Role of organic amendments on enhanced bioremediatic contaminated soils

Journal of Hazardous Materials 185, 549-574

DOI: 10.1016/j.jhazmat.2010.09.082

Citation Report

#	Article	IF	CITATIONS
1	Phytostabilization. Advances in Agronomy, 2011, , 145-204.	2.4	217
2	Copper distribution and hydrolase activities in a contaminated soil amended with dolomitic limestone and compost. Ecotoxicology and Environmental Safety, 2011, 74, 2013-2019.	2.9	51
3	Stimulation of ROS-scavenging systems in squash (Cucurbita pepo L.) plants by compost supplementation under normal and low temperature conditions. Scientia Horticulturae, 2011, 130, 862-868.	1.7	27
4	Using response surface methodology to assess the effects of iron and spent mushroom substrate on arsenic phytotoxicity in lettuce (Lactuca sativa L.). Journal of Hazardous Materials, 2011, 192, 381-7.	6.5	15
5	Heavy Metal Contamination of Soil, Its Risk Assessment and Bioremediation. Geosystem Engineering, 2011, 14, 191-206.	0.7	22
6	Biochar Reduces Copper Toxicity in <i>Chenopodium quinoa</i> Willd. in a Sandy Soil. Journal of Environmental Quality, 2012, 41, 1157-1165.	1.0	82
7	PLANT AVAILABILITY OF NICKEL AS INFLUENCED BY FARMYARD MANURE AND ITS CRITICAL TOXIC LIMITS IN FRENCH BEAN. Journal of Plant Nutrition, 2012, 35, 384-395.	0.9	10
8	Effect of Sludge Amendment on Remediation of Metal Contaminated Soils. Minerals (Basel,) Tj ETQq1 1 0.78431	4 rggT	/Overlock 10 Th
9	The Influence of Biochar and Black Carbon on Reduction and Bioavailability of Chromate in Soils. Journal of Environmental Quality, 2012, 41, 1175-1184.	1.0	171
10	Effects of Biotic and Abiotic Amendments on Phytoremediation Ef—ciency Applied to Metal-Polluted Soils. , 2012, , 308-317.		O
11	The Influence of Wastewater Irrigation on the Transformation and Bioavailability of Heavy Metal(Loid)s in Soil. Advances in Agronomy, 2012, 115, 215-297.	2.4	67
12	Effects of AM Inoculation and Organic Amendment, Alone or in Combination, on Growth, P Nutrition, and Heavy-Metal Uptake of Tobacco in Pb-Cd-Contaminated Soil. Journal of Plant Growth Regulation, 2012, 31, 549-559.	2.8	56
13	Trace element reactivity in FeS-rich estuarine sediments: Influence of formation environment and acid sulfate soil drainage. Science of the Total Environment, 2012, 438, 463-476.	3.9	33
14	Effects of Arbuscular Mycorrhizal Inoculation and Cattle Manure on Cadmium Uptake by Tobacco., 2012,,.		0
15	Phytoremediation of a soil contaminated by heavy metals and boron using castor oil plants and organic matter amendments. Journal of Geochemical Exploration, 2012, 123, 3-7.	1.5	64
16	Use of Biosolids for Phytocapping of Landfill Soil. Water, Air, and Soil Pollution, 2012, 223, 2695-2705.	1.1	27
17	Vermicomposts and/or Arbuscular Mycorrhizal Fungal Inoculation in Relation to Metal Availability and Biochemical Quality of a Soil Contaminated with Heavy Metals. Water, Air, and Soil Pollution, 2012, 223, 2707-2718.	1.1	17
18	Exploring mixed microbial community functioning: recent advances in metaproteomics. FEMS Microbiology Ecology, 2012, 80, 265-280.	1.3	106

#	ARTICLE	IF	CITATIONS
19	Evaluation of the potential capacity as biosorbents of two MSW composts with different Cu, Pb and Zn concentrations. Bioresource Technology, 2012, 104, 810-813.	4.8	54
20	Laboratory based experiments to assess the use of green and food based compost to improve water quality in a Sustainable Drainage (SUDS) device such as a swale. Science of the Total Environment, 2012, 424, 337-343.	3.9	18
21	Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. Journal of Hazardous Materials, 2012, 219-220, 1-12.	6.5	308
22	Rhizoreduction of arsenate and chromate in Australian native grass, shrub and tree vegetation. Plant and Soil, 2013, 367, 615-625.	1.8	25
23	Effects of sewage sludge and nitrogen fertilizer on herbage growth and soil fertility improvement in restoration of the abandoned opencast mining areas in Shanxi, China. Environmental Earth Sciences, 2013, 70, 3323-3333.	1.3	40
25	Clean Coal Technology Combustion Products. Advances in Agronomy, 2013, , 309-370.	2.4	10
26	Contribution of AM inoculation and cattle manure to lead and cadmium phytoremediation by tobacco plants. Environmental Sciences: Processes and Impacts, 2013, 15, 794.	1.7	37
27	The Role of Bioretention Systems in the Treatment of Stormwater. Advances in Agronomy, 2013, , 223-274.	2.4	33
28	Diverse effects of arsenic on selected enzyme activities in soil–plant–microbe interactions. Journal of Hazardous Materials, 2013, 262, 685-690.	6.5	31
29	Water extraction kinetics of metals, arsenic and dissolved organic carbon from industrial contaminated poplar leaves. Journal of Environmental Sciences, 2013, 25, 2451-2459.	3.2	64
30	Removal of Metals and Acidity from Acid Mine Drainage Using Liquid and Dried Digested Sewage Sludge and Cattle Slurry. Mine Water and the Environment, 2013, 32, 108-120.	0.9	13
31	Assessment of heavy metal contamination and bioaccumulation in soybean plants from mining and smelting areas of southern Hunan Province, China. Environmental Toxicology and Chemistry, 2013, 32, 2719-2727.	2.2	38
32	Soil Immobilization of Heavy Metal Using Soil Amendments in a Greenhouse Study. Compost Science and Utilization, 2013, 21, 156-163.	1.2	2
33	Arsenic and selenium mobilisation from organic matter treated mine spoil with and without inorganic fertilisation. Environmental Pollution, 2013, 173, 238-244.	3.7	77
34	Promising Pathway for Algal Biofuels through Wastewater Cultivation and Hydrothermal Conversion. Energy & Energ	2.5	127
35	Biochars immobilize soil cadmium, but do not improve growth of emergent wetland species Juncus subsecundus in cadmium-contaminated soil. Journal of Soils and Sediments, 2013, 13, 140-151.	1.5	92
36	Carbon storage in a heavy clay soil landfill site after biosolid application. Science of the Total Environment, 2013, 465, 216-225.	3.9	50
37	Sorption–bioavailability nexus of arsenic and cadmium in variable-charge soils. Journal of Hazardous Materials, 2013, 261, 725-732.	6.5	56

#	Article	IF	CITATIONS
38	Cadmium Contamination and Its Risk Management in Rice Ecosystems. Advances in Agronomy, 2013, , $183-273$.	2.4	115
39	Role of organic amendment application on greenhouse gas emission from soil. Science of the Total Environment, 2013, 465, 72-96.	3.9	375
40	Chromium Contamination and Its Risk Management in Complex Environmental Settings. Advances in Agronomy, 2013, 120, 129-172.	2.4	110
41	Ultrasound-assisted single extraction tests for rapid assessment of metal extractability from soils by total reflection X-ray fluorescence. Journal of Hazardous Materials, 2013, 260, 202-209.	6.5	29
42	Modeling adsorption kinetics of trichloroethylene onto biochars derived from soybean stover and peanut shell wastes. Environmental Science and Pollution Research, 2013, 20, 8364-8373.	2.7	92
43	Microbial Transformation of Trace Elements in Soils in Relation to Bioavailability and Remediation. Reviews of Environmental Contamination and Toxicology, 2013, 225, 1-56.	0.7	41
44	Cadmium Accumulation Retard Activity of Functional Components of Photo Assimilation And Growth of Rice Cultivars Amended with Vermicompost. International Journal of Phytoremediation, 2013, 15, 965-978.	1.7	16
45	Effects of Time and Glucose-C on the Fractionation of Zn and Cu in a Slightly Acidic Soil. Communications in Soil Science and Plant Analysis, 2013, 44, 722-732.	0.6	5
46	Immobilization of Lead from Pb-Contaminated Soil Amended with Peat Moss. Journal of Chemistry, 2013, 2013, 1-6.	0.9	22
47	Assessment on the Environment Risk of Heavy Metals in the Soil of Anhui Province (China) by Pollution Index Method. Advanced Materials Research, 0, 864-867, 793-796.	0.3	0
48	Use of a Rhizosphere-Based Method for the Assessment of Heavy-Metal Bioavailability in Soils Amended with Polluted Sewage Sludge. Communications in Soil Science and Plant Analysis, 2013, 44, 1599-1609.	0.6	2
49	THE INFLUENCE OF ORGANIC MATTER ON YIELD AND QUALITY OF WINTER WHEAT Triticum aestivum ssp. vulgare (L.) CULTIVATED ON SOILS CONTAMINATED WITH HEAVY METALS. Ecological Chemistry and Engineering S, 2013, 20, 701-708.	0.3	4
50	Effect of Long-Term Application of Biosolids for Mine Land Reclamation on Groundwater Chemistry: Nutrients and Other Selected Qualities. Journal of Environmental Quality, 2013, 42, 94-102.	1.0	6
51	Fertility Evaluation of Limed Brazilian Soil Polluted with Scrap Metal Residue. Applied and Environmental Soil Science, 2013, 2013, 1-10.	0.8	0
52	Managing the Selenium Content in Soils in Semiarid Environments through the Recycling of Organic Matter. Applied and Environmental Soil Science, 2013, 2013, 1-10.	0.8	17
53	An Overview of the Environmental Applicability of Vermicompost: From Wastewater Treatment to the Development of Sensitive Analytical Methods. Scientific World Journal, The, 2014, 2014, 1-14.	0.8	13
54	Municipal Solid Waste Compost Application Improves the Negative Impact of Saline Soil in Two Forage Species. Communications in Soil Science and Plant Analysis, 2014, 45, 1421-1434.	0.6	5
55	Effect of organic amendments on phytoavailability of nickel and growth of berseem (<i>Trifolium) Tj ETQq1 1 2014, 26, 37-42.</i>	0.784314 rgl 2.0	BT /Overlock 21

#	ARTICLE	IF	Citations
56	Effect of Paper Mill Sludge on Adsorption and Desorption of Cd(II) and Pb(II) in Paddy Soils. Advanced Materials Research, 0, 955-959, 2539-2545.	0.3	O
57	Efficacy of Biosolids in Assisted Phytostabilization of Metalliferous Acidic Sandy Soils with Five Grass Species. International Journal of Phytoremediation, 2014, 16, 593-608.	1.7	32
58	Phytostabilization of metals in mine soils using Brassica juncea in combination with organic amendments. Plant and Soil, 2014, 377, 97-109.	1.8	63
59	Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 2014, 99, 19-33.	4.2	3,175
60	Chemical Stabilization of Metal-Contaminated Mine Soil: Early Short-Term Soil-Amendment Interactions and Their Effects on Biological and Chemical Parameters. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	22
61	Soluble organic carbon and pH of organic amendments affect metal mobility and chemical speciation in mine soils. Chemosphere, 2014, 103, 164-171.	4.2	77
62	Influence of municipal solid waste (MSW) compost on hormonal status and biomass partitioning in two forage species growing under saline soil conditions. Ecological Engineering, 2014, 64, 142-150.	1.6	21
63	The Effect of Compost Treatments and A Plant Cover with <i>Agrostis tenuis </i> Inmobilization/Mobilization of Trace Elements in a Mine-Contaminated Soil. International Journal of Phytoremediation, 2014, 16, 138-154.	1.7	36
64	Changes in Enzyme Activities and Microbial Community Structure in Heavy Metalâ€Contaminated Soil under ⟨i⟩in Situ⟨/i⟩ Aided Phytostabilization. Clean - Soil, Air, Water, 2014, 42, 1618-1625.	0.7	25
65	Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize?. Journal of Hazardous Materials, 2014, 266, 141-166.	6.5	1,544
66	EDTA-Enhanced Phytoremediation of Heavy Metals: A Review. Soil and Sediment Contamination, 2014, 23, 389-416.	1.1	174
67	Modern approaches to remediation of heavy metal polluted soils: A review. Eurasian Soil Science, 2014, 47, 707-722.	0.5	85
68	Field assessment of the effectiveness of organic amendments for aided phytostabilization of a Pb–Zn contaminated mine soil. Journal of Geochemical Exploration, 2014, 145, 181-189.	1.5	77
69	Phytocapping: An Alternative Technology for the Sustainable Management of Landfill Sites. Critical Reviews in Environmental Science and Technology, 2014, 44, 561-637.	6.6	50
70	Problems and prospects concerning the phytoremediation of heavy metal polluted soils: A review. Eurasian Soil Science, 2014, 47, 923-939.	0.5	134
71	Global research on soil contamination from 1999 to 2012: A bibliometric analysis. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2014, 64, 377-391.	0.3	14
72	Effects of pig manure containing copper and zinc on microbial community assessed via phospholipids in soils. Environmental Monitoring and Assessment, 2014, 186, 5297-5306.	1.3	13
73	Cellular Mechanisms in Higher Plants Governing Tolerance to Cadmium Toxicity. Critical Reviews in Plant Sciences, 2014, 33, 374-391.	2.7	279

