Bacterial decolorization and degradation of azo dyes: A

Journal of the Taiwan Institute of Chemical Engineers 42, 138-157

DOI: 10.1016/j.jtice.2010.06.006

Citation Report

#	ARTICLE	IF	CITATIONS
1	Characterization of electrical and optical absorption of organic based methyl orange for photovoltaic application. Synthetic Metals, 2011, 161, 2135-2143.	2.1	41
2	Exploring decolorization and halotolerance characteristics by indigenous acclimatized bacteria: Chemical structure of azo dyes and dose–response assessment. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42, 816-825.	2.7	30
3	Azo Dyes and Their Metabolites: Does the Discharge of the Azo Dye into Water Bodies Represent Human and Ecological Risks?. , 0 , , .		28
4	Removal of an azo-metal complex textile dye from colored aqueous solutions using an agro-residue. Microchemical Journal, 2011, 99, 296-302.	2.3	51
5	In vitro studies on degradation of synthetic dye mixture by Comamonas sp. VS-MH2 and evaluation of its efficacy using simulated microcosm. Bioresource Technology, 2011, 102, 10391-10400.	4.8	26
6	Decolorization of azo dyes by Shewanella oneidensis MR-1 in the presence of humic acids. Applied Microbiology and Biotechnology, 2011, 91, 417-424.	1.7	40
7	Decolorization and degradation of reactive azo dyes by fixed bed bioreactors containing immobilized cells of Proteus vulgaris NCIM-2027. Biotechnology and Bioprocess Engineering, 2011, 16, 830-842.	1.4	15
8	Fixed-bed decolorization of Reactive Blue 172 by Proteus vulgaris NCIM-2027 immobilized on Luffa cylindrica sponge. International Biodeterioration and Biodegradation, 2011, 65, 494-503.	1.9	54
9	Biodegradation of Rubine GFL by Galactomyces geotrichum MTCC 1360 and subsequent toxicological analysis by using cytotoxicity, genotoxicity and oxidative stress studies. Microbiology (United) Tj ETQq0 0 0 rgB1	-/Owerlock	2 1 2 6Tf 50 417
10	Recyclable Crosslinked O-Carboxymethyl Chitosan for Removal of Cationic Dye from Aqueous Solutions. Hydrology Current Research, 2012, 03, .	0.4	5
11	Microbial decolouration of azo dyes: A review. Process Biochemistry, 2012, 47, 1723-1748.	1.8	691
12	Degradation kinetics of 4-amino naphthalene-1-sulfonic acid by a biofilm-forming bacterial consortium under carbon and nitrogen limitations. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 1169-1177.	1.4	8
13	Methylene Blue Degradation by Sphingomonas paucimobilis under Aerobic Conditions. Water, Air, and Soil Pollution, 2012, 223, 5131-5142.	1.1	23
14	Decolourization of Diazo Evans Blue by Two Strains of Pseudomonas fluorescens Isolated from Different Wastewater Treatment Plants. Water, Air, and Soil Pollution, 2012, 223, 5259-5266.	1.1	23
15	Dithiocarbamated Symphoricarpus albus as a potential biosorbent for a reactive dye. Chemical Engineering Journal, 2012, 211-212, 442-452.	6.6	20
17	Operational factors affecting the bioregeneration of mono-amine modified silica loaded with Acid Orange 7. Water Research, 2012, 46, 6419-6429.	5.3	7
18	Decolourization of the azo dye Orange G in aqueous solution via a heterogeneous Fenton-like reaction catalysed by goethite. Environmental Technology (United Kingdom), 2012, 33, 1545-1552.	1.2	43
19	Fast Degradation and Biodegradability Improvement of Reactive Brilliant Red X-3B by the Cobalt(II)/Bicarbonate/Hydrogen Peroxide System. Industrial & Engineering Chemistry Research, 2012, 51, 11104-11111.	1.8	40

#	Article	IF	Citations
20	Biological decolorization of xanthene dyes by anaerobic granular biomass. Biodegradation, 2012, 23, 725-737.	1.5	55
21	Bioregeneration of mono-amine modified silica and granular activated carbon loaded with Acid Orange 7 in batch system. Bioresource Technology, 2012, 118, 633-637.	4.8	21
22	Improvement of Catalytic Efficiency, Thermo-stability and Dye Decolorization Capability of Pleurotus ostreatusIBL-02 laccase by Hydrophobic Sol Gel Entrapment. Chemistry Central Journal, 2012, 6, 110.	2.6	61
23	Bacterial Decolorization and Degradation of Azo Dyes. Environmental Science and Engineering, 2012, , $101-133$.	0.1	105
24	Kinetics and Mechanism of Tartrazine Adsorption onto Chitin and Chitosan. Industrial & Engineering Chemistry Research, 2012, 51, 6862-6868.	1.8	129
25	Bacterial tyrosinases and their applications. Process Biochemistry, 2012, 47, 1749-1760.	1.8	89
26	Decolorization of azo dyes by a salt-tolerant Staphylococcus cohnii strain isolated from textile wastewater. Frontiers of Environmental Science and Engineering, 2012, 6, 806-814.	3.3	18
27	Photocatalytic degradation of azo dye using TiO2 supported on spherical activated carbon. Korean Journal of Chemical Engineering, 2012, 29, 1722-1729.	1.2	21
28	Decolorization and Biodegradation of Rubine GFL by Microbial Consortium GG-BL in Sequential Aerobic/Microaerophilic Process. Applied Biochemistry and Biotechnology, 2012, 167, 1578-1594.	1.4	28
29	Bioremoval of an azo dye by Azolla filiculoides: Study of growth, photosynthetic pigments and antioxidant enzymes status. International Biodeterioration and Biodegradation, 2012, 75, 194-200.	1.9	50
30	Green coconut fiber: a novel carrier for the immobilization of commercial laccase by covalent attachment for textile dyes decolourization. World Journal of Microbiology and Biotechnology, 2012, 28, 2827-2838.	1.7	68
31	Synthetic dye decolorization by three sources of fungal laccase. Iranian Journal of Environmental Health Science & Engineering, 2012, 9, 27.	1.8	83
32	Charaterization of Pore Structure and Surface Chemistry of Activated Carbons – A Review. , 0, , .		4
33	Bacterial assisted phytoremediation for enhanced degradation of highly sulfonated diazo reactive dye. Environmental Science and Pollution Research, 2012, 19, 1709-1718.	2.7	75
34	Enhanced degradation of azo dye alizarin yellow R in a combined process of iron–carbon microelectrolysis and aerobic bio-contact oxidation. Environmental Science and Pollution Research, 2012, 19, 1385-1391.	2.7	24
35	Synthesis and flocculation property in dye solutions of β-cyclodextrin–acrylic acid–[2-(Acryloyloxy)ethyl] trimethyl ammonium chloride copolymer. Carbohydrate Polymers, 2012, 87, 1956-1962.	5.1	21
36	Exploring new strains of dye-decolorizing bacteria. Journal of Bioscience and Bioengineering, 2012, 113, 508-514.	1.1	22
37	Communal microaerophilic–aerobic biodegradation of Amaranth by novel NAR-2 bacterial consortium. Bioresource Technology, 2012, 105, 48-59.	4.8	52

#	Article	IF	CITATIONS
38	Azo dye decolorization by Shewanella aquimarina under saline conditions. Bioresource Technology, 2012, 114, 95-101.	4.8	83
39	Removal of water-insoluble Sudan dyes by Shewanella oneidensis MR-1. Bioresource Technology, 2012, 114, 144-148.	4.8	28
40	Differential catalytic action of <i>Brevibacillus laterosporus</i> on two dissimilar azo dyes Remazol red and Rubine GFL. Journal of Basic Microbiology, 2013, 53, 136-146.	1.8	18
41	Response surface methodology (RSM) analysis of photodegradation of sulfonated diazo dye Reactive Green 19 by UV/H2O2 process. Journal of Environmental Management, 2013, 127, 28-35.	3.8	85
42	Synergistic degradation of diazo dye Direct Red 5B by Portulaca grandiflora and Pseudomonas putida. International Journal of Environmental Science and Technology, 2013, 10, 1039-1050.	1.8	62
43	Simultaneous removal of COD and Direct Red 80 in a mixed anaerobic sulfate-reducing bacteria culture. Chemical Engineering Journal, 2013, 223, 611-616.	6.6	38
44	POTENTIAL OF THE AQUATIC FERNAZOLLA FILICULOIDESIN BIODEGRADATION OF AN AZO DYE: MODELING OF EXPERIMENTAL RESULTS BY ARTIFICIAL NEURAL NETWORKS. International Journal of Phytoremediation, 2013, 15, 729-742.	1.7	22
45	Decolorization of methyl orange using upflow anaerobic sludge blanket (UASB) reactorâ€"An investigation of co-substrate and dye degradation kinetics. Desalination and Water Treatment, 2013, 51, 7621-7630.	1.0	11
46	Decolorization applicability of sol–gel matrix immobilized manganese peroxidase produced from an indigenous white rot fungal strain Ganoderma lucidum. BMC Biotechnology, 2013, 13, 56.	1.7	35
47	Highly Efficient Biodecolorization/Degradation of Congo Red and Alizarin Yellow R by Chloroperoxidase from Caldariomyces fumago: Catalytic Mechanism and Degradation Pathway. Industrial & Degradation Pathway. Industrial & Degradation Pathway. 13572-13579.	1.8	35
48	Decolorization of azo dyes by Geobacter metallireducens. Applied Microbiology and Biotechnology, 2013, 97, 7935-7942.	1.7	21
49	Multiple Approaches Towards Decolorization and Reuse of a Textile Dye (VB-B) by a Marine Bacterium Shewanella decolorationis. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	16
50	Decolorization and biodegradation of congo red dye by a novel white rot fungus Alternaria alternata CMERI F6. Bioresource Technology, 2013, 147, 662-666.	4.8	104
51	Application of chitosan films for the removal of food dyes from aqueous solutions by adsorption. Chemical Engineering Journal, 2013, 214, 8-16.	6.6	165
52	Congo red decolorization by immobilized laccase through chitosan nanoparticles on the glass beads. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 156-162.	2.7	69
53	Magnetic ferrite nanoparticle–alginate composite: Synthesis, characterization and binary system dye removal. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 322-330.	2.7	131
54	Extracellular enzyme production and phylogenetic distribution of yeasts in wastewater treatment systems. Bioresource Technology, 2013, 129, 264-273.	4.8	54
55	Microbial decolorization and degradation of synthetic dyes: a review. Reviews in Environmental Science and Biotechnology, 2013, 12, 75-97.	3.9	329

#	Article	IF	CITATIONS
56	Biodecolorization of reactive black-5 by a metal and salt tolerant bacterial strain Pseudomonas sp. RA20 isolated from Paharang drain effluents in Pakistan. Ecotoxicology and Environmental Safety, 2013, 98, 331-338.	2.9	59
57	Responses of pea and wheat to textile wastewater reclaimed by suspended sequencing batch bioreactors. International Biodeterioration and Biodegradation, 2013, 85, 550-555.	1.9	12
58	Water extraction kinetics of metals, arsenic and dissolved organic carbon from industrial contaminated poplar leaves. Journal of Environmental Sciences, 2013, 25, 2451-2459.	3.2	64
59	The first latent green fluorophores for the detection of azoreductase activity in bacterial cultures. Chemical Communications, 2013, 49, 8815.	2.2	54
60	The enzymatic decolorization and detoxification of synthetic dyes by the laccase from a soil-isolated ascomycete, Paraconiothyrium variabile. International Biodeterioration and Biodegradation, 2013, 85, 173-181.	1.9	147
61	Rapid decolorization of azo dyes by crude manganese peroxidase from Schizophyllum sp. F17 in solid-state fermentation. Biotechnology and Bioprocess Engineering, 2013, 18, 868-877.	1.4	33
62	Soybean peroxidase-mediated degradation of an azo dye– a detailed mechanistic study. BMC Biochemistry, 2013, 14, 35.	4.4	56
63	Evaluation of integrated anaerobic–aerobic biofilm reactor for degradation of azo dye methyl orange. Bioresource Technology, 2013, 143, 104-111.	4.8	60
64	Statistical optimization, interaction analysis and desorption studies for the azo dyes adsorption onto chitosan films. Journal of Colloid and Interface Science, 2013, 411, 27-33.	5.0	87
65	Removal of methyl orange from aqueous solution using a 1.6 MHz ultrasonic atomiser. RSC Advances, 2013, 3, 23370.	1.7	8
66	Kinetics of the decolourization of a dyehouse effluent byProvidencia rettgeriODO. International Journal of Environmental Studies, 2013, 70, 515-526.	0.7	3
67	Decolorization and detoxification of sulfonated azo dye C.I. Remazol Red and textile effluent by isolated Lysinibacillus sp. RGS. Journal of Bioscience and Bioengineering, 2013, 115, 658-667.	1.1	151
68	Synthesis of Amino-Substituted p-tert-Butylcalix[4] arene for the Removal of Chicago Sky Blue and Tropaeolin 000 Azo Dyes from Aqueous Environment. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	17
69	Catalytic role of Au@TiO2 nanocomposite on enhanced degradation of an azo-dye by electrochemically active biofilms: a quantized charging effect. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	4
70	Biochemical response to exposure to six textile dyes in early developmental stages of Xenopus laevis. Environmental Science and Pollution Research, 2013, 20, 452-460.	2.7	25
71	Electrochemical degradation of the Disperse Orange 29 dye on a \hat{l}^2 -PbO2 anode assessed by the response surface methodology. Journal of Environmental Chemical Engineering, 2013, 1, 954-961.	3.3	40
72	Molecular fingerprinting of bacterial communities in enriched azo dye (Reactive Violet 5R) decolorising native acclimatised bacterial consortia. Bioresource Technology, 2013, 142, 436-444.	4.8	17
73	Biotransformation of Direct Blue 1 by a moderately halophilic bacterium Marinobacter sp. strain HBRA and toxicity assessment of degraded metabolites. Journal of Hazardous Materials, 2013, 262, 674-684.	6.5	47

#	ARTICLE	IF	CITATIONS
74	Biosorption of three textile dyes from contaminated water by filamentous green algal Spirogyra sp.: Kinetic, isotherm and thermodynamic studies. International Biodeterioration and Biodegradation, 2013, 83, 33-40.	1.9	137
75	Characterization of a new oxygen-insensitive azoreductase from Brevibacillus laterosporus TISTR1911: Toward dye decolorization using a packed-bed metal affinity reactor. Bioresource Technology, 2013, 150, 298-306.	4.8	46
76	An insight into the influence of low dose irradiation pretreatment on the microbial decolouration and degradation of Reactive Red-120 dye. Chemosphere, 2013, 90, 1348-1358.	4.2	52
77	Adsorption of colour from Batik effluent by bacterial, Lactobacillus Delbruckii and its growth. , 2013, , .		5
78	The non-enzymatic reduction of azo dyes by flavin and nicotinamide cofactors under varying conditions. Anaerobe, 2013, 23, 87-96.	1.0	9
79	Novel catalytic and effluent decolorization functionalities of sol-gel immobilized Pleurotus ostreatus IBL-02 manganese peroxidase produced from bio-processing of wheat straw. Chinese Journal of Catalysis, 2013, 34, 1756-1761.	6.9	34
80	Fungal–bacterial synergism enhanced decolorization of reactive red 120 by response surface methodology. International Biodeterioration and Biodegradation, 2013, 82, 1-8.	1.9	23
81	Effects of co-substrate and biomass acclimation concentration on the bioregeneration of azo dye-loaded mono-amine modified silica. Bioresource Technology, 2013, 143, 584-591.	4.8	5
82	Deciphering simultaneous bioelectricity generation and reductive decolorization using mixed-culture microbial fuel cells in salty media. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 446-453.	2.7	35
83	Evaluation of antioxidant enzymes activities and identification of intermediate products during phytoremediation of an anionic dye (C.I. Acid Blue 92) by pennywort (Hydrocotyle vulgaris). Journal of Environmental Sciences, 2013, 25, 2214-2222.	3.2	24
84	Degradation of dyes from aqueous solution by Fenton processes: a review. Environmental Science and Pollution Research, 2013, 20, 2099-2132.	2.7	541
85	Kinetic characteristics of biodegradation of methyl orange by Pseudomonas putida mt2 in suspended and immobilized cell systems. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 780-785.	2.7	18
86	Dried prickly pear cactus (Opuntia ficus indica) cladodes as a low-cost and eco-friendly biosorbent for dyes removal from aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 52-60.	2.7	126
87	Comparison of photocatalytic degradation of dyes in relation to their structure. Environmental Science and Pollution Research, 2013, 20, 3570-3581.	2.7	41
88	Potential of Hydrocotyle vulgaris for phytoremediation of a textile dye: Inducing antioxidant response in roots and leaves. Ecotoxicology and Environmental Safety, 2013, 93, 128-134.	2.9	31
89	Decolorization of azo dyes by marine Shewanella strains under saline conditions. Applied Microbiology and Biotechnology, 2013, 97, 4187-4197.	1.7	46
90	Current Status of Textile Industry Wastewater Management and Research Progress in Malaysia: A Review. Clean - Soil, Air, Water, 2013, 41, 751-764.	0.7	187
91	Color removal and COD reduction of biologically treated textile effluent through submerged filtration using hollow fiber nanofiltration membrane. Desalination, 2013, 314, 89-95.	4.0	77

#	Article	IF	CITATIONS
92	MM/QM study: Interactions of copper(II) and mercury(II) with food dyes in aqueous solutions. International Journal of Chemical and Analytical Science, 2013, 4, 49-56.	0.5	3
93	Removal of azo dye from aqueous solution by a new biosorbent prepared with Aspergillus nidulans cultured in tobacco wastewater. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 815-820.	2.7	24
94	Sequential Microaerophilic-Oxic Phase Mineralization of Azo Dyes by a Monoculture of Pseudomonas Aeruginosa Strain AWF Isolated from Textile Wastewater. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	1
95	The Acid-Catalysed Benzidine Rearrangements May Proceed via Cation Radicals Formed by Electron Transfer to a Proton from a Hydrazyl Nitrogen. Progress in Reaction Kinetics and Mechanism, 2013, 38, 1-31.	1.1	5
96	Treatment of Textile Wastewater Using Facultative Contact Reactor-Biological Contact Oxidation and Ozone Biological Aerated Filter. Advanced Materials Research, 0, 777, 318-325.	0.3	4
97	Equilibrium and thermodynamics of azo dyes biosorption onto Spirulina platensis. Brazilian Journal of Chemical Engineering, 2013, 30, 13-21.	0.7	71
98	Characterization and Decolorization Applicability of Xerogel Matrix Immobilized Manganese Peroxidase Produced from Trametes versicolor IBL-04. Protein and Peptide Letters, 2013, 20, 591-600.	0.4	50
99	Research Review on Biodegradation of Azo Dye Compounds SSRN Electronic Journal, 0, , .	0.4	0
100	Simultaneous removal of co-contaminants: acid brilliant violet and Cu $2+$ by functional bimetallic Fe/Pd nanoparticles. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	1
101	Decolorization and detoxification of sulfonated toxic diazo dye C.I. Direct Red 81 by Enterococcus faecalis YZ 66. Journal of Environmental Health Science & Engineering, 2014, 12, 151.	1.4	63
102	Optimization of medium for decolorization of Congo red by <i>Enterobacter</i> sp. SXCR using response surface methodology. Desalination and Water Treatment, 2014, 52, 6166-6174.	1.0	10
103	Temperature Compensation in Determining of Remazol Black B Concentrations Using Plastic Optical Fiber Based Sensor. Sensors, 2014, 14, 15836-15848.	2.1	9
104	Food cannery effluent, pineapple peel as an effective low-cost biosorbent for removing cationic dye from aqueous solutions. Desalination and Water Treatment, 2014, 52, 6096-6103.	1.0	25
105	Dye Decolourization of the Remazol Dye in Textile Effluent by Using (i> Bambusa he (i> (i> terostachya (i> . Applied Mechanics and Materials, 2014, 575, 60-64.	0.2	0
106	Decolorization and biodegradation of the azo dye Congo red by an isolated Acinetobacter baumannii YNWH 226. Biotechnology and Bioprocess Engineering, 2014, 19, 687-695.	1.4	25
107	Microbial Tyrosinases: Promising Enzymes for Pharmaceutical, Food Bioprocessing, and Environmental Industry. Biochemistry Research International, 2014, 2014, 1-16.	1.5	125
108	Kinetic study of Acid Orange 7 degradation using plasmas in NaNO3 solution sustained by pulsed power. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 1558-1563.	2.7	10
109	Decolorization of heterocycle dye Neutral Red by white-rot fungus <i>Perenniporia subacida</i> Desalination and Water Treatment, 2014, 52, 5594-5604.	1.0	14

#	Article	IF	CITATIONS
110	Adsorption of direct black-38 azo dye on p-tert-butylcalix[6] arene immobilized material. Arabian Journal of Chemistry, 2014, 7, 125-131.	2.3	34
111	Evaluation of in vitro efficacy for decolorization and degradation of commercial azo dye RB-B by Morganella sp. HK-1 isolated from dye contaminated industrial landfill. Chemosphere, 2014, 105, 126-132.	4.2	40
112	Decolourisation of Different Dyes by two Pseudomonas Strains Under Various Growth Conditions. Water, Air, and Soil Pollution, 2014, 225, 1846.	1.1	27
113	Decolorization of two synthetic dyes using the purified laccase of Paraconiothyrium variabile immobilized on porous silica beads. Journal of Environmental Health Science & Engineering, 2014, 12, 6.	1.4	95
114	Factors affecting bio-decolorization of azo dyes and COD removal in anoxic–aerobic REACT operated sequencing batch reactor. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 609-616.	2.7	53
115	Optimization of triazo Acid Black 210 dye degradation by Providencia sp. SRS82 and elucidation of degradation pathway. Process Biochemistry, 2014, 49, 110-119.	1.8	83
116	Biosorption studies on bioremediation and biorecovery. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 1863-1864.	2.7	5
117	Bioregeneration of azo dyes-loaded mono-amine modified silica in batch system: Effects of particle size and biomass acclimation condition. Chemical Engineering Journal, 2014, 251, 175-182.	6.6	7
118	Phragmites sp. physiological changes in a constructed wetland treating an effluent contaminated with a diazo dye (DR81). Environmental Science and Pollution Research, 2014, 21, 9626-9643.	2.7	15
119	Diffusional mass transfer model for the adsorption of food dyes on chitosan films. Chemical Engineering Research and Design, 2014, 92, 2324-2332.	2.7	81
120	Glass beads coated with chitosan for the food azo dyes adsorption in a fixed bed column. Journal of Industrial and Engineering Chemistry, 2014, 20, 3387-3393.	2.9	69
121	Efficient decolorization and detoxification of the sulfonated azo dye Reactive Orange 16 and simulated textile wastewater containing Reactive Orange 16 by the white-rot fungus Ganoderma sp. En3 isolated from the forest of Tzu-chin Mountain in China. Biochemical Engineering Journal, 2014, 82, 1.9	1.8	78
122	Adsorption of anthraquinone dye onto eco-friendly semi-IPN biocomposite hydrogel: Equilibrium isotherms, kinetic studies and optimization. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 653-664.	2.7	83
123	Bioremediation of the textile waste effluent by Chlorella vulgaris. Egyptian Journal of Aquatic Research, 2014, 40, 301-308.	1.0	136
124	Bacterial and Fungal Decolorization of the Remazol Dye in Textile Effluent of Malaysian Cottage Industries by <i>Lactobacillus delbrueckii</i> and <i>Pleurotus ostreatus</i> . Advanced Materials Research, 0, 974, 379-383.	0.3	1
125	Kinetics of biological decolorisation of anthraquinone based Reactive Blue 19 using an isolated strain of Enterobacter sp.F NCIM 5545. Bioresource Technology, 2014, 173, 342-351.	4.8	76
126	Study of bio-degradation and bio-decolourization of azo dye by <i>Enterobacter</i> Environmental Technology (United Kingdom), 2014, 35, 956-965.	1.2	54
127	Characterization of Reactive Red-120 Decolorizing Bacterial Strain Acinetobacter junii FA10 Capable of Simultaneous Removal of Azo Dyes and Hexavalent Chromium. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	38

