straw-derived biochar functionalized with calcium from eggshell. Bioresource Technology, 2020, 318, 124063.	4.8	90
265	Changes in the mechanism of the reaction between phosphate and magnesium ions: Effect of initial concentration and contact time on removal of phosphate ions from aqueous media. Journal of Environmental Chemical Engineering, 2020, 8, 104385.	3.3	6
266	Benign zinc oxide betaine-modified biochar nanocomposites for phosphate removal from aqueous solutions. Journal of Environmental Management, 2020, 272, 111048.	3.8	47
267	A review on conversion of crayfish-shell derivatives to functional materials and their environmental applications. Journal of Bioresources and Bioproducts, 2020, 5, 238-247.	11.8	88
268	Adsorptive removal of phosphate from aqueous solution using waste chicken bone and waste cockle shell. Materials Today: Proceedings, 2020, 31, A1-A5.	0.9	11
269	Strong Immobilization of Phosphate in Wastewater onto the Surface of MgO-Modified Industrial Hemp-Stem-Driven Biochar by Flowerlike Crystallization. Industrial & Engineering Chemistry Research, 2020, 59, 14578-14586.	1.8	21
270	Biochar-Assisted Wastewater Treatment and Waste Valorization. , 0, , .		12
271	Promoting the decontamination of different types of water pollutants (Cd2+, safranin dye, and) Tj ETQq0 0 0 rgB of Environmental Management, 2020, 273, 111130.	3.8	ck 10 Tf 50 10 29
272	Preparation of Tetraethylenepentamineâ€Functionalized 4A Zeolite for effective removal of phosphate in water. Applied Organometallic Chemistry, 2020, 34, e5861.	1.7	3

#	Article	IF	CITATIONS
273	Comparative Evaluation of Hydrochars and Pyrochars for Phosphate Adsorption from Wastewater. , 0, , .		0
274	Sustainable use of biochar for resource recovery and pharmaceutical removal from human urine: A critical review. Critical Reviews in Environmental Science and Technology, 2021, 51, 3016-3048.	6.6	18
275	Bio-purification of sugar industry wastewater and production of high-value industrial products with a zero-waste concept. Critical Reviews in Food Science and Nutrition, 2021, 61, 3537-3554.	5.4	15
276	Enhanced phosphorus removal and recovery by metallic nanoparticles-modified biochar. Nanotechnology for Environmental Engineering, 2020, 5, 1.	2.0	6
277	The impact of hydrothermal carbonization on the surface functionalities of wet waste materials for water treatment applications. Environmental Science and Pollution Research, 2020, 27, 24369-24379.	2.7	39
278	Effect of Pyrolysis Temperature on Biochar Characteristics and Sorption. , 2020, , .		0
279	Phosphorus recovery by core-shell \hat{I}^3 -Al2O3/Fe3O4 biochar composite from aqueous phosphate solutions. Science of the Total Environment, 2020, 729, 138892.	3.9	68
280	Aquatic plant-derived biochars produced in different pyrolytic conditions: Spectroscopic studies and adsorption behavior of diclofenac sodium in water media. Sustainable Chemistry and Pharmacy, 2020, 17, 100275.	1.6	22
281	Biochar as adsorbent in purification of clear-cut forest runoff water: adsorption rate and adsorption capacity. Biochar, 2020, 2, 227-237.	6.2	24
282	Agriculture nanotechnology: Translating research outcome to field applications by influencing environmental sustainability. NanoImpact, 2020, 19, 100232.	2.4	93
283	Biochar technology in wastewater treatment: A critical review. Chemosphere, 2020, 252, 126539.	4.2	482
284	High-Efficiency Reclaiming Phosphate from an Aqueous Solution by Bentonite Modified Biochars: A Slow Release Fertilizer with a Precise Rate Regulation. ACS Sustainable Chemistry and Engineering, 2020, 8, 6090-6099.	3.2	60
285	Biochar production and applications in agro and forestry systems: A review. Science of the Total Environment, 2020, 723, 137775.	3.9	140
286	Solvent-free synthesis of magnetic biochar and activated carbon through ball-mill extrusion with Fe3O4 nanoparticles for enhancing adsorption of methylene blue. Science of the Total Environment, 2020, 722, 137972.	3.9	131