#	Article	IF	CITATIONS
74	Phytoremediating a copper mine soil with Brassica juncea L., compost and biochar. Environmental Science and Pollution Research, 2014, 21, 11293-11304.	2.7	63
7 5	Effects of in situ biological treatments on heavy metal release of urban river sediment. Frontiers of Environmental Science and Engineering, 2014, 8, 607-615.	3.3	2
76	Environmental factors influencing the structural dynamics of soil microbial communities during assisted phytostabilization of acid-generating mine tailings: A mesocosm experiment. Science of the Total Environment, 2014, 500-501, 314-324.	3.9	67
77	The potential of biosolid application for the phytostabilisation of metals. Desalination and Water Treatment, 2014, 52, 3955-3964.	1.0	14
78	Effects of combined amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on contaminated paddy soil. Ecotoxicology and Environmental Safety, 2014, 101, 226-232.	2.9	183
79	Heavy metal leaching and environmental risk from the use of compost-like output as an energy crop growth substrate. Science of the Total Environment, 2014, 487, 260-271.	3.9	54
80	Sprinkler irrigation of rice fields reduces grain arsenic but enhances cadmium. Science of the Total Environment, 2014, 485-486, 468-473.	3.9	81
81	Engineering the rhizosphere for the purpose of bioremediation: an overview CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-17.	0.6	16
82	An integrated insight into the response of sedimentary microbial communities to heavy metal contamination. Scientific Reports, 2015, 5, 14266.	1.6	235
83	Heavy Metal Immobilization in Contaminated Soils using Phosphogypsum and Rice Straw Compost. Land Degradation and Development, 2015, 26, 819-824.	1.8	74
84	The sociality of bioremediation. EMBO Reports, 2015, 16, 1241-1245.	2.0	26
85	Efecto de la aplicaciÃ ³ n de un vermicompost en las propiedades quÃmicas de un suelo salino-sÃ ³ dico del semiárido venezolano. Acta Agronomica, 2015, 64, .	0.0	4
86	Benefits of the Use of Sewage Sludge over EDTA to Remediate Soils Polluted with Heavy Metals. Journal of Environmental Quality, 2015, 44, 1579-1588.	1.0	1
87	Rhizosphere-induced heavy metal(loid) transformation in relation to bioavailability and remediation. Journal of Soil Science and Plant Nutrition, 2015, , 0-0.	1.7	40
88	Influence of Cadmium and Glucose on Soil Microbial Communities. American Journal of Applied Sciences, 2015, 12, 759-765.	0.1	0
89	Organic amendments as sustainable tool to recovery fertility in intensive agricultural systems. Journal of Soil Science and Plant Nutrition, 2015, , 0-0.	1.7	97
90	The Evolution of Soil Mineralogy. Soil Horizons, 2015, 56, 1.	0.3	1
91	Yield, Quality, and Nutrient Concentrations of Strawberry (<i>Fragaria</i> × <i>ananassa</i> Duch. cv.) Tj ETQq1 Chemistry, 2015, 63, 5578-5586.	1 0.7843 2.4	314 rgBT /0 28

#	Article	IF	CITATIONS
92	Environmental Applications of Chitosan and Its Derivatives. Reviews of Environmental Contamination and Toxicology, 2015, 233, 1-43.	0.7	60
93	Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs. Biotechnology Advances, 2015, 33, 745-755.	6.0	706
94	Heavy Metal Stress and Crop Productivity. , 2015, , 1-25.		89
95	Influence of Rapeseed Cake on Heavy Metal Uptake by a Subsequent Rice Crop After Phytoextraction Using <i>Sedum plumbizincicola </i> International Journal of Phytoremediation, 2015, 17, 76-84.	1.7	15
96	Mobility and Translocation of Heavy Metals from Mine Tailings in Three Plant Species after Amendment with Compost and Biosurfactant. Soil and Sediment Contamination, 2015, 24, 223-249.	1.1	15
97	Immobilization of lead in anthropogenic contaminated soils using phosphates with/without oxalic acid. Journal of Environmental Sciences, 2015, 28, 64-73.	3.2	37
98	Use of Arbuscular Mycorrhiza and Organic Amendments to Enhance Growth of <i>Macaranga peltata </i> (Roxb.) MýII. Arg. in Iron Ore Mine Wastelands. International Journal of Phytoremediation, 2015, 17, 485-492.	1.7	2
99	The combination of compost addition and arbuscular mycorrhizal inoculation produced positive and synergistic effects on the phytomanagement of a semiarid mine tailing. Science of the Total Environment, 2015, 514, 42-48.	3.9	67
100	Effect of dissolved humic acid on the Pb bioavailability in soil solution and its consequence on ecological risk. Journal of Hazardous Materials, 2015, 286, 236-241.	6.5	28
101	Immobilization of Pb, Cd, and Zn in a contaminated soil using eggshell and banana stem amendments: metal leachability and a sequential extraction study. Environmental Science and Pollution Research, 2015, 22, 223-230.	2.7	41
102	The alleviation of acid soil stress in rice by inorganic or organic ameliorants is associated with changes in soil enzyme activity and microbial community composition. Biology and Fertility of Soils, 2015, 51, 465-477.	2.3	84
103	Phytoremediation of Soils Contaminated with Heavy Metals: Techniques and Strategies. , 2015, , 133-155.		29
104	Impact of biochar and root-induced changes on metal dynamics in the rhizosphere of Agrostis capillaris and Lupinus albus. Chemosphere, 2015, 139, 644-651.	4.2	94
105	Characterization, Recovery Opportunities, and Valuation of Metals in Municipal Sludges from U.S. Wastewater Treatment Plants Nationwide. Environmental Science & Environmental Science & 2015, 49, 9479-9488.	4.6	199
106	Gibberellic acid in combination with pressmud enhances the growth of sunflower and stabilizes chromium(VI)-contaminated soil. Environmental Science and Pollution Research, 2015, 22, 10610-10617.	2.7	46
107	Impact of pulp and paper mill effluents and solid wastes on soil mineralogical and physicochemical properties. Environmental Monitoring and Assessment, 2015, 187, 98.	1.3	10
108	Aromatic plants versus arsenic hazards in soils. Journal of Geochemical Exploration, 2015, 157, 77-80.	1.5	53
109	Response of rhizosphere microbial community structure and diversity to heavy metal co-pollution in arable soil. Applied Microbiology and Biotechnology, 2015, 99, 8259-8269.	1.7	115

#	Article	IF	Citations
110	In situ assessment of phyto and zooavailability of trace elements: A complementary approach to chemical extraction procedures. Science of the Total Environment, 2015, 521-522, 400-410.	3.9	18
111	Contrasting Effects of Farmyard Manure (FYM) and Compost for Remediation of Metal Contaminated Soil. International Journal of Phytoremediation, 2015, 17, 613-621.	1.7	31
112	Monitoring the natural attenuation of a sewage sludge toxicity using the Allium cepa test. Ecological Indicators, 2015, 56, 60-69.	2.6	38
113	Effect of dried olive pomace – derived biochar on the mobility of cadmium and nickel in soil. Journal of Environmental Chemical Engineering, 2015, 3, 1163-1176.	3.3	24
114	Remediation effect of compost on soluble mercury transfer in a crop of Phaseolus vulgaris. Journal of Environmental Sciences, 2015, 31, 61-67.	3.2	16
115	Reviews of Environmental Contamination and Toxicology Volume 233. Reviews of Environmental Contamination and Toxicology, 2015, , .	0.7	10
116	The role of biochar, natural iron oxides, and nanomaterials as soil amendments for immobilizing metals in shooting range soil. Environmental Geochemistry and Health, 2015, 37, 931-942.	1.8	97
117	Crop residue stabilization and application to agricultural and degraded soils: A review. Waste Management, 2015, 42, 41-54.	3.7	98
118	Contamination and remediation of phthalic acid esters in agricultural soils in China: a review. Agronomy for Sustainable Development, 2015, 35, 519-534.	2.2	206
119	Organic Materials Differ in Ability to Remove Protons, Iron and Aluminium from Acid Sulfate Soil Drainage Water. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	7
120	The effects of application of agricultural wastes to firing range soil on metal accumulation in <i>Ipomoea aquatica</i> Ipomoea aquaticaIpomoea aquatica<	0.6	2
121	Influence of removal of organic matter and iron and manganese oxides on cadmium adsorption by red paddy soil aggregates. RSC Advances, 2015, 5, 90588-90595.	1.7	36
122	Examination of Three Different Organic Waste Biochars as Soil Amendment for Metal-Contaminated Agricultural Soils. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	14
123	Contrasting effects of organic amendments on phytoextraction of heavy metals in a contaminated sediment. Plant and Soil, 2015, 397, 331-345.	1.8	19
124	Immobilisation of lead and zinc in contaminated soil using compost derived from industrial eggshell. Journal of Environmental Management, 2015, 164, 137-145.	3.8	50
125	Effectiveness of chemical amendments for stabilisation of lead and antimony in risk-based land management of soils of shooting ranges. Environmental Science and Pollution Research, 2015, 22, 8942-8956.	2.7	44
126	Concomitant reduction and immobilization of chromium in relation to its bioavailability in soils. Environmental Science and Pollution Research, 2015, 22, 8969-8978.	2.7	73
127	Effects of Cu exposure on enzyme activities and selection for microbial tolerances during swine-manure composting. Journal of Hazardous Materials, 2015, 283, 512-518.	6.5	77

#	Article	IF	CITATIONS
128	Comparison of filter media materials for heavy metal removal from urban stormwater runoff using biofiltration systems. Journal of Environmental Management, 2015, 147, 24-33.	3.8	100
129	Effects of inorganic and organic amendments on the uptake of lead and trace elements by Brassica chinensis grown in an acidic red soil. Chemosphere, 2015, 119, 177-183.	4.2	103
130	A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes. Journal of Cleaner Production, 2015, 86, 24-36.	4.6	336
131	The influence of soil organic carbon on interactions between microbial parameters and metal concentrations at a long-term contaminated site. Science of the Total Environment, 2015, 502, 218-223.	3.9	34
132	Effects of temperature and amendments on nitrogen mineralization in selected Australian soils. Environmental Science and Pollution Research, 2015, 22, 8843-8854.	2.7	34
133	Phytoremediation of Metal-Contaminated Soils Using Organic Amendments., 2015,, 503-523.		8
134	Phytomanagement of Padaeng Zinc Mine Waste, Mae Sot District, Tak Province, Thailand., 2015, , 661-687.		15
135	Sequential extraction of Cu and Zn from soil amended with bio-compost for 12 years: risk of leaching. International Journal of Environment and Waste Management, 2016, 18, 317.	0.2	1
136	Production of Biomass Crops Using Biowastes on Lowâ€Fertility Soil: 1. Influence of Biowastes on Plant and Soil Quality. Journal of Environmental Quality, 2016, 45, 1960-1969.	1.0	9
137	Rice Paddies for Trace Element Cleanup. , 2016, , 251-269.		0
138	Restoration of Smelter Industrial Barrens Following Pollution Reduction Drives Economic Recovery. , 2016, , 463-483.		1
139	Fractional Characteristics of Heavy Metals Pb, Zn, Cu, and Cd in Sewer Sediment from Areas in Central Beijing, China. Journal of Chemistry, 2016, 2016, 1-10.	0.9	4
140	Effect of Biostimulation Using Sewage Sludge, Soybean Meal, and Wheat Straw on Oil Degradation and Bacterial Community Composition in a Contaminated Desert Soil. Frontiers in Microbiology, 2016, 7, 240.	1.5	45
142	Application of Biochar Produced From Biowaste Materials for Environmental Protection and Sustainable Agriculture Production., 2016, , 73-89.		12
143	Responses of bacterial community and functional marker genes of nitrogen cycling to biochar, compost and combined amendments in soil. Applied Microbiology and Biotechnology, 2016, 100, 8583-8591.	1.7	140
144	Nonâ€Metabolic Uptake of Al ³⁺ by Dead Leaves of <i>Rubus ulmifolius</i> : Comparison With Metabolic Bioaccumulation Data. Clean - Soil, Air, Water, 2016, 44, 154-161.	0.7	0
145	Evaluation of soil amendments as a remediation alternative for cadmium-contaminated soils under cacao plantations. Environmental Science and Pollution Research, 2016, 23, 17571-17580.	2.7	24
146	Paper-disc method: An efficient assay for evaluating metal toxicity to soil algae. Environmental Pollution, 2016, 216, 1-8.	3.7	25

#	ARTICLE	IF	CITATIONS
147	Reliability and stability of immobilization remediation of Cd polluted soils using sepiolite under pot and field trials. Environmental Pollution, 2016, 208, 739-746.	3.7	95
148	Selection of reactive mixture for biochemical passive treatment of acid mine drainage. Environmental Earth Sciences, 2016, 75, 1.	1.3	25
149	Study of metal transport through pine bark for reutilization as a biosorbent. Chemosphere, 2016, 149, 146-153.	4.2	30
150	Organic amendments increase phylogenetic diversity of arbuscular mycorrhizal fungi in acid soil contaminated by trace elements. Mycorrhiza, 2016, 26, 575-585.	1.3	32
151	Phytostabilization of Acidic Soils with Heavy Metal Contamination Using Three Forage Grasses in Combination with Organic and Inorganic Amendments. Soil and Sediment Contamination, 2016, 25, 459-475.	1.1	12
152	Assessment of Trace Element Accumulation by Earthworms in an Orchard Soil Remediation Study Using Soil Amendments. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	8
153	Compost as a Soil Amendment to Remediate Heavy Metal-Contaminated Agricultural Soil: Mechanisms, Efficacy, Problems, and Strategies. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	168
154	In situ stabilization of heavy metals in multiple-metal contaminated paddy soil using different steel slag-based silicon fertilizer. Environmental Science and Pollution Research, 2016, 23, 23638-23647.	2.7	48
155	Effects of alkaline and bioorganic amendments on cadmium, lead, zinc, and nutrient accumulation in brown rice and grain yield in acidic paddy fields contaminated with a mixture of heavy metals. Environmental Science and Pollution Research, 2016, 23, 23551-23560.	2.7	19
156	Aided phytostabilization of a trace element-contaminated technosol developed on steel mill wastes. Journal of Hazardous Materials, 2016, 320, 458-468.	6.5	9
157	Approaches to Heavy Metal Tolerance in Plants. , 2016, , .		23
158	The effects of soil microbial and physiochemical properties on resistance and resilience to copper perturbation across China. Catena, 2016, 147, 678-685.	2.2	13
159	Utilization of Biowaste for Mine Spoil Rehabilitation. Advances in Agronomy, 2016, 138, 97-173.	2.4	34
160	Organic materials retain high proportion of protons, iron and aluminium from acid sulphate soil drainage water with little subsequent release. Environmental Science and Pollution Research, 2016, 23, 23582-23592.	2.7	2
161	Biological Approaches for Remediation of Metal-Contaminated Sites. , 2016, , 65-112.		8
162	Organic acid compounds in root exudation of Moso Bamboo (Phyllostachys pubescens) and its bioactivity as affected by heavy metals. Environmental Science and Pollution Research, 2016, 23, 20977-20984.	2.7	51
163	Influence of iron-rich water treatment residues and compost on the mobility of metal(loid)s in mine soils. Geoderma, 2016, 283, 1-9.	2.3	31
164	State of the Art of Phytoremediation in Brazilâ€"Review and Perspectives. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	14