#	ARTICLE	IF	CITATIONS
128	Co-metabolic degradation of diazo dyeâ€"Reactive blue 160 by enriched mixed cultures BDN. Journal of Hazardous Materials, 2014, 279, 85-95.	6.5	70
129	Physiological and biochemical responses of Chlorella vulgaris to Congo red. Ecotoxicology and Environmental Safety, 2014, 108, 72-77.	2.9	37
130	Nano-MnOx on activated carbon prepared by hydrothermal process for fast and highly efficient degradation of azo dyes. Applied Catalysis A: General, 2014, 485, 91-98.	2.2	33
131	Accelerating Effect of Bio-Reduced Graphene Oxide on Decolorization of Acid Red 18 by Shewanella algae. Applied Biochemistry and Biotechnology, 2014, 174, 602-611.	1.4	12
132	Copper modified-TiO2 catalysts for hydrogen generation through photoreforming of organics. A short review. International Journal of Hydrogen Energy, 2014, 39, 16812-16831.	3.8	115
133	Degradation of Sulphonated Azo Dye Red HE7B by Bacillus sp. and Elucidation of Degradative Pathways. Current Microbiology, 2014, 69, 183-191.	1.0	29
134	Predictive modeling of sorption and desorption of a reactive azo dye by pumpkin husk. Environmental Science and Pollution Research, 2014, 21, 5086-5097.	2.7	23
135	Biodegradation of methyl red by Bacillus sp. strain UN2: decolorization capacity, metabolites characterization, and enzyme analysis. Environmental Science and Pollution Research, 2014, 21, 6136-6145.	2.7	61
136	Submerged hollow fiber microfiltration as a part of hybrid photocatalytic process for dye wastewater treatment. Desalination, 2014, 343, 106-112.	4.0	88
137	Photoassisted electrochemical degradation of an azo dye using Ti/RuO2 anode and carbon nanotubes containing gas-diffusion cathode. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 930-936.	2.7	53
138	Biodegradation of organic pollutants in saline wastewater by halophilic microorganisms: a review. Environmental Science and Pollution Research, 2014, 21, 9578-9588.	2.7	137
139	Biodegradation and bioelectricity generation by Microbial Desalination Cell. International Biodeterioration and Biodegradation, 2014, 92, 20-25.	1.9	41
140	Metabolite analysis on reductive biodegradation of reactive green 19 in Enterobacter cancerogenus bearing microbial fuel cell (MFC) and non-MFC cultures. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 436-443.	2.7	22
141	Laccase and Laccaseâ€Mediated Systems in the Synthesis of Organic Compounds. Advanced Synthesis and Catalysis, 2014, 356, 897-927.	2.1	214
142	Proton-Coupled Electron Transfer in Azobenzene/Hydrazobenzene Couples with Pendant Acid–Base Functions. Hydrogen-Bonding and Structural Effects. Journal of the American Chemical Society, 2014, 136, 8907-8910.	6.6	38
143	Removal of High-Concentration Acid Red 73 in Aqueous Solution by Using the Prepared Fe/Cu Bimetallic Particles. Journal of Environmental Engineering, ASCE, 2014, 140, .	0.7	7
144	Enhanced reduction of an azo dye using henna plant biomass as a solid-phase electron donor, carbon source, and redox mediator. Bioresource Technology, 2014, 161, 465-468.	4.8	18
145	Aqueous thermostabilization of Pleurotus florida NCIM 1243 laccase and its potential application in Acid Black 10BX dye decolorization: process optimization. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 2403-2410.	2.7	3

#	Article	IF	CITATIONS
146	Three different clay-supported nanoscale zero-valent iron materials for industrial azo dye degradation: A comparative study. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 2451-2461.	2.7	88
147	Microbial Degradation of Hexachlorocyclohexane (HCH) Pesticides. , 2015, , 195-224.		3
148	Decolorization of Reactive Black 39 and Acid Red 360 by Pseudomonas aeruginosa. Water Science and Technology, 2015, 72, 1266-1273.	1.2	7
149	Microbial Decolorization of Reactive Dye Solutions. Clean - Soil, Air, Water, 2015, 43, 1426-1432.	0.7	10
150	Photocatalytic Degradation of the Azo Dye Acid Red 14 in Nanosized TiO ₂ Suspension under Simulated Solar Light. Clean - Soil, Air, Water, 2015, 43, 1037-1043.	0.7	13
151	Concomitant mineralization and detoxification of acid red 88 by an indigenous acclimated mixed culture. Environmental Progress and Sustainable Energy, 2015, 34, 1455-1466.	1.3	25
152	Biodecolorization of Reactive Yellowâ€2 by <i>Serratia</i> sp. RN34 Isolated from Textile Wastewater. Water Environment Research, 2015, 87, 2065-2075.	1.3	17
153	Chemical Synonyms, Molecular Structure and Toxicological Risk Assessment of Synthetic Textile Dyes: A Critical Review. Journal of Developing Drugs, 2015, 05, .	0.9	19
154	Mineralization and Detoxification of the Carcinogenic Azo Dye Congo Red and Real Textile Effluent by a Polyurethane Foam Immobilized Microbial Consortium in an Upflow Column Bioreactor. International Journal of Environmental Research and Public Health, 2015, 12, 6894-6918.	1.2	98
155	TECNOLOGÃAS PARA LA REMOCIÓN DE COLORANTES Y PIGMENTOS PRESENTES EN AGUAS RESIDUALES. DYNA (Colombia), 2015, 82, 118-126.	0.2	7
156	Low-Cost Biodegradation and Detoxification of Textile Azo Dye C.I. Reactive Blue 172 by <i>Providencia rettgeri</i> Strain HSL1. Journal of Chemistry, 2015, 2015, 1-10.	0.9	30
157	Explorations and Applications of Enzyme-linked Bioremediation of Synthetic Dyes., 0,,.		3
158	Bacterial Enzymes and Multi-enzymatic Systems for Cleaning-up Dyes from the Environment. Environmental Science and Engineering, 2015, , 27-55.	0.1	16
159	Synthesis of Pt3Ni microspheres with high performance for rapid degradation of organic dyes. Nanoscale Research Letters, 2015, 10, 947.	3.1	5
160	A novel recombinant AzrC protein proposed by molecular docking and in silico analyses to improve azo dye's binding affinity. Gene, 2015, 569, 233-238.	1.0	19
161	Analytical techniques combined with chemometrics for authentication and determination of contaminants in condiments: A review. Journal of Food Composition and Analysis, 2015, 44, 56-72.	1.9	103
162	Reductive Decolorization of Azo Dye by Bacteria. Environmental Science and Engineering, 2015, , 111-133.	0.1	3
163	Stimulation of oxygen to bioanode for energy recovery from recalcitrant organic matter aniline inÂmicrobial fuel cells (MFCs). Water Research, 2015, 81, 72-83.	5.3	76

#	Article	IF	CITATIONS
164	A Low-Cost Wheat Bran Medium for Biodegradation of the Benzidine-Based Carcinogenic Dye Trypan Blue Using a Microbial Consortium. International Journal of Environmental Research and Public Health, 2015, 12, 3480-3505.	1.2	38
165	Citrobacter freundii mediated degradation of textile dye Mordant Black 17. Journal of Water Process Engineering, 2015, 8, 28-34.	2.6	6
166	Ozone assisted electrocoagulation in a rectangular internal-loop airlift reactor: Application to decolorization of acid dye. Journal of Water Process Engineering, 2015, 8, 171-178.	2.6	55
167	Effect of pre-treatment on dye degradation in aerobic reactor. Desalination and Water Treatment, 2015, 56, 1547-1557.	1.0	0
168	Dissimilatory azoreduction of Orange I by a newly isolated moderately thermophilic bacterium, Novibacillus thermophilus SG-1. Biotechnology and Bioprocess Engineering, 2015, 20, 1064-1070.	1.4	7
169	Synthesis, characterization and adsorptive application of ferrocene based mesoporous material for hazardous dye Congo red. Journal of Industrial and Engineering Chemistry, 2015, 26, 234-242.	2.9	26
170	Microbial Degradation of Synthetic Dyes in Wastewaters. Environmental Science and Engineering, 2015, , .	0.1	25
171	Potential of a bacterial consortium to degrade azo dye Disperse Red 1 in a pilot scale anaerobic–aerobic reactor. Process Biochemistry, 2015, 50, 816-825.	1.8	33
172	Detoxification and color removal of Congo red by a novel Dietzia sp. (DTS26)– A microcosm approach. Ecotoxicology and Environmental Safety, 2015, 114, 52-60.	2.9	68
173	Effect of a Sol–Gel Route on the Preparation of Silica-Based Sorbent Materials Synthesized by Molecular Imprinting for the Adsorption of Dyes. Industrial & Dyes in Engineering Chemistry Research, 2015, 54, 254-262.	1.8	20
174	Synthesis, characterization and photocatalytic performance of Yb-doped CdTe nanoparticles. Materials Letters, 2015, 145, 253-257.	1.3	25
175	Removal of textile dye reactive black 5 by the cold-adapted, alkali- and halotolerant fungus <i>Aspergillus flavipes</i> MA-25 under non-sterile conditions. Desalination and Water Treatment, 2015, 56, 2258-2266.	1.0	6
176	Exploiting the efficacy of <i>Lysinibacillus </i> sp. RGS for decolorization and detoxification of industrial dyes, textile effluent and bioreactor studies. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2015, 50, 176-192.	0.9	37
177	Biodegradation of Navy N5RL1 carpet dye by Staphylococcus saprophyticus strain BHUSS X3. 3 Biotech, 2015, 5, 775-782.	1.1	8
178	Effect of Interaction Time on Immobilization Process of Bambusa Heterostachya as Lactobacillus Matrix. Procedia, Social and Behavioral Sciences, 2015, 195, 2644-2651.	0.5	2
179	Performance evaluation of two stage nanofiltration for treatment of textile effluent containing reactive dyes. Journal of Environmental Chemical Engineering, 2015, 3, 1678-1690.	3.3	16
180	The azo dye Disperse Red 13 and its oxidation and reduction products showed mutagenic potential. Toxicology in Vitro, 2015, 29, 1906-1915.	1.1	40
181	Decolorization of Textile Reactive Dyes and Effluents by Biofilms of Trametes polyzona LMB-TM5 and Ceriporia sp. LMB-TM1 Isolated from the Peruvian Rainforest. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	10

#	Article	IF	Citations
182	Fixed bed adsorption of Methylene Blue by ultrasonic surface modified chitin supported on sand. Chemical Engineering Research and Design, 2015, 100, 302-310.	2.7	35
183	Decolorization characteristics of a newly isolated salt-tolerant Bacillus sp. strain and its application for azo dye-containing wastewater in immobilized form. Applied Microbiology and Biotechnology, 2015, 99, 9277-9287.	1.7	30
184	Combination of adsorption and biological treatment in a SBR for colour elimination in municipal wastewater with discharges of textile effluents. Desalination and Water Treatment, 2015, 55, 1915-1921.	1.0	4
185	Decolorization of acid and basic dyes: understanding the metabolic degradation and cell-induced adsorption/precipitation by Escherichia coli. Applied Microbiology and Biotechnology, 2015, 99, 8235-8245.	1.7	21
186	Novel plant growth promoting rhizobacteriaâ€"Prospects and potential. Applied Soil Ecology, 2015, 95, 38-53.	2.1	171
187	Application of novel consortium TSR for treatment of industrial dye manufacturing effluent with concurrent removal of ADMI, COD, heavy metals and toxicity. Water Science and Technology, 2015, 71, 1293-1300.	1.2	11
188	LEATHER AND LEATHER PRODUCTS., 2015, , 133-256.		4
189	Performance evaluation of novel PVDF–Cloisite 15A hollow fiber composite membranes for treatment of effluents containing dyes and salts using membrane distillation. RSC Advances, 2015, 5, 38011-38020.	1.7	35
190	Reductive decolorization of indigo carmine dye with Bacillus sp. MZS10. International Biodeterioration and Biodegradation, 2015, 103, 30-37.	1.9	52
191	Carcinogenic direct azo dye removal from aqueous solution by amino-functionalized calix[4] arenes. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2015, 82, 471-478.	0.9	6
192	Innovative combined technique for high concentration of azo dye AR18 wastewater treatment using modified SBR and enhanced Fenton process as post treatment. Chemical Engineering Research and Design, 2015, 95, 255-264.	2.7	34
193	A kinetic study of textile dyeing wastewater degradation by Penicillium chrysogenum. Bioprocess and Biosystems Engineering, 2015, 38, 1019-1031.	1.7	16
194	Dye Decolourisation Using Two Klebsiella Strains. Water, Air, and Soil Pollution, 2015, 226, 2249.	1.1	28
195	Bioremoval of the azo dye Congo Red by the microalga Chlorella vulgaris. Environmental Science and Pollution Research, 2015, 22, 10811-10823.	2.7	60
196	Biosorption characteristics of 1,8-dihydroxy anthraquinone onto Aspergillus oryzae CGMCC5992 biomass. International Journal of Environmental Science and Technology, 2015, 12, 3351-3362.	1.8	10
197	Efficient decolorization and detoxification of reactive orange 7 using laccase isolated from Paraconiothyrium variabile, kinetics and energetics. Journal of the Taiwan Institute of Chemical Engineers, 2015, 56, 113-121.	2.7	17
198	Synergistic catalytic effect of iron metallic glass particles in direct blue dye degradation. Journal of Materials Research, 2015, 30, 1121-1127.	1.2	18
199	Comparing aerobic granular sludge and flocculent sequencing batch reactor technologies for textile wastewater treatment. Biochemical Engineering Journal, 2015, 104, 57-63.	1.8	53

#	Article	IF	CITATIONS
200	Laccase-catalyzed decolorization and detoxification of Acid Blue 92: statistical optimization, microtoxicity, kinetics, and energetics. Journal of Environmental Health Science & Engineering, 2015, 13, 31.	1.4	14
201	Bacterial Degradation of Azo Dye Containing Wastes. Environmental Science and Engineering, 2015, , 57-83.	0.1	36
203	Decolourization of Congo Red by Ganoderma lucidum Laccase: Evaluation of Degradation Products and Toxicity. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	32
204	Comparative decolorization of dyes in textile wastewater using biological and chemical treatment. Separation and Purification Technology, 2015, 154, 149-153.	3.9	210
205	Family Asteraceae as a sustainable planning tool in phytoremediation and its relevance in urban areas. Urban Forestry and Urban Greening, 2015, 14, 782-789.	2.3	66
206	Efficient metabolism of the azo dye methyl orange by Aeromonas sp. strain DH-6: Characteristics and partial mechanism. International Biodeterioration and Biodegradation, 2015, 105, 66-72.	1.9	60
207	Microbial community structure associated with treatment of azo dye in a start-up anaerobic sequenced batch reactor. Journal of the Taiwan Institute of Chemical Engineers, 2015, 54, 118-124.	2.7	33
208	Novel Strategy for Tracking the Microbial Degradation of Azo Dyes with Different Polarities in Living Cells. Environmental Science & Environmental Sci	4.6	41
209	Phytoremediation of textile dyes and effluents: Current scenario and future prospects. Biotechnology Advances, 2015, 33, 1697-1714.	6.0	251
210	Equilibrium Isotherms, Thermodynamics, and Kinetic Studies for the Adsorption of Food Azo Dyes onto Chitosan Films. Chemical Engineering Communications, 2015, 202, 1316-1323.	1.5	50
211	Elimination and detoxification of sulfathiazole and sulfamethoxazole assisted by laccase immobilized on porous silica beads. International Biodeterioration and Biodegradation, 2015, 97, 107-114.	1.9	119
212	Effect of direct electrical stimulation on decolorization and degradation of azo dye reactive brilliant red X-3B in biofilm-electrode reactors. Biochemical Engineering Journal, 2015, 93, 294-302.	1.8	76
213	Influence of the organic loading rate on the hydraulic behaviour and the azoâ€dye removal in an anaerobic filter. Journal of Chemical Technology and Biotechnology, 2015, 90, 566-572.	1.6	1
214	Destruction of azo dyes by anaerobic–aerobic sequential biological treatment: a review. International Journal of Environmental Science and Technology, 2015, 12, 405-420.	1.8	219
215	Zinc chloride as a coagulant for textile dyes and treatment of generated dye sludge under the solid state fermentation: Hybrid treatment strategy. Bioresource Technology, 2015, 176, 38-46.	4.8	20
216	Mineralization of reactive azo dyes present in simulated textile waste water using down flow microaerophilic fixed film bioreactor. Bioresource Technology, 2015, 175, 1-7.	4.8	122
217	Characterization of fluorescent-dissolved organic matter and identification of specific fluorophores in textile effluents. Environmental Science and Pollution Research, 2015, 22, 4183-4189.	2.7	40
218	Membrane Processes for Dye Wastewater Treatment: Recent Progress in Fouling Control. Critical Reviews in Environmental Science and Technology, 2015, 45, 1007-1040.	6.6	139

#	Article	IF	Citations
219	Preparation of Thermo-Sensitive Magnetic Cationic Hydrogel for the Adsorption of Reactive Red Dye. Journal of Dispersion Science and Technology, 2015, 36, 714-722.	1.3	5
220	Characterization of a yeast recombinant laccase rLAC-EN3-1 and its application in decolorizing synthetic dye with the coexistence of metal ions and organic solvents. Biochemical Engineering Journal, 2015, 93, 63-72.	1.8	33
221	Enhancement of azo dye Acid Orange 7 removal in newly developed horizontal subsurface-flow constructed wetland. Journal of Environmental Management, 2015, 147, 349-355.	3.8	51
222	Decolorization of Six Synthetic Dyes by Fungi. American Journal of Environmental Sciences, 2016, 12, 77-85.	0.3	11
223	Spectral Studies of UV and Solar Photocatalytic Degradation of AZO Dye and Textile Dye Effluents Using Green Synthesized Silver Nanoparticles. Bioinorganic Chemistry and Applications, 2016, 2016, 1-8.	1.8	16
224	Bioremediation and Detoxification Technology for Treatment of Dye(s) from Textile Effluent. , 0, , .		18
225	Hollow Palladium Nanoparticles Facilitated Biodegradation of an Azo Dye by Electrically Active Biofilms. Materials, 2016, 9, 653.	1.3	5
226	Fungal decolouration and degradation of azo dyes: A review. Fungal Biology Reviews, 2016, 30, 112-133.	1.9	285
227	Effects of different henna plant parts on enhanced removal of an azo dye Orange II: Biotic and abiotic contributions. Environmental Progress and Sustainable Energy, 2016, 35, 404-410.	1.3	6
228	Room Temperature Synthesis of Copper Oxide Nanoparticles: Morphological Evaluation and Their Catalytic Applications for Degradation of Dyes and C–N Bond Formation Reaction. ChemistrySelect, 2016, 1, 6297-6307.	0.7	35
229	Ultra-sustainable Fe78Si9B13 metallic glass as a catalyst for activation of persulfate on methylene blue degradation under UV-Vis light. Scientific Reports, 2016, 6, 38520.	1.6	84
230	Oxidative degradation of Amaranth dye by a new genus Kerstersia sp Biocatalysis and Biotransformation, 2016, 34, 265-271.	1.1	6
231	Synthesis and adsorption efficiency of calix[6] arene appended XAD-4 resin. Desalination and Water Treatment, 2016, 57, 1844-1856.	1.0	5
232	Photocatalytic performance of graphene/TiO2-Ag composites on amaranth dye degradation. Materials Chemistry and Physics, 2016, 179, 232-241.	2.0	64
233	Adsorptive removal of Direct Red 81 dye from aqueous solution onto Argemone mexicana. Sustainable Environment Research, 2016, 26, 117-123.	2.1	32
234	Coagulation/flocculation process for dye removal using water treatment residuals: modelling through artificial neural networks. Desalination and Water Treatment, 2016, 57, 26392-26400.	1.0	88
235	Comparison of microbial community in hydrolysis acidification reactor depending on different structure dyes by Illumina MiSeq sequencing. International Biodeterioration and Biodegradation, 2016, 111, 14-21.	1.9	74
236	Efficiency comparison of ozonation, photolysis, photocatalysis and photoelectrocatalysis methods in real textile wastewater decolorization. Water Research, 2016, 98, 39-46.	5. 3	185

#	Article	IF	Citations
237	Detoxification of azo dyes in the context of environmental processes. Chemosphere, 2016, 155, 591-605.	4.2	244
238	Bentonitic clay as adsorbent for the decolourisation of dyehouse effluents. Journal of Cleaner Production, 2016, 126, 667-676.	4.6	35
239	Analysing performance of real textile wastewater bio-decolourization under different reaction environments. Journal of Cleaner Production, 2016, 129, 468-477.	4.6	72
240	Azo dyes and human health: A review. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2016, 34, 233-261.	2.9	593
241	Purification and characterization of an alkaline chloride-tolerant laccase from a halotolerant bacterium, Bacillus sp. strain WT. Journal of Molecular Catalysis B: Enzymatic, 2016, 134, 89-97.	1.8	46
242	Electrodegradation of the Acid Green 28 dye using Ti/\hat{l}^2 -PbO 2 and Ti -Pt/ \hat{l}^2 -PbO 2 anodes. Journal of Environmental Management, 2016, 183, 306-313.	3.8	19
243	Moringa oleifera-mediated coagulation of textile wastewater and its biodegradation using novel consortium-BBA grown on agricultural waste substratum. Environmental Science and Pollution Research, 2016, 23, 20963-20976.	2.7	19
244	A critical review on textile wastewater treatments: Possible approaches. Journal of Environmental Management, 2016, 182, 351-366.	3.8	1,364
245	Zwitter ionic modification of cobalt-ferrite nanofiber for the removal of anionic and cationic dyes. Journal of the Taiwan Institute of Chemical Engineers, 2016, 67, 306-317.	2.7	29
246	One–step sonochemical irradiation dependent shape controlled crystal growth study of gold nano/microplates with high catalytic activity in degradation of dyes. ChemistrySelect, 2016, 1, 504-512.	0.7	7
247	Kinetic Modeling and Community Dynamics of Microaerophilic Treatment of Textile Dyes Containing Effluent by Consortium VIE6. Environmental Processes, 2016, 3, 397-411.	1.7	6
248	Reductive-degradation of carcinogenic azo dyes using Anacardium occidentale testa derived silver nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 2016, 162, 604-610.	1.7	143
249	Biodegradation of Remazol Black B in sequential microaerophilic–aerobic operations by NAR-2 bacterial consortium. Environmental Earth Sciences, 2016, 75, 1.	1.3	7
250	Screening of freshwater fungi for decolorizing multiple synthetic dyes. Brazilian Journal of Microbiology, 2016, 47, 828-834.	0.8	27
251	Adsorption rate of Reactive Black 5 on chitosan based materials: geometry and swelling effects. Adsorption, 2016, 22, 973-983.	1.4	39
252	Evaluation of cellobiose dehydrogenase and laccase containing culture fluids of Termitomyces sp. OE147 for degradation of Reactive blue 21. Biotechnology Reports (Amsterdam, Netherlands), 2016, 12, 52-61.	2.1	13
253	Degradation of orange dyes and carbamazepine by soybean peroxidase immobilized on silica monoliths and titanium dioxide. Environmental Science and Pollution Research, 2016, 23, 23742-23749.	2.7	38
254	Sequential anaerobic-aerobic decolourization of a real textile wastewater in a two-phase partitioning bioreactor. Science of the Total Environment, 2016, 573, 585-593.	3.9	34

