Effect of platinum doping of activated carbon on hydrog metal-organic frameworks-5

International Journal of Hydrogen Energy 36, 8381-8387 DOI: 10.1016/j.ijhydene.2011.03.038

Citation Report

#	Article	IF	CITATIONS
1	Effect of Zn/Co ratio in MOF-74 type materials containing exposed metal sites on their hydrogen adsorption behaviour and on their band gap energy. International Journal of Hydrogen Energy, 2011, 36, 10834-10844.	3.8	124
2	Lithium-decorated oxidized porous graphene for hydrogen storage by first principles study. Journal of Applied Physics, 2012, 112, 124312.	1.1	30
3	Adsorption Behaviors of Graphene and Graphene-related Materials. , 2012, , 435-467.		1
4	Molecular hydrogen and spiltover hydrogen storage on high surface area carbon sorbents. Carbon, 2012, 50, 3134-3140.	5.4	59
5	Extraordinary catalytic effect of Laves phase Cr and Mn alloys on hydrogen dissociation and absorption. International Journal of Hydrogen Energy, 2012, 37, 1509-1517.	3.8	32
6	Effects of structural modifications on the hydrogen storage capacity of MOF-5. International Journal of Hydrogen Energy, 2012, 37, 5777-5783.	3.8	31
7	Synthesis of a honeycomb-like Cu-based metal–organic framework and its carbon dioxide adsorption behaviour. Dalton Transactions, 2013, 42, 2392-2398.	1.6	174
8	Nanostructured adsorbents for hydrogen storage at ambient temperature: high-pressure measurements and factors influencing hydrogen spillover. RSC Advances, 2013, 3, 23935.	1.7	35
9	Synthesis and hydrogen-storage performance of interpenetrated MOF-5/MWCNTs hybrid composite with high mesoporosity. International Journal of Hydrogen Energy, 2013, 38, 10950-10955.	3.8	55
10	Ordered nanoporous carbon for increasing CO2 capture. Journal of Solid State Chemistry, 2013, 197, 361-365.	1.4	43
11	Investigation on Hydrogenation of Metal–Organic Frameworks HKUST-1, MIL-53, and ZIF-8 by Hydrogen Spillover. Journal of Physical Chemistry C, 2013, 117, 7565-7576.	1.5	131
12	Framework-solvent interactional mechanism and effect of NMP/DMF on solvothermal synthesis of [Zn4O(BDC)3]8. Transactions of Nonferrous Metals Society of China, 2014, 24, 3722-3731.	1.7	13
13	Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy and Environmental Science, 2014, 7, 1250-1280.	15.6	1,229
14	Enhanced room-temperature hydrogen storage capacity in Pt-loaded graphene oxide/HKUST-1 composites. International Journal of Hydrogen Energy, 2014, 39, 2160-2167.	3.8	95
15	Hydrogen Storage in Metal-Organic Frameworks: A Review. Electrochimica Acta, 2014, 128, 368-392.	2.6	329
16	Pt-doped graphene oxide/MIL-101 nanocomposites exhibiting enhanced hydrogen uptake at ambient temperature. RSC Advances, 2014, 4, 28908-28913.	1.7	26
17	Hydrogen Storage with Spectroscopic Identification of Chemisorption Sites in Cu-TDPAT via Spillover from a Pt/Activated Carbon Catalyst. Journal of Physical Chemistry C, 2014, 118, 26750-26763.	1.5	20
18	High-pressure hydrogen storage on modified MIL-101 metal-organic framework. International Journal of Energy Research, 2014, 38, 1562-1570.	2.2	25

#	Article	IF	CITATIONS
19	Stability and hydrogen adsorption of metal–organic frameworks prepared via different catalyst doping methods. Journal of Catalysis, 2014, 318, 128-142.	3.1	29
20	Preparation and characterization of multi-walled carbon nanotubes impregnated with polyethyleneimine for carbon dioxide capture. International Journal of Hydrogen Energy, 2015, 40, 3415-3421.	3.8	65
21	High-capacity room-temperature hydrogen storage of zeolitic imidazolate framework/graphene oxide promoted by platinum metal catalyst. International Journal of Hydrogen Energy, 2015, 40, 12275-12285.	3.8	69
22	A review on solid adsorbents for carbon dioxide capture. Journal of Industrial and Engineering Chemistry, 2015, 23, 1-11.	2.9	540
23	Enhancement of hydrogen storage capacity and hydrostability of metal–organic frameworks (MOFs) with surface-loaded platinum nanoparticles and carbon black. Microporous and Mesoporous Materials, 2015, 202, 8-15.	2.2	56
24	Metal–organic frameworks for hydrogen storage. , 2016, , 163-188.		7
25	Beneficial cooperative effect between Pd nanoparticles and ZIF-8 material for hydrogen storage. International Journal of Hydrogen Energy, 2016, 41, 19439-19446.	3.8	18
26	Effect of hybridization on the value-added activated carbon materials. International Journal of Industrial Chemistry, 2016, 7, 249-264.	3.1	13
27	Hydrogen adsorption on Pt-decorated closed-end armchair (3,3), (4,4) and (5,5) single-walled carbon nanotubes. Molecular Physics, 2016, 114, 3508-3517.	0.8	7
28	Composites of metal–organic frameworks and carbon-based materials: preparations, functionalities and applications. Journal of Materials Chemistry A, 2016, 4, 3584-3616.	5.2	301
29	Hydrogen storage characteristics of carbon fibers derived from rice straw and paper mulberry. Materials Letters, 2016, 167, 18-21.	1.3	18
31	Optimizing parameters affecting synthetize of CuBTC using response surface methodology and development of AC@CuBTC composite for enhanced hydrogen uptake. International Journal of Hydrogen Energy, 2018, 43, 6654-6665.	3.8	16
33	Structure and adsorptive desulfurization performance of the composite material MOF-5@AC. New Journal of Chemistry, 2018, 42, 3840-3850.	1.4	53
34	Modification of Cu/Zn/Al2O3 Catalyst by Activated Carbon Based Metal Organic Frameworks as Precursor for Hydrogen Production. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 585-593.	1.9	7
35	Hydrogen Storage in Metal-Organic Frameworks. Series on Chemistry, Energy and the Environment, 2018, , 183-205.	0.3	0
36	Photocatalytic Hydrogen Evolution via Water Splitting: A Short Review. Catalysts, 2018, 8, 655.	1.6	49
37	Modification of a Copperâ€Based Metal–Organic Framework with Graphene Oxide for the Removal of Sulfur Compounds. European Journal of Inorganic Chemistry, 2018, 2018, 2768-2775.	1.0	9
38	Synthesis of PAN/PVDF nanofiber composites-based carbon adsorbents for CO2 capture. Composites Part B: Engineering, 2019, 156, 95-99.	5.9	53