#	ARTICLE	IF	CITATIONS
165	Maize (Zea mays L.) performance in organically amended mine site soils. Journal of Environmental Management, 2016, 181, 435-442.	3.8	15
166	Near-Infrared Spectroscopic Analysis of Green Waste Composting. Chemistry and Technology of Fuels and Oils, 2016, 52, 300-305.	0.2	1
167	Phytoremediation: A Green Technology. , 2016, , 69-87.		1
168	Organic Soil Amendments in the Phytoremediation Process. , 2016, , 21-39.		3
169	Addition of Vermicompost to Heavy Metal-Contaminated Soil Increases the Ability of Black Oat (Avena) Tj ETQqC	00.rgBT	/Oygrlock 10
170	Assessment of Toxic Metal Uptake by Different Vegetables Grown on Soils Amended with Poultry Waste: Risk Assessment. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	12
171	Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: An assessment in sand and soil conditions under different levels of contamination. Environmental Pollution, 2016, 216, 273-281.	3.7	175
172	Plant, Soil and Microbes., 2016, , .		5
173	Effect of <i>Medicago sativa</i> L. and compost on organic and inorganic pollutant removal from a mixed contaminated soil and risk assessment using ecotoxicological tests. International Journal of Phytoremediation, 2016, 18, 1136-1147.	1.7	19
174	Effects of biochar and alkaline amendments on cadmium immobilization, selected nutrient and cadmium concentrations of lettuce (Lactuca sativa) in two contrasting soils. SpringerPlus, 2016, 5, 397.	1.2	71
175	Changes in heavy metal extractability from contaminated soils remediated with organic waste or biochar. Geoderma, 2016, 279, 132-140.	2.3	63
176	Using kale (<i>Brassica oleracea</i> var. acephala) as a phytoremediation plant species for lead (Pb) and cadmium (Cd) removal in saline soils. Journal of Plant Nutrition, 2016, 39, 1460-1471.	0.9	20
177	Soil Pollution and Remediation. , 2016, , 423-438.		1
178	Heavy metal mobility and potential availability in animal manure: using a sequential extraction procedure. Journal of Material Cycles and Waste Management, 2016, 18, 563-572.	1.6	25
179	Phosphorus–cadmium interactions in paddy soils. Geoderma, 2016, 270, 43-59.	2.3	89
180	Effects of Inorganic and Organic Soil Amendments on Yield and Grain Cadmium Content of Wheat and Corn. Environmental Engineering Science, 2016, 33, 11-16.	0.8	15
181	How physical alteration of technic materials affects mobility and phytoavailabilty of metals in urban soils?. Chemosphere, 2016, 152, 407-414.	4.2	10
182	Nickel bioaccumulation by the chosen plant species. Acta Physiologiae Plantarum, 2016, 38, 1.	1.0	27

#	Article	IF	CITATIONS
183	Cd immobilization in a contaminated rice paddy by inorganic stabilizers of calcium hydroxide and silicon slag and by organic stabilizer of biochar. Environmental Science and Pollution Research, 2016, 23, 10028-10036.	2.7	99
184	Bioaccessibility of arsenic and cadmium assessed for inÂvitro bioaccessibility in spiked soils and their interaction during the Unified BARGE Method (UBM) extraction. Chemosphere, 2016, 147, 444-450.	4.2	38
185	Phosphogypsum biotransformation by aerobic bacterial flora and isolated Trichoderma asperellum from Tunisian storage piles. Journal of Hazardous Materials, 2016, 308, 362-373.	6.5	16
186	Characterization and mobility of arsenic and heavy metals in soils polluted by the destruction of arsenic-containing shells from the Great War. Science of the Total Environment, 2016, 550, 658-669.	3.9	38
187	Investigating the potential influence of biochar and traditional organic amendments on the bioavailability and transfer of Cd in the soil–plant system. Environmental Earth Sciences, 2016, 75, 1.	1.3	104
188	Copper and zinc uptake by celery plants grown on acidic soil amended with biosolids. Journal of Plant Nutrition, 2016, 39, 655-665.	0.9	0
189	Some adverse effects of soil amendment with organic Materialsâ€"The case of soils polluted by copper industry phytostabilized with red fescue. International Journal of Phytoremediation, 2016, 18, 839-846.	1.7	18
190	Natural Organic Amendments for Improved Phytoremediation of Polluted Soils: A Review of Recent Progress. Pedosphere, 2016, 26, 1-12.	2.1	169
191	Phytoavailability and Leachability of Heavy Metals from Contaminated Soil Treated with Composted Livestock Manure. Soil and Sediment Contamination, 2016, 25, 181-194.	1.1	17
192	Soil solution concentrations and chemical species of copper and zinc in a soil with a history of pig slurry application and plant cultivation. Agriculture, Ecosystems and Environment, 2016, 216, 374-386.	2.5	42
193	The Effects of Soil Properties to the Extent of Soil Contamination with Metals., 2016, , 1-19.		9
194	Use of textile waste water along with liquid NPK fertilizer for production of wheat on saline sodic soils. International Journal of Phytoremediation, 2016, 18, 502-508.	1.7	6
195	Effects of organic amendments on rice (Oryza sativa L.) growth and uptake of heavy metals in contaminated soil. Journal of Soils and Sediments, 2016, 16, 537-546.	1.5	43
196	Application of biosolids to soil affects Cu and Zn accumulation and antioxidant activity of lettuce (<i>Lactuca sativa</i> L.). Journal of Plant Nutrition, 2016, 39, 252-260.	0.9	0
197	Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge. International Journal of Phytoremediation, 2016, 18, 605-618.	1.7	95
198	The use of dialdehyde starch derivatives in the phytoremediation of soils contaminated with heavy metals. International Journal of Phytoremediation, 2016, 18, 245-250.	1.7	26
199	Improving sustainability in the remediation of contaminated soils by the use of compost and energy valorization by Paulownia fortunei. Science of the Total Environment, 2016, 539, 401-409.	3.9	18
200	Potatoes $\hat{a}\in$ A crop resistant against input of heavy metals from the metallicaly contaminated soil. International Journal of Phytoremediation, 2016, 18, 547-552.	1.7	15

#	Article	IF	CITATIONS
201	Assessing the influence of technosol and biochar amendments combined with Brassica juncea L. on the fractionation of Cu, Ni, Pb and Zn in a polluted mine soil. Journal of Soils and Sediments, 2016, 16, 339-348.	1.5	28
202	Response of Piptatherum miliaceum to co-culture with a legume species for the phytostabilisation of trace elements contaminated soils. Journal of Soils and Sediments, 2017, 17, 1349-1357.	1.5	17
203	Immobilization of metals in contaminated soils using natural polymer-based stabilizers. Environmental Pollution, 2017, 222, 348-355.	3.7	26
204	Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: A review. Geoderma, 2017, 295, 69-79.	2.3	190
205	Mobility and phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions. Chemosphere, 2017, 178, 110-118.	4.2	231
206	Phytoremediation of metals using vetiver (Chrysopogon zizanioides (L.) Roberty) grown under different levels of red mud in sludge amended soil. Journal of Geochemical Exploration, 2017, 182, 218-227.	1.5	58
207	Behavior of Enzyme Activities Exposed to Contamination by Heavy Metals and Dissolved Organic Carbon in Calcareous Agricultural Soils. Soil and Sediment Contamination, 2017, 26, 259-276.	1.1	7
208	Effects of acidic and neutral biochars on properties and cadmium retention of soils. Chemosphere, 2017, 180, 564-573.	4.2	60
209	Plant growth and heavy metal bioavailability changes in a loess subsoil amended with municipal sludge compost. Journal of Soils and Sediments, 2017, 17, 2797-2809.	1.5	10
210	Biological technologies for the remediation of co-contaminated soil. Critical Reviews in Biotechnology, 2017, 37, 1062-1076.	5.1	423
211	Microscopic and spectroscopic characterization of humic substances from a compost amended copper contaminated soil: main features and their potential effects on Cu immobilization. Environmental Science and Pollution Research, 2017, 24, 14104-14116.	2.7	38
212	Management of textile wastewater for improving growth and yield of field mustard (<i>Brassica) Tj ETQq1 1</i>	0.784314 rgBT	/Qverlock
213	Factors controlling cadmium and lead activities in different parent material-derived soils from the Pearl River Basin. Chemosphere, 2017, 182, 509-516.	4.2	43
214	Influence of amendments on Cd and Zn uptake and accumulation in rice (Oryza sativa L.) in contaminated soil. Environmental Science and Pollution Research, 2017, 24, 15756-15767.	2.7	26
216	Remediation of heavy metal contaminated soils by using Solanum nigrum: A review. Ecotoxicology and Environmental Safety, 2017, 143, 236-248.	2.9	118
217	Metal removal by pine bark compost using a permeable reactive barrier device at laboratory scale. Environmental Chemistry, 2017, 14, 310.	0.7	4
218	Role of organic acids on the bioavailability of selenium in soil: A review. Chemosphere, 2017, 184, 618-635.	4.2	102
219	Contrasting Effects of Cattle Manure Applications and Root-Induced Changes on Heavy Metal Dynamics in the Rhizosphere of Soybean in an Acidic Haplic Fluvisol: A Chronological Pot Experiment. Journal of Agricultural and Food Chemistry, 2017, 65, 3085-3095.	2.4	20

#	Article	IF	CITATIONS
220	Effect of water table variations and input of natural organic matter on the cycles of C and N, and mobility of As, Zn and Cu from a soil impacted by the burning of chemical warfare agents: A mesocosm study. Science of the Total Environment, 2017, 595, 279-293.	3.9	6
221	Cow manure and cow manure-derived biochar application as a soil amendment for reducing cadmium availability and accumulation by Brassica chinensis L. in acidic red soil. Journal of Integrative Agriculture, 2017, 16, 725-734.	1.7	76
222	Agricultural utilization of biosolids: A review on potential effects on soil and plant grown. Waste Management, 2017, 64, 117-132.	3.7	286
223	Effect of biochar amendments on As and Pb mobility and phytoavailability in contaminated mine technosols phytoremediated by Salix. Journal of Geochemical Exploration, 2017, 182, 149-156.	1.5	93
224	Exploring the interactions and binding sites between Cd and functional groups in soil using two-dimensional correlation spectroscopy and synchrotron radiation based spectromicroscopies. Journal of Hazardous Materials, 2017, 326, 18-25.	6.5	66
225	Effect of an alkaline environment on the engineering behavior of cement-stabilized/solidified Zn-contaminated soils. Environmental Science and Pollution Research, 2017, 24, 28248-28257.	2.7	16
226	INFLUENCE OF FARMYARD MANURE ON RETENTION AND AVAILABILITY OF NICKEL, ZINC AND LEAD IN METAL-CONTAMINATED CALCAREOUS LOAM SOILS. Journal of Environmental Engineering and Landscape Management, 2017, 25, 289-296.	0.4	20
227	Growth and metal uptake of canola and sunflower along a thickness gradient of organic-rich covers over metal mine tailings. Ecological Engineering, 2017, 109, 133-139.	1.6	6
228	Effects of different fertilizers on growth and nutrient uptake of Lolium multiflorum grown in Cd-contaminated soils. Environmental Science and Pollution Research, 2017, 24, 23363-23370.	2.7	12
229	Growth and Cd uptake by rice (Oryza sativa) in acidic and Cd-contaminated paddy soils amended with steel slag. Chemosphere, 2017, 189, 247-254.	4.2	78
230	Contrasting Effects of Organic and Inorganic Amendments on Reducing Lead Toxicity in Wheat. Bulletin of Environmental Contamination and Toxicology, 2017, 99, 642-647.	1.3	24
231	Low-shear-modeled microgravity-grown Penicillium chrysogenum-mediated biosynthesis of silver nanoparticles with enhanced antimicrobial activity and its anticancer effect in human liver cancer and fibroblast cells. Bioprocess and Biosystems Engineering, 2017, 40, 1529-1542.	1.7	14
232	The removal of lead and nickel from the composted municipal waste and sewage sludge using nanoscale zero-valent iron fixed on quartz. Ecotoxicology and Environmental Safety, 2017, 145, 483-489.	2.9	14
233	Biochar's Influence as a Soil Amendment for Essential Plant Nutrient Uptake. , 2017, , 47-67.		5
234	Role of Organic Amendments in Sustainable Agriculture. , 2017, , 111-124.		10
235	Applications of biochar in redox-mediated reactions. Bioresource Technology, 2017, 246, 271-281.	4.8	322
236	Organic amendments enhance Pb tolerance and accumulation during micropropagation of Daphne jasminea. Environmental Science and Pollution Research, 2017, 24, 2421-2432.	2.7	14
237	The interactions of composting and biochar and their implications for soil amendment and pollution remediation: a review. Critical Reviews in Biotechnology, 2017, 37, 754-764.	5.1	303

#	Article	IF	CITATIONS
238	Sorption of Pb, Cu, Cd, and Zn by Municipal Solid Waste Composts: Metal Retention and Desorption Mechanisms. Clean - Soil, Air, Water, 2017, 45, .	0.7	13
239	Crop molds and mycotoxins: Alternative management using biocontrol. Biological Control, 2017, 104, 10-27.	1.4	59
240	The use of spent mushroom compost to enhance the ability of <i>Atriplex halimus</i> to phytoremediate contaminated mine soils. Environmental Technology (United Kingdom), 2017, 38, 1075-1084.	1.2	15
241	Simultaneous immobilization of lead, cadmium, and arsenic in combined contaminated soil with iron hydroxyl phosphate. Journal of Soils and Sediments, 2017, 17, 432-439.	1.5	57
242	Removal of anionic pollutants by pine bark is influenced by the mechanism of retention. Chemosphere, 2017, 167, 139-145.	4.2	14
243	Vermicomposting: A sustainable tool for environmental equilibria. Environmental Quality Management, 2017, 27, 23-40.	1.0	30
244	Cadmium and Lead Sorption/Desorption on Non-Amended and By-Product-Amended Soil Samples and Pyritic Material. Water (Switzerland), 2017, 9, 886.	1.2	12
245	Influence of Nano-Hydroxyapatite on the Metal Bioavailability, Plant Metal Accumulation and Root Exudates of Ryegrass for Phytoremediation in Lead-Polluted Soil. International Journal of Environmental Research and Public Health, 2017, 14, 532.	1.2	48
246	Heavy Metals Contamination of Mine Soil, Their Risk Assessment, and Bioremediation *., 2017, , 387-417.		2
247	Safety of Potato Consumption in Slovak Region Contaminated by Heavy Metals due to Previous Mining Activity. Journal of Food Quality, 2017, 2017, 1-11.	1.4	8
249	Effects of Pulp and Na-Bentonite Amendments on the Mobility of Trace Elements, Soil Enzymes Activity and Microbial Parameters under Ex Situ Aided Phytostabilization. PLoS ONE, 2017, 12, e0169688.	1.1	12
250	Peat influence on Zn tolerance, bioconcentration and bioaccumulation in Eucalyptus grandis Hill ex Maiden. African Journal of Agricultural Research Vol Pp, 2017, 12, 320-326.	0.2	1
251	Prevención de drenajes ácidos de mina utilizando compost de champiñón como enmienda orgánica. Revista Colombiana De BiotecnologÃa, 2017, 19, 92-100.	0.5	2
252	Review of remediation technologies for sediments contaminated by heavy metals. Journal of Soils and Sediments, 2018, 18, 1701-1719.	1.5	121
253	Biochar aging in contaminated soil promotes Zn immobilization due to changes in biochar surface structural and chemical properties. Science of the Total Environment, 2018, 626, 953-961.	3.9	146
254	Impacts of biochar and oyster shells waste on the immobilization of arsenic in highly contaminated soils. Journal of Environmental Management, 2018, 217, 646-653.	3.8	74
255	Micronutrient concentrations vary between peat–mineral mix and substrates in revegetated sites in the Alberta oil sands. Canadian Journal of Soil Science, 2018, 98, 181-192.	0.5	3
256	Contrasting effects of alkaline amendments on the bioavailability and uptake of Cd in rice plants in a Cd-contaminated acid paddy soil. Environmental Science and Pollution Research, 2018, 25, 8827-8835.	2.7	82