#	Article	IF	Citations
255	Assessment of the cytotoxic, genotoxic and mutagenic effects of the commercial black dye in Allium cepa cells before and after bacterial biodegradation treatment. Chemosphere, 2016, 161, 325-332.	4.2	39
256	Shallow pond systems planted with Lemna minor treating azo dyes. Ecological Engineering, 2016, 94, 295-305.	1.6	58
257	Congo red dye affects survival and reproduction in the cladoceran Ceriodaphnia dubia. Effects of direct and dietary exposure. Ecotoxicology, 2016, 25, 1832-1840.	1.1	37
258	Studies on the laccase-mediated decolorization, kinetic, and microtoxicity of some synthetic azo dyes. Journal of Environmental Health Science & Engineering, 2016, 14, 7.	1.4	34
259	Biochemical characterization of an azoreductase from Rhodococcus opacus 1CP possessing methyl red degradation ability. Journal of Molecular Catalysis B: Enzymatic, 2016, 130, 9-17.	1.8	41
260	Differential enzymatic degradation of thiazole pollutants by two different peroxidases – A comparative study. Chemical Engineering Journal, 2016, 303, 529-538.	6.6	51
261	Synthesis of betaâ€cyclodextrinâ€graftedâ€alginate and its application for removing methylene blue from water solution. Journal of Chemical Technology and Biotechnology, 2016, 91, 618-623.	1.6	29
262	Detoxification of azo dyes by bacterial oxidoreductase enzymes. Critical Reviews in Biotechnology, 2016, 36, 639-651.	5.1	109
263	Bioprospecting and biotechnological applications of fungal laccase. 3 Biotech, 2016, 6, 15.	1.1	153
264	Exploring bioremediation strategies to enhance the mineralization ofÂtextile industrial wastewater through sequential anaerobic-microaerophilic process. International Biodeterioration and Biodegradation, 2016, 106, 97-105.	1.9	48
265	Bioinformatics aided microbial approach for bioremediation of wastewater containing textile dyes. Ecological Informatics, 2016, 31, 112-121.	2.3	53
266	Photocatalytic decolorization of bromothymol blue using biogenic selenium nanoparticles synthesized by terrestrial actinomycete <i>Streptomyces griseobrunneus</i> brain FSHH12. Desalination and Water Treatment, 2016, 57, 21552-21563.	1.0	27
267	Nature-like solution for removal of direct brown 1 azo dye from aqueous phase using humics-modified silica gel. Chemosphere, 2016, 145, 83-88.	4.2	22
268	Optimizing degradation of Reactive Yellow 176 by dielectric barrier discharge plasma combined with TiO2 nano-particles prepared using response surface methodology. Journal of the Taiwan Institute of Chemical Engineers, 2016, 60, 302-312.	2.7	19
269	Degradation of Reactive Black 5 dye by a newly isolated bacterium <i>Pseudomonas entomophila</i> BS1. Canadian Journal of Microbiology, 2016, 62, 220-232.	0.8	51
270	Investigation of enhanced biological dye removal of colored wastewater in a lab-scale biological activated carbon process. Applied Biological Chemistry, 2016, 59, 463-470.	0.7	11
271	Spectroscopic and QM/MM investigations of Chloroperoxidase catalyzed degradation of orange G. Archives of Biochemistry and Biophysics, 2016, 596, 1-9.	1.4	10
272	Cloning and characterization of a robust recombinant azoreductase from Shewanella xiamenensis BC01. Journal of the Taiwan Institute of Chemical Engineers, 2016, 61, 97-105.	2.7	21

#	Article	IF	CITATIONS
273	Diazo dye sorption by Ni-modified pumpkin husk. Desalination and Water Treatment, 2016, 57, 25242-25255.	1.0	6
274	Methylene blue enhances the anaerobic decolorization and detoxication of azo dye by Shewanella onediensis MR-1. Biochemical Engineering Journal, 2016, 110, 115-124.	1.8	58
275	Enhanced reduction of Fe(III) oxides and methyl orange by Klebsiella oxytoca in presence of anthraquinone-2-disulfonate. Applied Microbiology and Biotechnology, 2016, 100, 4617-4625.	1.7	19
276	Textile dye removal from aqueous solutions using cheap MgO nanomaterials: Adsorption kinetics, isotherm studies and thermodynamics. Advanced Powder Technology, 2016, 27, 223-231.	2.0	105
277	Synthesis and Performance Evaluation of a New Polymeric Composite for the Treatment of Textile Wastewater. Industrial & Engineering Chemistry Research, 2016, 55, 13-20.	1.8	30
278	Preparation of activated carbons from peach stone by H ₄ P ₂ O ₇ activation and its application for the removal of Acid Red 18 and dye containing wastewater. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2016, 51, 164-177.	0.9	20
279	Removal of fluorescent dissolved organic matter in biologically treated textile effluents by NDMP anion exchange process: efficiency and mechanism. Environmental Science and Pollution Research, 2016, 23, 5635-5643.	2.7	5
280	Highly efficient degradation of hazardous dyes in aqueous phase by supported palladium nanocatalyst—A green approach. Journal of Environmental Chemical Engineering, 2016, 4, 2178-2186.	3.3	27
281	Improvement of methyl orange dye biotreatment by a novel isolated strain, Aeromonas veronii GRI, by SPB1 biosurfactant addition. Environmental Science and Pollution Research, 2016, 23, 1742-1754.	2.7	42
282	Zerovalent iron and iron(VI): Effective means for the removal of psychoactive pharmaceuticals and illicit drugs from wastewaters. Science of the Total Environment, 2016, 539, 420-426.	3.9	40
283	Molecular dynamics study of biodegradation of azo dyes via their interactions with AzrC azoreductase. Journal of Biomolecular Structure and Dynamics, 2016, 34, 453-462.	2.0	24
284	Removal of fluorescent dissolved organic matter in biologically treated textile wastewater by ozonation-biological aerated filter. Journal of the Taiwan Institute of Chemical Engineers, 2016, 59, 359-364.	2.7	30
285	Degradation of ultrahigh concentration pollutant by Fe/Cu bimetallic system at high operating temperature. Korean Journal of Chemical Engineering, 2016, 33, 207-215.	1.2	6
286	Degradation of Dyes by Laccase. Analytical Letters, 2016, 49, 790-798.	1.0	15
287	Electrochemical degradation of the Acid Orange 10 dye on a Ti/PbO2 anode assessed by response surface methodology. Korean Journal of Chemical Engineering, 2016, 33, 189-196.	1.2	16
288	Artificial neural network and genetic algorithms for modeling of removal of an azo dye on walnut husk. Desalination and Water Treatment, 2016, 57, 15580-15591.	1.0	18
289	Simultaneous electricity production and Direct Red 80 degradation using a dual chamber microbial fuel cell. Desalination and Water Treatment, 2016, 57, 9051-9059.	1.0	19
290	Surface modification of electrospun PAN nanofibers by amine compounds for adsorption of anionic dyes. Desalination and Water Treatment, 2016, 57, 10333-10348.	1.0	50

#	Article	IF	CITATIONS
291	Biodecoloration of Reactive Black 5 by the methylotrophic yeast Candida boidinii MM 4035. Journal of Environmental Sciences, 2017, 53, 78-87.	3.2	29
292	Enhancement of anaerobic degradation of azo dye with riboflavin and nicotinamide adenine dinucleotide harvested by osmotic lysis of wasted fermentation yeasts. Environmental Technology (United Kingdom), 2017, 38, 483-494.	1,2	4
293	Multidimensional monitoring of anaerobic/aerobic azo dye based wastewater treatments by hyphenated UPLC-ICP-MS/ESI-Q-TOF-MS techniques. Environmental Science and Pollution Research, 2017, 24, 10929-10938.	2.7	13
294	Kinetic modelling of the hematin catalysed decolourization of Orange II solutions. Chemical Engineering Science, 2017, 161, 127-137.	1.9	13
295	Fe-based metallic glass catalyst with nanoporous surface for azo dye degradation. Chemosphere, 2017, 174, 76-81.	4.2	66
296	Concocted bacterial consortium for the detoxification and mineralization of azoic-cum-sulfonic textile mill effluent. Journal of Water Process Engineering, 2017, 16, 199-205.	2.6	20
297	Anaerobic biodegradation of (emerging) organic contaminants in the aquatic environment. Water Research, 2017, 116, 268-295.	5. 3	285
298	Rapid malachite green degradation using Fe73.5Si13.5B9Cu1Nb3 metallic glass for activation of persulfate under UV–Vis light. Materials and Design, 2017, 119, 244-253.	3.3	85
299	Actinobacteria in Agricultural and Environmental Sustainability., 2017,, 173-218.		22
300	Cell thermolysis – A simple and fast approach for isolation of bacterial laccases with potential to decolorize industrial dyes. Process Biochemistry, 2017, 56, 171-176.	1.8	9
301	The role of riboflavin in decolourisation of Congo red and bioelectricity production using Shewanella oneidensis-MR1 under MFC and non-MFC conditions. World Journal of Microbiology and Biotechnology, 2017, 33, 56.	1.7	21
302	Strong enhancement on dye photocatalytic degradation by ball-milled TiO2: A study of cationic and anionic dyes. Journal of Materials Science and Technology, 2017, 33, 856-863.	5 . 6	50
303	Purification and immobilization of laccase from Trichoderma harzianum strain HZN10 and its application in dye decolorization. Journal of Genetic Engineering and Biotechnology, 2017, 15, 139-150.	1.5	103
304	Enzymatic reuse of simulated dyeing process effluent using horseradish peroxidase. Canadian Journal of Chemical Engineering, 2017, 95, 1434-1441.	0.9	2
305	Bacterial Decolourization, Degradation and Detoxification of Azo Dyes: An Eco-friendly Approach., 2017,, 91-124.		2
306	Biological treatment of model dyes and textile wastewaters. Chemosphere, 2017, 181, 168-177.	4.2	228
307	Co-plantation of aquatic macrophytes Typha angustifolia and Paspalum scrobiculatum for effective treatment of textile industry effluent. Journal of Hazardous Materials, 2017, 338, 47-56.	6.5	80
308	Electrochemical decolorization of methyl red by RuO 2 -lrO 2 -TiO 2 electrode and biodegradation with Pseudomonas stutzeri MN1 and Acinetobacter baumannii MN3: An integrated approach. Chemosphere, 2017, 183, 204-211.	4.2	31

#	Article	IF	CITATIONS
309	Efficient approach to enhance whole cell azo dye decolorization by heterologous overexpression of Enterococcus sp. L2 azoreductase (azoA) and Mycobacterium vaccae formate dehydrogenase (fdh) in different bacterial systems. International Biodeterioration and Biodegradation, 2017, 124, 91-100.	1.9	39
310	Solid state fermentative lignocellulolytic enzymes production, characterization and its application in the saccharification of rice waste biomass for ethanol production: An integrated biotechnological approach. Journal of the Taiwan Institute of Chemical Engineers, 2017, 76, 51-58.	2.7	29
311	A hierarchical assembly of flower-like hybrid Turkish black radish peroxidase-Cu 2+ nanobiocatalyst and its effective use in dye decolorization. Chemosphere, 2017, 182, 122-128.	4.2	97
312	Comparative assessment of azo dyes and nitroaromatic compounds reduction using indigenous dye-decolorizing bacteria. Journal of the Taiwan Institute of Chemical Engineers, 2017, 79, 134-140.	2.7	28
313	Heterogeneous photo Fenton-like degradation of cibacron brilliant red 3B-A dye using amorphous Fe 78 Si 9 B 13 and Fe 73.5 Si 13.5 B 9 Cu 1 Nb 3 alloys: The influence of adsorption. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71, 128-136.	2.7	57
314	Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: A review. Chemical Engineering Journal, 2017, 312, 336-350.	6.6	267
315	A facile Pechini sol–gel synthesis of TiO ₂ /Zn ₂ TiO ₂ /ZnO/C nanocomposite: an efficient catalyst for the photocatalytic degradation of Orange G textile dye. RSC Advances, 2017, 7, 30411-30421.	1.7	48
316	Degradation of Adsorbed Azo Dye by Solid-State Fermentation: Improvement of Culture Conditions, a Kinetic Study, and Rotating Drum Bioreactor Performance. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	17
317	Decolorization of textile dye RB19 using volcanic rock matrix immobilized Bacillus thuringiensis cells with surface displayed laccase. World Journal of Microbiology and Biotechnology, 2017, 33, 123.	1.7	8
318	Enzyme mediated bacterial biotransformation and reduction in toxicity of 1:2 chromium complex AB193 and AB194 dyes. Journal of the Taiwan Institute of Chemical Engineers, 2017, 77, 1-9.	2.7	15
319	Dye removal of AR27 with enhanced degradation and power generation in a microbial fuel cell using bioanode of treated clinoptilolite-modified graphite felt. Environmental Science and Pollution Research, 2017, 24, 19444-19457.	2.7	12
320	Achromobacter xylosoxidans strain APZ for phthalocyanine dye degradation: Chemo-metric optimization and canonical correlation analyses. Journal of Water Process Engineering, 2017, 18, 73-82.	2.6	16
321	Mass transfer models for the adsorption of Acid Red 357 and Acid Black 210 by tannery solid wastes. Adsorption Science and Technology, 2017, 35, 300-316.	1.5	10
322	Indigenously acclimatized bacterial consortium for anthracene biotransformation. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2017, 39, 528-537.	1.2	11
323	Surface aging behaviour of Fe-based amorphous alloys as catalysts during heterogeneous photo Fenton-like process for water treatment. Applied Catalysis B: Environmental, 2017, 204, 537-547.	10.8	173
324	Biodecolourization of textile dyes by novel, indigenous Pseudomonas stutzeri MN1 and Acinetobacter baumannii MN3. Journal of Environmental Chemical Engineering, 2017, 5, 716-724.	3.3	56
325	Exploring bioaugmentation strategies for azo dye CI Reactive Violet 5 decolourization using bacterial mixture: dye response surface methodology. Water and Environment Journal, 2017, 31, 80-89.	1.0	29
326	Assessment of molecularly imprinted polymers (MIPs) in the preconcentration of disperse red 73 dye prior to photoelectrocatalytic treatment. Environmental Science and Pollution Research, 2017, 24, 4134-4143.	2.7	6

#	Article	IF	CITATIONS
327	The development of aerobic granules from conventional activated sludge under anaerobic-aerobic cycles and their adaptation for treatment of dyeing wastewater. Chemical Engineering Journal, 2017, 312, 375-384.	6.6	102
328	Sequential anaerobic–aerobic biological treatment of colored wastewaters: case study of a textile dyeing factory wastewater. Water Science and Technology, 2017, 75, 1261-1269.	1.2	30
329	Biodecolorization of Synthetic Dyeing Wastewater by Immobilized Halotolerant Cells. Key Engineering Materials, 0, 753, 237-242.	0.4	0
330	Biosorption of azo-dye using marine macro-alga of Euchema Spinosum. Journal of Environmental Chemical Engineering, 2017, 5, 5721-5731.	3.3	69
331	Synthetic dye decolorization by Marasmiellus palmivorus: Simultaneous cultivation and high laccase-crude broth treatment. Biocatalysis and Agricultural Biotechnology, 2017, 12, 314-322.	1.5	7
332	Degradation of azo dye methyl red by Saccharomyces cerevisiae ATCC 9763. International Biodeterioration and Biodegradation, 2017, 125, 62-72.	1.9	41
333	Phase-dependant photochemistry of TiO2 nanoparticles in the degradation of organic dye methylene blue under solar light irradiation. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	6
334	Degradation of Synthetic Azo Dyes of Textile Industry: a Sustainable Approach Using Microbial Enzymes. Water Conservation Science and Engineering, 2017, 2, 121-131.	0.9	299
335	Concurrent uptake and metabolism of dyestuffs through bio-assisted phytoremediation: a symbiotic approach. Environmental Science and Pollution Research, 2017, 24, 22914-22931.	2.7	14
336	Evaluation of bacteria isolated from textile wastewater and rhizosphere to simultaneously degrade azo dyes and promote plant growth. Journal of Chemical Technology and Biotechnology, 2017, 92, 2760-2768.	1.6	29
337	Biodecolorization of textile azo dye using Bacillus sp. strain CH12 isolated from alkaline lake. Biotechnology Reports (Amsterdam, Netherlands), 2017, 15, 92-100.	2.1	73
338	Sequential reduction/oxidation of azo dyes in a three-dimensional biofilm electrode reactor. Chemosphere, 2017, 186, 287-294.	4.2	29
339	Decolorization of reactive azo dyes using a sequential chemical and activated sludge treatment. Journal of Bioscience and Bioengineering, 2017, 124, 668-673.	1.1	46
340	Enhanced bio-decolorization of acid orange 7 and electricity generation in microbial fuel cells with superabsorbent-containing membrane and laccase-based bio-cathode. Journal of Cleaner Production, 2017, 166, 381-386.	4.6	30
341	Bacterial Treatment of Pharmaceutical Industry Effluents. Handbook of Environmental Chemistry, 2017, , 175-187.	0.2	6
342	Evaluation of toxicity reduction in textile effluent by different treatment protocols involving marine diatom Odontella aurita on freshwater fish Labeo rohita. Journal of Water Process Engineering, 2017, 20, 232-242.	2.6	7
343	Hydrothermally Synthesized Co3O4, α-Fe2O3, and CoFe2O4 Nanostructures: Efficient Nano-adsorbents for the Removal of Orange G Textile Dye from Aqueous Media. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 1526-1537.	1.9	30
344	Biosurfactant production from Pseudomonas taiwanensis L1011 and its application in accelerating the chemical and biological decolorization of azo dyes. Ecotoxicology and Environmental Safety, 2017, 145, 8-15.	2.9	29

#	Article	IF	CITATIONS
345	Eco-friendly synthesis of silver nanoparticles using green algae (Caulerpa serrulata): reaction optimization, catalytic and antibacterial activities. Environmental Monitoring and Assessment, 2017, 189, 349.	1.3	181
346	MgO nanostructure via a sol-gel combustion synthesis method using different fuels: An efficient nano-adsorbent for the removal of some anionic textile dyes. Journal of Molecular Liquids, 2017, 225, 730-740.	2.3	127
347	Fabrication of Ag2O/TiO2 with enhanced photocatalytic performances for dye pollutants degradation by a pH-induced method. Applied Surface Science, 2017, 396, 530-538.	3.1	55
348	Performance and microbial community structures of hydrolysis acidification process treating azo and anthraquinone dyes in different stages. Environmental Science and Pollution Research, 2017, 24, 252-263.	2.7	28
349	Plasmon enhanced photocatalytic activity of Au@TiO 2 -graphene nanocomposite under visible light for degradation of pollutants. Materials Research Bulletin, 2017, 87, 40-47.	2.7	55
350	Decolourisation of Acid orange 7 in a microbial fuel cell with a laccase-based biocathode: Influence of mitigating pH changes in the cathode chamber. Enzyme and Microbial Technology, 2017, 96, 170-176.	1.6	56
351	Effect of pH, inoculum dose and initial dye concentration on the removal of azo dye mixture under aerobic conditions. International Biodeterioration and Biodegradation, 2017, 119, 16-27.	1.9	44
352	Detoxification of a triphenylmethane textile colorant using acclimated cells of <i>Bacillus mannanilyticus</i> strain AVS. Environmental Progress and Sustainable Energy, 2017, 36, 394-403.	1.3	7
353	Mycoremediation: Decolourization Potential of Fungal Ligninolytic Enzymes. Fungal Biology, 2017, , 69-104.	0.3	2
354	Biosorption of anionic textile dyes from aqueous solution by yeast slurry from brewery. Brazilian Archives of Biology and Technology, 2017, 60, .	0.5	27
355	Aerobic Treatment of Effluents From Textile Industry. , 2017, , 3-34.		8
356	Role of pH in the Aqueous Phase Reactivity of Zerovalent Iron Nanoparticles with Acid Orange 7, a Model Molecule of Azo Dyes. Journal of Nanomaterials, 2017, 2017, 1-13.	1.5	11
357	The Protagonism of Biocatalysis in Green Chemistry and Its Environmental Benefits. Catalysts, 2017, 7, 9.	1.6	64
358	Extraction and Optimization of Natural Dye from Hambo Hambo (i) (Cassia singueana) < /i> Plant Used for Coloration of Tanned Leather Materials. Advances in Materials Science and Engineering, 2017, 2017, 1-5.	1.0	16
359	Simultaneous photocatalytic and microbial degradation of dye-containing wastewater by a novel g-C3N4-P25/photosynthetic bacteria composite. PLoS ONE, 2017, 12, e0172747.	1.1	20
360	Electron transport phenomena of electroactive bacteria in microbial fuel cells: a review of Proteus hauseri. Bioresources and Bioprocessing, 2017, 4, .	2.0	31
361	Descoloração do corante Azul Brilhante de Remazol R por leveduras isoladas de moluscos do Rio Subaé, no estado da Bahia, Brasil. Engenharia Sanitaria E Ambiental, 2017, 22, 1065-1074.	0.1	1
362	Isolation of Highly Efficient Phenol Degradation Strain and Characterization of Degradation of Phenol. IOP Conference Series: Earth and Environmental Science, 2017, 94, 012077.	0.2	1

#	ARTICLE	IF	Citations
363	Improved performance of Pseudomonas aeruginosa catalyzed MFCs with graphite/polyester composite electrodes doped with metal ions for azo dye degradation. Chemical Engineering Journal, 2018, 343, 258-269.	6.6	52
364	Preparation and characterization of poly(acrylic acid-co-acrylamide)/montmorillonite composite and its application for methylene blue adsorption. Colloid and Polymer Science, 2018, 296, 653-667.	1.0	36
365	TiO ₂ â€Graphene Nanocomposites for Effective Photocatalytic Degradation of Rhodamineâ€B Dye. ChemistrySelect, 2018, 3, 2578-2585.	0.7	27
366	Exploring docking and aerobic-microaerophilic biodegradation of textile azo dye by bacterial systems. Journal of Water Process Engineering, 2018, 22, 180-191.	2.6	75
367	Biodegradation of textile wastewater: enhancement of biodegradability via the addition of co-substrates followed by phytotoxicity analysis of the effluent. Water Science and Technology, 2018, 2017, 516-526.	1.2	20
368	Biological approaches to tackle heavy metal pollution: A survey of literature. Journal of Environmental Management, 2018, 217, 56-70.	3.8	421
369	Synthesis and characterization of ferrocene-based Schiff base and ferrocenecarboxaldehyde oxime and their adsorptive removal of methyl blue from aqueous solution. Journal of Organometallic Chemistry, 2018, 866, 21-26.	0.8	18
370	Decolorization of Reactive Red 159 by a consortium of photosynthetic bacteria using an anaerobic sequencing batch reactor (AnSBR). Preparative Biochemistry and Biotechnology, 2018, 48, 303-311.	1.0	8
371	Exploring the potential of halophilic archaea for the decolorization of azo dyes. Water Science and Technology, 2018, 77, 1602-1611.	1.2	10
372	Streptomyces cavourensis Strain RD7-Mediated Decolorization of Aromatic Industrial Dye. Water Science and Technology Library, 2018, , 269-280.	0.2	O
373	Hologram quantitative structure–activity relationship and topomer comparative molecular-field analysis to predict the affinities of azo dyes for cellulose fibers. Dyes and Pigments, 2018, 153, 35-43.	2.0	8
374	Experimental study and kinetic modelling of the enzymatic degradation of the azo dye Crystal Ponceau 6R by turnip (Brassica rapa) peroxidase. Journal of Environmental Chemical Engineering, 2018, 6, 610-615.	3.3	19
375	Untapped potential for debonding on demand: the wonderful world of azo-compounds. Materials Horizons, 2018, 5, 162-183.	6.4	54
376	Treatment of artificial wastewater containing two azo textile dyes by vertical-flow constructed wetlands. Environmental Science and Pollution Research, 2018, 25, 6870-6889.	2.7	39
377	Effect of the amount and time of addition of a dye template on the adsorption and photocatalytic performance of molecularly imprinted silica. Journal of Environmental Chemical Engineering, 2018, 6, 190-196.	3.3	6
378	Efficient degradation of Azo dyes by a newly isolated fungus Trichoderma tomentosum under non-sterile conditions. Ecotoxicology and Environmental Safety, 2018, 150, 232-239.	2.9	62
379	Biodegradation of Azure-B dye by Serratia liquefaciens and its validation by phytotoxicity, genotoxicity and cytotoxicity studies. Chemosphere, 2018, 196, 58-68.	4.2	102
380	Decolorization of textile dyes by combination of gold nanocatalysts obtained from Acinetobacter sp. SW30 and ml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="mml19" display="inline" overflow="scroll" altimg="si19.gif"> <mml:msub><mml:mrow><mml:mi mathvariant="normal">NaBH</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow><!--</td--><td>3.0 Isub><td>19 ml:math>.</td></td></mml:msub>	3.0 Isub> <td>19 ml:math>.</td>	19 ml:math>.