287	Effective Sequestration of Phosphate and Ammonium Ions by the Bentonite/Zeolite Na–P Composite as a Simple Technique to Control the Eutrophication Phenomenon: Realistic Studies. ACS Omega, 2020, 5, 14656-14668.	1.6	20
288	Phosphate adsorption/desorption kinetics and P bioavailability of Mg-biochar from ground coffee waste. Journal of Water Process Engineering, 2020, 37, 101484.	2.6	73
289	Coupling of kenaf Biochar and Magnetic BiFeO3 onto Cross-Linked Chitosan for Enhancing Separation Performance and Cr(VI) lons Removal Efficiency. International Journal of Environmental Research and Public Health, 2020, 17, 788.	1.2	15
290	Synthesis and adsorption performance of La@ZIF-8 composite metal–organic frameworks. RSC Advances, 2020, 10, 3380-3390.	1.7	56

#	Article	IF	CITATIONS
291	Biochar and nitrogen application rates effect on phosphorus removal from a mixed grass sward irrigated with reclaimed wastewater. Science of the Total Environment, 2020, 715, 137012.	3.9	19
292	Spectroscopic studies on the phosphorus adsorption in salt-affected soils with or without nano-biochar additions. Environmental Research, 2020, 184, 109277.	3.7	42
293	Utilization of biochar for the removal of nitrogen and phosphorus. Journal of Cleaner Production, 2020, 257, 120573.	4.6	148
294	Phosphorus recovery from the liquid phase of anaerobic digestate using biochar derived from ironâ^'rich sludge: A potential phosphorus fertilizer. Water Research, 2020, 174, 115629.	5.3	133
295	Synthesis of Fe/Mg-Biochar Nanocomposites for Phosphate Removal. Materials, 2020, 13, 816.	1.3	24
296	A green method for the simultaneous recovery of phosphate and potassium from hydrolyzed urine as value-added fertilizer using wood waste. Resources, Conservation and Recycling, 2020, 157, 104793.	5.3	38
297	Phosphate Sorption onto Structured Soil. Soil Systems, 2020, 4, 21.	1.0	2
298	The importance of mineral ingredients in biochar production, properties and applications. Critical Reviews in Environmental Science and Technology, 2021, 51, 113-139.	6.6	30
299	Progress and future prospects in biochar composites: Application and reflection in the soil environment. Critical Reviews in Environmental Science and Technology, 2021, 51, 219-271.	6.6	93
300	Burning magnesium in carbon dioxide for highly effective phosphate removal., 2021, 3, 330-337.		4
301	Synthesis of a La(OH)3 nanorod/walnut shell biochar composite for reclaiming phosphate from aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125736.	2.3	37
302	Application of a novel biochar adsorbent and membrane to the selective separation of phosphate from phosphate-rich wastewaters. Chemical Engineering Journal, 2021, 407, 126494.	6.6	49
304	Metal chloride-loaded biochar for phosphorus recovery: Noteworthy roles of inherent minerals in precursor. Chemosphere, 2021, 266, 128991.	4.2	33
305	Content and morphology of lead remediated by activated carbon and biochar: A spectral induced polarization study. Journal of Hazardous Materials, 2021, 411, 124605.	6.5	41
306	Advances in nanoparticles tailored lignocellulosic biochars for removal ofÂheavy metals with special reference to cadmium (II) and chromium (VI). Environmental Sustainability, 2021, 4, 201-214.	1.4	12
307	Removal of phosphate and aluminum from water in single and binary systems using iron-modified carbons. Journal of Molecular Liquids, 2021, 323, 114586.	2.3	14
308	Enhanced removal of phosphate from aqueous solution using Mg/Fe modified biochar derived from excess activated sludge: removal mechanism and environmental risk. Environmental Science and Pollution Research, 2021, 28, 16282-16297.	2.7	21
309	Static and Dynamic Investigations on Leaching/Retention of Nutrients from Raw Poultry Manure Biochars and Amended Agricultural Soil. Sustainability, 2021, 13, 1212.	1.6	8