#	Article	IF	CITATIONS
257	Heavy metals status, transport mechanisms, sources, and factors affecting their mobility in Chinese agricultural soils. Environmental Earth Sciences, 2018, 77, 1.	1.3	44
258	Principles and Technologies of Phytoremediation for Metal-Contaminated Soils: A Review. , 2018, , 279-331.		2
259	Optimizing the process of food waste compost and valorizing its applications: A case study of Saudi Arabia. Journal of Cleaner Production, 2018, 176, 426-438.	4.6	79
260	A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environmental Pollution, 2018, 234, 915-934.	3.7	328
261	Effect of Cd stress on the bioavailability of Cd and other mineral nutrition elements in broad bean grown in a loess subsoil amended with municipal sludge compost. Environmental Science and Pollution Research, 2018, 25, 7418-7432.	2.7	6
262	Influence of cadmium stress on root exudates of high cadmium accumulating rice line (Oryza sativa) Tj ETQq1 1	0.784314	rgBT/Overl
263	Cadmium induced changes in Solidago chilensis Meyen (Asteraceae) grown on organically fertilized soil with reference to mycorrhizae, metabolism, anatomy and ultrastructure. Ecotoxicology and Environmental Safety, 2018, 150, 76-85.	2.9	10
264	Organic Nitrogen Source Addition for Improving the Physicochemical Properties of Sandy Loam Soil and Maize Performance. Communications in Soil Science and Plant Analysis, 2018, 49, 13-29.	0.6	6
265	Study of factors involved in the gravimetric separation process to treat soil contaminated by municipal solid waste. Journal of Environmental Management, 2018, 209, 23-36.	3.8	5
266	Effect of date palm waste compost on forage alfalfa growth, yield, seed yield and minerals uptake. International Journal of Recycling of Organic Waste in Agriculture, 2018, 7, 1-9.	2.0	29
267	Micro-remediation of Metals: A New Frontier in Bioremediation. , 2018, , 1-36.		23
268	Engineering plants for heavy metal stress tolerance. Rendiconti Lincei, 2018, 29, 709-723.	1.0	91
269	Interactions of food waste compost with metals and metal-chelant complexes during soil remediation. Journal of Cleaner Production, 2018, 192, 199-206.	4.6	29
270	Adsorption of Cd(II) by rhizosphere and non-rhizosphere soil originating from mulberry field under laboratory condition. International Journal of Phytoremediation, 2018, 20, 378-383.	1.7	25
271	Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure. Science of the Total Environment, 2018, 633, 300-307.	3.9	198
272	Cost-Effectiveness Analysis for Soil Heavy Metal Contamination Treatments. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	36
273	Do biochars influence the availability and human oral bioaccessibility of Cd, Pb, and Zn in a contaminated slightly alkaline soil? Environmental Monitoring and Assessment, 2018, 190, 218.	1.3	23
274	The relative influence of electrokinetic remediation design on the removal of As, Cu, Pb and Sb from shooting range soils. Engineering Geology, 2018, 238, 52-61.	2.9	34

#	Article	IF	CITATIONS
275	Effects of continuous fertilization on bioavailability and fractionation of cadmium in soil and its uptake by rice (Oryza sativa L.). Journal of Environmental Management, 2018, 215, 13-21.	3.8	39
276	Chemical Fractionation of Trace Elements in a Metal-Rich Amphibolite Soil Amended with Municipal Solid Waste Composts. Waste and Biomass Valorization, 2018, 9, 1935-1943.	1.8	10
277	Pilot scale aided-phytoremediation of a co-contaminated soil. Science of the Total Environment, 2018, 618, 753-764.	3.9	22
278	Sorption-desorption behaviors of heavy metals by biochar-compost amendment with different ratios in contaminated wetland soil. Journal of Soils and Sediments, 2018, 18, 1530-1539.	1.5	25
279	Soil amendments: a tool to reduce heavy metal uptake in crops for production of safe food. Reviews in Environmental Science and Biotechnology, 2018, 17, 187-203.	3.9	51
280	Seed germination test for toxicity evaluation of compost: Its roles, problems and prospects. Waste Management, 2018, 71, 109-114.	3.7	264
281	Effects of organic matter fraction and compositional changes on distribution of cadmium and zinc in long-term polluted paddy soils. Environmental Pollution, 2018, 232, 514-522.	3.7	88
282	Root-induced changes of Zn and Pb dynamics in the rhizosphere of sunflower with different plant growth promoting treatments in a heavily contaminated soil. Ecotoxicology and Environmental Safety, 2018, 147, 206-216.	2.9	69
283	Catalytic efficiency is a better predictor of arsenic toxicity to soil alkaline phosphatase. Ecotoxicology and Environmental Safety, 2018, 148, 721-728.	2.9	16
284	Combined application of compost and Bacillus sp. CIK-512 ameliorated the lead toxicity in radish by regulating the homeostasis of antioxidants and lead. Ecotoxicology and Environmental Safety, 2018, 148, 805-812.	2.9	50
285	A DOC coagulant, gypsum treatment can simultaneously reduce As, Cd and Pb uptake by medicinal plants grown in contaminated soil. Ecotoxicology and Environmental Safety, 2018, 148, 615-619.	2.9	41
286	Immobilisation of metals in a contaminated soil with biochar-compost mixtures and inorganic additives: 2-year greenhouse and field experiments. Environmental Science and Pollution Research, 2018, 25, 2506-2516.	2.7	28
287	Brassica napus has a key role in the recovery of the health of soils contaminated with metals and diesel by rhizoremediation. Science of the Total Environment, 2018, 618, 347-356.	3.9	80
288	Metal availability, soil nutrient, and enzyme activity in response to application of organic amendments in Cd-contaminated soil. Environmental Science and Pollution Research, 2018, 25, 2425-2435.	2.7	15
289	Sugarcane bagasse-derived biochar reduces the cadmium and chromium bioavailability to mash bean and enhances the microbial activity in contaminated soil. Journal of Soils and Sediments, 2018, 18, 874-886.	1.5	114
290	Influence of Soil Amendments on Uptake and Accumulation of Cd and Pb in Maize (Zea maysL.). Environmental Engineering Science, 2018, 35, 194-202.	0.8	3
291	Review on utilization of biochar for metal-contaminated soil and sediment remediation. Journal of Environmental Sciences, 2018, 63, 156-173.	3.2	197
292	How Valuable Are Organic Amendments as Tools for the Phytomanagement of Degraded Soils? The Knowns, Known Unknowns, and Unknowns. Frontiers in Sustainable Food Systems, 2018, 2, .	1.8	58

#	Article	IF	CITATIONS
293	Content of Zn, Cd and Pb in purple moor-grass in soils heavily contaminated with heavy metals around a zinc and lead ore tailing landfill. Open Chemistry, 2018, 16, 1143-1152.	1.0	28
294	Application of Biochar to the Remediation of Pb-Contaminated Solutions. Sustainability, 2018, 10, 4440.	1.6	20
295	Growth and metal uptake of edamame [Glycine max (L.) Merr.] on soil amended with biosolids and gypsum. Communications in Soil Science and Plant Analysis, 2018, 49, 2793-2801.	0.6	2
296	Biotechnological Strategies for Effective Remediation of Polluted Soils., 2018,,.		22
297	Biochar and Soil Remediation. , 2018, , 85-99.		0
298	Effect of Pig and Cattle Slurry Application on Heavy Metal Composition of Maize Grown on Different Soils. Sustainability, 2018, 10, 2684.	1.6	30
299	Determination of the phytoremediation efficiency of Ricinus communis L. and methane uptake from cadmium and nickel-contaminated soil using spent mushroom substrate. Environmental Science and Pollution Research, 2018, 25, 32603-32616.	2.7	15
300	Phytomanagement and Remediation of Cu-Contaminated Soils by High Yielding Crops at a Former Wood Preservation Site: Sunflower Biomass and Ionome. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	30
301	Assisted phytostabilisation of As, Pb and Sb-contaminated Technosols with mineral and organic amendments using Douglas fir (Pseudotsuga menziesii (Mirb.) Franco). Environmental Science and Pollution Research, 2018, 25, 32292-32302.	2.7	6
302	Influence of Altered Microbes on Soil Organic Carbon Availability in Karst Agricultural Soils Contaminated by Pb-Zn Tailings. Frontiers in Microbiology, 2018, 9, 2062.	1.5	8
303	Determination of heavy metals and their availability to plants in soil fertilized with different waste substances. Environmental Monitoring and Assessment, 2018, 190, 567.	1.3	23
304	Successes in Application of Biotechnologies to Mine Land Remediation in the Russian Sub-Arctic. , 2018, , 547-570.		3
305	Visualization of Long-Term Quantitative Changes of Microelements in Soils Amended with Sewage Sludge Compost Evaluated with Two Extraction Solutions. Communications in Soil Science and Plant Analysis, 2018, 49, 1355-1369.	0.6	12
306	Controls on accumulation and soil solution partitioning of heavy metals across upland sites in United Kingdom (UK). Journal of Environmental Management, 2018, 222, 260-267.	3.8	12
307	The efficiency of Cd phytoextraction by S. plumbizincicola increased with the addition of rice straw to polluted soils: the role of particulate organic matter. Plant and Soil, 2018, 429, 321-333.	1.8	18
308	Indicators for Monitoring Mine Site Rehabilitation. , 2018, , 49-66.		3
309	Impact of waste-derived organic and inorganic amendments on the mobility and bioavailability of arsenic and cadmium in alkaline and acid soils. Environmental Science and Pollution Research, 2018, 25, 25896-25905.	2.7	40
310	Investigating organic matter properties affecting the binding behavior of heavy metals in the rhizosphere of wetlands. Ecotoxicology and Environmental Safety, 2018, 162, 184-191.	2.9	44

#	Article	IF	Citations
311	Characterization of Composted Organic Amendments for Agricultural Use. Frontiers in Sustainable Food Systems, 2018, 2, .	1.8	41
312	Long-term effects of organic amendments on bacterial and fungal communities in a degraded Mediterranean soil. Geoderma, 2018, 332, 20-28.	2.3	38
313	Metal Reactivity in Laboratory Burned Wood from a Watershed Affected by Wildfires. Environmental Science & Environmental Scien	4.6	8
314	Soil emendation with nano-fungal chitosan for heavy metals biosorption. International Journal of Biological Macromolecules, 2018, 118, 2265-2268.	3.6	47
315	Assisted Phytoremediation of a Multi-contaminated Industrial Soil Using Biochar and Garden Soil Amendments Associated with Salix alba or Salix viminalis: Abilities to Stabilize As, Pb, and Cu. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	17
316	Biochars Immobilize Lead and Copper in Naturally Contaminated Soil. Environmental Engineering Science, 2018, 35, 1349-1360.	0.8	26
317	Passivating effect of dehydrated sludge and sepiolite on arsenic contaminated soil. Ecotoxicology and Environmental Safety, 2018, 164, 270-276.	2.9	14
318	Long term carbon sequestration potential of biosolids-amended copper and molybdenum mine tailings following mine site reclamation. Ecological Engineering, 2018, 117, 38-49.	1.6	40
319	Is aided phytostabilization a suitable technique for the remediation of tailings?. European Journal of Soil Science, 2019, 70, 862-875.	1.8	22
320	Effects of organic-inorganic amendments on the cadmium fraction in soil and its accumulation in rice (Oryza sativa L.). Environmental Science and Pollution Research, 2019, 26, 13762-13772.	2.7	27
321	Heavy metal accumulation and mobility in a soil profile depend on the organic waste type applied. Journal of Soils and Sediments, 2019, 19, 822-829.	1.5	17
322	The role of organic amendment in soils affected by residual pollution of potentially harmful elements. Chemosphere, 2019, 237, 124549.	4.2	19
323	Effect of agro industrial wastes compost on soil health and onion yields improvements: study at field condition. International Journal of Recycling of Organic Waste in Agriculture, 2019, 8, 161-171.	2.0	19
324	Phytostabilization of Heavy Metals: Understanding of Principles and Practices. , 2019, , 263-282.		32
325	Metal(loid)s immobilization in soils of Lebanon using municipal solid waste compost: Microbial and biochemical impact. Applied Soil Ecology, 2019, 143, 134-143.	2.1	27
327	Metals, Crops and Agricultural Productivity: Impact of Metals on Crop Loss. , 2019, , 191-216.		1
328	Traditional Chinese medicine residue act as a better fertilizer for improving soil aggregation and crop yields than manure. Soil and Tillage Research, 2019, 195, 104386.	2.6	33
329	Binding characteristics of cadmium and zinc onto soil organic matter in different water managements and rhizosphere environments. Ecotoxicology and Environmental Safety, 2019, 184, 109633.	2.9	15