#	Article	IF	CITATIONS
381	A simple method for assaying anaerobic biodegradation of dyes. Bioresource Technology, 2018, 251, 204-209.	4.8	41
382	Biodegradation of Acid Orange 7 in a combined anaerobic-aerobic up-flow membrane-less microbial fuel cell: Mechanism of biodegradation and electron transfer. Chemical Engineering Journal, 2018, 336, 397-405.	6.6	59
383	Isolation and screening of bacterial isolates from wastewater treatment plants to decolorize azo dyes. Journal of Bioscience and Bioengineering, 2018, 125, 448-456.	1.1	93
384	Halomonas sp. strain A55, a novel dye decolorizing bacterium from dye-uncontaminated Rift Valley Soda lake. Chemosphere, 2018, 206, 59-69.	4.2	32
385	Comparative study of discoloration of mono-azo dye by catalytic oxidation based on wells-dawson heteropolyanion catalyst. Environmental Nanotechnology, Monitoring and Management, 2018, 10, 10-16.	1.7	1
386	Advanced oxidation processes based on zero-valent aluminium for treating textile wastewater. Chemical Engineering Journal, 2018, 348, 67-73.	6.6	189
387	Simultaneous reactive dyeing and surface modification of polyamide fabric with TiO2 precursor finish using a one-step hydrothermal process. Textile Reseach Journal, 2018, 88, 2611-2623.	1.1	7
388	Biodegradation of Environmentally Hazardous Azo Dyes and Aromatic Amines Using Klebsiella pneumoniae. Journal of Environmental Engineering, ASCE, 2018, 144, 04018035.	0.7	13
389	Ozonation of Yarn dyed Wastewater in a Continous Stirred Tank Reactor: Kinetic Study and Performance Optimisation. MATEC Web of Conferences, 2018, 156, 03019.	0.1	0
390	Characterization of functional microbial communities involved in diazo dyes decolorization and mineralization stages. International Biodeterioration and Biodegradation, 2018, 132, 166-177.	1.9	18
391	Isolation and sequence analysis of pCS36-4CPA, a small plasmid from Citrobacter sp. 36-4CPA. Saudi Journal of Biological Sciences, 2018, 25, 660-671.	1.8	7
392	Synergistic persulfate activation as an efficient and cost-effective approach for removal of organic synthetic-dyes from aqueous solutions using magnetic Pd-Fe 3 O 4 -flyash composite particles as catalyst. Journal of Environmental Chemical Engineering, 2018, 6, 3709-3717.	3.3	11
393	Biodegradation of anthraquinone based dye using an isolated strain <i>Staphylococcus hominis subsp. hominis </i> DSM 20328. Environmental Progress and Sustainable Energy, 2018, 37, 203-214.	1.3	20
394	Aerobic sludge granulation for simultaneous anaerobic decolorization and aerobic aromatic amines mineralization for azo dye wastewater treatment. Environmental Technology (United Kingdom), 2018, 39, 1368-1375.	1.2	10
395	Novel insights into variation of dissolved organic matter during textile wastewater treatment by fluorescence excitation emission matrix. Chemical Engineering Journal, 2018, 335, 13-21.	6.6	68
396	Phytobeds with Fimbristylis dichotoma and Ammannia baccifera for treatment of real textile effluent: An in situ treatment, anatomical studies and toxicity evaluation. Environmental Research, 2018, 160, 1-11.	3.7	61
397	Identification of biotransformation products of disperse dyes with rat liver microsomes by LC-MS/MS and theoretical studies with DNA: Structure-mutagenicity relationship using Salmonella/microsome assay. Science of the Total Environment, 2018, 613-614, 1093-1103.	3.9	16
398	Adsorption and biodegradation of dye in wastewater with Fe3O4@MIL-100 (Fe) core–shell bio-nanocomposites. Chemosphere, 2018, 191, 315-323.	4.2	125

#	Article	IF	CITATIONS
399	Chitosan-edible oil based materials as upgraded adsorbents for textile dyes. Carbohydrate Polymers, 2018, 180, 182-191.	5.1	35
400	Textile dye biodecolourization and ammonium removal over nitrite in aerobic granular sludge sequencing batch reactors. Journal of Hazardous Materials, 2018, 342, 536-543.	6.5	91
401	Prospective assessment of the Enterobacter aerogenes PP002 in decolorization and degradation of azo dyes DB 71 and DG 28. Journal of Environmental Chemical Engineering, 2018, 6, 95-109.	3.3	26
402	Bioremediation of textile wastewater and successive biodiesel production using microalgae. Renewable and Sustainable Energy Reviews, 2018, 82, 3107-3126.	8.2	203
403	Low-cost palladium decorated on $\langle i \rangle m \langle j \rangle$ -aminophenol-formaldehyde-derived porous carbon spheres for the enhanced catalytic reduction of organic dyes. Inorganic Chemistry Frontiers, 2018, 5, 354-363.	3.0	34
404	Toxicity evaluation of textile effluents and role of native soil bacterium in biodegradation of a textile dye. Environmental Science and Pollution Research, 2018, 25, 4446-4458.	2.7	215
405	Efficient decolorization of typical azo dyes using low-frequency ultrasound in presence of carbonate and hydrogen peroxide. Journal of Hazardous Materials, 2018, 346, 42-51.	6.5	42
406	Assessing textile wastewater treatment in an anoxic-aerobic photobioreactor and the potential of the treated water for irrigation. Algal Research, 2018, 29, 170-178.	2.4	42
407	Role of Bacterial Consortia in Bioremediation of Textile Recalcitrant Compounds. Energy, Environment, and Sustainability, 2018, , 165-183.	0.6	3
408	Biodegradation and detoxification of Direct Black G textile dye by a newly isolated thermophilic microflora. Bioresource Technology, 2018, 250, 650-657.	4.8	104
409	Ecotoxic potential of a presumably non-toxic azo dye. Ecotoxicology and Environmental Safety, 2018, 148, 528-537.	2.9	120
410	Treatment of synthetic textile wastewater containing dye mixtures with microcosms. Environmental Science and Pollution Research, 2018, 25, 1980-1997.	2.7	94
411	The Functional Mechanisms and Application of Electron Shuttles in Extracellular Electron Transfer. Current Microbiology, 2018, 75, 99-106.	1.0	24
412	Isolation and characterization of a novel tyrosinase produced by Sahara soil actinobacteria and immobilization on nylon nanofiber membranes. Journal of Biotechnology, 2018, 265, 54-64.	1.9	27
413	Decolourisations and biodegradations of model azo dye solutions using a sequence batch reactor, followed by ultrafiltration. International Journal of Environmental Science and Technology, 2018, 15, 483-492.	1.8	13
414	Biotransformation and detoxification of reactive black dye by Ganoderma tsugae. African Journal of Environmental Science and Technology, 2018, 12, 158-171.	0.2	3
415	Role of Mushroom Fungi in Decolourization of Industrial Dyes and Degradation of Agrochemicals. Fungal Biology, 2018, , 177-190.	0.3	5
416	Dye-tolerant marine Acinetobacter baumannii-mediated biodegradation of reactive red. Water Science and Engineering, 2018, 11, 265-275.	1.4	38

#	ARTICLE	IF	Citations
417	Textile Dye Wastewater Biotreatmentâ€"A Project Empowering Female Leadership through International Exchange. , 2018, , .		0
418	Optimization and enhancement of textile reactive Remazol black B decolorization and detoxification by environmentally isolated pH tolerant Pseudomonas aeruginosa KY284155. AMB Express, 2018, 8, 83.	1.4	21
419	Monitoring the Enzymatic Oxidation of Xenobiotics by Hydrogen Peroxide through Oxidationâ€"Reduction Potential Measurements. Industrial & Engineering Chemistry Research, 2018, 57, 16518-16525.	1.8	5
420	Bifunctional in vivo role of laccase exploited in multiple biotechnological applications. Applied Microbiology and Biotechnology, 2018, 102, 10327-10343.	1.7	37
422	Decolourization by PVP stabilized Fe-Ni nanoparticles of Reactive Black 5 dye. Journal of Environmental Chemical Engineering, 2018, 6, 5961-5969.	3.3	9
423	Titanium Dioxide Films for Photocatalytic Degradation of Methyl Orange Dye. , 2018, , .		2
424	The Electrocatalytic Activity of Polyaniline/TiO2 Nanocomposite for Congo Red Degradation in Aqueous Solutions. International Journal of Electrochemical Science, 2018, 13, 5085-5095.	0.5	8
425	Immobilized cells of Rhodococcus strain UCC 0004 as source of green biocatalyst for decolourization and biodegradation of methyl orange. Biocatalysis and Agricultural Biotechnology, 2018, 16, 569-578.	1.5	22
426	Chromatographic Analysis of Textile Dyes. Journal of AOAC INTERNATIONAL, 2018, 101, 1353-1370.	0.7	22
427	Decolorization and detoxification of water-insoluble Sudan dye by Shewanella putrefaciens CN32 co-cultured with Bacillus circulans BWL1061. Ecotoxicology and Environmental Safety, 2018, 166, 11-17.	2.9	24
428	Feâ€based Metallic Glasses in Functional Catalytic Applications. Chemistry - an Asian Journal, 2018, 13, 3575-3592.	1.7	46
429	Decolourization and detoxification of monoazo dyes by laccase from the white-rot fungus Trametes versicolor. Journal of Biotechnology, 2018, 285, 84-90.	1.9	54
430	Fe-Based Powders Prepared by Ball-Milling with Considerable Degradation Efficiency to Methyl Orange Compared with Fe-Based Metallic Glasses. Acta Metallurgica Sinica (English Letters), 2018, 31, 1207-1214.	1.5	14
431	Influence of auxochrome group in disperse dyes bearing azo groups as chromophore center in the biotransformation and molecular docking prediction by reductase enzyme: Implications and assessment for environmental toxicity of xenobiotics. Ecotoxicology and Environmental Safety, 2018, 160, 114-126.	2.9	28
432	Ecology and evolution of metabolic cross-feeding interactions in bacteria. Natural Product Reports, 2018, 35, 455-488.	5.2	322
433	Identification of a repressor and an activator of azoreductase gene expression in Pseudomonas putida and Xanthomonas oryzae. Biochemical and Biophysical Research Communications, 2018, 502, 9-14.	1.0	6
434	Polymeric nanocomposites for the removal of Acid red 52 dye from aqueous solutions: Synthesis, characterization, kinetic and isotherm studies. Ecotoxicology and Environmental Safety, 2018, 160, 42-51.	2.9	44
435	Characterization of functional microbial communities involved in different transformation stages in a full-scale printing and dyeing wastewater treatment plant. Biochemical Engineering Journal, 2018, 137, 162-171.	1.8	39

#	Article	IF	CITATIONS
436	Treatment of a Textile Effluent by Electrochemical Oxidation and Coupled System Electooxidation– <i>Salix babylonica</i> . International Journal of Photoenergy, 2018, 2018, 1-12.	1.4	11
437	Decolorization of dyes by a novel sodium azide-resistant spore laccase from a halotolerant bacterium, Bacillus safensis sp. strain S31. Water Science and Technology, 2018, 77, 2867-2875.	1.2	32
438	Surface Display of Bacterial Laccase CotA on Escherichia coli Cells and its Application in Industrial Dye Decolorization. Molecular Biotechnology, 2018, 60, 681-689.	1.3	23
439	Metal-Adapted Bacteria Isolated From Wastewaters Produce Biofilms by Expressing Proteinaceous Curli Fimbriae and Cellulose Nanofibers. Frontiers in Microbiology, 2018, 9, 1334.	1.5	78
440	Calorimetric and spectroscopic detection of the interaction between a diazo dye and human serum albumin. Analyst, The, 2018, 143, 3890-3899.	1.7	17
441	Regeneration performance of clay-based adsorbents for the removal of industrial dyes: a review. RSC Advances, 2018, 8, 24571-24587.	1.7	235
442	In situ phytoremediation of dyes from textile wastewater using garden ornamental plants, effect on soil quality and plant growth. Chemosphere, 2018, 210, 968-976.	4.2	127
443	Tyrosinasesâ€"physiology, pathophysiology, and applications. , 2018, , 403-412.		7
444	Decolorization of mordant yellow 1 using <i>Aspergillus sp</i> . TS-A CGMCC 12964 by biosorption and biodegradation. Bioengineered, 2018, 9, 222-232.	1.4	16
445	Fungal laccase discovered but yet undiscovered. Bioresources and Bioprocessing, 2018, 5, .	2.0	142
446	Horseradish peroxidase-mediated decolourization of Orange II: modelling hydrogen peroxide utilization efficiency at different pH values. Environmental Science and Pollution Research, 2018, 25, 19989-20002.	2.7	10
447	Photocatalytic activity of CuO/Cu(OH)2 nanostructures in the degradation of Reactive Green 19A and textile effluent, phytotoxicity studies and their biogenic properties (antibacterial and anticancer). Journal of Environmental Management, 2018, 223, 1086-1097.	3.8	74
448	Neutral Red: The Synthetic Phenazine Full of Electrochemical Surprises., 2018,, 382-391.		1
449	Toxicity of enzymatically decolored textile dyes solution by horseradish peroxidase. Journal of Hazardous Materials, 2018, 360, 82-88.	6.5	43
450	Improving the thermal stability of azoreductase from <i>Halomonas elongata</i> by introducing a disulfide bond via siteâ€directed mutagenesis. Biotechnology and Applied Biochemistry, 2018, 65, 883-891.	1.4	5
451	Decolourization of Reactive Red EXF Dye by Isolated Strain Proteus Mirabilis. , 2018, , .		5
452	Integrated system of multiple batches to evaluate the continuous performance of microbial cells in decolourization processes. Journal of Environmental Chemical Engineering, 2018, 6, 728-735.	3.3	4
453	Degradation of reactive green dye and textile effluent by Candida sp. VITJASS isolated from wetland paddy rhizosphere soil. Journal of Environmental Chemical Engineering, 2018, 6, 5150-5159.	3.3	31

#	Article	IF	Citations
454	Degradation Characteristics of Color Index Direct Blue 15 Dye Using Iron-Carbon Micro-Electrolysis Coupled with H2O2. International Journal of Environmental Research and Public Health, 2018, 15, 1523.	1.2	24
455	Enhanced azo dye Reactive Red 2 degradation in anaerobic reactors by dosing conductive material of ferroferric oxide. Journal of Hazardous Materials, 2018, 357, 226-234.	6.5	66
456	Performance analysis of different textile effluent treatment processes involving marine diatom Odontella aurita. Environmental Technology and Innovation, 2018, 11, 153-164.	3.0	8
457	Possibilities of Obtaining from Highly Polluted Environments: New Bacterial Strains with a Significant Decolorization Potential of Different Synthetic Dyes. Water, Air, and Soil Pollution, 2018, 229, 176.	1.1	24
458	Aerobic biodegradation of Acid Blue-9 dye by Bacillus fermus Isolated from Annona reticulata. Environmental Technology and Innovation, 2018, 11, 253-261.	3.0	22
459	Decolorization and detoxification of textile dyes using a versatile Streptomyces laccase-natural mediator system. Saudi Journal of Biological Sciences, 2019, 26, 913-920.	1.8	69
460	/+//Biodecolorization of Reactive Black5 and Reactive Red120 azo dyes using bacterial strains isolated from dairy effluents. International Journal of Environmental Science and Technology, 2019, 16, 3615-3624.	1.8	12
461	A comprehensive thermodynamic and kinetic study of synthesized rGO-ZrO2 composite as a photocatalyst and its use as fuel additive. Journal of Molecular Structure, 2019, 1198, 126869.	1.8	10
462	Study of liquid phase adsorption of congo red on micro and mesoporous adsorbents containing lanthanum. Materials Research Express, 2019, 6, 105036.	0.8	1
463	Atmospheric pressure helium plasma jet and its applications to methylene blue degradation. Journal of Electrostatics, 2019, 101, 103360.	1.0	22
464	Bioelectricity generation from the decolorization of reactive blue 19 by using microbial fuel cell. Journal of Environmental Management, 2019, 248, 109310.	3.8	32
465	Decolorization of selected azo dye by <i>Lysinibacillus fusiformis</i> W1B6: Biodegradation optimization, isotherm, and kinetic study biosorption mechanism. Adsorption Science and Technology, 2019, 37, 492-508.	1.5	38
466	Bioremediation of Azo Dye., 2019, , 103-126.		12
467	Biodegradation of toxic dyes: a comparative study of enzyme action in a microbial system. , 2019, , 255-287.		13
468	Performance of a newly enriched bacterial consortium for degrading and detoxifying azo dyes. Water Science and Technology, 2019, 79, 2036-2045.	1.2	29
469	Community Synergism: Degradation of Triazine Dye Reactive Black 1 by Mixed Bacterial Cultures KND_PR under Microaerophilic and Aerobic Conditions. Environmental Processes, 2019, 6, 713-739.	1.7	8
470	An eco-friendly route for template-free synthesis of high specific surface area mesoporous CeO ₂ powders and their adsorption for acid orange 7. RSC Advances, 2019, 9, 22366-22375.	1.7	8
471	Comparative analysis of fungal and bacterial enzymes in biodegradation of xenobiotic compounds. , 2019, , 169-189.		26

#	Article	IF	Citations
472	Neopestalotiopsis species presenting wide dye destaining activity: report of a mycelium-associated laccase. Microbiological Research, 2019, 228, 126299.	2.5	13
473	Biodegradation of reactive textile dye Novacron Super Black G by free cells of newly isolated Alcaligenes faecalis AZ26 and Bacillus spp obtained from textile effluents. Heliyon, 2019, 5, e02068.	1.4	53
474	In-Situ Imaging of Azoreductase Activity in the Acute and Chronic Ulcerative Colitis Mice by a Near-Infrared Fluorescent Probe. Analytical Chemistry, 2019, 91, 10901-10907.	3.2	64
475	Exploration of the key functional strains from an azo dye degradation microbial community by DGGE and high-throughput sequencing technology. Environmental Science and Pollution Research, 2019, 26, 24658-24671.	2.7	18
476	Microbial Fingerprinting of Potential Biodegrading Organisms. Current Pollution Reports, 2019, 5, 181-197.	3.1	27
477	Evaluation of two different carriers in the biodegradation process of an azo dye. Journal of Environmental Health Science & Engineering, 2019, 17, 633-643.	1.4	8
478	Nanotechnology and it's applications in environmental remediation: an overview. Vegetos, 2019, 32, 227-237.	0.8	19
479	Aerobic decolorization and detoxification of Acid Scarlet GR by a newly isolated salt-tolerant yeast strain Galactomyces geotrichum GG. International Biodeterioration and Biodegradation, 2019, 145, 104818.	1.9	31
480	Biodegradation of synthetic dyes of textile effluent by microorganisms: an environmentally and economically sustainable approach. European Journal of Microbiology and Immunology, 2019, 9, 114-118.	1.5	198
481	Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 2019, 3, 275-290.	0.3	1,444
482	Ag/AgCl-GO: A composite for degradation of Rhodamine B in dye wastewater. Advanced Powder Technology, 2019, 30, 3193-3202.	2.0	6
483	Root Bacteria Recruited by Phragmites australis in Constructed Wetlands Have the Potential to Enhance Azo-Dye Phytodepuration. Microorganisms, 2019, 7, 384.	1.6	28
484	Multistage fluidized bed bioreactor for dye decolorization using immobilized polyurethane foam: A novel approach. Biochemical Engineering Journal, 2019, 152, 107368.	1.8	19
485	Comparative static and shaking culture of metabolite derived from methyl red degradation by Lysinibacillus fusiformis strain W1B6. Royal Society Open Science, 2019, 6, 190152.	1.1	15
486	Two-fold 2D + 2D â†' 2D interweaved rhombus (4,4) grid: synthesis, structure, and dye removal properties in darkness and in daylight. Dalton Transactions, 2019, 48, 1095-1107.	1.6	6
487	Sonocatalytic degradation of Acid Red 1 by sonochemically synthesized zinc sulfide-titanium dioxide nanotubes: Optimization, kinetics and thermodynamics studies. Journal of Cleaner Production, 2019, 215, 1341-1350.	4.6	33
488	Comparative analysis of the interaction of mono-, dis-, and tris-azo food dyes with egg white lysozyme: A combined spectroscopic and computational simulation approach. Food Chemistry, 2019, 284, 180-187.	4.2	30
489	Nanomaterials for Photocatalytic Applications. , 2019, , .		3

#	Article	IF	CITATIONS
490	Water Purification Using Magnetic Nanomaterials: An Overview. Nanotechnology in the Life Sciences, 2019, , 161-179.	0.4	17
491	Exploration of the Binding Properties of the Azo Dye Pollutants with Nitrogenâ€Doped Graphene Oxide by Computational Modeling for Wastewater Treatment Improvement. ChemistrySelect, 2019, 4, 5968-5978.	0.7	3
492	TiO 2 /rGO/CuS Nanocomposites for Efficient Photocatalytic Degradation of Rhodamineâ€B Dye. ChemistrySelect, 2019, 4, 6167-6176.	0.7	20
493	Characteristics of White-rot Fungus Phlebia brevispora TMIC33929 and Its Growth-Promoting Bacterium Enterobacter sp. TN3W-14 in the Decolorization of Dye-Contaminated Water. Applied Biochemistry and Biotechnology, 2019, 189, 1183-1194.	1.4	10
494	Treatment of textile effluents through bio-composite column: decolorization and COD reduction. International Journal of Environmental Science and Technology, 2019, 16, 8653-8662.	1.8	12
495	Synthesis of silver nanoparticles and its contribution to the capability of Bacillus subtilis to deal with polluted waters. Applied Microbiology and Biotechnology, 2019, 103, 6319-6332.	1.7	21
496	Optimization of Bacillus licheniformis MAL tyrosinase: in vitro anticancer activity for brown and black eumelanin. Heliyon, 2019, 5, e01657.	1.4	12
497	Biodegradation of tannery dye effluent using Fenton's reagent and bacterial consortium: A biocalorimetric investigation. Journal of Environmental Management, 2019, 242, 106-113.	3.8	40
498	Application of response surface methodology for optimization of metal–organic framework based pipette-tip solid phase extraction of organic dyes from seawater and their determination with HPLC. BMC Chemistry, 2019, 13, 59.	1.6	28
499	Effect of Ni Addition on Catalytic Performance of Fe87Si5B2P3Nb2Cu1 Amorphous Alloys for Degrading Methylene Blue Dyes. Metals, 2019, 9, 341.	1.0	7
500	Enhanced Methyl Orange Removal Using a Newly Isolated Bacterial Strain and Potassiumâ€lodideâ€Doped Hydroxyapatite Nanoparticles. Clean - Soil, Air, Water, 2019, 47, 1900160.	0.7	0
501	Decolorization and detoxification of Direct Blue 2B by indigenous bacterial consortium. Journal of Environmental Management, 2019, 242, 229-237.	3.8	57
502	Impact of pH on the Treatment of Artificial Textile Wastewater Containing Azo Dyes Using Pond Systems. International Journal of Environmental Research, 2019, 13, 367-385.	1.1	22
503	Electrocoagulation-floatation assisted pulsed power plasma technology for the complete mineralization of potentially toxic dyes and real textile wastewater. Chemical Engineering Research and Design, 2019, 125, 143-156.	2.7	59
504	Kinetic and thermodynamic study of methylene blue adsorption onto chitosan: insights about metachromasy occurrence on wastewater remediation. Energy, Ecology and Environment, 2019, 4, 85-102.	1.9	11
505	Biodegradation and Detoxification of Azo Dyes by a Newly Isolated Halotolerant Yeast <i>Candida tropicalis </i> SYF-1. Environmental Engineering Science, 2019, 36, 999-1010.	0.8	18
506	Modelling of Reactive Black 5 decolourization in the presence of heavy metals by the newly isolated <i>Pseudomonas aeruginosa </i> strain Gb30. Journal of Applied Microbiology, 2019, 126, 1761-1771.	1.4	9
507	Pyroelectric Pb(Zr0.52Ti0.48)O3 polarized ceramic with strong pyro-driven catalysis for dye wastewater decomposition. Ceramics International, 2019, 45, 11934-11938.	2.3	53