#	Article	IF	CITATIONS
310	Phosphorus Removal from Wastewater: The Potential Use of Biochar and the Key Controlling Factors. Water (Switzerland), 2021, 13, 517.	1.2	55
311	Evaluation of fluoride and cadmium adsorption modification of corn stalk by aluminum trichloride. Applied Surface Science, 2021, 543, 148727.	3.1	21
312	The Recovery of Phosphate and Ammonium from Biogas Slurry as Value-Added Fertilizer by Biochar and Struvite Co-Precipitation. Sustainability, 2021, 13, 3827.	1.6	10
313	Nitrogen and magnesium Co-doped biochar for phosphate adsorption. Biomass Conversion and Biorefinery, 2024, 14, 5923-5942.	2.9	4
314	Adsorptive Removal of Phosphate from Aqueous Solutions Using Low-Cost Volcanic Rocks: Kinetics and Equilibrium Approaches. Materials, 2021, 14, 1312.	1.3	20
315	Simultaneous recovery of nitrogen and phosphorus from biogas slurry by Fe-modified biochar. Journal of Saudi Chemical Society, 2021, 25, 101213.	2.4	30
316	Evaluation of the fertiliser replacement value of phosphorus-saturated filter media. Journal of Cleaner Production, 2021, 291, 125943.	4.6	17
317	A state of the art review on phosphate removal from water by biochars. Chemical Engineering Journal, 2021, 409, 128211.	6.6	155
318	Comparative study on characteristics and mechanism of phosphate adsorption on Mg/Al modified biochar. Journal of Environmental Chemical Engineering, 2021, 9, 105079.	3.3	60
319	Zirconium and iminodiacetic acid modified magnetic peanut husk as a novel adsorbent for the sequestration of phosphates from solution: Characterization, equilibrium and kinetic study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615, 126260.	2.3	24
320	Advanced techniques to remove phosphates and nitrates from waters: a review. Environmental Chemistry Letters, 2021, 19, 3165-3180.	8.3	44
323	Char derived from food waste based solid digestate for phosphate adsorption. Journal of Cleaner Production, 2021, 297, 126687.	4.6	17
324	Ammonium Release and Adsorption Characters of Polyurethane–Biochar Crosslinked Material as an Additive Filler in Stormwater Treatment. Polymers, 2021, 13, 1557.	2.0	2
325	Can combined compost and biochar application improve the quality of a highly weathered coastal savanna soil?. Heliyon, 2021, 7, e07089.	1.4	12
326	Surface decoration and characterization of solar driven biochar for the removal of toxic aromatic pollutant. Journal of Chemical Technology and Biotechnology, 2021, 96, 2310-2324.	1.6	6
327	Potential Use of Agro/Food Wastes as Biosorbents in the Removal of Heavy Metals. , 0, , .		8
328	Preparation and application of novel rice husk biocharâ€"calcite composites for phosphate removal from aqueous medium. Journal of Cleaner Production, 2021, 299, 126802.	4.6	38
329	Performance and mechanism of a biochar-based Ca-La composite for the adsorption of phosphate from water. Journal of Environmental Chemical Engineering, 2021, 9, 105267.	3.3	54

#	Article	IF	CITATIONS
331	A comparative study on phosphate removal from water using <i>Phragmites australis</i> biochars loaded with different metal oxides. Royal Society Open Science, 2021, 8, 201789.	1.1	11
332	Lignite, thermally-modified and Ca/Mg-modified lignite for phosphate remediation. Science of the Total Environment, 2021, 773, 145631.	3.9	22
333	Capture and recover dissolved phosphorous from aqueous solutions by a designer biochar: Mechanism and performance insights. Chemosphere, 2021, 274, 129717.	4.2	8
334	Challenges and opportunities of nutrient recovery from human urine using biochar for fertilizer applications. Journal of Cleaner Production, 2021, 304, 127019.	4.6	43
335	Ball milling biochar iron oxide composites for the removal of chromium (Cr(VI)) from water: Performance and mechanisms. Journal of Hazardous Materials, 2021, 413, 125252.	6.5	135
336	Examining nitrate surface absorption method from polluted water using activated carbon of agricultural wastes. Modeling Earth Systems and Environment, 0, , 1.	1.9	6