#	Article	IF	CITATIONS
330	Mobility, bioaccessibility and toxicity of potentially toxic elements in a contaminated soil treated with municipal solid waste compost. Ecotoxicology and Environmental Safety, 2019, 186, 109766.	2.9	27
331	Biouptake Responses of Trace Metals to Long-Term Irrigation with Diverse Wastewater in the Wheat Rhizosphere Microenvironment. International Journal of Environmental Research and Public Health, 2019, 16, 3218.	1.2	1
332	The activation and extraction systems using organic acids and Lentinus edodes to remediate cadmium contaminated soil. Environmental Pollution, 2019, 255, 113252.	3.7	24
333	Cadmium accumulation, availability, and rice uptake in soils receiving long-term applications of chemical fertilizers and crop straw return. Environmental Science and Pollution Research, 2019, 26, 31243-31253.	2.7	27
334	Exploring the benefits of biochar over other organic amendments for reducing of metal toxicity in Withania somnifera. Biochar, 2019, 1, 293-307.	6.2	7
335	Lead accumulation and soil microbial activity in the rhizosphere of the mining and non-mining ecotypes of Athyrium wardii (Hook.) Makino in adaptation to lead-contaminated soils. Environmental Science and Pollution Research, 2019, 26, 32957-32966.	2.7	2
336	Risk assessment for and microbial community changes in Farmland soil contaminated with heavy metals and metalloids. Ecotoxicology and Environmental Safety, 2019, 185, 109685.	2.9	47
337	Alleviation of chromium toxicity in maize by Fe fortification and chromium tolerant ACC deaminase producing plant growth promoting rhizobacteria. Ecotoxicology and Environmental Safety, 2019, 185, 109706.	2.9	93
338	Nitrogen addition promotes the transformation of heavy metal speciation from bioavailable to organic bound by increasing the turnover time of organic matter: An analysis on soil aggregate level. Environmental Pollution, 2019, 255, 113170.	3.7	35
339	Potential Benefits and Risks for Soil Health Derived From the Use of Organic Amendments in Agriculture. Agronomy, 2019, 9, 542.	1.3	111
340	Evaluation of soil and plant health associated with successive three-year sewage sludge field applications under semi-arid biodegradation condition. Archives of Agronomy and Soil Science, 2019, 65, 1659-1676.	1.3	18
341	Cadmium-Induced Imbalance in Nutrient and Water Uptake by Plants. , 2019, , 299-326.		13
342	Solanum nigrum L.: A Novel Hyperaccumulator for the Phyto-Management of Cadmium Contaminated Soils., 2019,, 451-477.		11
343	Assessment of EDDS and vermicompost for the phytoextraction of Cd and Pb by sunflower (<i>Helianthus annuus</i> L.). International Journal of Phytoremediation, 2019, 21, 191-199.	1.7	15
344	An explanation of soil amendments to reduce cadmium phytoavailability and transfer to food chain. Science of the Total Environment, 2019, 660, 80-96.	3.9	254
345	Biochar induced Pb and Cu immobilization, phytoavailability attenuation in Chinese cabbage, and improved biochemical properties in naturally co-contaminated soil. Journal of Soils and Sediments, 2019, 19, 2381-2392.	1.5	39
346	Spatial variability of selected metals using auxiliary variables in agricultural soils. Catena, 2019, 174, 499-513.	2,2	17
347	Potential use of composts and vermicomposts as low-cost adsorbents for dye removal: an overlooked application. Environmental Science and Pollution Research, 2019, 26, 21085-21097.	2.7	21

#	Article	IF	CITATIONS
348	Organic amendments affect dissolved organic matter composition and mercury dissolution in pore waters of mercury-polluted paddy soil. Chemosphere, 2019, 232, 356-365.	4.2	29
349	Assessment of trace element and macronutrient accumulation capacity of two native plant species in three different Egyptian mine areas for remediation of contaminated soils. Ecological Indicators, 2019, 106, 105463.	2.6	5
350	Glycine transformation induces repartition of cadmium and lead in soil constituents. Environmental Pollution, 2019, 251, 930-937.	3.7	18
351	Assessing the immobilization efficiency of organic and inorganic amendments for cadmium phytoavailability to wheat. Journal of Soils and Sediments, 2019, 19, 3708-3717.	1.5	26
352	Micro-remediation of Metals: A New Frontier in Bioremediation. , 2019, , 479-513.		0
353	Opportunities and challenges in the remediation of metal-contaminated soils by using tobacco (Nicotiana tabacum L.): a critical review. Environmental Science and Pollution Research, 2019, 26, 18053-18070.	2.7	17
354	The immobilization effects on Pb, Cd and Cu by the inoculation of organic phosphorus-degrading bacteria (OPDB) with rapeseed dregs in acidic soil. Geoderma, 2019, 350, 1-10.	2.3	48
355	Organic Manures for Cadmium Tolerance and Remediation. , 2019, , 19-67.		8
356	Bioavailability and mobility of arsenic, cadmium, and manganese in gold mine tailings amended with rice husk ash and Fe-coated rice husk ash. Environmental Monitoring and Assessment, 2019, 191, 232.	1.3	12
357	Metal bioavailability and the soil microbiome. Advances in Agronomy, 2019, 155, 79-120.	2.4	31
358	Potential of dissolved organic matter (DOM) to extract As, Cd, Co, Cr, Cu, Ni, Pb and Zn from polluted soils: A review. Geoderma, 2019, 343, 235-246.	2.3	143
359	Influence of rice straw biochar on growth, antioxidant capacity and copper uptake in ramie (Boehmeria nivea L.) grown as forage in aged copper-contaminated soil. Plant Physiology and Biochemistry, 2019, 138, 121-129.	2.8	114
360	Potential of vermicompost and limestone in reducing copper toxicity in young grapevines grown in Cu-contaminated vineyard soil. Chemosphere, 2019, 226, 421-430.	4.2	24
361	Fractionation of heavy metals in contaminated soil after amendment with composted cow manure and poultry litter. Arabian Journal of Geosciences, 2019, 12, 1.	0.6	9
362	Soil Fertility Management for Sustainable Development. , 2019, , .		16
363	Combined application of selected heavy metals and EDTA reduced the growth of Petunia hybrida L Scientific Reports, 2019, 9, 4138.	1.6	30
364	Organic Soil Amendments: Potential Tool for Soil and Plant Health Management., 2019, , 1-35.		9
365	Bioremediation of heavy metals by microbial process. Environmental Technology and Innovation, 2019, 14, 100369.	3.0	254

#	Article	IF	CITATIONS
366	Sustainable Soil Management Practices in Olive Groves. , 2019, , 167-188.		13
367	The Effects of Different Lead Pollution Levels on Soil Microbial Quantities and Metabolic Function with/without Salix integra Thunb. Planting. Forests, 2019, 10, 77.	0.9	6
368	Decomposition of soil organic matter as affected by clay types, pedogenic oxides and plant residue addition rates. Journal of Hazardous Materials, 2019, 374, 11-19.	6.5	28
369	Phytoremediation of Heavy Metal-Contaminated Sites: Eco-environmental Concerns, Field Studies, Sustainability Issues, and Future Prospects. Reviews of Environmental Contamination and Toxicology, 2019, 249, 71-131.	0.7	103
370	Physicochemical and biochemical properties of an acid soil under potato culture amended with municipal solid waste compost. International Journal of Recycling of Organic Waste in Agriculture, 2019, 8, 171-178.	2.0	22
371	Innovative and sustainable approach for phytoremediation of mine tailings: a review. Waste Disposal & Sustainable Energy, 2019, 1, 169-176.	1.1	3
372	Carbonization of Plant Residues Decreased their Capability of Reducing Hexavalent Chromium in Soils. Water, Air, and Soil Pollution, 2019, 230, 1 .	1.1	4
373	Effects of soil amendments on cadmium transfer along the lettuce-snail food chain: Influence of chemical speciation. Science of the Total Environment, 2019, 649, 801-807.	3.9	16
374	Effects of composting and carbon based materials on carbon and nitrogen loss in the arable land utilization of cow manure and corn stalks. Journal of Environmental Management, 2019, 233, 283-290.	3.8	31
375	Identifying heavy metal pollution hot spots in soil-rice systems: A case study in South of Yangtze River Delta, China. Science of the Total Environment, 2019, 658, 614-625.	3.9	90
376	Bioavailability of selenium in soil-plant system and a regulatory approach. Critical Reviews in Environmental Science and Technology, 2019, 49, 443-517.	6.6	110
377	EDTA-facilitated toxic tolerance, absorption and translocation and phytoremediation of lead by dwarf bamboos. Ecotoxicology and Environmental Safety, 2019, 170, 502-512.	2.9	74
378	Mechanistic understanding and future prospect of microbe-enhanced phytoremediation of polycyclic aromatic hydrocarbons in soil. Environmental Technology and Innovation, 2019, 13, 318-330.	3.0	63
379	Mobility of Pb, Zn, Ba, As and Cd toward soil pore water and plants (willow and ryegrass) from a mine soil amended with biochar. Journal of Environmental Management, 2019, 232, 117-130.	3.8	56
380	In situ chemical stabilization of trace element-contaminated soil $\hat{a} \in$ Field demonstrations and barriers to transition from laboratory to the field $\hat{a} \in$ A review. Applied Geochemistry, 2019, 100, 335-351.	1.4	85
381	Exploring the Potential and Opportunities of Current Tools for Removal of Hazardous Materials From Environments., 2019,, 501-516.		28
382	Heavy metal-induced oxidative stress on seed germination and seedling development: a critical review. Environmental Geochemistry and Health, 2019, 41, 1813-1831.	1.8	149
383	Assessment of the bioremediation efficacy of the mercury resistant bacterium isolated from the Mithi River. Water Science and Technology: Water Supply, 2019, 19, 191-199.	1.0	15

#	Article	IF	Citations
384	Immobilization of heavy metals in contaminated soil after mining activity by using biochar and other industrial by-products: the significant role of minerals on the biochar surfaces. Environmental Technology (United Kingdom), 2019, 40, 3200-3215.	1.2	40
385	Optimal Rate-Adaptive Data Dissemination in Vehicular Platoons. IEEE Transactions on Intelligent Transportation Systems, 2020, 21, 4241-4251.	4.7	18
386	Enhancing copper binding property of compost-derived humic substances by biochar amendment: Further insight from two-dimensional correlation spectroscopy. Journal of Hazardous Materials, 2020, 390, 121128.	6. 5	24
387	Biogenic stabilization and heavy metal immobilization during vermicomposting of vegetable waste with biochar amendment. Journal of Hazardous Materials, 2020, 390, 121366.	6.5	53
388	Underlying dynamics and effects of humic acid on selenium and cadmium uptake in rice seedlings. Journal of Soils and Sediments, 2020, 20, 109-121.	1.5	12
390	Effects of Soil Properties and Land Use Types on the Bioaccessibility of Cd, Pb, Cr, and Cu in Dongguan City, China. Bulletin of Environmental Contamination and Toxicology, 2020, 104, 64-70.	1.3	19
391	Do metal contamination and plant species affect microbial abundance and bacterial diversity in the rhizosphere of metallophytes growing in mining areas in a semiarid climate?. Journal of Soils and Sediments, 2020, 20, 1003-1017.	1.5	10
392	Comparable effects of manure and its biochar on reducing soil Cr bioavailability and narrowing the rhizosphere extent of enzyme activities. Environment International, 2020, 134, 105277.	4.8	31
393	Efficiency of lime, biochar, Fe containing biochar and composite amendments for Cd and Pb immobilization in a co-contaminated alluvial soil. Environmental Pollution, 2020, 257, 113609.	3.7	118
394	Sewage Sludge Application Enhances the Growth of Corchorus olitorius Plants and Provides a Sustainable Practice for Nutrient Recirculation in Agricultural Soils. Journal of Soil Science and Plant Nutrition, 2020, 20, 149-159.	1.7	28
395	Effect of Serratia sp. K3 combined with organic materials on cadmium migration in soil-vetiveria zizanioides L. system and bacterial community in contaminated soil. Chemosphere, 2020, 242, 125164.	4.2	33
396	Remediation of Cd-contaminated soils by GWC application, evaluated in terms of Cd immobilization, enzyme activities, and pakchoi cabbage uptake. Environmental Science and Pollution Research, 2020, 27, 9979-9986.	2.7	20
397	DOM derivations determine the distribution and bioavailability of DOM-Se in selenate applied soil and mechanisms. Environmental Pollution, 2020, 259, 113899.	3.7	16
398	Bio-inherent attributes of water hyacinth procured from contaminated water body–effect of its compost on seed germination and radicle growth. Journal of Environmental Management, 2020, 257, 109990.	3.8	36
399	Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environment International, 2020, 134, 105046.	4.8	701
400	Introducing Students to Remediation of Polluted Soils: Influence of Waste-Based Amendments on Cd Extractability. Journal of Chemical Education, 2020, 97, 221-225.	1.1	3
401	The effects of chicken manure on the immobilization and bioavailability of cadmium in the soil-rice system. Archives of Agronomy and Soil Science, 2020, 66, 1753-1764.	1.3	10
402	Distribution and health risk assessment of potentially toxic elements in soils around coal industrial areas: A global meta-analysis. Science of the Total Environment, 2020, 713, 135292.	3.9	84

#	Article	IF	CITATIONS
403	Passivating Effect of Dewatered Sludge and Biochar on As-Contaminated Soil. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	57
404	Effect of amendments on soil Cd sorption and trophic transfer of Cd and mineral nutrition along the food chain. Ecotoxicology and Environmental Safety, 2020, 189, 110045.	2.9	16
405	Effects of amendments and aided phytostabilization of an energy crop on the metal availability and leaching in mine tailings using a pot test. Environmental Science and Pollution Research, 2020, 27, 2745-2759.	2.7	10
406	The effects of organic amendments on heavy metals bioavailability in mine impacted soil and associated human health risk. Scientia Horticulturae, 2020, 262, 109067.	1.7	41
407	Application of biochars and solid fraction of digestate to decrease soil solution Cd, Pb and Zn concentrations in contaminated sandy soils. Environmental Geochemistry and Health, 2020, 42, 1589-1600.	1.8	11
408	Safe community gardening practices: focus groups with garden leaders in Atlanta, Georgia. Local Environment, 2020, 25, 18-35.	1.1	10
409	Gentle remediation options for soil with mixed chromium (VI) and lindane pollution: biostimulation, bioaugmentation, phytoremediation and vermiremediation. Heliyon, 2020, 6, e04550.	1.4	37
410	Concentration of trace elements in forest soil affected by former timber depot. Environmental Monitoring and Assessment, 2020, 192, 640.	1.3	5
411	Ameliorative effects of silicon fertilizer on soil bacterial community and pakchoi (Brassica chinensis) Tj ETQq0 0 (O rgBT /Ov	erlock 10 Tf 5
412	Biochar characteristics, applications and importance in health risk reduction through metal immobilization. Environmental Technology and Innovation, 2020, 20, 101121.	3.0	20
413	Differential effects of three amendments on the immobilisation of cadmium and lead for Triticum aestivum grown on polluted soil. Environmental Science and Pollution Research, 2020, 27, 40434-40442.	2.7	8
414	Effectiveness of innovative organic amendments in acid soils depends on their ability to supply P and alleviate Al and Mn toxicity in plants. Journal of Soils and Sediments, 2020, 20, 3951-3962.	1.5	16
415	Effects of Soil Amendments on Heavy Metal Immobilization and Accumulation by Maize Grown in a Multiple-Metal-Contaminated Soil and Their Potential for Safe Crop Production. Toxics, 2020, 8, 102.	1.6	45
416	Availability of Nickel in Soil Evaluated by Various Chemical Extractants and Plant Accumulation. Agronomy, 2020, 10, 1805.	1.3	10
417	Heavy metal resistance and bioremediation capacity of rhizospheric strain BioRPaz-3 Pseudomonas azotoformans endowed with antifungal activities and multi-abiotic stress tolerance in in vitro trials. SN Applied Sciences, 2020, 2, 1.	1.5	2
418	The effect of Funneliformis mosseae on the plant growth, Cd translocation and accumulation in the new Cd-hyperaccumulator Sphagneticola calendulacea. Ecotoxicology and Environmental Safety, 2020, 203, 110988.	2.9	34
419	Zeolite for Potential Toxic Metal Uptake from Contaminated Soil: A Brief Review. Processes, 2020, 8, 820.	1.3	58
420	Synthesis of Metal Nanoparticles by Microorganisms. Crystals, 2020, 10, 589.	1.0	30