#	Article	IF	Citations
508	Biotransformation and Detoxification of Antraquione Dye Green 3 using halophilic Hortaea sp International Biodeterioration and Biodegradation, 2019, 140, 72-77.	1.9	36
509	Biodegradation potential of Citrobacter cultures for the removal of amaranth and congo red azo dyes. International Journal of Environmental Science and Technology, 2019, 16, 6863-6872.	1.8	21
510	Decolorization and biodegradation of reactive Red 198 Azo dye by a new Enterococcus faecalis–Klebsiella variicola bacterial consortium isolated from textile wastewater sludge. World Journal of Microbiology and Biotechnology, 2019, 35, 38.	1.7	56
511	Amine-Modified Mesoporous Magnesium Carbonate as an Effective Adsorbent for Azo Dyes. ACS Omega, 2019, 4, 2973-2979.	1.6	16
512	Mutagenicity and genotoxicity evaluation of textile industry wastewater using bacterial and plant bioassays. Toxicology Reports, 2019, 6, 193-201.	1.6	58
513	Mitigation of environmental pollution by genetically engineered bacteria â€" Current challenges and future perspectives. Science of the Total Environment, 2019, 667, 444-454.	3.9	197
514	Biodegradation of Textile Azo Dyes. Environmental Chemistry for A Sustainable World, 2019, , 115-139.	0.3	24
515	Decolorization and degradation of methyl orange by Bacillus stratosphericus SCA1007. Biocatalysis and Agricultural Biotechnology, 2019, 18, 101044.	1.5	87
517	Draft Genome Sequences of Two Textile Azo Dye-Degrading Shewanella sp. Strains Isolated from a Textile Effluent in Peru. Microbiology Resource Announcements, 2019, 8, .	0.3	2
518	Kinetics and Equilibrium Studies of Electro Adsorption of Remazol Red on Modified Stainless Steel Electrode. Journal of Physics: Conference Series, 2019, 1295, 012045.	0.3	1
519	Biosorption of Synthetic Dye from Batik Wastewater Using Trichoderma viride Immobilized on Ca-Alginate. Journal of Physics: Conference Series, 2019, 1374, 012007.	0.3	1
520	Biological decolourization of textile industry wastewater by a developed bacterial consortium. Water Science and Technology, 2019, 80, 1910-1918.	1.2	23
522	Decolourization and Degradation of Reactive Textile Dyes by Isolated Strain Proteus mirabilis. Asian Journal of Water, Environment and Pollution, 2019, 16, 1-6.	0.4	7
523	Novel Bacteria-Immobilized Cellulose Acetate/Poly(ethylene oxide) Nanofibrous Membrane for Wastewater Treatment. Scientific Reports, 2019, 9, 18994.	1.6	56
524	Kinetics of sonophotocatalytic degradation of an anionic dye nigrosine with doped and undoped zinc oxide. Water Science and Technology, 2019, 80, 1466-1475.	1.2	11
525	Grafting and stabilization of ordered mesoporous silica COK-12 with graphene oxide for enhanced removal of methylene blue. RSC Advances, 2019, 9, 36271-36284.	1.7	19
526	Investigation of dye removal with isolated biomasses from whey wastewater. International Journal of Environmental Science and Technology, 2019, 16, 71-78.	1.8	8
527	Reactive green dye remediation by Alternanthera philoxeroides in association with plant growth promoting Klebsiella sp. VITAJ23: A pot culture study. Microbiological Research, 2019, 220, 42-52.	2.5	17

#	Article	IF	CITATIONS
528	Application of Fe-MFI zeolite catalyst in heterogeneous electro-Fenton process for water pollutants abatement. Microporous and Mesoporous Materials, 2019, 278, 64-69.	2.2	36
529	Immobilisation of bacteria onto magnetic nanoparticles for the decolorisation and degradation of azo dyes. IET Nanobiotechnology, 2019, 13, 144-149.	1.9	20
530	Advanced treatment of bio-treated dyeing and finishing wastewater using ozone-biological activated carbon: A study on the synergistic effects. Chemical Engineering Journal, 2019, 359, 168-175.	6.6	53
531	Sonochemical synthesis and high-efficient solar-light-driven photocatalytic activity of novel cobalt and manganese codoped tungsten oxide nanoparticles. Chemical Physics Letters, 2019, 715, 252-262.	1.2	5
532	A sustainable approach for degradation of leather dyes by a new fungal laccase. Journal of Cleaner Production, 2019, 211, 590-597.	4.6	68
533	Synthesis and characterization of deep eutectic solvent functionalized CNT/ZnCo2O4 nanostructure: Kinetics, isotherm and regenerative studies on Eosin Y adsorption. Journal of Environmental Chemical Engineering, 2019, 7, 102877.	3.3	28
534	Degradation of organic pollutants by anaerobic methane-oxidizing microorganisms using methyl orange as example. Journal of Hazardous Materials, 2019, 364, 264-271.	6.5	32
535	Magnetic LDH-based CoO–NiFe2O4 catalyst with enhanced performance and recyclability for efficient decolorization of azo dye via Fenton-like reactions. Applied Catalysis B: Environmental, 2019, 243, 243-252.	10.8	162
536	Biodegradation of metal complex Naphthol Green B and formation of iron–sulfur nanoparticles by marine bacterium Pseudoalteromonas sp CF10-13. Bioresource Technology, 2019, 273, 49-55.	4.8	38
537	Hydroxamic acid mediated heterogeneous Fenton-like catalysts for the efficient removal of Acid Red 88, textile wastewater and their phytotoxicity studies. Ecotoxicology and Environmental Safety, 2019, 167, 385-395.	2.9	19
538	Fabrication of a three-dimensional porous Z-scheme silver/silver bromide/graphitic carbon nitride@nitrogen-doped graphene aerogel with enhanced visible-light photocatalytic and antibacterial activities. Journal of Colloid and Interface Science, 2019, 536, 389-398.	5.0	46
539	Combined biological and advanced oxidation process for decolorization of textile dyes. SN Applied Sciences, 2019, 1, 1.	1.5	45
540	Plasma polymerization onto nonwoven polyethylene/polypropylene fibers for laccase immobilization as dye decolorization filter media. Textile Reseach Journal, 2019, 89, 3578-3590.	1.1	13
541	Probing the mechanism of simultaneous bioenergy production and biodegradation process of Congo red in microbial fuel cells. Journal of Chemical Technology and Biotechnology, 2019, 94, 2092-2097.	1.6	14
542	Shallow Pond Systems Planted With Duckweed Treating Azo Dyes. , 2019, , 215-251.		1
543	A comparative study of the removal of methylene blue by iron nanoparticles from water and water-ethanol solutions. Journal of Molecular Liquids, 2019, 273, 274-281.	2.3	32
544	Synthesis of coal fly ash zeolite for the catalytic wet peroxide oxidation of Orange II. Environmental Science and Pollution Research, 2019, 26, 4277-4287.	2.7	9
545	Catalytic decomposition of Bismarck brown by nanostructured CuS in mild conditions. Journal of Dispersion Science and Technology, 2019, 40, 112-118.	1.3	0

#	ARTICLE	IF	CITATIONS
546	Multiple Applications of Enzymes Induced by Algal Biomasses from a New Bacillus Isolate to Saccharify Algae and Degrade Chemical Dyes. Waste and Biomass Valorization, 2019, 10, 2517-2526.	1.8	6
547	Investigation of <i>Moringa oleifera</i> seeds as effective and low-cost adsorbent to remove yellow dye tartrazine in fixed-bed column. Separation Science and Technology, 2020, 55, 13-25.	1.3	12
548	Application of Microbial Enzymes in Degradation and Detoxification of Organic and Inorganic Pollutants., 2020,, 41-51.		16
549	Textile Industry Wastewaters as Major Sources of Environmental Contamination: Bioremediation Approaches for Its Degradation and Detoxification., 2020,, 135-167.		16
550	Visible-light-driven photo-Fenton degradation of organic pollutants by a novel porphyrin-based porous organic polymer at neutral pH. Chemosphere, 2020, 243, 125334.	4.2	49
551	Mn(II) oxidation and manganese-oxide reduction on the decolorization of an azo dye. International Biodeterioration and Biodegradation, 2020, 146, 104820.	1.9	11
552	Fe-Based Metallic Glasses and Dyes in Fenton-Like Processes: Understanding Their Intrinsic Correlation. Catalysts, 2020, 10, 48.	1.6	13
553	Azo dyes decolorization under high alkalinity and salinity conditions by Halomonas sp. in batch and packed bed reactor. Extremophiles, 2020, 24, 239-247.	0.9	18
554	Degradation of Anthraquinone Dyes from Effluents: A Review Focusing on Enzymatic Dye Degradation with Industrial Potential. Environmental Science & En	4.6	327
555	Cultivation of granules containing anaerobic decolorization and aerobic degradation cultures for the complete mineralization of azo dyes in wastewater. Chemosphere, 2020, 246, 125753.	4.2	46
556	Quantification of aromatic amines derived from azo colorants in textile by ion-pairing liquid chromatography tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1137, 121957.	1.2	8
557	Photocatalytic degradation of disperse dye Violet-26 using TiO2 and ZnO nanomaterials and process variable optimization. Journal of Materials Research and Technology, 2020, 9, 1119-1128.	2.6	70
558	Enhanced Biodecolorization of Synthetic Textile Dyes by NTG Mutagenesis. The National Academy of Sciences, India, 2020, 43, 299-302.	0.8	0
559	Biotechnological potential and applications of microbial consortia. Biotechnology Advances, 2020, 40, 107500.	6.0	113
560	Azo dye decolorization by a halotolerant consortium under microaerophilic conditions. Chemosphere, 2020, 244, 125510.	4.2	72
561	A study on the utility of immobilized cells of indigenous bacteria for biodegradation of reactive azo dyes. Preparative Biochemistry and Biotechnology, 2020, 50, 317-329.	1.0	19
562	Next generation of optodes coupling plastic antibody with optical fibers for selective quantification of Acid Green 16. Sensors and Actuators B: Chemical, 2020, 305, 127553.	4.0	14
563	Cubic hematite directly anchored with nanoscale gold for enhanced photocatalysis under visible light. Inorganic Chemistry Communication, 2020, 112, 107688.	1.8	8

#	Article	IF	Citations
564	Synthesis and Optical Properties of Near-Infrared (NIR) Absorbing Azo Dyes. , 2020, , .		2
565	Decolorization of Metanil Yellow G by a halophilic alkalithermophilic bacterial consortium. Bioresource Technology, 2020, 316, 123923.	4.8	34
566	Degradation and Toxicity Analysis of a Reactive Textile Diazo Dye-Direct Red 81 by Newly Isolated Bacillus sp. DMS2. Frontiers in Microbiology, 2020, 11, 576680.	1.5	22
567	Optimization for enhanced ecofriendly decolorization and detoxification of Reactive Blue 160 textile dye by Bacillus subtilis. Biotechnology Reports (Amsterdam, Netherlands), 2020, 28, e00522.	2.1	22
568	<i>>Franconibacter sp</i> ., 1MS: A New Strain in Decolorization and Degradation of Azo Dyes Ponceau S Red and Methyl Orange. ACS Omega, 2020, 5, 28146-28157.	1.6	33
569	Decolorization and degradation of the Azo dye by bacterial cells coated with magnetic iron oxide nanoparticles. Environmental Nanotechnology, Monitoring and Management, 2020, 14, 100376.	1.7	13
570	Evaluation of bioremediation competence of indigenous bacterial strains isolated from fabric dyeing effluent. Bioresource Technology Reports, 2020, 11, 100536.	1.5	4
571	Performance Comparison of Eichhornia crassipes and Salvinia natans on Azo-Dye (Eriochrome Black T) Phytoremediation. Crystals, 2020, 10, 565.	1.0	23
572	Application of a Dye-Decolorizing Pseudomonas aeruginosa Strain ZM130 for Remediation of Textile Wastewaters in Aerobic/Anaerobic Sequential Batch Bioreactor and Soil Columns. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	19
573	Biodiscoloration, Detoxification and Biosorption of Reactive Blue 268 by Trametes sp. M3: a Strategy for the Treatment of Textile Effluents. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	4
574	Fabrication and Adsorption Optimization of Novel Magnetic Core-shell Chitosan/Graphene Oxide/ \hat{l}^2 -cyclodextrin Composite Materials for Bisphenols in Aqueous Solutions. Materials, 2020, 13, 5408.	1.3	14
575	Biodegradation of Congo Red by Manglicolous Filamentous Fungus Aspergillus flavus JKSC-7 Isolated from Indian Sundabaran Mangrove Ecosystem. Applied Biochemistry and Microbiology, 2020, 56, 708-717.	0.3	11
576	Bio-Decolorization of Synthetic Dyes by a Halophilic Bacterium Salinivibrio sp Frontiers in Microbiology, 2020, 11, 594011.	1.5	23
577	Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: A review. Inorganic Chemistry Communication, 2020, 120, 108140.	1.8	218
578	Optimization and kinetic studies on decolorization of Vat Green XBN by a newly isolated bacterial strain Proteus mirabilis PMS. Journal of Water Process Engineering, 2020, 37, 101529.	2.6	1
579	Removal of methylene blue from aqueous solution using sodium bis (2-ethylhexyl) sulfosuccinate-hexanol reverse micellar system. Journal of Physics: Conference Series, 2020, 1529, 052046.	0.3	0
580	Implementation of Floating Treatment Wetlands for Textile Wastewater Management: A Review. Sustainability, 2020, 12, 5801.	1.6	38
581	Genome and transcriptome analysis of a newly isolated azo dye degrading thermophilic strain Anoxybacillus sp Ecotoxicology and Environmental Safety, 2020, 203, 111047.	2.9	34

#	Article	IF	CITATIONS
582	Decolorization and detoxification of azo dye by halo-alkaliphilic bacterial consortium: Systematic investigations of performance, pathway and metagenome. Ecotoxicology and Environmental Safety, 2020, 204, 111073.	2.9	48
583	Wastewater treatment based in microalgae. , 2020, , 165-184.		2
584	A review on graphitic carbon nitride (g-C3N4) based nanocomposites: Synthesis, categories, and their application in photocatalysis. Journal of Alloys and Compounds, 2020, 846, 156446.	2.8	359
585	Mycoremediation of industrial dyes by laccases. , 2020, , 235-243.		1
586	Augmented Biodegradation of Textile Azo Dye Effluents by Plant Endophytes: A Sustainable, Eco-Friendly Alternative. Current Microbiology, 2020, 77, 3240-3255.	1.0	30
587	Fe-pillared montmorillonite as effective heterogeneous Fenton catalyst for the decolorization of methyl orange. Journal of Chemical Sciences, 2020, 132, 1.	0.7	5
588	Effective Decolorization of Rhodamine B by a Ti Foam-Based Photocatalytic Membrane Reactor. ACS Omega, 2020, 5, 30088-30094.	1.6	4
589	Tailoring Carbon Nanotubes to Enhance their Efficiency as Electron Shuttle on the Biological Removal of Acid Orange 10 Under Anaerobic Conditions. Nanomaterials, 2020, 10, 2496.	1.9	10
590	Sustainable Wastewater Treatment via Dye–Surfactant Interaction: A Critical Review. Industrial & Engineering Chemistry Research, 2020, 59, 9719-9745.	1.8	56
591	Synthesis and characterisation of novel Cu(<scp>ii</scp>)-anchored biopolymer complexes as reusable materials for the photocatalytic degradation of methylene blue. RSC Advances, 2020, 10, 18259-18279.	1.7	37
592	Decoding social behaviors in a glycerol dependent bacterial consortium during Reactive Blue 28 degradation. Brazilian Journal of Microbiology, 2020, 51, 1837-1851.	0.8	5
593	Characterization of the biosorption of fast black azo dye K salt by the bacterium Rhodopseudomonas palustris 51ATA strain. Electronic Journal of Biotechnology, 2020, 46, 22-29.	1.2	21
594	Biodegradation of mono azo dye-Reactive Orange 16 by acclimatizing biomass systems under an integrated anoxic-aerobic REACT sequencing batch moving bed biofilm reactor. Journal of Water Process Engineering, 2020, 36, 101268.	2.6	20
595	Electrochemical degradation and toxicity evaluation of reactive dyes mixture and real textile effluent over DSA® electrodes. Chemical Engineering and Processing: Process Intensification, 2020, 153, 107940.	1.8	38
596	Latest innovations in bacterial degradation of textile azo dyes. , 2020, , 285-309.		5
597	Electron transfer via the non-Mtr respiratory pathway from Shewanella putrefaciens CN-32 for methyl orange bioreduction. Process Biochemistry, 2020, 95, 108-114.	1.8	6
598	Machine Learning Modeling of Aerobic Biodegradation for Azo Dyes and Hexavalent Chromium. Mathematics, 2020, 8, 913.	1.1	16
599	The removal of azo dye from aqueous solution by oxidation with peroxydisulfate in the presence of granular activated carbon: Performance, mechanism and reusability. Chemosphere, 2020, 259, 127400.	4.2	28

#	Article	IF	CITATIONS
600	Improved Simultaneous Decolorization and Power Generation in a Microbial Fuel Cell with the Sponge Anode Modified by Polyaniline and Chitosan. Applied Biochemistry and Biotechnology, 2020, 192, 698-718.	1.4	18
601	Comparison between Allura Red dye discoloration by activated carbon and azo bacteria strain. Environmental Science and Pollution Research, 2020, 27, 29688-29696.	2.7	8
602	Degradation and detoxification of waste via bioremediation: a step toward sustainable environment., 2020,, 67-83.		3
603	Biological Decolorization of Amaranth, Denim Blue, and Orange G with Trametes polyzona. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	2
604	Application of a novel rGO-CuFeS2 composite catalyst conjugated to microwave irradiation for ultra-fast real textile wastewater treatment. Journal of Water Process Engineering, 2020, 36, 101397.	2.6	20
605	Elucidation of fungal dyeâ€decolourizing peroxidase (DyP) and ligninolytic enzyme activities in decolourization and mineralization of azo dyes. Journal of Applied Microbiology, 2020, 129, 1633-1643.	1.4	25
606	A review on classifications, recent synthesis and applications of textile dyes. Inorganic Chemistry Communication, 2020, 115, 107891.	1.8	406
607	Water recovery from textile wastewater treatment by encapsulated cells of Phanerochaete chrysosporium and ultrafiltration system. Biologia (Poland), 2020, 75, 1717-1729.	0.8	9
608	Eco-friendly decolorization and degradation of reactive yellow 145 textile dye by Pseudomonas aeruginosa and Thiosphaera pantotropha. Journal of Environmental Management, 2020, 263, 110383.	3.8	50
609	Biological degradation coupled to photocatalysis by ZnO/polypyrrole composite for the treatment of real textile wastewater. Journal of Water Process Engineering, 2020, 35, 101230.	2.6	66
610	Decolorization and degradation of Direct Blue-1 (Azo dye) by newly isolated fungus Aspergillus terreus GS28, from sludge of carpet industry. Environmental Technology and Innovation, 2020, 18, 100751.	3.0	48
611	Flavin-Conjugated Iron Oxide Nanoparticles as Enzyme-Inspired Photocatalysts for Azo Dye Degradation. Catalysts, 2020, 10, 324.	1.6	10
612	Bio-nano Approaches: Green and Sustainable Treatment Technology for Textile Effluent Challenges., 2020,, 339-363.		2
613	Fungal Bioagents in the Remediation of Degraded Soils. , 2020, , 191-205.		4
614	Nanofiltration of dye solution using chitosan/poly(vinyl alcohol)/ZIF-8 thin film composite adsorptive membranes with PVDF membrane beneath as support. Carbohydrate Polymers, 2020, 247, 116693.	5.1	72
615	Three-Dimensional CuO/TiO2 Hybrid Nanorod Arrays Prepared by Electrodeposition in AAO Membranes as an Excellent Fenton-Like Photocatalyst for Dye Degradation. Nanoscale Research Letters, 2020, 15, 45.	3.1	15
616	Derivative spectrophotometry and multivariate optimization for simultaneous removal of Titan yellow and Bromophenol blue dyes using polyaniline@SiO2 nanocomposite. Microchemical Journal, 2020, 155, 104717.	2.3	23
617	Conversion of textile effluent wastewater into fertilizer using marine cyanobacteria along with different agricultural waste., 2020,, 87-111.		5

#	Article	IF	CITATIONS
618	Stability study of Disperse Blue 79 under ionizing radiation. Nuclear Science and Techniques/Hewuli, 2020, 31, 1.	1.3	3
619	Enhanced decolourization efficiency of textile dye Reactive Blue 19 in a horizontal rotating reactor using strips of BNC-immobilized laccase: Optimization of conditions and comparison of decolourization efficiency. Biochemical Engineering Journal, 2020, 156, 107501.	1.8	71
620	Direct hydrothermal synthesis of amine-functionalized cubic hematite (C-Fe ₂ O ₃) and sonochemical deposition of nanosized Au for its application as a visible-light photocatalyst. Dalton Transactions, 2020, 49, 2924-2932.	1.6	17
621	Fed-Batch Decolourization of Mixture of Brilliant Green and Evans Blue by Bacteria Species Applied as Pure and Mixed Cultures: Influence of Growth Conditions. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	10
622	Integration of $\hat{a} \in SO4\hat{a}$ -based AOP mediated by reusable iron particles and a sulfidogenic process to degrade and detoxify Orange II. Water Research, 2020, 174, 115622.	5. 3	39
623	Role of various bacterial enzymes in complete depolymerization of lignin: A review. Biocatalysis and Agricultural Biotechnology, 2020, 23, 101498.	1.5	66
624	Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls. Enzyme and Microbial Technology, 2020, 136, 109509.	1.6	22
625	Evaluation of electron-transferring cofactor mediating enzyme systems involved in urolithin dehydroxylation in Gordonibacter urolithinfaciens DSM 27213. Journal of Bioscience and Bioengineering, 2020, 129, 552-557.	1.1	11
626	The heterologous expression, characterization, and application of a novel laccase from Bacillus velezensis. Science of the Total Environment, 2020, 713, 136713.	3.9	22
627	Kinetic and equilibrium studies of Congo red dye adsorption on cabbage waste powder. Environmental Chemistry and Ecotoxicology, 2020, 2, 24-31.	4.6	125
628	A magnetically separable and recyclable g-C ₃ /porous ruthenium nanocatalyst for the photocatalytic degradation of water-soluble aromatic amines and azo dyes. RSC Advances, 2020, 10, 6043-6051.	1.7	22
629	Hydrothermal synthesis of WO3 nanoparticles: Characterization and sonocatalytic study. Materials Today: Proceedings, 2020, 25, 183-185.	0.9	6
630	Microbial degradation, spectral analysis and toxicological assessment of malachite green by Streptomyces chrestomyceticus S20. Bioprocess and Biosystems Engineering, 2020, 43, 1457-1468.	1.7	20
631	Characterization of urban and industrial wastewaters using excitation-emission matrix (EEM) fluorescence: Searching for specific fingerprints. Journal of Environmental Management, 2020, 263, 110396.	3.8	66
632	Investigation of photocatalytic degradation of reactive textile dyes by Portulaca oleracea-functionalized silver nanocomposites and exploration of their antibacterial and antidiabetic potentials. Journal of Alloys and Compounds, 2020, 833, 155083.	2.8	37
633	Blue dye degradation in an aqueous medium by a combined photocatalytic and bacterial biodegradation process. Turkish Journal of Chemistry, 2020, 44, 180-193.	0.5	5
634	Nanoclay-mediated photocatalytic activity enhancement of copper oxide nanoparticles for enhanced methyl orange photodegradation. Journal of Materials Science: Materials in Electronics, 2020, 31, 8971-8985.	1.1	47
635	Efficacy of dye degradation of contaminated soil microbial isolates. Materials Today: Proceedings, 2021, 36, 167-170.	0.9	2

#	Article	IF	CITATIONS
636	Comparison of efficiency for monoazo dye removal by different species of white-rot fungi. International Journal of Environmental Science and Technology, 2021, 18, 21-32.	1.8	11
637	Adsorption and biodegradation removal of methylene blue in a down-flow hanging filter reactor incorporating natural adsorbent. Environmental Technology (United Kingdom), 2021, 42, 410-418.	1.2	6
638	Fungal bioremediation of toxic textile dye effluents., 2021,, 353-380.		1
639	Biodegradation kinetic studies and optimization for the elimination of azoic and triphenylmethane dyes using an integrated process combining biological treatment and gliding arc plasma. Journal of Chemical Technology and Biotechnology, 2021, 96, 273-282.	1.6	3
640	Role of microalgal ligninolytic enzymes in industrial dye decolorization. International Journal of Phytoremediation, 2021, 23, 41-52.	1.7	26
641	Effect of dye structure on color removal efficiency by coagulation. Chemical Engineering Journal, 2021, 405, 126674.	6.6	177
642	An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications. Journal of Molecular Structure, 2021, 1224, 129195.	1.8	283
643	Ferrites as solar photocatalytic materials and their activities in solar energy conversion and environmental protection: A review. Solar Energy Materials and Solar Cells, 2021, 219, 110786.	3.0	118
644	Decolourization of textile effluent using native microbial consortium enriched from textile industry effluent. Journal of Hazardous Materials, 2021, 402, 123835.	6.5	73
645	Performance evaluation of down-flow hanging sponge reactor for direct treatment of actual textile wastewater; Effect of effluent recirculation to performance and microbial community. Journal of Water Process Engineering, 2021, 39, 101724.	2.6	19
646	Novel bacterial biofilm consortia that degrade and detoxify the carcinogenic diazo dye Congo red. Archives of Microbiology, 2021, 203, 643-654.	1.0	29
647	Ultrafast degradation of Congo Red dye using a facile one-pot solvothermal synthesis of cuprous oxide/titanium dioxide and cuprous oxide/zinc oxide p-n heterojunction photocatalyst. Materials Science in Semiconductor Processing, 2021, 122, 105481.	1.9	29
648	Biosynthesis of silver nanoparticles by Cyperus pangorei and its potential in structural, optical and catalytic dye degradation. Applied Nanoscience (Switzerland), 2021, 11, 477-491.	1.6	32
649	Statistical optimization for the efficacious degradation of reactive azo dyes using Acinetobacter baumannii JC359. Journal of Environmental Management, 2021, 279, 111512.	3.8	32
650	Efficient reduction of reactive black 5 and Cr(â¥) by a newly isolated bacterium of Ochrobactrum anthropi. Journal of Hazardous Materials, 2021, 406, 124641.	6.5	23
651	Simultaneous decolorization and mineralization of high concentrations of methyl orange in an anoxic up-flow packed bed reactor in denitrifying conditions. Journal of Water Process Engineering, 2021, 40, 101813.	2.6	11
652	An overview on nanostructured TiO2–containing fibers for photocatalytic degradation of organic pollutants in wastewater treatment. Journal of Water Process Engineering, 2021, 40, 101827.	2.6	46
653	Methods of Reactive Red 141 Dye Decolorization, Treatment, and Removal from Industrial Wastewaters: A Critical Review. Environmental Engineering Science, 2021, 38, 577-591.	0.8	10