337	Magnetic Carbon Nanofibers as Potent Adsorbents for Phosphate Removal and Regeneration. Environmental Engineering Science, 2022, 39, 223-234.	0.8	3
338	Hygroscopic Water Retention and Physio-Chemical Properties of Three In-House Produced Biochars from Different Feedstock Types: Implications on Substrate Amendment in Green Infrastructure. Water (Switzerland), 2021, 13, 2613.	1.2	3
339	Recent advances and challenges on removal and recycling of phosphate from wastewater using biomass-derived adsorbents. Chemosphere, 2021, 278, 130377.	4.2	56
340	High capacity aqueous phosphate reclamation using Fe/Mg-layered double hydroxide (LDH) dispersed on biochar. Journal of Colloid and Interface Science, 2021, 597, 182-195.	5.0	78
341	Quantitative analysis on the mechanism of Cd2+ removal by MgCl2-modified biochar in aqueous solutions. Journal of Hazardous Materials, 2021, 420, 126487.	6.5	78
342	Magnetic biochar synthesized with waterworks sludge and sewage sludge and its potential for methylene blue removal. Journal of Environmental Chemical Engineering, 2021, 9, 105951.	3.3	45
343	Biochar affects the fate of phosphorus in soil and water: A critical review. Chemosphere, 2021, 283, 131176.	4.2	69
344	Phosphate recovery from aqueous solution through adsorption by magnesium modified multi-walled carbon nanotubes. Science of the Total Environment, 2021, 796, 148907.	3.9	29
345	Adsorption of Estradiol from aqueous solution by hydrothermally carbonized and steam activated palm kernel shells. Energy Nexus, 2021, 1, 100009.	3.3	12
346	Enhancement of phosphate adsorption by chemically modified biochars derived from Mimosa pigra invasive plant. Case Studies in Chemical and Environmental Engineering, 2021, 4, 100117.	2.9	14
347	Synthesis of zeolite/geopolymer composite for enhanced sequestration of phosphate (PO43â^') and ammonium (NH4+) ions; equilibrium properties and realistic study. Journal of Environmental Management, 2021, 300, 113723.	3.8	19
348	Biochar as environmental armour and its diverse role towards protecting soil, water and air. Science of the Total Environment, 2022, 806, 150444.	3.9	63

#	Article	IF	Citations
349	Magnetic biocomposite based on peanut husk for adsorption of hexavalent chromium, Congo red and phosphate from solution: Characterization, kinetics, equilibrium, mechanism and antibacterial studies. Chemosphere, 2022, 287, 132030.	4.2	40
350	Biomass as source for hydrochar and biochar production to recover phosphates from wastewater: A review on challenges, commercialization, and future perspectives. Chemosphere, 2022, 286, 131490.	4.2	56
351	Applications of conventional and advanced technologies for phosphorus remediation from contaminated water., 2022, , 181-213.		3
352	In Situ Growth Synthesis of the CNTs@AC Hybrid Material for Efficient Nitrate-Nitrogen Adsorption. ACS Omega, 2021, 6, 1612-1622.	1.6	7
353	Phosphorus Release and Adsorption Properties of Polyurethane–Biochar Crosslinked Material as a Filter Additive in Bioretention Systems. Polymers, 2021, 13, 283.	2.0	6
354	Adsorption of ammonium and phosphates by biochar produced from oil palm shells: Effects of production conditions. Results in Chemistry, 2021, 3, 100119.	0.9	22
355	Enrichment of primary macronutrients in biochar for sustainable agriculture: A review. Critical Reviews in Environmental Science and Technology, 2022, 52, 1449-1490.	6.6	39
356	Initial Results of Using Biochar Derived from Spent Coffee Grounds to Remove Pollutants from Livestock Wastewater in Vietnam. Lecture Notes in Civil Engineering, 2021, , 305-325.	0.3	2
357	Nanomaterials for Delivery of Nutrients and Growth-Promoting Compounds to Plants., 2017, , 177-226.		30
358	Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. International Journal of Environmental Science and Technology, 2021, 18, 3273-3294.	1.8	287