#	Article	IF	CITATIONS
421	Hemp-Based Phytoaccumulation of Heavy Metals from Municipal Sewage Sludge and Phosphogypsum Under Field Conditions. Agronomy, 2020, 10, 907.	1.3	15
422	Selenium biofortification in food crops: Key mechanisms and future perspectives. Journal of Food Composition and Analysis, 2020, 93, 103615.	1.9	55
423	Assessing the Influence of Compost and Biochar Amendments on the Mobility and Uptake of Heavy Metals by Green Leafy Vegetables. International Journal of Environmental Research and Public Health, 2020, 17, 7861.	1.2	36
424	Bioaccumulation of potentially toxic elements in spinach grown on contaminated soils amended with organic fertilizers and their subsequent human health risk. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	11
425	Heavy metal induced stress on wheat: phytotoxicity and microbiological management. RSC Advances, 2020, 10, 38379-38403.	1.7	101
426	Phytoextraction with Maize of Soil Contaminated with Copper after Application of Mineral and Organic Amendments. Agronomy, 2020, 10, 1597.	1.3	9
427	Arsenic Fixation in Polluted Soils by Peat Applications. Minerals (Basel, Switzerland), 2020, 10, 968.	0.8	8
428	Designing of dual biosensor system for detection of zinc and chromium from contaminated soil using saponin biosurfactant and bioluminescence bacteria. International Journal of Environmental Analytical Chemistry, 2020 , 111 .	1.8	2
430	Utilization of Composts for Adsorption of Methylene Blue from Aqueous Solutions: Kinetics and Equilibrium Studies. Materials, 2020, 13, 2179.	1.3	10
431	Green remediation of saline–sodic Pb-factored soil by growing salt-tolerant rice cultivar along with soil applied inorganic amendments. Paddy and Water Environment, 2020, 18, 637-649.	1.0	5
432	Influence of different soil amendments on drought stress tolerance of Maclura pomifera. Plant Physiology Reports, 2020, 25, 405-417.	0.7	4
433	Wheat Straw Biochar as a Specific Sorbent of Cobalt in Soil. Materials, 2020, 13, 2462.	1.3	23
434	Effects of the application of an organic amendment and nanoscale zero-valent iron particles on soil Cr(VI) remediation. Environmental Science and Pollution Research, 2020, 27, 31726-31736.	2.7	27
435	Phytotoxicity and cytogenotoxicity of composted tannery sludge. Environmental Science and Pollution Research, 2020, 27, 34495-34502.	2.7	13
436	Growth, Survival and Biomass Production of Barley in a Polluted Mine Soil Amended with Biochar and Animal Manure. Bulletin of Environmental Contamination and Toxicology, 2020, 105, 155-165.	1.3	4
437	Commercial and farm fermented liquid organic amendments to improve soil quality and lettuce yield. Journal of Environmental Management, 2020, 264, 110422.	3.8	15
438	Evaluation of Different Types and Amounts of Amendments on Soil Cd Immobilization and its Uptake to Wheat. Environmental Management, 2020, 65, 818-828.	1.2	10
439	Sustainable engineering technologies to promote activities of beneficial microbiome., 2020,, 231-275.		1

#	Article	IF	Citations
440	Evaluation of the environmental and human health risk related to metallic contamination in agricultural soils in the Mediterranean semi-arid area (Saiss plain, Morocco). Environmental Earth Sciences, 2020, 79, 1.	1.3	20
441	Influence of mussel shell, oak ash and pine bark on the adsorption and desorption of sulfonamides in agricultural soils. Journal of Environmental Management, 2020, 261, 110221.	3.8	19
442	Effects of exogenous selenium levels on humus characteristics in selenium-enriched soil and lead accumulation in Brassica juncea. Journal of Soils and Sediments, 2020, 20, 3742-3755.	1.5	3
443	Effects of rapeseed straw incorporation on the availability of heavy metals in soil. Arabian Journal of Geosciences, 2020, $13, 1$.	0.6	2
444	Assessing geochemical anomalies using geographically weighted lasso. Applied Geochemistry, 2020, 119, 104668.	1.4	20
445	Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nature Reviews Earth & Environment, 2020, 1, 366-381.	12.2	493
446	Simulated photocatalytic aging of biochar in soil ecosystem: Insight into organic carbon release, surface physicochemical properties and cadmium sorption. Environmental Research, 2020, 183, 109241.	3.7	55
447	Evaluation of fly ash, apatite and rice straw derived-biochar in varying combinations for <i>ii> <i>situ</i> remediation of soils contaminated with multiple heavy metals. Soil Science and Plant Nutrition, 2020, 66, 379-388.</i>	0.8	13
448	Influence of coal gangue aided phytostabilization on metal availability and mobility in copper mine tailings. Environmental Earth Sciences, 2020, 79, 1.	1.3	11
449	Effect of Wood Vinegar on Adsorption and Desorption of Four Kinds of Heavy (loid) Metals Adsorbents. Chinese Journal of Analytical Chemistry, 2020, 48, e20013-e20020.	0.9	10
450	Quantifying soil contamination and identifying interventions to limit health risks. Current Problems in Pediatric and Adolescent Health Care, 2020, 50, 100740.	0.8	8
451	Influence of long-term biosolid applications on communities of soil fauna and their metal accumulation: A field study. Environmental Pollution, 2020, 260, 114017.	3.7	20
452	Stress responses and nickel and zinc accumulation in different accessions of Stellaria media (L.) Vill. in response to solution pH variation in hydroponic culture. Plant Physiology and Biochemistry, 2020, 148, 133-141.	2.8	13
453	The Role of Salicylic Acid in Plants Exposed to Heavy Metals. Molecules, 2020, 25, 540.	1.7	213
454	Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: A review. Pedosphere, 2020, 30, 168-180.	2.1	228
455	The impact of stabilizing amendments on the microbial community and metabolism in cadmium-contaminated paddy soils. Chemical Engineering Journal, 2020, 395, 125132.	6.6	26
456	Remediation of Lead-Contaminated Water by Virgin Coniferous Wood Biochar Adsorbent: Batch and Column Application. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	30
457	Distribution and source identification of potentially toxic elements in agricultural soils through high-resolution sampling \hat{a} . Environmental Pollution, 2020, 263, 114527.	3.7	19

#	Article	IF	CITATIONS
458	Heavy Metal Uptake of Lettuce and Ryegrass from Urban Waste Composts. International Journal of Environmental Research and Public Health, 2020, 17, 2887.	1.2	15
459	Copper and Zn distribution in humic substances of soil after 10 years of pig manure application in south of Santa Catarina, Brazil. Environmental Geochemistry and Health, 2020, 42, 3281-3301.	1.8	8
460	Growing food in polluted soils: A review of risks and opportunities associated with combined phytoremediation and food production (CPFP). Chemosphere, 2020, 254, 126826.	4.2	39
461	An analysis of the versatility and effectiveness of composts for sequestering heavy metal ions, dyes and xenobiotics from soils and aqueous milieus. Ecotoxicology and Environmental Safety, 2020, 197, 110587.	2.9	56
462	An overview on heavy metal resistant microorganisms for simultaneous treatment of multiple chemical pollutants at co-contaminated sites, and their multipurpose application. Journal of Hazardous Materials, 2020, 396, 122682.	6.5	105
463	Rhizoremediation as a green technology for the remediation of petroleum hydrocarbon-contaminated soils. Journal of Hazardous Materials, 2021, 401, 123282.	6.5	94
464	Combined effects of arbuscular mycorrhizae fungus and composted pig manure on the growth of ryegrass and uptake of Cd and Zn in the soil from an e-waste recycling site. Environmental Science and Pollution Research, 2021, 28, 12677-12685.	2.7	13
466	A review on phytoremediation of contaminants in air, water and soil. Journal of Hazardous Materials, 2021, 403, 123658.	6.5	192
467	Contaminated soil amendment by diatomite: chemical fractions of zinc, lead, copper and cadmium. International Journal of Environmental Science and Technology, 2021, 18, 1191-1200.	1.8	12
468	Cadmium stress in paddy fields: Effects of soil conditions and remediation strategies. Science of the Total Environment, 2021, 754, 142188.	3.9	193
469	Nutrient management strategy in rice–chickpea system for improving chemical and biological properties of lateritic soil. Agronomy Journal, 2021, 113, 135-146.	0.9	2
470	Remediation of selenium-contaminated soil through combined use of earthworm Eisenia fetida and organic materials. Journal of Hazardous Materials, 2021, 405, 124212.	6.5	11
471	Comparative effectiveness of activated dolomite phosphate rock and biochar for immobilizing cadmium and lead in soils. Chemosphere, 2021, 266, 129202.	4.2	19
472	Biosolid compost amendment increases soil fertility and soybean growth. Journal of Plant Nutrition, 2021, 44, 1131-1140.	0.9	8
473	Phytoremediation potential of twelve wild plant species for toxic elements in a contaminated soil. Environment International, 2021, 146, 106233.	4.8	85
474	Alteration of plant physiology by the application of biochar for remediation of metals., 2021,, 245-262.		1
475	Microbial communities in rare earth mining soil after in-situ leaching mining. Science of the Total Environment, 2021, 755, 142521.	3.9	38
476	Biomonitoring and Bioremediation of a Transboundary River in India: Functional Roles of Benthic Mollusks and Fungi. Environmental Challenges and Solutions, 2021, , 611-661.	0.5	8

#	Article	IF	Citations
477	Management of stormwater pollution using green infrastructure: The role of rain gardens. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1507.	2.8	54
478	Organic amendments potentially stabilize metals in smelter contaminated Arctic soils: An incubation study. Heliyon, 2021, 7, e06022.	1.4	0
479	Applying a novel systems approach to address systemic environmental injustices. Elementa, 2021, 9, .	1.1	2
480	A Combination of <i>Dracaena fragrans</i> and <i>Trichoderma fungus</i> in Removing Heavy Metals Contamination from Agricultural Soils. Key Engineering Materials, 0, 873, 19-24.	0.4	0
481	Bioremediation of Waste Gases and Polluted Soils. Microorganisms for Sustainability, 2021, , 111-137.	0.4	11
482	Use of Halophytes for the Remediation of Metal-Affected Soils in Arid Environments. , 2021, , 2395-2422.		0
483	Selenium Biofortification: Roles, Mechanisms, Responses and Prospects. Molecules, 2021, 26, 881.	1.7	112
484	Selenium in soil-microbe-plant systems: Sources, distribution, toxicity, tolerance, and detoxification. Critical Reviews in Environmental Science and Technology, 2022, 52, 2383-2420.	6.6	79
485	A Field Evidence of Cd, Zn and Cu Accumulation in Soil and Rice Grains after Long-Term (27 Years) Application of Swine and Green Manures in a Paddy Soil. Sustainability, 2021, 13, 2404.	1.6	12
486	Investigation of remote sensing image and big data analytic for urban garden landscape design and environmental planning. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	5
487	Biochar Improves Maize Growth but Has a Limited Effect on Soil Properties: Evidence from a Three-Year Field Experiment. Sustainability, 2021, 13, 3617.	1.6	11
488	The effect of biological fertilizer application on soil fertility, heavy metals reduction and eggplant yield on the rice field of Bantul regency. IOP Conference Series: Earth and Environmental Science, 2021, 672, 012093.	0.2	2
489	Successful remediation of soils with mixed contamination of chromium and lindane: Integration of biological and physico-chemical strategies. Environmental Research, 2021, 194, 110666.	3.7	21
490	Innovative amendments derived from industrial and municipal wastes enhance plant growth and soil functions in potentially toxic elements-polluted environments. Italian Journal of Agronomy, 2021, 16, .	0.4	6
491	Response of maize to coniferous tree woods biochar and sheep manure application to contaminated mine soil. Biomass Conversion and Biorefinery, 0 , 1 .	2.9	0
492	Use of machine-learning and receptor models for prediction and source apportionment of heavy metals in coastal reclaimed soils. Ecological Indicators, 2021, 122, 107233.	2.6	48
493	Supplementation of Organic Amendments Improve Yield and Adaptability by Reducing the Toxic Effect of Copper in Cocksfoot Grass (Dactylis glomerata L. Cv Amera). Agronomy, 2021, 11, 791.	1.3	5
494	Biochar supplementation regulates growth and heavy metal accumulation in tomato grown in contaminated soils. Physiologia Plantarum, 2021, 173, 340-351.	2.6	5

#	Article	IF	CITATIONS
495	The Mechanism of Silkworm Excrement Organic Fertilizer to Reduce the Cd Availability in Paddy Soil. Soil and Sediment Contamination, 2022, 31, 1-14.	1.1	8
496	Natural Seed Limitation and Effectiveness of Forest Plantations to Restore Semiarid Abandoned Metal Mining Areas in SE Spain. Forests, 2021, 12, 548.	0.9	2
497	An integrated approach for spatial distribution of potentially toxic elements (Cu, Pb and Zn) in topsoil. Scientific Reports, 2021, 11, 7806.	1.6	13
498	Soil microbiome manipulation triggers direct and possible indirect suppression against Ralstonia solanacearum and Fusarium oxysporum. Npj Biofilms and Microbiomes, 2021, 7, 33.	2.9	33
499	Comparative role of animal manure and vegetable waste induced compost for polluted soil restoration and maize growth. Saudi Journal of Biological Sciences, 2021, 28, 2534-2539.	1.8	19
500	The degradation of fatty acid methyl esters improved the health of soils simultaneously polluted with metals and biodiesel blends. Fuel, 2021, 291, 120158.	3.4	3
501	Influence of biochar and EDTA on enhanced phytoremediation of lead contaminated soil by Brassica juncea. Chemosphere, 2021, 271, 129513.	4.2	32
502	Assessing the contamination of trace toxic elements in the soils of sugar beet field (Beni-Mellal,) Tj ETQq1	l 0.784314 rgBT	/gverlock 1
503	Arsenic biogeochemical cycling in paddy soil-rice system: Interaction with various factors, amendments and mineral nutrients. Science of the Total Environment, 2021, 773, 145040.	3.9	100
504	A review on heavy metal contamination at mining sites and remedial techniques. IOP Conference Series: Earth and Environmental Science, 2021, 796, 012013.	0.2	15
505	Endophytic Aspergillus niger reprograms the physicochemical traits of tomato under cadmium and chromium stress. Environmental and Experimental Botany, 2021, 186, 104456.	2.0	27
506	Heavy metal treatment and removal using natural zeolites from sewage sludge, compost, and agricultural soils: a review. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	24
507	Reductive materials for remediation of hexavalent chromium contaminated soil – A review. Science of the Total Environment, 2021, 773, 145654.	3.9	75
509	The Monitoring of Selected Heavy Metals Content and Bioavailability in the Soil-Plant System and Its Impact on Sustainability in Agribusiness Food Chains. Sustainability, 2021, 13, 7021.	1.6	15
510	Effect of Vermicompost Amendment on the Accumulation and Chemical Forms of Trace Metals in Leafy Vegetables Grown in Contaminated Soils. International Journal of Environmental Research and Public Health, 2021, 18, 6619.	1.2	4
512	Trace Metal Levels and Nutrient Characteristics of Crude Oil-Contaminated Soil Amended with Biochar–Humus Sediment Slurry. Pollutants, 2021, 1, 119-126.	1.0	7
513	Polluted lignocellulose-bearing sediments as a resource for marketable goods \hat{a} review of potential technologies for biochemical and thermochemical processing and remediation. Clean Technologies and Environmental Policy, 0 , 1 .	2.1	3
514	Combined effects of biochar and chicken manure on maize (<i>Zea mays</i> L.) growth, lead uptake and soil enzyme activities under lead stress. PeerJ, 2021, 9, e11754.	0.9	15