#	Article	IF	Citations
654	Decolorization, degradation and detoxification of carcinogenic sulfonated azo dye methyl orange by newly developed biofilm consortia. Saudi Journal of Biological Sciences, 2021, 28, 793-804.	1.8	80
655	Microbially mediated cleavage of Reactive Black 5 in attached growth bioreactors with immobilized Shewanella indica strain on different carriers. International Biodeterioration and Biodegradation, 2021, 157, 105142.	1.9	4
656	A scientific review of colorful textiles. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 2021, 16, 5-17.	0.5	10
657	Environmental contamination, toxicity profile and bioremediation technologies for treatment and detoxification of textile effluent., 2021,, 415-434.		6
658	A review on modified sugarcane bagasse biosorbent for removal of dyes. Chemosphere, 2021, 268, 129309.	4.2	113
659	Mycoremediation of azo dyes using <i>Cyberlindnera fabianii</i> yeast strain: Application of designs of experiments for decolorization optimization. Water Environment Research, 2021, 93, 1402-1416.	1.3	14
660	Synthesis and characterization of a series of cross-linked polyamines for removal of Erichrome Black T from aqueous solution. Chinese Journal of Chemical Engineering, 2021, 32, 341-352.	1.7	9
661	Graphitic carbon nitride nanosheets (g-C3N4 NS) as dual responsive template for fluorescent sensing as well as degradation of food colorants. Food Chemistry, 2021, 343, 128451.	4.2	23
662	Synergetic decolorization of azo dyes using ultrasounds, photocatalysis and photo-fenton reaction. Ultrasonics Sonochemistry, 2021, 71, 105367.	3.8	67
663	Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	3.3	16
664	Biodegradation and detoxification of the triphenylmethane dye coomassie brilliant blue by the extracellular enzymes from mycelia of Lactarius deliciosus. Frontiers of Chemical Science and Engineering, 2021, 15, 421-436.	2.3	12
665	Sustainable approach to decolourize methyl orange dye from aqueous solution using novel bacterial strain and its metabolites characterization. Clean Technologies and Environmental Policy, 2021, 23, 173-181.	2.1	41
666	Sludge-based activated carbon catalyzed H ₂ O ₂ oxidation of reactive azo dyes. Environmental Technology (United Kingdom), 2021, 42, 682-693.	1.2	11
667	Biosorption of astrazon red dye by the bacterium Rhodopseudomonas sp. strain 51ATA. Environmental Earth Sciences, 2021, 80, 1.	1.3	3
668	Physicochemical and biological treatment of textile wastewater., 2021,, 307-334.		2
669	A Harmless Approach on Textile Effluent Detoxification: Bioremediation and Recent Strategies. , 2021, , 195-219.		1
670	Role of hybrid systems and their importance in the dye degradation: trend and future aspect. , 2021, , 545-571.		0
671	Biological Decolorization and Degradation of Synthetic Dyes: A Green Step Toward Sustainable Environment. Microorganisms for Sustainability, 2021, , 77-110.	0.4	8

#	Article	IF	CITATIONS
672	Potential of Thallophytes in Degradation of Dyes. Advances in Environmental Engineering and Green Technologies Book Series, 2021, , 440-474.	0.3	0
673	Eco-Friendly Bioremediation Approach for Dye Removal from Wastewaters: Challenges and Prospects. , 2021, , 273-297.		1
674	Clean-green technologies for removal of emerging contaminants from industrial effluents. , 2021, , $125-145$.		2
675	An overview of the biosorption mechanism for the bioremediation of synthetic dyes using yeast cells. Environmental Technology Reviews, 2021, 10, 58-76.	2.1	22
676	Up-Flow Anaerobic Sludge Blanket Reactors in Dye Removal: Mechanisms, Influence Factors, and Performance. SSRN Electronic Journal, 0, , .	0.4	0
677	Fungus and plant-mediated synthesis of metallic nanoparticles and their application in degradation ofÂdyes., 2021,, 287-308.		31
678	Dyes from Textile Industry Wastewater as Emerging Contaminants in Agricultural Fields. Sustainable Agriculture Reviews, 2021, , 109-129.	0.6	9
679	Functional Nanocomposites for Groundwater Treatment. Chemistry in the Environment, 2021, , 246-274.	0.2	0
680	Methods for the Treatment of Wastewaters Containing Dyes and Pigments. Environmental Chemistry for A Sustainable World, 2021, , 597-661.	0.3	8
681	Mycoremediation of synthetic dyes by yeast cells: a sustainable biodegradation approach. Environmental Sustainability, 2021, 4, 5-22.	1.4	12
682	Integrated approach on azo dyes degradation using laccase enzyme and Cul nanoparticle. SN Applied Sciences, 2021, 3, 1.	1.5	18
683	Microbial degradation of Procion Red by Pseudomonas stutzeri. Scientific Reports, 2021, 11, 3075.	1.6	16
684	Isolation of Industrial Important Bioactive Compounds from Microalgae. Molecules, 2021, 26, 943.	1.7	64
685	Factors Affecting the Simultaneous Removal of Nitrate and Reactive Black 5 Dye via Hydrogen-Based Denitrification. Water (Switzerland), 2021, 13, 922.	1.2	4
686	Biodegradation of textile azo dyes by textile effluent non-adapted and adapted Aeromonas hydrophila. Environmental Research, 2021, 194, 110643.	3.7	43
687	Methyl red biodegradation based on Taguchi method by two novel bacteria. International Journal of Environmental Science and Technology, 0 , 1 .	1.8	1
688	Bioremedial approach of Pseudomonas stutzeri SPM-1 for textile azo dye degradation. Archives of Microbiology, 2021, 203, 2669-2680.	1.0	10
689	Mixed azo dyes degradation by an intracellular azoreductase enzyme from alkaliphilic Bacillus subtilis: a molecular docking study. Archives of Microbiology, 2021, 203, 3033-3044.	1.0	19

#	ARTICLE	IF	CITATIONS
690	Biological Treatment of Real Textile Effluent Using Aspergillus flavus and Fusarium oxysporium and Their Consortium along with the Evaluation of Their Phytotoxicity. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT /Ove	er los ck 10 i	Гf 55 0 737 Td
691	Current Trends on Role of Biological Treatment in Integrated Treatment Technologies of Textile Wastewater. Frontiers in Microbiology, 2021, 12, 651025.	1.5	31
692	Biodegradation of reactive yellow EXF dye: optimization of physiochemical parameters and analysis of degradation products. International Journal of Environmental Science and Technology, 2022, 19, 1683-1694.	1.8	4
693	Coupling azo dye degradation and biodiesel production by manganese-dependent peroxidase producing oleaginous yeasts isolated from wood-feeding termite gut symbionts. Biotechnology for Biofuels, 2021, 14, 61.	6.2	56
694	A novel, facile, and efficient two-step hydrothermal route for WS2 nanosheets and its optimistic exposure as competent industrial-level sonocatalyst. Journal of Materials Science: Materials in Electronics, 2021, 32, 9357-9367.	1.1	5
695	Comparative Anaerobic Decolorization of Azo Dyes by Carbon-Based Membrane Bioreactor. Water (Switzerland), 2021, 13, 1060.	1.2	5
696	Fe-based thin film metallic glass as an activator of peroxymonosulfate for azo dye degradation. Surface and Coatings Technology, 2021, 412, 127031.	2.2	7
697	Effects of Ni–TiO2 Pillared Clay–Montmorillonite Composites for Photocatalytic Enhancement Against Reactive Orange Under Visible Light. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 3378-3388.	1.9	21
698	Removal of COD, TOC, and Color from Textile Industry Wastewater by Using Phanerochaete chrysosporium. Journal of Anatolian Environmental and Animal Sciences, 2021, 6, 211-216.	0.2	2
699	Equilibrium and Kinetic Study of Anionic and Cationic Pollutants Remediation by Limestone–Chitosan–Alginate Nanocomposite from Aqueous Solution. Molecules, 2021, 26, 2586.	1.7	6
700	Congo Red removal using Fesdis soil: kinetic, equilibrium and thermodynamic studies. International Journal of Environmental Analytical Chemistry, 2023, 103, 3447-3467.	1.8	3
701	Decolorization of Malachite green dye by Stenotrophomonas maltophilia a compost bacterium. Bulletin of the National Research Centre, 2021, 45, .	0.7	15
702	Mineralization of persistent azo dye pollutants by a microaerophilic tropical lake sediment mixed bacterial consortium. Environmental Advances, 2021, 3, 100038.	2.2	18
703	Decolorization of Synthetic Azo Dyes under Anaerobic Condition in A Continuous Stirred Tank Reactor. Journal of Pure and Applied Microbiology, 2021, 15, 658-666.	0.3	2
704	Simultaneous decolorization/degradation of AB-113 and chromium(VI) removal by a salt-tolerant Klebsiella sp. AB-PR and detoxification of biotransformed-metabolites. International Journal of Environmental Science and Technology, 2022, 19, 2007-2024.	1.8	6
705	Impact of pH on Pollutional Parameters of Textile Industry Wastewater with Use of Chlorella pyrenoidosa at Labâ€Scale: A Green Approach. Bulletin of Environmental Contamination and Toxicology, 2022, 108, 485-490.	1.3	7
706	Catalytic activity of Au@Cu2O core-shell nanostructure for the organic pollutant remediation. Journal of Physics and Chemistry of Solids, 2021, 152, 109935.	1.9	13
707	Performance and biofilm-associated bacterial community dynamics of an upflow fixed-film microaerophilic-aerobic bioreactor system treating raw textile effluent. Journal of Cleaner Production, 2021, 295, 126380.	4.6	18

#	Article	IF	CITATIONS
708	Improved decolorization of triphenylmethane dyes by halo-thermotolerant bacteria isolated from hypersaline environments. International Journal of Environmental Science and Technology, 2022, 19, 3261-3274.	1.8	3
709	Screening and Optimization of Environmental Parameters for Maximum Decolorization of Reactive Orange 122 Azo- dye by Streptomyces sp (A5). Egyptian Academic Journal of Biological Sciences G Microbiology, 2021, 13, 49-60.	0.1	0
710	Al and Zr Porous Clay Heterostructures as Removal Agents of Basic Blue-41 Dye from an Artificially Polluted Solution: Regeneration Properties and Batch Design. Materials, 2021, 14, 2528.	1.3	6
711	Remazol reactive dye degrading Bacteria from freshwater fish of River Cauvery, Pallipalayam of Namakkal District, South India. Environmental Systems Research, 2021, 10, .	1.5	2
712	Classification and impact of synthetic textile dyes on Aquatic Flora: A review. Regional Studies in Marine Science, 2021, 45, 101802.	0.4	79
713	Wastewater treatment and Mycoremediation by P. ostreatus mycelium. IOP Conference Series: Earth and Environmental Science, 2021, 775, 012003.	0.2	3
714	Decolorization of lignin-mimicking dyes by <i>Stenotrophomonas</i> sp. CFB-09: Enzyme activity, transformation dynamics and process optimization. Biocatalysis and Biotransformation, 2022, 40, 351-364.	1.1	2
715	Comparative Study of the Potentials of Aspergillus terreus, Bacillus species and Chlorella vulgaris on the Bio-Remediation of Reactive Red 198 (RR198) Dye. UMYU Journal of Microbiology Research, 2021, 6, 168-174.	0.1	1
716	Phycoremediation of effluents containing dyes and its prospects for value-added products: A review of opportunities. Journal of Water Process Engineering, 2021, 41, 102080.	2.6	16
717	Chemo-metric engineering designs for deciphering the biodegradation of polycyclic aromatic hydrocarbons. Journal of Hazardous Materials, 2021, 411, 125154.	6.5	19
718	Azo Dye Decolorizaiton by Consortium HR under High Temperature and Salinity. IOP Conference Series: Earth and Environmental Science, 2021, 791, 012090.	0.2	0
719	Microalgae biosorption, bioaccumulation and biodegradation efficiency for the remediation of wastewater and carbon dioxide mitigation: Prospects, challenges and opportunities. Journal of Water Process Engineering, 2021, 41, 102009.	2.6	98
720	The Decolorization of Synthetic Dyes with Immobilized Bacillus species. MINAR International Journal of Applied Sciences and Technology, 0, , .	0.0	0
721	Decolorization mechanism, identification of an FMNâ€dependent NADHâ€azoreductase from a moderately halotolerant Staphylococcus sp. MEH038S, and toxicity assessment of biotransformed metabolites. Water Environment Research, 2021, 93, 2072-2083.	1.3	2
722	Acid Orange 7 degradation using methane as the sole carbon source and electron donor. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	3.3	3
723	Wasteful Azo Dyes as a Source of Biologically Active Building Blocks. Frontiers in Bioengineering and Biotechnology, 2021, 9, 672436.	2.0	5
724	Nitrobenzene sensing in pristine and metal doped 2D dichalcogenide MoS2: Insights from density functional theory investigations. Applied Surface Science, 2021, 550, 149395.	3.1	30
725	Genome analysis to decipher syntrophy in the bacterial consortium â€~SCP' for azo dye degradation. BMC Microbiology, 2021, 21, 177.	1.3	12

#	Article	IF	CITATIONS
726	Development and characterization of a halo-thermophilic bacterial consortium for decolorization of azo dye. Chemosphere, 2021, 272, 129916.	4.2	35
727	Coupling Covalent Organic Frameworks and Carbon Nanotube Membranes to Design Easily Reusable Photocatalysts for Dye Degradation. Industrial & Engineering Chemistry Research, 2021, 60, 8687-8695.	1.8	14
728	Preparation, characterization and application of Fe72Cu1Co5Si9B13 metallic glass catalyst in degradation of azo dyes. Journal of Materials Science: Materials in Electronics, 2021, 32, 21727-21741.	1.1	4
729	Bioremediation of textile dye wastewater using microalgae: current trends and future perspectives. Journal of Chemical Technology and Biotechnology, 2021, 96, 3249-3258.	1.6	29
730	High removal efficiency of reactive yellow 160 dye from textile wastewater using natural and modified glauconite. International Journal of Environmental Science and Technology, 2022, 19, 5659-5674.	1.8	11
731	The genus <i>Paraconiothyrium</i> : species concepts, biological functions, and secondary metabolites. Critical Reviews in Microbiology, 2021, 47, 781-810.	2.7	16
732	A Review of Caffeine Adsorption Studies onto Various Types of Adsorbents. Scientific World Journal, The, 2021, 2021, 1-18.	0.8	6
733	Bacillus aryabhattai SMNCH17-07 Strain: First Isolation and Characterization from Textile Waste Water with Evaluation of Its Decolorization Ability against Azo Dyes. Tekstil Ve Konfeksiyon, 2022, 32, 99-107.	0.3	2
734	Using indigenous bacterial isolate Nesterenkonia lacusekhoensis for removal of azo dyes: A low-cost ecofriendly approach for bioremediation of textile wastewaters. Environment, Development and Sustainability, 2022, 24, 5344-5367.	2.7	17
735	Recent advances in the biodegradation of azo dyes. World Journal of Microbiology and Biotechnology, 2021, 37, 137.	1.7	52
736	Biotransformation of Reactive Red 141 by <i>Paenibacillus terrigena</i> KKW2-005 and Examination of Product Toxicity. Journal of Microbiology and Biotechnology, 2021, 31, 967-977.	0.9	5
737	Efficient Removal of Azo Dye from Wastewater Using the Non-Toxic Potassium Ferrate Oxidation–Coagulation Process. Applied Sciences (Switzerland), 2021, 11, 6825.	1.3	11
738	Simultaneous anaerobic decolorization/degradation of Reactive Black-5 azo dye and chromium(VI) removal by Bacillus cereus strain MS038EH followed by UV-C/H2O2 post-treatment for detoxification of biotransformed products. Archives of Microbiology, 2021, 203, 4993-5009.	1.0	6
740	How can microbiology help to improve sustainability in the fashion industry?. Environmental Technology and Innovation, 2021, 23, 101760.	3.0	23
741	Copper Loaded Hydroxyapatite Nanoparticles as ecoâ€friendly Fenton-like catalyst to Effectively Remove Organic Dyes. Journal of Environmental Chemical Engineering, 2021, 9, 105501.	3.3	37
742	Bio-composite of Fe-sludge biochar immobilized with Bacillus Sp. in packed column for bio-adsorption of Methylene blue in a hybrid treatment system: Isotherm and kinetic evaluation. Environmental Technology and Innovation, 2021, 23, 101734.	3.0	21
743	Degradation of synthetic dyes using nanoparticles: a mini-review. Environmental Science and Pollution Research, 2021, 28, 49434-49446.	2.7	38
744	Mechanistic evaluation of cationic dyes adsorption onto low-cost calcinated aerated autoclaved concrete wastes. International Journal of Environmental Science and Technology, 2022, 19, 6429-6444.	1.8	15

#	Article	IF	CITATIONS
745	Studies on decolourisation of azo dye Orange G by bacterium isolated from dye contaminated sites. International Journal of Environmental Analytical Chemistry, 0, , 1-17.	1.8	1
746	Bacterial immobilization on cellulose acetate based nanofibers for methylene blue removal from wastewater: Mini-review. Inorganic Chemistry Communication, 2021, 131, 108766.	1.8	40
747	The decolorization and degradation of azo dyes by two Stenotrophomonas strains isolated from textile effluent (Tepetitla, Mexico). Brazilian Journal of Microbiology, 2021, 52, 1755-1767.	0.8	7
748	Optimization of Decoloration Conditions of Methylene Blue Wastewater by Penicillium P1. Indian Journal of Microbiology, 2022, 62, 103-111.	1.5	1
749	Orange-derived and lemon-derived adsorbents with controlled grain for an efficient elimination of some cationic and anionic dyes. Pigment and Resin Technology, 2021, 50, 475-483.	0.5	0
750	Emerging bioremediation technologies for the treatment of textile wastewater containing synthetic dyes: a comprehensive review. Journal of Chemical Technology and Biotechnology, 2022, 97, 26-41.	1.6	49
751	An evaluation into the biosorption and biodegradation of azo dyes by indigenous siderophores-producing bacteria immobilized in chitosan. Biodegradation, 2021, 32, 697-710.	1.5	7
752	Cobalt aluminate/carbon nanocomposite via an auto-combustion method: an efficient photocatalyst for photocatalytic degradation of organic dyes from aqueous media. International Journal of Environmental Analytical Chemistry, 2023, 103, 7979-7999.	1.8	9
753	Phylogenetically diverse bacteria isolated from tattoo inks, an azo dye-rich environment, decolorize a wide range of azo dyes. Annals of Microbiology, 2021, 71, .	1.1	4
754	Unlocking the potential of biosynthesized zinc oxide nanoparticles for degradation of synthetic organic dyes as wastewater pollutants. Water Science and Technology, 2021, 84, 3286-3310.	1.2	13
755	Microbial degradation of azo dyes by textile effluent adapted, Enterobacter hormaechei under microaerophilic condition. Microbiological Research, 2021, 250, 126805.	2.5	39
756	The specialized twin-solution method for selective Pd(II) ions determination and methyl orange removal. Journal of Molecular Liquids, 2021, 340, 116884.	2.3	6
757	Exploiting microbial biomass in treating azo dyes contaminated wastewater: Mechanism of degradation and factors affecting microbial efficiency. Journal of Water Process Engineering, 2021, 43, 102255.	2.6	105
758	Mesoporous TiO2@g-C3N4 composite: construction, characterization, and boosting indigo carmine dye destruction. Diamond and Related Materials, 2021, 118, 108491.	1.8	48
759	Applying Bayesian forecasting to predictive toxicology: The probability of innate carcinogenicity to humans of colorants synthesized from benzidine. Toxicology Letters, 2021, 351, 111-134.	0.4	7
760	Eco-friendly bioprocess using agar plug immobilized Penicillium crustosum PWWS-6 biomass for treatment of wastewater contaminated with toxic Congo red dye for use in agriculture. Industrial Crops and Products, 2021, 170, 113755.	2.5	19
761	A critical review of the aniline transformation fate in azo dye wastewater treatment. Journal of Cleaner Production, 2021, 321, 128971.	4.6	68
762	Application of alkaline MnP immobilized Luffa fibers in mixed azo dyes degradation. Environmental Technology and Innovation, 2021, 24, 101964.	3.0	6

#	ARTICLE	IF	Citations
763	Combining acetone-butanol-ethanol production and methyl orange decolorization in wastewater by fermentation with solid food waste as substrate. Renewable Energy, 2021, 179, 2246-2255.	4.3	3
764	Biochemical, genotoxic, histological and ultrastructural effects on liver and gills of fresh water fish Channa punctatus exposed to textile industry intermediate 2 ABS. Chemosphere, 2022, 287, 132103.	4.2	24
765	Decolorization of the benzidine-based azo dye Congo red by the new strain Shewanella xiamenensis G5-03. Brazilian Journal of Biology, 2021, 82, e237386.	0.4	5
766	Treatment of textile wastewater containing mixed toxic azo dye and chromium (VI) BY haloalkaliphilic bacterial consortium. Chemosphere, 2022, 287, 132280.	4.2	21
767	Elucidation of a mechanism for the heterogeneous electro-fenton process and its application in the green treatment of azo dyes. Chemosphere, 2022, 286, 131832.	4.2	11
768	Bioremediation of soil contaminated with toxic mixed reactive azo dyes by co-cultured cells of Enterobacter cloacae and Bacillus subtilis. Environmental Research, 2022, 204, 112136.	3.7	17
769	Physiological and molecular basis of bioremediation of micropollutants., 2021,, 447-464.		2
770	Sources, fate, and impact of pharmaceutical and personal care products in the environment and their different treatment technologies., 2021,, 391-407.		3
771	Microbial diversity, interactions and biodegradation of hazardous textile wastewater using biological consortium technology., 2021,, 91-117.		0
772	Application of doped semiconductors in the degradation of dyes. , 2021, , 631-646.		1
773	Microbial Nanotechnology in Life Sciences: An Opportunity for Green Applications. Nanotechnology in the Life Sciences, 2021, , 239-269.	0.4	0
775	Role of Bacillus spp. in Agriculture. Advances in Environmental Engineering and Green Technologies Book Series, 2021, , 269-298.	0.3	0
776	Catalytic Oxidation of Tartrazine in Aqueous Solution Using a Pillared Clay with Aluminum and Iron. Bulletin of Chemical Reaction Engineering and Catalysis, 2021, 16, 76-87.	0.5	2
777	Mycogenic synthesis of metallic nanostructures and their use in dye degradation. , 2021, , 509-526.		2
778	Fungal Enzymes for Bioconversion of Lignocellulosic Biomass. Fungal Biology, 2019, , 349-380.	0.3	2
779	Fungal Enzymes for Bioremediation of Contaminated Soil. Fungal Biology, 2019, , 189-215.	0.3	6
780	Biological Methodologies for Treatment of Textile Wastewater. Water Science and Technology Library, 2020, , 77-107.	0.2	6
781	Ecology of Dye Decolorizing Yeasts. , 2014, , 223-240.		5