359	Effects of biochar incorporation and fertilizations on nitrogen and phosphorus losses through surface and subsurface flows in a sloping farmland of Entisol. Agriculture, Ecosystems and Environment, 2020, 300, 106988.	2.5	35
360	Iron (III) and iminodiacetic acid functionalized magnetic peanut husk for the removal of phosphate from solution: Characterization, kinetic and equilibrium studies. Journal of Cleaner Production, 2020, 268, 122191.	4.6	54
361	Phosphorus adsorption behaviors of MgO modified biochars derived from waste woody biomass resources. Journal of Environmental Chemical Engineering, 2020, 8, 103723.	3.3	78
362	Facile fabrication of Mg-Fe-biochar adsorbent derived from spent mushroom waste for phosphate removal. Journal of the Taiwan Institute of Chemical Engineers, 2020, 117, 75-85.	2.7	20
363	Influence of temperature and residence time on characteristics of biochars derived from agricultural residues: A comprehensive evaluation. Chemical Engineering Research and Design, 2020, 139, 218-229.	2.7	31
364	Facile Fabrication of Calcium-Doped Carbon for Efficient Phosphorus Adsorption. ACS Omega, 2021, 6, 327-339.	1.6	9
366	Pyrolysis of Delonix Regia and Characterization of Its Pyrolytic Products: Effect of Pyrolysis Temperature. Journal of Energy Resources Technology, Transactions of the ASME, 2020, 142, .	1.4	19
367	Adsorption of phosphate in water on a novel calcium hydroxide-coated dairy manure-derived biochar. Environmental Engineering Research, 2019, 24, 434-442.	1.5	52

#	Article	IF	CITATIONS
368	Nitrogen Recovery from Clear-Cut Forest Runoff Using Biochar: Adsorption–Desorption Dynamics Affected by Water Nitrogen Concentration. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	2
369	Adsorption of Anionic and Cationic Dyes on Different Biochars. Russian Journal of Physical Chemistry A, 2021, 95, 2031-2041.	0.1	3
370	Phosphate adsorption using biochar derived from solid digestate. Bioresource Technology Reports, 2021, 16, 100864.	1.5	12
371	The potential of date palm waste biochar for single and simultaneous removal of ammonium and phosphate from aqueous solutions. Journal of Environmental Chemical Engineering, 2021, 9, 106598.	3.3	13
373	Phosphorus Adsorption and Nitric Acid Reduction by Ferrous Sulfate-Treated Foamed Waste Glass. Journal of Materials Science and Chemical Engineering, 2018, 06, 21-30.	0.2	0
374	Insight into the CaO green decorated clinoptilolite as an effective adsorbent for nitrate and phosphate ions; equilibrium; kinetic, and safety studies. Surfaces and Interfaces, 2021, 27, 101568.	1.5	5
375	Environmental applications of tomato processing by-products. , 2022, , 231-284.		0
376	Characterization and application of magnetic biochar for the removal of phosphorus from water. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20190440.	0.3	7
377	Nutrients adsorption characteristics and water retention capacity of polyurethane–biochar crosslinked material modified filler soil in stormwater treatment. Journal of Water Process Engineering, 2021, 44, 102347.	2.6	1
378	Production of engineered-biochar under different pyrolysis conditions for phosphorus removal from aqueous solution. Science of the Total Environment, 2022, 816, 151559.	3.9	23
379	Adsorption of Phosphate in Aqueous Phase by Biochar Prepared from Sheep Manure and Modified by Oyster Shells. ACS Omega, 2021, 6, 33046-33056.	1.6	11
381	Transport and Retention of Microplastics in Saturated Porous Media with Peanut Shell Biochar (PSB) and MgO-PSB Amendment: Co-Effects of Cation and Humic Acid. SSRN Electronic Journal, 0, , .	0.4	0
382	Recovery and utilization of phosphorus from fruit and vegetable wastewater. Scientific Reports, 2022, 12, 617.	1.6	3
383	Co-production of phenolic-rich bio-oil and magnetic biochar for phosphate removal via bauxite-residue-catalysed microwave pyrolysis of switchgrass. Journal of Cleaner Production, 2022, 333, 130090.	4.6	22