#	Article	IF	CITATIONS
515	Semiarid bunchgrasses accumulate molybdenum on alkaline copper mine tailings: assessing phytostabilization in the greenhouse. SN Applied Sciences, 2021, 3, 1.	1.5	1
516	Effects of rice straw biochar and nitrogen fertilizer on ramie (<i>Boehmeria nivea</i> L.) morpho-physiological traits, copper uptake and post-harvest soil characteristics, grown in an aged-copper contaminated soil. Journal of Plant Nutrition, 2022, 45, 11-24.	0.9	21
517	The role of soils in the disposition, sequestration and decontamination of environmental contaminants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200177.	1.8	24
518	COMPARATIVE ANALYSIS OF SOME HEAVY METALS LEVELS IN LEAVES, PEELS AND TUBERS OF CASSAVA PLANTED ALONG EAST-WEST ROAD RIVERS STATE. International Journal of Research -GRANTHAALAYAH, 2021, 9, 1-13.	0.1	0
519	Sepiolite clay: A review of its applications to immobilize toxic metals in contaminated soils and its implications in soil–plant system. Environmental Technology and Innovation, 2021, 23, 101598.	3.0	36
520	Mitigation of petroleum-hydrocarbon-contaminated hazardous soils using organic amendments: A review. Journal of Hazardous Materials, 2021, 416, 125702.	6.5	46
521	Evaluation of the Effectiveness of Composite Mineral Remediation Agents on Cd Immobilization in Soils and Rice. Soil and Sediment Contamination, 2022, 31, 386-403.	1.1	2
522	Molecular mechanisms underlying heavy metal uptake, translocation and tolerance in hyperaccumulators-an analysis. Environmental Challenges, 2021, 4, 100197.	2.0	66
523	Selenium in Brazil nuts: An overview of agronomical aspects, recent trends in analytical chemistry, and health outcomes. Food Chemistry, 2022, 372, 131207.	4.2	17
524	Source identification and comprehensive apportionment of the accumulation of soil heavy metals by integrating pollution landscapes, pathways, and receptors. Science of the Total Environment, 2021, 786, 147436.	3.9	38
525	Application of cadmium prediction models for rice and maize in the safe utilization of farmland associated with tin mining in Hezhou, Guangxi, China. Environmental Pollution, 2021, 285, 117202.	3.7	24
526	Polypropylene microplastics alter the cadmium adsorption capacity on different soil solid fractions. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	3.3	16
527	Effects of silicon on heavy metal uptake at the soil-plant interphase: A review. Ecotoxicology and Environmental Safety, 2021, 222, 112510.	2.9	122
528	Distribution, behaviour, bioavailability and remediation of poly- and per-fluoroalkyl substances (PFAS) in solid biowastes and biowaste-treated soil. Environment International, 2021, 155, 106600.	4.8	74
529	Quantitative analysis of soil sustainability after applying stabilizing amendments in long-term Cd-contaminated paddy soils. Environmental Pollution, 2021, 286, 117205.	3.7	3
530	Fulvic acid: A key factor governing mercury bioavailability in a polluted plateau wetland. Water Research, 2021, 205, 117652.	5.3	10
531	Polybrominated diphenyl ethers and the multi-element profile of house dust in Croatia: Indoor sources, influencing factors of their accumulation and health risk assessment for humans. Science of the Total Environment, 2021, 800, 149430.	3.9	11
532	Assessment of compost and three biochars associated with Ailanthus altissima (Miller) Swingle for lead and arsenic stabilization in a post-mining Technosol. Pedosphere, 2021, 31, 944-953.	2.1	8

#	ARTICLE	IF	CITATIONS
533	A review on adsorptive separation of toxic metals from aquatic system using biochar produced from agro-waste. Chemosphere, 2021, 285, 131438.	4.2	59
534	Modification of naturally abundant resources for remediation of potentially toxic elements: A review. Journal of Hazardous Materials, 2022, 421, 126755.	6.5	32
535	Remediation of soils co-contaminated with cadmium and dichlorodiphenyltrichloroethanes by king grass associated with Piriformospora indica: Insights into the regulation of root excretion and reshaping of rhizosphere microbial community structure. Journal of Hazardous Materials, 2022, 422, 126936.	6.5	20
536	Effect of different direct revegetation strategies on the mobility of heavy metals in artificial zinc smelting waste slag: Implications for phytoremediation. Chemosphere, 2022, 286, 131678.	4.2	18
537	Compost-assisted phytoremediation. , 2022, , 243-264.		6
538	Evaluation of specific capacity of poultry litter in heavy metal sorption. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	3
539	Aplication of Soil Productivity Index after Eight Years of Soil Reclamation with Sewage Sludge Amendments. Environmental Management, 2021, 67, 822-832.	1.2	9
541	Bacterial Mediated Alleviation of Abiotic Stress in Crops. , 2012, , 205-224.		33
542	Fungal Wood Decay Processes as a Basis for Bioremediation. Soil Biology, 2013, , 51-74.	0.6	1
543	Process-based modeling of electrokinetic-enhanced bioremediation of chlorinated ethenes. Journal of Hazardous Materials, 2020, 397, 122787.	6.5	18
544	Effect of cadmium contamination on the rhizosphere bacterial diversity of Echinocactus platyacanthus. Rhizosphere, 2020, 13, 100187.	1.4	7
545	Value-added Uses of Eggshell and Eggshell Membranes. Food Chemistry, Function and Analysis, 2019, , 359-397.	0.1	8
546	Chapter 2 Bioremediation., 2016,, 21-34.		1
547	Phytocapping of Mine Waste at Derelict Mine Sites in New South Wales., 2017,, 215-239.		5
548	Characterization and Improvement in Physical, Chemical, and Biological Properties of Mine Wastes., 2017,, 3-15.		3
549	The Chemophytostabilisation Process of Heavy Metal Polluted Soil. PLoS ONE, 2015, 10, e0129538.	1.1	37
550	Speciation of Cu, Zn, and Pb in Soil Solutions Extracted from Strongly Polluted Soils Treated with Organic Materials. Polish Journal of Environmental Studies, 2017, 26, 567-575.	0.6	16
551	Microbial Bioremediation of some Heavy Metals in Soils: An updated review. Egyptian Academic Journal of Biological Sciences G Microbiology, 2015, 7, 29-45.	0.1	20

#	Article	IF	CITATIONS
552	Effect Of Contamination With Copper And Mineral Or Organic Amendments On The Content Of Trace Elements In Soil. Environmental Protection Engineering, 2017, 43, .	0.1	3
553	Heavy Metal Stabilization in Soils using Waste Resources - A Critical Review. Journal of Applied Biological Chemistry, 2015, 58, 157-174.	0.2	6
554	Effect of Exogenous Ferrous Sulfate Treatment on Edible Rice. American Journal of Food Technology, 2016, 11, 165-170.	0.2	1
555	Heavy Metals: An Ambiguous Category of Inorganic Contaminants, Nutrients and Toxins. Research Journal of Environmental Sciences, 2011, 5, 682-690.	0.5	14
556	Available Approaches of Remediation and Stabilisation of Metal Contamination in Soil: A Review. American Journal of Plant Sciences, 2018, 09, 2033-2052.	0.3	6
557	Heavy Metals, Metalloids, Their Toxic Effect and Living Systems. American Journal of Plant Sciences, 2018, 09, 2626-2643.	0.3	12
558	Community based bioremediation: grassroots responses to urban soil contamination. Teknokultura Revista De Cultura Digital Y Movimientos Sociales, 2016, 13, 491-510.	0.1	1
559	Adsorption property of heavy metals onto MCM-41 and expanded graphite. Journal of the Korean Society of Water and Wastewater, 2012, 26, 275-283.	0.3	0
560	Micronutrientes no solo e no milho em plantio direto com aplicações de dejetos lÃquidos de bovinos. Revista De Ciências Agrárias, 2013, 56, 242-248.	0.1	0
561	Mezclas de sustratos orgánicos e inorgánicos, tamaño de partÃєula y proporción Agronomy Mesoamerican, 2015, 26, 365.	0.1	4
562	Study for Phytostabilization using Soil Amendment and Aster koraiensis Nakai in Heavy Metal Contaminated Soil of Abandoned Metal Mine. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2016, 49, 627-634.	0.1	0
563	Effects of Dolomite and Oyster Shell on Nitrogen Processes in an Acidic Mine Soil Applied with Livestock Manure Compost. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2016, 49, 614-620.	0.1	2
564	Dual Soil Decontamination Procedures. , 0, , .		0
565	Role of Rhizoremediation in Decontaminating Some Hazardous Pollutants. Advances in Environmental Engineering and Green Technologies Book Series, 2017, , 213-246.	0.3	0
567	Rehabilitation of Biological Characteristics in Mine Tailings. , 2017, , 75-94.		0
568	Influence of Phosphates on Fractionation, Mobility, and Bioavailability of Soil Metal(loid)s., 2018,, 186-219.		0
569	Humic acid reduces the CuO and ZnO nanoparticles cellular toxicity in rapeseed (Brassica napus). Cellular and Molecular Biology, 2019, 65, 29.	0.3	7
570	INFLUENCE OF HUMIC PREPARATIONS ON DEGRADED SOILS PROPERTIES OF TECHNOGENIC BARRENS. Dokuchaev Soil Bulletin, 2019, , 129-149.	0.1	2

#	ARTICLE	IF	CITATIONS
571	TÃ⅓rkiye'de sarımsak tarımı yapılan farklı yöre topraklarının selenyum içerikleri ve bazı te özellikleri arasındaki ilişkiler. Toprak Bilimi Ve Bitki Besleme Dergisi, 2019, 7, 72-79.	emel topra	ık o
573	EFFECT OF BIOCHAR AUGMENTS ON VARIOUS GROWTH ATTRIBUTES OF RICE (Oryza sativa L.) IN CADMIUM CONTAMINATED SOIL. Journal of Experimental Biology and Agricultural Sciences, 2020, 8, 253-264.	0.1	0
575	Mitigation of Cadmium Induced Oxidative Stress by Using Organic Amendments to Improve the Growth and Yield of Mash Beans [Vigna mungo (L.)]. Agronomy, 2021, 11, 2152.	1.3	22
576	Perspectives on phytoremediation of zinc pollution in air, water and soil. Sustainable Chemistry and Pharmacy, 2021, 24, 100550.	1.6	8
577	Biomass amendments and phytoremediation of environmental pollutants., 2022,, 139-162.		1
578	Organic Fertilization of Fruit Trees as an Alternative to Mineral Fertilizers: Effect on Plant Growth, Yield and Fruit Quality. Plant in Challenging Environments, 2021, , 129-150.	0.4	2
579	Phytoremediation of Heavy Metals Using Salix (Willows). , 2020, , 161-174.		8
580	Use of Halophytes for the Remediation of Metal-Affected Soils in Arid Environments. , 2020, , 1-28.		0
581	Agronomic Crop Responses and Tolerance to Metals/Metalloids Toxicity., 2020,, 191-208.		5
582	Abiotic Stress: Its Outcome and Tolerance in Plants. Rhizosphere Biology, 2021, , 79-106.	0.4	1
583	Immobilization of mercury in contaminated soils through the use of new carbon foam amendments. Environmental Sciences Europe, 2021, 33, .	2.6	2
584	The Subsequent Effects of Soil Pollution by Petroleum Products and Its Bioremediation on the Antioxidant Response and Content of Elements in Vicia faba Plants. Energies, 2021, 14, 7748.	1.6	4
585	Combination of MgFe ₂ O ₄₋ Montmorillonite and Biochar: An Efficient and Eco-Friendly Amendment for Heavy Metals Contaminated Soils. SSRN Electronic Journal, 0, , .	0.4	0
586	Effect of fulvic acid co-precipitation on biosynthesis of Fe(III) hydroxysulfate and its adsorption of lead. Environmental Pollution, 2022, 295, 118669.	3.7	15
587	Fe oxides and fulvic acids together promoted the migration of Cd(II) to the root surface of Phragmites australis. Journal of Hazardous Materials, 2022, 425, 127998.	6.5	4
588	Assembly of root-associated bacterial community in cadmium contaminated soil following five-year consecutive application of soil amendments: Evidences for improved soil health. Journal of Hazardous Materials, 2022, 426, 128095.	6.5	37
589	Assessing Vegetation Decline Due to Pollution from Solid Waste Management by a Multitemporal Remote Sensing Approach. Remote Sensing, 2022, 14, 428.	1.8	7
590	Biochar alters chemical and microbial properties of microplastic-contaminated soil. Environmental Research, 2022, 209, 112807.	3.7	43