#	Article	IF	CITATIONS
782	Microbe-Mediated Degradation of Synthetic Dyes in Wastewater. Environmental Science and Engineering, 2015, , 205-241.	0.1	3
783	The Biodegradation of Azo Dyes by Actinobacteria. Environmental Science and Engineering, 2015, , 297-314.	0.1	3
784	Microbial Decolorization of Triphenylmethane Dyes. Environmental Science and Engineering, 2015, , 169-186.	0.1	5
785	Polysaccharide-Based Macromolecular Materials for Decolorization of Textile Effluents. , 2012, , 377-403.		1
786	Review of Utilization Plant-Based Coagulants as Alternatives to Textile Wastewater Treatment. Textile Science and Clothing Technology, 2018, , 27-79.	0.4	23
787	Treatment and Recycling of Wastewater from Textile Industry. Applied Environmental Science and Engineering for A Sustainable Future, 2019, , 225-266.	0.2	25
788	Removal of Dyes from Industrial Effluents by Application of Combined Biological and Physicochemical Treatment Approaches., 2020,, 365-407.		5
789	Dyes: Effect on the Environment and Biosphere and Their Remediation Constraints. , 2020, , 73-94.		7
790	Microbial Electrochemical Dye Degradation: Present State of Art. Environmental and Microbial Biotechnology, 2021, , 323-353.	0.4	1
791	Microalgal bioremediation of heavy metals and dyes. , 2020, , 659-674.		5
792	Up-flow constructed wetland-microbial fuel cell for azo dye, saline, nitrate remediation and bioelectricity generation: From waste to energy approach. Bioresource Technology, 2018, 266, 97-108.	4.8	67
793	Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Chemical Engineering Research and Design, 2020, 143, 138-163.	2.7	475
795	Dyes Contamination in the Environment. , 2017, , 127-176.		1
797	Decolorization of Reactive Black 5 by <i>YarrowiaÂ<i><i>ipolytica</i> NBRC 1658. American Journal of Microbiological Research, 2013, 1, 16-20.</i></i>	0.2	26
799	Microbial Biotreatment of Actual Textile Wastewater in a Continuous Sequential Rice Husk Biofilter and the Microbial Community Involved. PLoS ONE, 2017, 12, e0170562.	1.1	46
800	Review of the use of mesoporous silicas for removing dye from textile wastewater. European Journal of Environmental Sciences, 2014, 4, 116-130.	0.6	32
801	Biodegradation of Acid Scarlet 3R by a New Salt-tolerant Strain Alcaligenes faecalis LJ-3: Character, Enzyme and Kinetics Analysis. Chemical and Biochemical Engineering Quarterly, 2018, 32, 371-381.	0.5	3
802	Recent advances in textile wastewater treatment using microbial consortia. Journal of Textile Engineering & Fashion Technology, 2019, 5, .	0.1	14

#	ARTICLE	IF	CITATIONS
803	CHARACTERIZATION OF DYE DEGRADING POTENTIAL OF SUSPENDED AND NANOPARTICLE IMMOBILIZED CELLS OF PSEUDOMONAS AERUGINOSA AR-7. Journal of Microbiology, Biotechnology and Food Sciences, 2018, 8, 774-780.	0.4	3
804	DEGRADATION OF MONO-AZO DYE IN AQUEOUS SOLUTION USING CAST IRON FILINGS. International Journal of Research in Engineering and Technology, 2013, 02, 227-231.	0.1	3
805	MICROBIAL COMMUNITY ANALYSIS IN ANAEROBIC PALM OIL MILL EFFLUENT (POME) WASTEWATER BY DENATURING GRADIENT GEL ELECTROPHORESIS (DGGE). International Journal of Research in Engineering and Technology, 2015, 04, 1-9.	0.1	4
806	Decolorization of Reactıve Blue 19 Dye By Bacillus Megaterium Isolated From Soil. Hacettepe Journal of Biology and Chemistry, 0, , 193-201.	0.3	1
807	Elucidation of Biochemical Mechanism Involved in Microbial Degradation of 1:1 Metal Complex Dye Containing Simulated Wastewater. International Journal of Current Microbiology and Applied Sciences, 2018, 7, 2774-2789.	0.0	3
808	Reduction of Color Intensity from Textile Dye Wastewater Using Microorganisms: A Review. International Journal of Current Microbiology and Applied Sciences, 2019, 8, 3407-3415.	0.0	13
809	Biological decolorization of azo dyes from textile wastewater effluent by Aspergillus niger. Egyptian Journal of Chemistry, 2019, .	0.1	10
810	Role of Bacterial-Fungal Consortium for Enhancement in the Degradation of Industrial Dyes. Current Genomics, 2020, 21, 283-294.	0.7	12
811	Decolorization, Degradation and Subsequent Toxicity Assessment of Reactive Red 35 by Enterococcus gallinarum. Current Biotechnology, 2016, 5, 325-336.	0.2	5
812	Bioremediation of Simulated Textile Effluent by an Efficient Bio-catalyst Purified from a Novel Pseudomonas fluorescence LiP-RL5. Current Chemical Biology, 2020, 14, 128-139.	0.2	3
813	Characterization of the Degradation Products from the Red Dye 40 by Enterobacteria. Journal of Pure and Applied Microbiology, 2016, 10, 2569-2575.	0.3	2
814	Biodegradation of Model Azo Dye Methyl Red and other Textile Dyes by Isolate Bacillus circulans NPP1. Journal of Pure and Applied Microbiology, 2016, 10, 2793-2800.	0.3	13
815	Biodecolorization and Biodegradation of Azo Dye Reactive Orange-16 by Marine Nocardiopsis sp Iranian Journal of Biotechnology, 2019, 17, 18-26.	0.3	23
816	The Cyclic AMP Receptor Protein, Crp, Is Required for the Decolorization of Acid Yellow 36 in Shewanella putrefaciens CN32. Frontiers in Microbiology, 2020, 11, 596372.	1.5	6
817	Assessment of Bio Elimination and Detoxification of Phenothiazine Dye by Bacillus firmus in Synthetic Wastewater under High Salt Conditions. Journal of Applied Sciences, 2011, 11, 2886-2897.	0.1	4
818	Biosynthesis of Autoinducer-2 as the Possible Mechanism to Enhance Decolourisation of Azo Dye by Citrobacter freundii A1. Journal of Biological Sciences, 2012, 12, 91-97.	0.1	3
819	Microbial Strategies for Discoloration and Detoxification of Azo Dyes from Textile Effluents. Research Journal of Microbiology, 2017, 12, 1-19.	0.2	48
820	Potential Use of Probiotic Consortium Isolated from Kefir for Textile Azo Dye Decolorization. Journal of Microbiology and Biotechnology, 2019, 29, 1629-1635.	0.9	14

#	Article	IF	CITATIONS
821	Application of Genomics and Proteomics in Bioremediation. Advances in Environmental Engineering and Green Technologies Book Series, 2016, , 97-112.	0.3	8
822	Construction and Application of Engineered Bacteria for Bioaugmentation Decolorization of Dyeing Wastewater: A Review. Journal of Geoscience and Environment Protection, 2014, 02, 84-88.	0.2	2
823	Effect of Domestic Wastewater as Co-Substrate on Biological Stain Wastewater Treatment Using Fungal/Bacterial Consortia in Pilot Plant and Greenhouse Reuse. Journal of Water Resource and Protection, 2018, 10, 369-393.	0.3	12
824	Molecular identification of dye degrading bacterial isolates and FT-IR analysis of degraded products. Environmental Engineering Research, 2020, 25, 561-570.	1.5	2
825	Identification and Optimization of Novel NAR-1 Bacterial Consortium for the Biodegradation of Orange II. Insight Biotechnology, 2011, 1, 7-16.	2.0	31
826	Soybean Peroxidase Catalyzed Decoloration of Acid Azo Dyes. Journal of Health and Pollution, 2020, 10, 200307.	1.8	7
827	Optimization of methyl orange decolorization by mono and mixed bacterial culture techniques using statistical designs. African Journal of Microbiology Research, 2012, 6, .	0.4	2
828	Enhancement of biological approach and potential of Lactobacillus delbrueckii in decolorization of textile wastewater - A review. IOSR Journal of Environmental Science, Toxicology and Food Technology, 2014, 8, 06-10.	0.1	12
829	Decolourization of azo dye using a batch bioreactor by an indigenous bacterium Enterobacter aerogenes ES014 from the waste water dye effluent and toxicity analysis. Environmental Research, 2022, 205, 112189.	3.7	28
830	Kinetic studies of photocatalytic degradation of an Azo dye by titania nanoparticles. Research Journal of Textile and Apparel, 2022, 26, 500-514.	0.6	3
831	A review on adsorbent parameters for removal of dye products from industrial wastewater. Water Quality Research Journal of Canada, 2021, 56, 181-193.	1.2	32
832	Environmental Remediation of Toxic Organic Pollutants Using Visible-Light-Activated Cu/La/CeO2/GO Nanocomposites. Materials, 2021, 14, 6143.	1.3	1
833	Comparatively Investigation of Textile Dye Decolorization by a White Rot Fungus and Various Bacterial Strains. Adıyaman University Journal of Science, 0, , .	0.0	0
834	An Overview on Eco-friendly Remediation of Toxic Organic Contaminants from Textile Dyeing Industry Wastewater. Emerging Contaminants and Associated Treatment Technologies, 2022, , 425-456.	0.4	3
835	Sustainable approach for wastewater treatment using microbial fuel cells and green energy generation $\hat{a} \in A$ comprehensive review. Journal of Molecular Liquids, 2021, 344, 117795.	2.3	65
836	In silico Analyses of Flavin Reductase from Citrobacter freundii A1. Insight Bioinformatics, 2012, 2, 1-8.	0.0	0
837	Optimization of Enzymatic Decolourization of Amido black by Laccase from Rigidoporus ulmarius using Response Surface Methodology. IOSR Journal of Environmental Science, Toxicology and Food Technology, 2014, 8, 64-67.	0.1	0
838	Isolation and Charaterization of Dye-Degrading Microorganisms for Treatment of Chromaticity Contained in Industrial Dyeing Wastewater. Journal of Environmental Science International, 2014, 23, 129-142.	0.0	1

#	Article	IF	Citations
839	Recent Advances in Tyrosinase Research as An Industrial Enzyme. KSBB Journal, 2014, 29, 1-8.	0.1	2
840	Bioremedation of Industrial Effluent using Immobilized Cells of Halotolerant Marine Bacterium. Biosciences, Biotechnology Research Asia, 2014, 11, 69-79.	0.2	0
842	Decolorization of Direct Blue. Advances in Environmental Engineering and Green Technologies Book Series, 2016, , 279-294.	0.3	0
843	Hemin Based Biomimetic Oxidative Degradation of Acid Orange 7. Journal of Materials Science and Chemical Engineering, 2016, 04, 26-34.	0.2	0
844	Treatment of Textile Dyes Using Biosorption and Bioaccumulation Techniques. , 2016, , 213-240.		0
845	The role of microalgae in textile dye industrial waste Water recycle (phycoremediation). International Journal of Pharma and Bio Sciences, 2016, 7, .	0.1	0
846	MICROAEROPHILIC AND ANAEROBIC DECOLORIZATION OF AZO DYE IN RICH AND MINIMAL MEDIA BY CITROBACTER SP. STRAIN L17. Jurnal Teknologi (Sciences and Engineering), 2017, 79, .	0.3	0
847	Influence of Azo Dye on Metabolism of Phosphorus Accumulating Organisms Linked to Transformation of Intracellular Storage Products. Journal of Geoscience and Environment Protection, 2018, 06, 1-10.	0.2	0
848	Kinetic and Equilibrium Studies of Adsorption of Reactive Red 120 on Chitin. Hittite Journal of Science & Engineering, 2018, 5, 307-311.	0.2	2
849	Microbial Degradation of Azo Dyes. Advances in Environmental Engineering and Green Technologies Book Series, 2018, , 341-371.	0.3	0
850	Effect of Nitrogen Source on Dye Decolouration by Alginate-immobilized Cells of Pseudomonas aeruginosa and Bacillus subtilis. Research Journal of Environmental Sciences, 2018, 12, 185-191.	0.5	1
851	Decolorization of Reactive Orange 122 as an Organic Pollutant by theSonoelectrochemical Process and Toxicity Evaluation. Journal of Applied Biotechnology Reports, 2018, 5, 117-124.	0.9	O
852	Bioremediation of wastewaters from local textile industries. Natural and Applied Sciences Journal, 2018, 1, 16-25.	0.2	2
853	BIODEGRADATION/ DECOLORIZATION OF SYNTHETIC DYES BY BACTERIAL ISOLATES. International Journal of Agriculture Environment and Bioresearch, 2019, 04, 193-206.	0.0	0
854	Microbial Degradation of Azo Dyes. , 2019, , 1867-1897.		0
855	Performance Evaluation of the Coagulation and Flocculation Process in Removing Pollutants from textile Dyeing Factory Wastewater. MuhandisÄ«-i BihdÄ s ht-i Muḥīá¹; 2019, 6, 251-264.	0.1	1
856	TEMPERATURE EFFECTS ON ADSORPTION RATE FOR AZO DYE REMOVAL FROM TEXTILE WASTE WATER USING ACTIVATED BENTONITE CLAY. NUST Journal of Engineering Sciences, 2020, 12, .	0.2	2
857	Recent Trends in the Utilization of Biosurfactant for the Treatment of Textile Waste and Industrial Effluents. Nanotechnology in the Life Sciences, 2020, , 481-500.	0.4	O

#	Article	IF	CITATIONS
858	Environmental and Health Hazards of Textile Industry Wastewater Pollutants and Its Treatment Approaches., 2020,, 1-24.		3
859	Study of Microbial Decolorization of Indigo Carmine Dye by Bacillus albus. Majallah-i DÄnishgÄh-i 'UlÅ«m-i PizishkÄ«-i ĪlÄm, 2020, 28, 29-39.	0.1	0
861	Bioremediation of Dye Using Mesophilic Bacteria: Mechanism and Parametric Influence. Sustainable Textiles, 2022, , 67-86.	0.4	1
862	Removal of Dyes from Wastewaters in Moving Bed Biofilm Reactors: A Review of Biodegradation Pathways and Treatment Performance. Sustainable Textiles, 2022, , 227-262.	0.4	1
863	Immobilization of Metanil Yellow Decolorizing Mixed Culture FN3 Using Gelling Gum as Matrix for Bioremediation Application. Sustainability, 2021, 13, 36.	1.6	1
864	Adsorption of Phenol in Wastewater Using Nano Grapheme Oxide-Chitosan-Bentonite Absorbent. Taá¹£vÄ«r-i SalÄmat, 2020, 11, 368-380.	0.0	1
865	Phytoremediation: An alternative approach for removal of dyes., 2022,, 369-386.		17
866	Comparative study on the corrosion and self-cleaning behavior of Fe-B-C and Fe-B-P amorphous alloys in methylene blue dye solution degradation. Journal of Non-Crystalline Solids, 2022, 575, 121212.	1.5	10
867	Role of Nanomaterials in the Detoxification of Harmful Dyes. , 2022, , 373-386.		0
868	Isolation and Screening of Bacteria with Ability to Decolorize Selected Synthetic Dyes – Preliminary Results. Architecture Civil Engineering Environment, 2020, 13, 75-86.	0.6	0
869	Environmental Effects and Microbial Detoxification of Textile Dyes. Environmental Chemistry for A Sustainable World, 2020, , 289-326.	0.3	1
870	Termofilik ve Mezofilik Bacillus Türlerini Kullanarak Farklı Foron Boyalarının Renginin Giderimi Üzerine Bir Çalışma. İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi, 0, , .	0.1	0
871	Magnetite Carbon Nanomaterials for Environmental Remediation. Green Energy and Technology, 2021, , 85-122.	0.4	0
872	Optimization of methylene blue degradation by Aspergillus terreus YESM 3 using response surface methodology. Water Science and Technology, 2020, 82, 2007-2018.	1.2	7
873	Biosorption: Principles, and Applications. Lecture Notes in Civil Engineering, 2021, , 501-510.	0.3	2
874	Enzymatic decolorization and degradation of azo dyes. , 2022, , 419-432.		12
875	Nano silver decorating three-dimensional porous wood used as a catalyst for enhancing azo dyes hydrogenation in wastewater. Industrial Crops and Products, 2022, 175, 114268.	2.5	14
876	A review on microbial potential of toxic azo dyes bioremediation in aquatic system., 2022,, 241-261.		6

#	Article	IF	CITATIONS
877	Transformation of aqueous methyl orange to green metabolites using bacterial strains isolated from textile industry effluent. Environmental Technology and Innovation, 2022, 25, 102126.	3.0	16
878	Application of bacterial tyrosinases in organic synthesis. World Journal of Microbiology and Biotechnology, 2022, 38, 2.	1.7	8
879	Novel Perylene-3, 4, 9, 10-tetracarboxylic dianhydride modified Zr-MOFs/Graphene oxide membrane for dye wastewater treatment. Journal of Colloid and Interface Science, 2022, 610, 671-686.	5.0	28
880	Recent Advances in Sensor-Based Detection of Toxic Dyes for Bioremediation Application: a Review. Applied Biochemistry and Biotechnology, 2022, 194, 4745-4764.	1.4	17
881	OPTIMIZATION OF MEDIA COMPONENTS AND PROCESS PARAMETERS FOR MICROBIAL MEDIATED REMEDIATION OF AZO DYES: A REVIEW. Journal of Microbiology, Biotechnology and Food Sciences, 2021, 11, .	0.4	0
882	Performance evaluation of integrated anaerobic and aerobic reactors for treatment of real textile wastewater. International Journal of Environmental Science and Technology, 2022, 19, 10325-10336.	1.8	4
883	Vacuum processing pressure and degradation performance of FePC ribbons in methylene blue solution. Journal of Non-Crystalline Solids, 2022, 576, 121275.	1.5	3
884	Biosorption of Remazol Brilliant Blue R dye onto chemically modified and unmodified Yarrowia lipolytica biomass. Archives of Microbiology, 2022, 204, 128.	1.0	10
885	Mechanism for biodegradation of sulfamethazine by Bacillus cereus H38. Science of the Total Environment, 2022, 809, 152237.	3.9	13
886	Fe-doped Al2O3 nanoplatforms as efficient and recyclable photocatalyst for the dyes remediation. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 426, 113733.	2.0	6
887	Congo red recovery from water using green extraction solvents. Water Resources and Industry, 2022, 27, 100170.	1.9	10
888	Degradation of azo dye RED ME4BL treated with immobilised bimetallic zero-valent iron nanoparticles doped with palladium. International Journal of Environmental Analytical Chemistry, 2023, 103, 9304-9315.	1.8	3
889	Degradation of Azo Dyes: Bacterial Potential for Bioremediation. Sustainability, 2022, 14, 1510.	1.6	55
890	Biofiltration treatment of wastewater through microbial ecology. , 2022, , 19-44.		3
891	An Integrative Approach to Study Bacterial Enzymatic Degradation of Toxic Dyes. Frontiers in Microbiology, 2021, 12, 802544.	1.5	9
892	Decolorization characteristics and mechanism of methyl orange dye by using Stenotrophomonas acidaminiphila EFS1. International Journal of Environmental Science and Technology, 2022, 19, 10353-10362.	1.8	5
893	Porous ZnCl2-Activated Carbon from Shaddock Peel: Methylene Blue Adsorption Behavior. Materials, 2022, 15, 895.	1.3	31
894	Improving Biocatalytic Properties of an Azoreductase <i>via</i> the <i>Nâ€</i> Terminal Fusion of Formate Dehydrogenase. ChemBioChem, 2022, 23, .	1.3	9

#	Article	IF	Citations
895	Recent trends in bioremediation of pollutants by enzymatic approaches. , 2022, , 115-134.		1
896	Advances in dye contamination. , 2022, , 139-162.		1
897	Decolourization and biodegradation of methylene blue dye by a ligninolytic enzyme-producing Bacillus thuringiensis: Degradation products and pathway. Enzyme and Microbial Technology, 2022, 156, 109999.	1.6	42
898	Plasmonic Au–rGO–TiO2 ternary photocatalyst for photocatalytic hydrogen production and dye degradation. Nanotechnology for Environmental Engineering, 2022, 7, 119-137.	2.0	5
899	Identification of molecular basis that underlie enzymatic specificity of AzoRo from Rhodococcus opacus 1CP: A potential NADH:quinone oxidoreductase. Archives of Biochemistry and Biophysics, 2022, 717, 109123.	1.4	5
900	In vitro and in silico analysis of Brilliant Black degradation by Actinobacteria and a Paraburkholderia sp Genomics, 2022, 114, 110266.	1.3	4
901	Green synthesized CuI as an adsorbent and a photocatalyst in the removal of aqueous reactive red 256 & Lamp; reactive black 5 dyes. Surfaces and Interfaces, 2022, 29, 101724.	1.5	5
902	Decolorization and toxicity evaluation of simulated textile effluent via natural microbial consortia in attached growth reactors. Environmental Technology and Innovation, 2022, 26, 102284.	3.0	15
903	Utilization of nano-biosorbents based on pine needles and banana peel for methylene blue removal: equilibrium, kinetics, thermodynamic study, and application. Biomass Conversion and Biorefinery, 2022, 12, 1787-1802.	2.9	12
904	Adsorptive Removal of Azo Dye New Coccine Using High-Performance Adsorbent-Based Polycation-Modified Nano-Alpha Alumina Particles. Journal of Analytical Methods in Chemistry, 2022, 2022, 1-11.	0.7	2
905	Biodegradation of methyl red dye by a novel actinobacterium Zhihengliuella sp. ISTPL4: Kinetic studies, isotherm and biodegradation pathway. Environmental Technology and Innovation, 2022, 26, 102348.	3.0	25
907	Bacterial and fungal degradation of dyes. , 2022, , 23-43.		2
911	Anaerobic Processes in Dye Removal. Sustainable Textiles, 2022, , 95-118.	0.4	3
912	Overview of Biological Technologies for Azo Dye Removal. Sustainable Textiles, 2022, , 1-38.	0.4	1
913	Microbial degradation of dye-containing wastewater., 2022,, 159-175.		1
914	Role of Fungi in the Removal of Synthetic Dyes from Textile Industry Effluents. Sustainable Textiles, 2022, , 157-166.	0.4	0
915	Role of Moving Bed Bioreactor (MBBR) in Dye Removal. Sustainable Textiles, 2022, , 155-199.	0.4	0
917	Aerobic Biological Units in Dye Removal. Sustainable Textiles, 2022, , 57-94.	0.4	0

#	Article	lF	Citations
918	Population dynamics of microbial native consortia efficient for textile wastewater degradation. Environmental Science: Water Research and Technology, 2022, 8, 1036-1047.	1.2	1
920	Stability of Acid Black 210 dye in Tannery Industry Effluent in Aqueous Solution Is Limited and Generates Harmful Subproducts. Frontiers in Environmental Science, 2022, 10, .	1.5	2
921	Transcriptomic Analysis of Degradative Pathways for Azo Dye Acid Blue 113 in Sphingomonas melonis B-2 from the Dye Wastewater Treatment Process. Microorganisms, 2022, 10, 438.	1.6	13
922	Microbial approaches for sustainable remediation of dye-contaminated wastewater: a review. Archives of Microbiology, 2022, 204, 169.	1.0	20
923	Photocatalytic remediation of methylene blue and antibacterial activity study using Schiff base-Cu complexes. Environmental Science and Pollution Research, 2022, 29, 54318-54329.	2.7	14
924	The Decolorization and Phytotoxic Efficiency of Jackfruit Seed on a Textile Dye Novacron Blue. Journal of Engineering Advancements, 0 , , 6 - 11 .	0.7	3
925	Enhanced Bioremediation Potential of Shewanella decolorationis RNA Polymerase Mutants and Evidence for Novel Azo Dye Biodegradation Pathways. Frontiers in Microbiology, 2022, 13, 843807.	1.5	0
926	Degradation of Aqueous Methylene Blue by Polybutylene Adipate Terephthalate (PBAT) Cadmium Selenide Quantum Dots (QDs). Analytical Letters, 0, , 1-15.	1.0	0
927	Simultaneous removal of aromatic pollutants and nitrate at high concentrations by hypersaline denitrification:Long-term continuous experiments investigation. Water Research, 2022, 216, 118292.	5.3	16
928	Treatability of effluent from small scale dye shop using water hyacinth. Materials Today: Proceedings, 2022, 61, 579-586.	0.9	7
929	Bioremediation of textile industrial effluents by <i>Fomitopsis pinicola</i> IEBL-4 for environmental sustainability. Human and Ecological Risk Assessment (HERA), 2023, 29, 285-302.	1.7	16
930	Ultrasound aided sonocatalytic degradation of Rhodamine B with graphitic carbon nitride wrapped zinc sulphide nanocatalyst. Ceramics International, 2022, 48, 10271-10279.	2.3	13
931	Detection of nitrobenzene in pristine and metal decorated 2D dichalcogenide VSe2: Perspectives from density functional theory. Surfaces and Interfaces, 2022, 29, 101816.	1.5	14
932	Synthesis of chitosan–magnetite gel microparticles with improved stability and magnetic properties: A study on their adsorption, recoverability, and reusability in the removal of monovalent and multivalent azo dyes. Reactive and Functional Polymers, 2022, 173, 105220.	2.0	12
933	Azo-Dye-Functionalized Polycarbonate Membranes for Textile Dye and Nitrate Ion Removal. Micromachines, 2022, 13, 577.	1.4	3
934	Highly efficient adsorption of malachite green dye onto a cross-linked pH-responsive cycloterpolymer resin: Kinetic, equilibrium and thermodynamic studies. Journal of Molecular Liquids, 2022, 357, 119115.	2.3	24
935	Protective effect of \hat{I}^2 -cyclodextrin to microorganisms during anaerobic degradation of azo dyes. International Biodeterioration and Biodegradation, 2022, 170, 105401.	1.9	4
936	Genotoxicity assessment of textile waste contaminated soil and characterization of textile dye degradation by a novel indigenous bacterium Ochrobactrum intermedium BS39. Chemosphere, 2022, 299, 134082.	4.2	8