384	Existing and emerging technologies for the removal of orthophosphate from wastewater by agricultural waste adsorbents: a review. Biomass Conversion and Biorefinery, 2023, 13, 12349-12365.	2.9	5
385	Adsorption Characteristics of Chitosan-Modified Bamboo Biochar in Cd(II) Contaminated Water. Journal of Chemistry, 2022, 2022, 1-10.	0.9	8
386	Silicate minerals control the potential uses of phosphorus-laden mineral-engineered biochar as phosphorus fertilizers. Biochar, 2022, 4, 1.	6.2	5
387	Biochar application in biofiltration systems to remove nutrients, pathogens, and pharmaceutical and personal care products from wastewater. Journal of Environmental Quality, 2022, 51, 129-151.	1.0	8

#	Article	IF	CITATIONS
388	Removal of phosphate by a novel activated sewage sludge biochar: Equilibrium, kinetic and mechanism studies. Applications in Energy and Combustion Science, 2022, 9, 100056.	0.9	3
389	Enhanced Adsorption of Phosphate Onto Magnetic Biochar-Steel Dust Composites from Waste. Performance and Mechanism. SSRN Electronic Journal, 0, , .	0.4	0
390	Lignin-Derived Magnetic Activated Carbons for Environmental Remediation. SSRN Electronic Journal, 0, , .	0.4	0
391	Impacts of temperatures and phosphoric-acid modification to the physicochemical properties of biochar for excellent sulfadiazine adsorption. Biochar, 2022, 4, 1.	6.2	55
392	Enhanced Nutrient Removal in A2N Effluent by Reclaimed Biochar Adsorption. International Journal of Environmental Research and Public Health, 2022, 19, 4016.	1.2	1
393	Recent advances in developing innovative sorbents for phosphorus removalâ€"perspective and opportunities. Environmental Science and Pollution Research, 2022, 29, 38985-39016.	2.7	11
394	Built-in electric field enhanced BiFeO3 photo-Fenton degradation Rhodamine B solution. Journal of Materials Science, 2022, 57, 6900-6913.	1.7	5
395	Novel Fe ₃ O ₄ â€Modified Biochar Derived from Citrus Bergamia Peel: A Green Synthesis Approach for Adsorptive Removal of Methylene Blue. ChemistrySelect, 2022, 7, .	0.7	17
396	Zirconium-modified biochar as the efficient adsorbent for low-concentration phosphate: performance and mechanism. Environmental Science and Pollution Research, 2022, 29, 62347-62360.	2.7	7
397	Preparation of magnesium Ferrite-Doped magnetic biochar using potassium ferrate and seawater mineral at low temperature for removal of cationic pollutants. Bioresource Technology, 2022, 350, 126860.	4.8	15
398	Effective Sb(V) removal from aqueous solution using phosphogypsum-modified biochar. Environmental Pollution, 2022, 301, 119032.	3.7	16
399	MoS2 nanoflowers decorated natural fiber-derived hollow carbon microtubes for boosting perfluorooctanoic acid degradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642, 128670.	2.3	11
400	Preparation of aminated magnetite / SiO _{2 /} chitosan core-shell nanoparticles for efficient adsorption of nitrate and phosphate anions in water. International Journal of Environmental Analytical Chemistry, 2024, 104, 43-72.	1.8	2
401	Preparation, adsorption performance and mechanism of MgO-loaded biochar in wastewater treatment: A review. Environmental Research, 2022, 212, 113341.	3.7	37
402	Transport and retention of microplastics in saturated porous media with peanut shell biochar (PSB) and MgO-PSB amendment: Co-effects of cations and humic acid. Environmental Pollution, 2022, 305, 119307.	3.7	21
403	Graphene–Biochar Composite for Effective Congo Red Dye Removal from Water. Journal of Environmental Engineering, ASCE, 2022, 148, .	0.7	5
405	Biochar-based constructed wetland for contaminants removal from manure wastewater. , 2022, , 487-525.		0
406	Production of magnetic biochar-steel dust composites for enhanced phosphate adsorption. Journal of Water Process Engineering, 2022, 47, 102793.	2.6	14

#	Article	IF	CITATIONS
407	Removal of Phosphate from Aqueous Solution by Zeolite-Biochar Composite: Adsorption Performance and Regulation Mechanism. Applied Sciences (Switzerland), 2022, 12, 5334.	1.3	7