#	Article	IF	CITATIONS
591	Biochemical and molecular aspects of heavy metal stress tolerance in plants., 2022,, 205-219.		1
592	Lignite derived humic products and cattle manure biochar are effective soil amendments in cadmium contaminated and uncontaminated soils. Environmental Advances, 2022, 8, 100186.	2.2	4
593	Effects of coffee husk and cocoa pods biochar on the chemical properties of an acid soil from West Cameroon. Archives of Agronomy and Soil Science, 0 , 1 - 15 .	1.3	3
595	Application of Biochar for the Restoration of Metal(loid)s Contaminated Soils. Applied Sciences (Switzerland), 2022, 12, 1918.	1.3	3
596	Changes in fatty acid in $\langle i \rangle$ Tecoma stans $\langle i \rangle$ grown in mine residues after compost amendment. International Journal of Phytoremediation, 2022, , 1-10.	1.7	0
597	Slaked lime improves growth, antioxidant capacity and reduces Cd accumulation of peanut (Arachis) Tj ETQq1 1	0.784314 1.6	rgBT /Overlo
598	Wood vinegar facilitated growth and Cd/Zn phytoextraction of Sedum alfredii Hance by improving rhizosphere chemical properties and regulating bacterial community. Environmental Pollution, 2022, 305, 119266.	3.7	11
599	A stepwise processing strategy for treating manganese residue and the remediation of hexavalent chromium in water and soil by manganese residue-derived (Fe,Mn)C2O4. Chemical Engineering Journal, 2022, 436, 135258.	6.6	22
600	Evaluating the remediation potential of MgFe2O4-montmorillonite and its co-application with biochar on heavy metal-contaminated soils. Chemosphere, 2022, 299, 134217.	4.2	11
601	Microwave Soil Treatment along with Biochar Application Alleviates Arsenic Phytotoxicity and Reduces Rice Grain Arsenic Concentration. Energies, 2021, 14, 8140.	1.6	2
604	Field assessment of organic amendments and spring barley to phytomanage a Cu/PAH-contaminated soil. Environmental Geochemistry and Health, 2023, 45, 19-39.	1.8	2
605	Goethite-based carbon foam nanocomposites for concurrently immobilizing arsenic and metals in polluted soils. Chemosphere, 2022, 301, 134645.	4.2	4
622	Effect of Ginkgo Biloba Leaves on the Removal Efficiency of Cr(Vi) in Soil and its Underlying Mechanism. SSRN Electronic Journal, 0, , .	0.4	0
623	Throwing Copper Around: How Plants Control Uptake, Distribution, and Accumulation of Copper. Agronomy, 2022, 12, 994.	1.3	20
624	Role of polyamines in heavy metal stressed plants. Plant Physiology Reports, 2022, 27, 680-694.	0.7	5
625	Efficiency of heterogeneous chelating agents on the phytoremediation potential and growth of Sasa argenteostriata (Regel) E.G. Camus on Pb-contaminated soil. Ecotoxicology and Environmental Safety, 2022, 238, 113603.	2.9	6
626	Zero-valent iron nanoparticles and organic amendment assisted rhizoremediation of mixed contaminated soil using Brassica napus. Environmental Technology and Innovation, 2022, 28, 102621.	3.0	10
627	Harnessing the role of selenium in soil–plant-microbe ecosystem: ecophysiological mechanisms and future prospects. Plant Growth Regulation, 2023, 100, 197-217.	1.8	4

#	Article	IF	CITATIONS
628	Bioâ€organic soil amendment promotes the suppression of <i>Ralstonia solanacearum</i> by inducing changes in the functionality and composition of rhizosphere bacterial communities. New Phytologist, 2022, 235, 1558-1574.	3.5	57
629	Effects of microbial organic fertilizer (MOF) application on cadmium uptake of rice in acidic paddy soil: Regulation of the iron oxides driven by the soil microorganisms. Environmental Pollution, 2022, 307, 119447.	3.7	20
630	Contributing effects of vermicompost on soil health and farmers' socioeconomic sustainability. , 2022, , 737-757.		0
631	Contribution of arbuscular mycorrhizal fungi and soil amendments to remediation of a heavy metal-contaminated soil using sweet sorghum. Pedosphere, 2022, 32, 844-855.	2.1	22
632	Selenium content and nutritional quality of Brassica chinensis L enhanced by selenium engineered nanomaterials: The role of surface charge. Environmental Pollution, 2022, 308, 119582.	3.7	9
633	Sustainability of fiber crop production from polluted land. , 2022, , 115-156.		0
634	Inoculation with the pH Lowering Plant Growth Promoting Bacterium Bacillus sp. ZV6 Enhances Ni Phytoextraction by Salix alba from a Ni-Polluted Soil Receiving Effluents from Ni Electroplating Industry. Sustainability, 2022, 14, 6975.	1.6	2
635	Degraded mangroves as sources of trace elements to aquatic environments. Marine Pollution Bulletin, 2022, 181, 113834.	2.3	3
636	Exploring the significance of nanomaterials and organic amendments â€" Prospect for phytoremediation of contaminated agroecosystem. Environmental Pollution, 2022, 308, 119601.	3.7	17
637	Immobilization of hexavalent chromium in soil-plant environment using calcium silicate hydrate synthesized from coal gangue. Chemosphere, 2022, 305, 135438.	4.2	1
638	Characterization of Pine Residues from Himalayan Region and Their Use as Copper Adsorbent. Water, Air, and Soil Pollution, 2022, 233, .	1.1	7
639	Biochar Alone Did Not Increase Microbial Activity in Soils from a Temperate Climate That Had Long-Term Acidity Stress. Agriculture (Switzerland), 2022, 12, 941.	1.4	3
640	The Effect of Immobilizing Agents on Zn and Cu Availability for Plants in Relation to Their Potential Health Risks. Applied Sciences (Switzerland), 2022, 12, 6538.	1.3	6
641	In-situ stabilization of potentially toxic elements in two industrial polluted soils ameliorated with rock phosphate-modified biochars. Environmental Pollution, 2022, 309, 119733.	3.7	8
642	Evaluation of the Usefulness of Sorbents in the Remediation of Soil Exposed to the Pressure of Cadmium and Cobalt. Materials, 2022, 15, 5738.	1.3	13
643	Mechanism of metal sorption by biochar. , 2022, , 313-330.		0
644	Heavy metal contamination and their remediation. , 2022, , 255-270.		0
645	In situ bioremediation of heavy metal contaminated soil. , 2022, , 235-254.		0

#	Article	IF	CITATIONS
646	Strategies for Heavy Metals Remediation from Contaminated Soils and Future Perspectives. Environmental Science and Engineering, 2022, , 615-644.	0.1	4
647	Cobalt in soils: sources, fate, bioavailability, plant uptake, remediation, and management., 2022,, 81-104.		0
648	Microbial responses to immobilization of potentially toxic elements in soils., 2022, , 315-330.		2
649	Selenium Bioavailability and Nutritional Improvement in Crop Plants. , 2022, , 227-250.		0
650	Effect of Ginkgo biloba leaves on the removal efficiency of Cr(VI) in soil and its underlying mechanism. Environmental Research, 2023, 216, 114431.	3.7	6
651	Oxidized Biomass and Its Usage as Adsorbent for Removal of Heavy Metal Ions from Aqueous Solutions. Molecules, 2022, 27, 6119.	1.7	11
652	A one health approach to plant health. CABI Agriculture and Bioscience, 2022, 3, .	1.1	9
653	Process, influencing factors, and simulation of the lateral transport of heavy metals in surface runoff in a mining area driven by rainfall: A review. Science of the Total Environment, 2023, 857, 159119.	3.9	35
654	Biochar Application in Soil Management Systems. , 0, , .		0
655	The Effects of Rabbit-Manure-Derived Biochar Co-Application with Compost on the Availability and Heavy Metal Uptake by Green Leafy Vegetables. Agronomy, 2022, 12, 2552.	1.3	11
656	Immobilization of chromium bioavailability through application of organic waste to Indian mustard (Brassica juncea) under chromium-contaminated Indian soils. Environmental Monitoring and Assessment, 2023, 195, .	1.3	5
657	Swine wastewater compost and arbuscular mycorrhizal fungi in the growth and accumulation of copper in Eucalyptus grandis. Rhizosphere, 2022, 24, 100624.	1.4	2
658	Effect of metal fractions on rice grain metal uptake and biological parameters in mica mines waste contaminated soils. Journal of Environmental Sciences, 2024, 136, 313-324.	3.2	6
659	Role and importance of microorganisms in plant nutrition and remediation of potentially toxic elements contaminated soils., 2023,, 179-208.		3
660	A Multi-Stimuli responsive organic luminogen with aggregation induced emission for the selective detection of Zn2+ ions in solution and solid state. Chemical Engineering Journal, 2023, 453, 139798.	6.6	10
661	Amendments mediated iron immobilization under different moisture regimes in metal contaminated soil. , 2020, 90, 1190-1193.		0
662	Soil acidification and the liming potential of biochar. Environmental Pollution, 2023, 317, 120632.	3.7	45
663	Possible remediation of hexavalent chromium by native fungi of Sukinda mining area: a review. Environment Conservation Journal, 2022, 23, 425-438.	0.1	2

#	Article	IF	CITATIONS
664	Green Synthesis of Platinum Nanoparticles for Biomedical Applications. Journal of Functional Biomaterials, 2022, 13, 260.	1.8	10
665	Effects of stabilizing materials on soil Cd bioavailability, uptake, transport, and rice growth. Frontiers in Environmental Science, 0, 10, .	1.5	5
666	Potential Efficiency of Wild Plant Species (Pluchea dioscoridis (L.) DC.) for Phytoremediation of Trace Elements on Contaminated Locations. Sustainability, 2023, 15, 119.	1.6	3
667	Phytoremediation: A Novel Approach of Bast Fiber Plants (Hemp, Kenaf, Jute and Flax) for Heavy Metals Decontamination in Soilâ€"Review. Toxics, 2023, 11, 5.	1.6	7
669	Chromium toxicity, speciation, and remediation strategies in soil-plant interface: A critical review. Frontiers in Plant Science, 0, 13, .	1.7	33
670	Reduction of Cd Uptake in Rice (Oryza sativa) Grain Using Different Field Management Practices in Alkaline Soils. Foods, 2023, 12, 314.	1.9	2
671	The influence of compost amendments on bioaccumulation of potentially toxic elements by pea plant cultivated in mine degraded soils. Arabian Journal of Geosciences, 2023, 16 , .	0.6	3
672	Sidoarjo Mud native bacteria profile as potential bioremediation agent for chicken farm waste. AIP Conference Proceedings, 2023, , .	0.3	0
673	Nanoscale zero-valent iron mitigates arsenic mobilization and accumulation in Sinapis alba grown on a metal(loid)-polluted soil treated with a dunite mining waste-compost amendment. Plant and Soil, 2024, 497, 241-255.	1.8	4
674	Whole-Process Risk Management of Soil Amendments for Remediation of Heavy Metals in Agricultural Soil—A Review. International Journal of Environmental Research and Public Health, 2023, 20, 1869.	1.2	2
675	Effects of exogenous phosphates on speciation and bioavailability of arsenic and cadmium in farmland soils. Journal of Soils and Sediments, 0, , .	1.5	0
676	The use of biochar made from biomass and biosolids as a substrate for green infrastructure: A review. Sustainable Chemistry and Pharmacy, 2023, 32, 100999.	1.6	7
677	A Study of Arsenic Extraction Efficiency from Heavy Metal Contaminated Soils. Springer Proceedings in Earth and Environmental Sciences, 2023, , 3-10.	0.2	0
678	Bio-monitoring and Bio-remediation of the Ecological Changes in Wetlands: Case Studies from East Kolkata Wetlands. , 2023, , 583-648.		0
679	Montmorillonite-mediated electron distribution of zirconium phosphate for accelerating remediation of cadmium-contaminated water and soil. Applied Clay Science, 2023, 236, 106883.	2.6	0
680	Bio-organic fertilizer promoted phytoremediation using native plant leymus chinensis in heavy Metal(loid)s contaminated saline soil. Environmental Pollution, 2023, 327, 121599.	3.7	6
681	Selenium in soil-plant system: Transport, detoxification and bioremediation. Journal of Hazardous Materials, 2023, 452, 131272.	6.5	16
682	Effect of Carbide Slag Combined with Biochar on Improving Acidic Soil of Copper Sulfide Mines. Sustainability, 2023, 15, 3206.	1.6	3

#	Article	IF	CITATIONS
683	Comprehensive study of electrokinetic-assisted phytoextraction of metals from mine tailings by applying direct and alternate current. Electrochimica Acta, 2023, 445, 142051.	2.6	5
684	Agricultural Strategies to Reduce Cadmium Accumulation in Crops for Food Safety. Agriculture (Switzerland), 2023, 13, 471.	1.4	8
685	Unveiling the Role of Dissolved Organic Matter on the Hg Phytoavailability in Biochar-Amended Soils. International Journal of Environmental Research and Public Health, 2023, 20, 3761.	1.2	2
686	Restoration of Micro-/Nano plastics: Contaminated Soil by Phytoremediation. , 2023, , 295-302.		0
687	Efficiency of large-scale aided phytostabilization in a mining pond. Environmental Geochemistry and Health, 2023, 45, 4665-4677.	1.8	1
688	Sugarcane Bagasse Biochar Changes the Sorption Kinetics and Rice (Oryza sativaÂL.) Cadmium Uptake in aÂPaddy Soil. Gesunde Pflanzen, 2023, 75, 2101-2110.	1.7	5
689	Effect of Modified Illite on Cd Immobilization and Fertility Enhancement of Acidic Soils. Sustainability, 2023, 15, 4950.	1.6	1
690	Ecotoxicological Assessment of Polluted Soils One Year after the Application of Different Soil Remediation Techniques. Toxics, 2023, 11 , 298.	1.6	3
691	Effect of Organic Amendments on Cadmium Bioavailability in Soil and its Accumulation in Rice Grain. Bulletin of Environmental Contamination and Toxicology, 2023, 110, .	1.3	0
692	Exploration of Plant Growth Promoting Rhizobacteria (PGPRs) for Heavy Metal Bioremediation and Environmental Sustainability: Recent Advances and Future Prospects., 2023,, 29-55.		4
693	Combined addition of bagasse and zeolite stabilizes potentially toxic elements in sewage sludge compost and improves Eucalyptus urophylla seedling growth. Forest Ecology and Management, 2023, 539, 121003.	1.4	3
694	Phytoremediation strategies using biotechnology. , 2023, , 137-169.		0
695	Biochar-Based Remediation of Heavy Metal Polluted Land. Environmental Contamination Remediation and Management, 2023, , 317-352.	0.5	2
696	Biochar for Improvement of Soil Properties. Environmental Contamination Remediation and Management, 2023, , 403-444.	0.5	1
701	Identification of Mercury and Cyanide Degrading Bacteria in Sekotong People's Mining. , 2023, , 354-362.		0
705	Phytotoxicity Responses and Defence Mechanisms of Heavy Metal and Metal-Based Nanoparticles. , 2023, , 59-96.		0
714	Biofilters and bioretention systems: the role of biochar in the blue-green city concept for stormwater management. Environmental Science: Water Research and Technology, 2023, 9, 3103-3119.	1.2	3
718	Mechanism of Chemical Reduction of Cr(VI). Environmental Science and Engineering, 2023, , 171-255.	0.1	0

#	Article	IF	CITATIONS
720	Effect of biomass-based materials on enzyme activities in heavy metal-contaminated environment. , $2023, , 241-386.$		0
725	Vermicomposting as a tool for removal of heavy metal contaminants from soil and water environment., 2024,, 187-205.		0
727	Selenium Biofortification in Agronomic Crops. , 2023, , 139-157.		0
729	Actionable Science for Irrigation. , 2023, , 203-228.		0
738	Microbial Tolerance Strategies Against Cadmium Toxicity., 2024,, 147-168.		0
739	Rice plants for cleanup of trace elements—Bioeconomic perspectives. , 2024, , 289-309.		0
741	In Situ Immobilization of Potentially Toxic Elements in Arable Soil by Adding Soil Amendments and the Best Ways to Maximize Their Use Efficiency. Journal of Soil Science and Plant Nutrition, 2024, 24, 115-134.	1.7	0