#	Article	IF	Citations
39	Hydrogen storage in carbon materials—A review. Energy Storage, 2019, 1, e35.	2.3	240
40	Effect of ammonia and boron modifications on the surface and hydrogen sorption characteristics of activated carbons from coal. International Journal of Hydrogen Energy, 2020, 45, 10494-10506.	3.8	28
41	Borophene and Boron Fullerene Materials in Hydrogen Storage: Opportunities and Challenges. ChemSusChem, 2020, 13, 3754-3765.	3.6	62
42	Tunable Covalent Organic Frameworks with Different Heterocyclic Nitrogen Locations for Efficient Cr(VI) Reduction, <i>Escherichia coli</i> Disinfection, and Paracetamol Degradation under Visible-Light Irradiation. Environmental Science & Technology, 2021, 55, 5371-5381.	4.6	79
43	Hydrogen Clathrates: Next Generation Hydrogen Storage Materials. Energy Storage Materials, 2021, 41, 69-107.	9.5	89
44	Peculiarities of high-pressure hydrogen adsorption on Pt catalyzed Cu-BTC metal–organic framework. Physical Chemistry Chemical Physics, 2021, 23, 4277-4286.	1.3	5
45	Freundlich, Langmuir, Temkin and Harkins-Jura Isotherms Studies of H2 Adsorption on Porous Adsorbents. Chemistry and Chemical Technology, 2019, 13, 129-135.	0.2	13
46	Comprehensive review on synthesis and adsorption behaviors of graphene-based materials. Carbon Letters, 2012, 13, 73-87.	3.3	39
47	Hydrogen storage capacity of highly porous carbons synthesized from biomass-derived aerogels. Carbon Letters, 2015, 16, 127-131.	3.3	22
48	Prospects of hybrid materials composed of MOFs and hydride-forming metal nanoparticles for light-duty vehicle hydrogen storage. Applied Materials Today, 2021, 25, 101208.	2.3	12
49	Recent Progress Using Solid-State Materials for Hydrogen Storage: A Short Review. Processes, 2022, 10, 304.	1.3	58
50	Carbonâ€Based Sorbents for Hydrogen Storage: Challenges and Sustainability at Operating Conditions for Renewable Energy. ChemSusChem, 2022, 15, .	3.6	29
51	The pioneering role of metal–organic framework-5 in ever-growing contemporary applications – a review. RSC Advances, 2022, 12, 14282-14298.	1.7	18
52	Copper-doped activated carbon from amorphous cellulose for hydrogen, methane and carbon dioxide storage. International Journal of Hydrogen Energy, 2022, 47, 18384-18395.	3.8	8
53	Graphitic carbon nitride (g-C3N4) decorated with Yttrium as potential hydrogen storage material: Acumen from quantum simulations. International Journal of Hydrogen Energy, 2022, 47, 41898-41910.	3.8	17
54	Materials for hydrogen storage at room temperature – An overview. Materials Today: Proceedings, 2023, 72, 1-8.	0.9	8
55	Embedding an extraordinary amount of gemifloxacin antibiotic in ZIF-8 framework with one-step synthesis and measurement of its H ₂ O ₂ -sensitive release and potency against infectious bacteria. New Journal of Chemistry, 2022, 46, 19432-19441.	1.4	8
56	Recent Advances and Reliable Assessment of Solid‧tate Materials for Hydrogen Storage: A Step Forward toward a Sustainable H ₂ Economy. Advanced Sustainable Systems, 2022, 6, .	2.7	21

CITATION REPORT

#	Article	IF	CITATIONS
57	A Bird's-Eye View on Polymer-Based Hydrogen Carriers for Mobile Applications. Polymers, 2022, 14, 4512.	2.0	1
58	Hydrogen Storage on Porous Carbon Adsorbents: Rediscovery by Nature-Derived Algorithms in Random Forest Machine Learning Model. Energies, 2023, 16, 2348.	1.6	5
59	Boronation of Biomass-Derived Materials for Hydrogen Storage. Compounds, 2023, 3, 244-279.	1.0	4
60	Systematic physicochemical characterization, carbon balance and cost of production analyses of activated carbons derived from (Co)-HTC of coal discards and sewage sludge for hydrogen storage applications. Waste Disposal & Sustainable Energy, 2023, 5, 125-149.	1.1	3

CITATION REPORT