#	ARTICLE	IF	CITATIONS
937	Photocatalytic removal of toxic dyes, liquorice and tetracycline wastewaters by a mesoporous photocatalyst under irradiation of different lamps and sunlight. Journal of Environmental Management, 2022, 313, 115023.	3.8	17
938	Biodegradation of Reactive Yellow-145 azo dye using bacterial consortium: A deterministic analysis based on degradable Metabolite, phytotoxicity and genotoxicity study. Chemosphere, 2022, 300, 134504.	4.2	19
939	Experimental and theoretical spectroscopic characterization, Hirshfield surface analysis, TD-DFT calculation, and nonlinear optical properties of (E)-1-[(2,4,6tribromophenyl)diazenyl]-naphthalen-2-ol azo dye. Journal of Molecular Structure, 2022, 1261, 132887.	1.8	7
941	Biodegradation of Reactive Red 198 by textile effluent adapted microbial strains. Archives of Microbiology, 2022, 204, 12.	1.0	7
942	An Iron-Based High-Entropy Alloy with Highly Efficient Degradation for p-Nitrophenol. Acta Metallurgica Sinica (English Letters), 0, , 1.	1.5	0
943	Microbial Degradation of Azo Dyes: Approaches and Prospects for a Hazard-Free Conversion by Microorganisms. International Journal of Environmental Research and Public Health, 2022, 19, 4740.	1.2	43
944	Reduction and removal of methylene blue from aqueous solutions via recyclable magnetic gold nanomaterials. Surfaces and Interfaces, 2022, 31, 101970.	1.5	4
956	Bacterial Pigments: An Untapped Colorful Microbial World. Microorganisms for Sustainability, 2022, , 285-307.	0.4	1
957	Emerging dye contaminants of industrial origin and their enzyme-assisted biodegradation. , 2022, , 79-102.		2
958	Decolorization of Azo Dye-Contaminated Water using Microbes: A Review. Lecture Notes in Civil Engineering, 2022, , 821-835.	0.3	3
961	Magnetic Nanoparticle–Polymer Composites Loaded with Hydrophobic Sensitizers for Photodegradation of Azoic Dyes. ACS Applied Nano Materials, 2022, 5, 7460-7470.	2.4	7
962	Biodegradation of the Azo Dye Airedale Yellow CHD: Understanding using residuals. Journal of Experimental Biology and Agricultural Sciences, 2022, 10, 430-439.	0.1	0
963	Algae for Wastewater Treatment and Production of Biofuels and Bioproducts. International Journal of Environmental Research, 2022, 16 , .	1.1	3
964	Biochemical and Structural Properties of a High-Temperature-Active Laccase from Bacillus pumilus and Its Application in the Decolorization of Food Dyes. Foods, 2022, 11, 1387.	1.9	6
965	Bioremoval of Acid Red 14 dye by Wickerhamomyces anomalus biomass: kinetic and thermodynamic study, characterization of physicochemical interactions, and statistical optimization of the biosorption process. Biomass Conversion and Biorefinery, 2024, 14, 2829-2848.	2.9	8
966	Biodegradation, Decolorization, and Detoxification of Di-Azo Dye Direct Red 81 by Halotolerant, Alkali-Thermo-Tolerant Bacterial Mixed Cultures. Microorganisms, 2022, 10, 994.	1.6	18
967	Biodegradation of Textile Dye Wastewater with the Application of Response Surface Methodology (RSM): A Factorial Design Approach. Trends in Sciences, 2022, 19, 4168.	0.2	1
968	Potential of Piper betle@Co3O4 nanoparticles as high-performance photocatalysts for the removal of industrial dyes. Journal of Cleaner Production, 2022, 361, 132242.	4.6	5

#	Article	IF	Citations
969	Microbial consortium engineering for the improvement of biochemicals production., 2022,, 201-233.		1
970	Burkholderia cepacia strain IrV1 multi-resistant to copper and dyes isolated from laboratory wastewater effluent. Biodiversitas, 2022, 23, .	0.2	1
971	Towards passive bioremediation of dye-bearing effluents using hydrous ferric oxide wastes: Mechanisms, products and microbiology. Journal of Environmental Management, 2022, 317, 115332.	3.8	1
972	Optimization of the Decolorization of the Reactive Black 5 by a Laccase-like Active Cell-Free Supernatant from Coriolopsis gallica. Microorganisms, 2022, 10, 1137.	1.6	6
973	Decolorization of various dyes by microorganisms and green-synthesized nanoparticles: current and future perspective. Environmental Science and Pollution Research, 2023, 30, 124638-124653.	2.7	11
974	Electrospun polyacrylonitrile-Moringa Olifera based nanofibrous bio-sorbent for remediation of Congo red dye. Journal of Environmental Management, 2022, 317, 115294.	3.8	9
975	Biotechnology: the sustainable tool for effective treatment of wastewater., 2022,, 347-380.		1
976	Engineering globins for efficient biodegradation of malachite green: two case studies of myoglobin and neuroglobin. RSC Advances, 2022, 12, 18654-18660.	1.7	4
977	Microbial consortia for pollution remediationâ€"Success stories. , 2022, , 95-121.		1
978	A comprehensive review on sustainable greener nanoparticles for efficient dye degradation. Environmental Science and Pollution Research, 2022, 29, 55415-55436.	2.7	9
979	Microbial Remediation of Textile Dye Acid Orange by a Novel Bacterial Consortium SPB92. Frontiers in Environmental Science, $0,10,10$	1.5	4
980	Adaptive Response of Thermophiles to Redox Stress and Their Role in the Process of dye Degradation From Textile Industry Wastewater. Frontiers in Physiology, 0, 13, .	1.3	6
981	UVA-irradiated dual photoanodes and dual cathodes photocatalytic fuel cell: mechanisms and Reactive Red 120 degradation pathways. Environmental Science and Pollution Research, 2022, 29, 81368-81382.	2.7	2
982	Biological Degradation of the Azo Dye Basic Orange 2 by Escherichia coli: A Sustainable and Ecofriendly Approach for the Treatment of Textile Wastewater. Water (Switzerland), 2022, 14, 2063.	1.2	53
983	Screening and identification of azo dye decolorizers from mangrove rhizospheric soil. Environmental Science and Pollution Research, 2022, 29, 83496-83511.	2.7	2
984	Statistical optimization of process conditions for pyrvinium pamoate elimination using UV/zeoliteâ€based nanostructures/H ₂ O ₂ . Micro and Nano Letters, 0, , .	0.6	0
985	Evaluation of global research trends in photocatalytic degradation of dye effluents using scientometrics analysis. Journal of Environmental Management, 2022, 318, 115600.	3.8	3
986	Analytical detection methods for azo dyes: A focus on comparative limitations and prospects of bio-sensing and electrochemical nano-detection. Journal of Food Composition and Analysis, 2022, 114, 104778.	1.9	12

#	Article	IF	CITATIONS
987	Exploring potential bacterial populations for enhanced anthraquinone dyes biodegradation: a critical review. Biotechnology Letters, 2022, 44, 1011-1025.	1.1	5
988	Characterization of Immobilized Magnetic Fe3O4 Nanoparticles on Raoultella Ornithinolytica sp. and Its Application for Azo Dye Removal. Applied Biochemistry and Biotechnology, 2022, 194, 6068-6090.	1.4	3
989	In situ fabrication of AgVO3/BiVO4 graphene aerogels with enhanced photocatalytic activity. Australian Journal of Chemistry, 2022, 75, 387-398.	0.5	3
990	Effect of Co-pollutants on the Photocatalytic Activity of Fe doped ZnO Nanoparticles on the Degradation of Methylene Blue. , 2022, , .		1
991	Recent advances in biodecolorization and biodegradation of environmental threatening textile finishing dyes. 3 Biotech, 2022, 12, .	1,1	6
992	Predicting the biodegradation of the azo dye Tertracid Red E using residual plots. Materials Today: Proceedings, 2023, 72, 317-323.	0.9	2
993	Biodegradation of Azo Dye Methyl Red by Pseudomonas aeruginosa: Optimization of Process Conditions. International Journal of Environmental Research and Public Health, 2022, 19, 9962.	1,2	37
994	A comprehensive review of food gels: formation mechanisms, functions, applications, and challenges. Critical Reviews in Food Science and Nutrition, 2024, 64, 760-782.	5.4	5
995	Photocatalytic degradation of azo dyes in textile wastewater by Polyaniline composite catalyst-a review. Scientific African, 2022, 17, e01305.	0.7	13
996	Photo-catalyst for wastewater treatment: A review of modified Fenton, and their reaction kinetics. Applied Surface Science Advances, 2022, 11, 100282.	2.9	13
997	Remedial strategies for abating 1,4-dioxane pollution-special emphasis on diverse biotechnological interventions. Environmental Research, 2022, 214, 113939.	3.7	6
999	Spatiotemporal distribution of microorganisms in a full-scale anaerobic baffled reactor–anoxic/oxic treatment plant for printing and dyeing wastewater. Journal of Water Process Engineering, 2022, 49, 103090.	2.6	8
1000	Toxicity and decontamination strategies of Congo red dye. Groundwater for Sustainable Development, 2022, 19, 100844.	2.3	49
1001	Evaluating the potential of thermo-alkaliphilic microbial consortia for azo dye biodegradation under anaerobic-aerobic conditions: Optimization and microbial diversity analysis. Journal of Environmental Management, 2022, 323, 116235.	3.8	12
1002	Biodegradation of textile dye Rhodamine-B by Brevundimonas diminuta and screening of their breakdown metabolites. Chemosphere, 2022, 308, 136266.	4.2	27
1003	Biofilm-mediated decolorization, degradation and detoxification of synthetic effluent by novel biofilm-producing bacteria isolated from textile dyeing effluent. Environmental Pollution, 2022, 314, 120237.	3.7	11
1004	Electrostimulation for promoted microbial community and enhanced biodegradation of refractory azo dyes. Journal of Environmental Chemical Engineering, 2022, 10, 108626.	3.3	7
1005	Microbes as an effective tool to mitigate emerging pollutants. , 2022, , 119-149.		O

#	Article	IF	CITATIONS
1006	Biodegradation of Azo Dye Pollutants Using Microorganisms. , 2022, , 1-29.		1
1007	Genetically modified microbes as an effective tool for sustainable solid waste management., 2022,, 255-271.		O
1008	Adsorptive Analysis of Azo Dyes on Activated Carbon Prepared from Phyllanthus emblica Fruit Stone Sequentially via Hydrothermal Treatment. Agronomy, 2022, 12, 2134.	1.3	2
1009	Overview assessment of risk evaluation and treatment technologies for heavy metal pollution of water and soil. Journal of Cleaner Production, 2022, 379, 134043.	4.6	84
1011	BIODEGRADATION OF METHYLENE BLUE BY BACTERIA STRAINS ISOLATED FROM CONTAMINATED SOIL. , 2022, 51, 25-35.		0
1012	Various Approaches for the Detoxification of Toxic Dyes in Wastewater. Processes, 2022, 10, 1968.	1.3	51
1013	Biobased hydrogels and their composite containing MgMOF74 for the removal of textile dyes and wastewater treatment. Water Environment Research, 2022, 94, .	1.3	0
1014	Bacillus subtilis: As an Efficient Bacterial Strain for the Reclamation of Water Loaded with Textile Azo Dye, Orange II. International Journal of Molecular Sciences, 2022, 23, 10637.	1.8	20
1015	An integrative study for efficient removal of hazardous azo dye using microbe-immobilized cow dung biochar in a continuous packed bed reactor. Renewable Energy, 2022, 200, 1589-1601.	4.3	9
1016	Insights into the decolorization of mono and diazo dyes in single and binary dyes containing wastewater and electricity generation in up-flow constructed wetland coupled microbial fuel cell. Environmental Science and Pollution Research, 2023, 30, 17546-17563.	2.7	6
1017	Biodecolorization and degradation of textile azo dyes using Lysinibacillus sphaericus MTCC 9523. Frontiers in Environmental Science, 0, 10, .	1.5	9
1018	Insight into the adsorption of dyes onto chitin in aqueous solution: An experimental and computational study. Arabian Journal of Chemistry, 2022, 15, 104293.	2.3	18
1019	Architectural MCM 41 was anchored to the Schiff base Co(II) complex to enhance methylene blue dye degradation and mimic activity. Environmental Research, 2022, 215, 114325.	3.7	11
1020	Pillararene-functionalized rhodium nanoparticles for efficient catalytic reduction and photothermal sterilization. Chemical Communications, 2022, 58, 13079-13082.	2.2	6
1021	Microbial Degradation, Spectral analysis and Toxicological Assessment of Malachite Green Dye by Streptomyces exfoliatus. Molecules, 2022, 27, 6456.	1.7	14
1022	EFFECT OF CARBON NANOMATERIALS CONCENTRATION IN NANOCOMPOSITE MEMBRANE FOR METHYL BLUE DYE REMOVAL. Jurnal Teknologi (Sciences and Engineering), 2022, 84, 19-27.	0.3	2
1023	Efficient Extraction of Methylene Blue from Aqueous Solution Using Phosphine-Based Deep Eutectic Solvents with Carboxylic Acid. Processes, 2022, 10, 2152.	1.3	3
1024	Sorption potential of microplastics for azo- and phthalocyanine printing dyes. Dyes and Pigments, 2023, 209, 110884.	2.0	7

#	Article	IF	CITATIONS
1025	Preparing Cu2O/Al2O3 Coating via an Electrochemical Method for the Degradation of Methyl Orange in the Process of Catalytic Wet Hydrogen Peroxide Oxidation. Catalysts, 2022, 12, 1308.	1.6	2
1026	Synthesis and Properties of Transition Metal Complexes Containing Thiazole Derived Schiff Base Ligands. Oriental Journal of Chemistry, 2022, 38, 1209-1216.	0.1	0
1027	Low-frequency acoustic irradiation coupled photocatalytic degradation of dye pollutant using LaNi0.5Co0.5O3/g-C3N4 nanocatalyst. Journal of the Taiwan Institute of Chemical Engineers, 2022, 140, 104570.	2.7	6
1028	Phycoremediation for carbon neutrality and circular economy: Potential, trends, and challenges. Bioresource Technology, 2023, 367, 128257.	4.8	7
1029	Enhanced photocatalytic organic dye degradation activities of pristine and Zn-doped V2O5 nanoparticles. Applied Surface Science, 2023, 611, 155629.	3.1	23
1030	Wastewater reclamation trends in Thailand. Water Science and Technology, 2022, 86, 2878-2911.	1.2	3
1031	Effective strategies for improved optoelectronic properties of graphitic carbon nitride: A review. Results in Chemistry, 2023, 5, 100699.	0.9	0
1032	Evaluation of Congo red dye decolorization and degradation potential of an endophyte Colletotrichum gloeosporioides isolated from Thevetia peruviana (Pers.) K. Schum Folia Microbiologica, 0, , .	1.1	4
1033	The Integration of Methylene Blue Decolorization with Polyhydroxyalkanoate (PHA) Production Using Enterobacter Strain TS1L. Journal of Polymers and the Environment, 2023, 31, 1202-1208.	2.4	1
1034	Light-driven biodegradation of azo dyes by Shewanella decolorationis-CdS biohybrid in wastewater lacking electron donors. Applied Microbiology and Biotechnology, 2023, 107, 447-457.	1.7	3
1035	Enhanced decolourisation and degradation of azo dyes using wild versus mutagenic improved bacterial strain: a review. Vegetos, 2023, 36, 28-37.	0.8	3
1036	Biodegradation of Chrysophenine GX using Candida Albicans (NCIM 3665). Materials Today: Proceedings, 2023, 77, 350-357.	0.9	0
1037	Role of Various Physicochemical Factors in Enhancing Microbial Potential for Bioremediation of Synthetic Dyes. , 0, , .		0
1038	Bioremediation of reactive orange 16 by industrial effluent-adapted bacterial consortium VITPBC6: process optimization using response surface methodology (RSM), enzyme kinetics, pathway elucidation, and detoxification. Environmental Science and Pollution Research, 2023, 30, 35450-35477.	2.7	5
1039	Biodegradation of Acid Orange 7 dye using consortium of novel bacterial strains isolated from Persian Gulf water and soil contaminated with petroleum compounds. Biomass Conversion and Biorefinery, 2023, 13, 13695-13706.	2.9	5
1040	Aplicaciones biotecnológicas de la degradación bioquÃmica de madera por acción de hongos Xilófagos: pudrición parda y blanca. TecnologÃa En Marcha, 0, , .	0.1	0
1041	Nanomaterials as a Sustainable Choice for Treating Wastewater: A Review. Materials, 2022, 15, 8576.	1.3	6
1042	Biodegradation of Environmental Pollutants by Marine Yeasts. Environmental Challenges and Solutions, 2023, , 79-91.	0.5	4

#	Article	IF	CITATIONS
1043	photocatalytic degradation of TiO2 via incorporating Ti3C2 MXene for methylene blue removal from water. Catalysis Communications, 2023, 174, 106594.	1.6	15
1044	Construction of Shapeâ€Controlled MgO Microstructures by Natural Bischofite for Costâ€Efficient Dye Adsorption. ChemistrySelect, 2023, 8, .	0.7	0
1045	Removal of Reactive Blue 19 dye from synthetic waste water using UV/H $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 2 $<$ /sub $>$ and UV/Cl advanced oxidation processes. Remediation, 0, , .	1.1	1
1046	Photocatalytic dye degradation by recyclable Zn-Co magnetic ferrites at ambient conditions. International Journal of Environmental Analytical Chemistry, 0 , , 1 -21.	1.8	1
1047	Azo Appended Modified Lawsone Derived Ruâ€Systems with Multiâ€Redox Entities. Competitive Electronic Form and the Question of Azo Reduction. Chemistry - A European Journal, 2023, 29, .	1.7	1
1048	A review on biological synthesis of ZnO nanostructures and its application in photocatalysis mediated dye degradation: An overview. Luminescence, 2023, 38, 1111-1122.	1.5	3
1049	The Removal of Pollutants by Sonication using Nitrogen Gas in Textile Industry Wastewater: Comparison of Energy Consumption and Cost Analysis with Other Advanced Oxidation Processes. WSEAS Transactions on Environment and Development, 2023, 19, 45-69.	0.3	1
1050	Global scenario and technologies for the treatment of textile wastewater., 2023, , 1-43.		0
1051	<i>Streptomyces</i> spp. as biocatalyst sources in pulp and paper and textile industries: Biodegradation, bioconversion and valorization of waste. Microbial Biotechnology, 2024, 17, .	2.0	2
1052	Coupling effect of ionophore and oxidoreductases produced by halotolerant novel fungal strain Trametes flavida WTFP2 on dye wastewater treatment: An optimized green bioprocess. Journal of Environmental Chemical Engineering, 2023, 11, 109629.	3.3	3
1053	Toxicity of malachite green on plants and its phytoremediation: A review. Regional Studies in Marine Science, 2023, 62, 102911.	0.4	12
1054	The versatility of <i>Penicillium</i> species to degrade organic pollutants and its use for wastewater treatment. Studies in Fungi, 2023, 8, 1-10.	0.5	1
1055	Direct and sulfide mediated treatment of textile effluents in acetate and ethanol-fed upflow sulfidogenic bioreactors. International Journal of Environmental Science and Technology, 0, , .	1.8	0
1056	The role of microbes and enzymes for bioelectricity generation: a belief toward global sustainability. , 2023, , 709-751.		0
1057	Optimization Studies on Methyl Orange (MO) Dye Adsorption using Activated Carbon Nanoadsorbent of Ocimum basilicum Linn Leaves. Journal of Nanomaterials, 2023, 2023, 1-14.	1.5	3
1058	Isolation and identification of naturally occurring textile effluent-degrading bacteria and evaluation of their ability to inhibit potentially toxic elements. Results in Engineering, 2023, 17, 100967.	2.2	4
1059	Eco-sustainable bioremediation of industrial azodye micropollutants by extremophilic plant growth promoting bacterium Halomonas desertis G11. MOJ Applied Bionics and Biomechanics, 2022, 6, 13-19.	0.2	0
1060	Biodegradation of Azo Dye Pollutants Using Microorganisms. , 2023, , 781-809.		0

#	ARTICLE	IF	Citations
1061	Metal-organic framework and its derivative nanoparticles for effective textile wastewater treatment. , 2023, , 155-188.		0
1062	Role of analytical techniques in the treatment of synthetic dyes and textile effluent., 2023,, 303-338.		0
1063	Process affecting parameters of dye bioremediation and its optimization by mathematical and statistical tools., 2023,, 539-566.		0
1064	α-Ni(OH)2 /Fe doped ZnO nanocomposites: Effective photo-elimination for methyl green and Congo red contaminants. Optical Materials, 2023, 138, 113636.	1.7	0
1065	Removal of Erythrosine B dye from wastewater by <i>Penicillium italicum</i> : experimental, DFT, and molecular docking studies. Journal of Biomolecular Structure and Dynamics, 2023, 41, 14212-14223.	2.0	5
1067	Impact of textile dyes on human health and bioremediation of textile industry effluent using microorganisms: current status and future prospects. Journal of Applied Microbiology, 2023, 134, .	1.4	19
1068	Effect of Sublethal Concentrations of Zinc Oxide Nanoparticles on Bacillus cereus. Pathogens, 2023, 12, 485.	1.2	2
1069	Photocatalytic degradation of organic dye under UV light irradiation using hybrid nanostructures. Materials Today: Proceedings, 2023, , .	0.9	0
1070	Nanodiamonds improve amaranth biodegradation in a lab-scale biofilter. Biotechnology and Biotechnological Equipment, 2023, 37, 317-328.	0.5	0
1071	Bioremediation of Textile Dyes for Sustainable Environment—A Review. , 2023, , 447-460.		0
1072	Biodecolorization of Cationic Red X-GRL by Immobilized Shewanella oneidensis MR-1. Water, Air, and Soil Pollution, 2023, 234, .	1.1	2
1073	Synthesis and characterization of TiO2 \hat{a} e"x% curcumin nanocomposites (with x \hat{a} e%= \hat{a} e%3, 5, and 10): application to the photocatalytic degradation of methylene blue. Reaction Kinetics, Mechanisms and Catalysis, 0, , .	on 0.8	1
1086	Advancements on Biotechnological and Microbial Biodegradation of Textile Wastewater., 2023,, 77-93.		0
1089	Development strategies for pharmaceutical waste management: in view of healthcare perspectives. , 2023, , 97-121.		0
1098	Bioremediation of industrial dye waste effluents aided by GIS applications: a comprehensive review. Environment, Development and Sustainability, 0, , .	2.7	0
1107	Photoactive Titanium Dioxide Nanoparticles Hybrid for Dye Removal Under Light Irradiation. , 2023, , 433-469.		0
1108	Decolourization of Textile Dyes Using CNT-Based Hybrid Materials. , 2023, , 119-156.		0
1125	Emerging Frontiers of Microbes as Liquid Waste Recycler. , 2023, , 3-35.		O

#	Article	IF	CITATIONS
1132	Utility of Nanotechnology in Dye Degradation. , 2023, , 51-84.		0
1146	Ponds covered with Lemna minor treating dyes. , 2024, , 779-827.		O