408	Phosphate Removal from Agricultural Drainage Using Biochar. Water Conservation Science and Engineering, 0, , .	0.9	1
409	Fixed bed column performance of Al-modified biochar for the removal of sulfamethoxazole and sulfapyridine antibiotics from wastewater. Chemosphere, 2022, 305, 135475.	4.2	23
410	From waste to fertilizer: Nutrient recovery from wastewater by pristine and engineered biochars. Chemosphere, 2022, 306, 135310.	4.2	25
411	An advanced combination of density functional theory simulations and statistical physics modeling in the unveiling and prediction of adsorption mechanisms of 2,4-D pesticide to activated carbon. Journal of Molecular Liquids, 2022, 361, 119639.	2.3	21
412	Phosphate removal from aqueous solution using calcium-rich biochar prepared by the pyrolysis of crab shells. Environmental Science and Pollution Research, 2022, 29, 89570-89584.	2.7	8
413	Phosphate capture from biogas slurry with magnesium-doped biochar composite derived from Lycium chinensis branch filings: performance, mechanism, and effect of coexisting ions. Environmental Science and Pollution Research, 2022, 29, 84873-84885.	2.7	11
414	Treatment of faecal sludge and sewage effluent by pinewood biochar to reduce wastewater bacteria and inorganic contaminants leaching. Water Research, 2022, 221, 118775.	5.3	13
415	Phytoremediation plants (ramie) and steel smelting wastes for calcium silicate coated-nZVI/biochar production: Environmental risk assessment and efficient As(V) removal mechanisms. Science of the Total Environment, 2022, 844, 156924.	3.9	12
416	Iron and Magnesium Impregnation of Avocado Seed Biochar for Aqueous Phosphate Removal. Clean Technologies, 2022, 4, 690-702.	1.9	8
417	Remediation of Aqueous Phosphate Agricultural Runoff Using Slag and Al/Mg Modified Biochar. Processes, 2022, 10, 1561.	1.3	1
418	Lignin-Derived Magnetic Activated Carbons for Effective Methylene Blue Removal. Industrial & Description of Engineering Chemistry Research, 2022, 61, 11840-11850.	1.8	10
419	Co-pyrolysis of pig manure and magnesium-containing waste residue and phosphorus recovery for planting feed corn. Journal of Water Process Engineering, 2022, 49, 103146.	2.6	8
420	Biological Treatment for Biochar Modification: Opportunities, Limitations, and Advantages. , 2022, , 85-104.		0
421	Montmorillonite based copper oxide nanoparticles for the efficient remediation of phosphate and anti-bacterial activity against gram-negative bacteria. Separation Science and Technology, 2023, 58, 406-419.	1.3	3
422	Phosphorus adsorption by functionalized biochar: a review. Environmental Chemistry Letters, 2023, 21, 497-524.	8.3	82
423	Novel oxymagnesite/green rust nanohybrids for selective removal and slow release of phosphate in water. Science of the Total Environment, 2023, 856, 159207.	3.9	4
424	Adsorption of Phosphate by Surface Precipitation on Lanthanum Carbonate Through In Situ Anion Substitution Reactions. Frontiers in Environmental Science, 0, 10, .	1.5	1

#	Article	IF	CITATIONS
426	Magnesium chloride-modified potassium humate-based carbon material for efficient removal of phosphate from water. Journal of the Taiwan Institute of Chemical Engineers, 2022, 140, 104540.	2.7	5
427	Effects of biochar particle size on sorption and desorption behavior of NH4+-N. Industrial Crops and Products, 2022, 189, 115837.	2.5	8
428	Efficient aqueous molybdenum removal using commercial Douglas fir biochar and its iron oxide hybrids. Journal of Hazardous Materials, 2023, 443, 130257.	6.5	4
429	The effect of cotton stalk concentration on morphology and fixing bromine content in char while on co-pyrolysis with non-metal fractions of PCB. Biomass Conversion and Biorefinery, 0, , .	2.9	0
430	Recovery of nitrogen and phosphorus in wastewater by red mud-modified biochar and its potential application. Science of the Total Environment, 2023, 860, 160289.	3.9	23
431	The role of biochar and zeolite in enhancing nitrogen and phosphorus recovery: A sustainable manure management technology. Chemical Engineering Journal, 2023, 456, 141003.	6.6	2
432	Treatment of Highway Stormwater Runoff Using Sustainable Biochar: A Review. Journal of Environmental Engineering, ASCE, 2023, 149, .	0.7	1
433	Efficient removal of phosphorus by adsorption. Phosphorus, Sulfur and Silicon and the Related Elements, 2023, 198, 375-384.	0.8	2
434	The effectiveness and adsorption mechanism of iron-carbon nanotube composites for removing phosphate from aqueous environments. Chemosphere, 2023, 313, 137629.	4.2	11
435	Synthesis of K+ and Na+ Synthetic Sodalite Phases by Low-Temperature Alkali Fusion of Kaolinite for Effective Remediation of Phosphate Ions: The Impact of the Alkali Ions and Realistic Studies. Inorganics, 2023, 11, 14.	1.2	1
436	Adsorption of Phosphates onto Mg/Al-Oxide/Hydroxide/Sulfate-Impregnated Douglas Fir Biochar. Processes, 2023, 11, 111.	1.3	4
437	Phosphate Removal Mechanisms in Aqueous Solutions by Three Different Fe-Modified Biochars. International Journal of Environmental Research and Public Health, 2023, 20, 326.	1.2	6
438	Sorption of Phosphate on Douglas Fir Biochar Treated with Magnesium Chloride and Potassium Hydroxide for Soil Amendments. Processes, 2023, 11, 331.	1.3	2
439	Production and application of biochar. Advances in Bioenergy, 2023, , .	0.5	0
440	Engineered biochar for the effective sorption and remediation of emerging pollutants in the environment. Journal of Environmental Chemical Engineering, 2023, 11, 109590.	3.3	13
441	Dual-reaction center catalyst based on common metals Cu-Mg-Al for synergistic peroxymonosulfate adsorption-activation in Fenton-like process. Applied Catalysis B: Environmental, 2023, 327, 122468.	10.8	20
442	Comparative assessment of formation pathways and adsorption behavior reveals the role of NaOH of MgO-modified diatomite on phosphate recovery. Science of the Total Environment, 2023, 876, 162785.	3.9	17
443	Porous MgO-modified biochar adsorbents fabricated by the activation of Mg(NO3)2 for phosphate removal: Synergistic enhancement of porosity and active sites. Chemosphere, 2023, 324, 138320.	4.2	12

#	Article	IF	CITATIONS
444	A facile acid etching to create unsaturated-coordinate Zn-defects on ZIF-L surface for highly-selective phosphate removal from wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 662, 131042.	2.3	7
445	Biochar as a novel technology for treatment of onsite domestic wastewater: A critical review. Frontiers in Environmental Science, 0, 11, .	1.5	7
446	Research trends on biochar-based smart fertilizers as an option for the sustainable agricultural land management: Bibliometric analysis and review. Frontiers in Soil Science, 0, 3, .	0.8	1
447	Chitosan–Montmorillonite–Fe Nanocomposite Hydrogel for Phosphate Recovery and Reuse. ACS ES&T Engineering, 2023, 3, 682-689.	3.7	8
448	Multifaceted applications of biochar in environmental management: a bibliometric profile. Biochar, 2023, 5, .	6.2	26
449	Bio-assembled MgO-coated tea waste biochar efficiently decontaminates phosphate from water and kitchen waste fermentation liquid. Biochar, 2023, 5, .	6.2	10
450	Fabrication of amorphous metal-organic framework in deep eutectic solvent for boosted organophosphorus pesticide adsorption. Journal of Environmental Chemical Engineering, 2023, 11, 109963.	3.3	2
453	Biochar-Based Nanocomposites for Separation of Inorganic Contaminants from the Environment. Advances in Science, Technology and Innovation, 2023, , 69-81.	0.2	0
458	Biochar for Management of Wastewater. Materials Horizons, 2023, , 107-121.	0.3	0
459	Application of common industrial solid waste in water treatment: a review. Environmental Science and Pollution Research, 2023, 30, 111766-111801.	2.7	2