A review of the biological response to ionic dissolution gand glass-ceramics

Biomaterials 32, 2757-2774 DOI: 10.1016/j.biomaterials.2011.01.004

Citation Report

#	Article	IF	CITATIONS
1	Loss of Bcl-2 expression correlates with tumour recurrence in colorectal cancer. Gut, 1998, 43, 383-387.	12.1	42
2	Bioactive Glass Stimulates the Secretion of Angiogenic Growth Factors and Angiogenesis in Vitro. Tissue Engineering, 2005, 11, 768-777.	4.6	344
3	Vanadium and bone development: putative signaling pathwaysThis paper is one of a selection of papers published in this Special issue, entitled Second Messengers and Phosphoproteins—12th International Conference Canadian Journal of Physiology and Pharmacology, 2006, 84, 677-686.	1.4	60
4	Unique physical–chemical, apatite-forming properties and human marrow mesenchymal stem cells (HMSCs) response of sol–gel bioactive glass microspheres. Journal of Materials Chemistry, 2011, 21, 12725.	6.7	51
5	Mesoporous bioactive glasses as drug delivery and bone tissue regeneration platforms. Therapeutic Delivery, 2011, 2, 1189-1198.	2.2	78
6	Artificial Scaffolds and Mesenchymal Stem Cells for Hard Tissues. Advances in Biochemical Engineering/Biotechnology, 2011, 126, 153-194.	1.1	11
7	Bioactive Glass-Based Scaffolds for Bone Tissue Engineering. Advances in Biochemical Engineering/Biotechnology, 2011, 126, 195-226.	1.1	33
8	Glass and Glassâ€Ceramic Technologies to Transform the World. International Journal of Applied Glass Science, 2011, 2, 162-176.	2.0	26
9	Cellular compatibility of highly degradable bioactive ceramics for coating of metal implants. Bio-Medical Materials and Engineering, 2011, 21, 307-321.	0.6	2
10	Collagen-Based Drug Delivery Systems for Tissue Engineering. , 0, , .		8
11	Zinc-doped dentin adhesive for collagen protection at the hybrid layer. European Journal of Oral Sciences, 2011, 119, 401-410.	1.5	60
12	Novel sol–gel derived calcium phosphate coatings on Mg4Y alloy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1679-1689.	3.5	47
13	Partially resorbable composite bone plate with controlled degradation rate, desired mechanical properties and bioactivity. Polymer Degradation and Stability, 2011, 96, 2055-2063.	5.8	16
14	The stimulation of osteogenic differentiation of human adipose-derived stem cells by ionic products from akermanite dissolution via activation of the ERK pathway. Biomaterials, 2011, 32, 7023-7033.	11.4	140
15			
	Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function. Biomaterials, 2011, 32, 8915-8926.	11.4	176
16	Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function. Biomaterials, 2011, 32, 8915-8926. Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles. Acta Biomaterialia, 2011, 7, 4139-4148.	11.4 8.3	176 210
16 18	Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function. Biomaterials, 2011, 32, 8915-8926. Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles. Acta Biomaterialia, 2011, 7, 4139-4148. Infiltration of Silica Inside Fibrillar Collagen. Angewandte Chemie - International Edition, 2011, 50, 11688-11691.	11.4 8.3 13.8	176 210 57

#	Article	IF	CITATIONS
20	Preparation of Fibrous Scaffolds Containing Calcium and Silicon Species. Key Engineering Materials, 2011, 493-494, 840-843.	0.4	0
21	Ion Release Behavior and Apatite-Forming Ability of Sol-Gel Derived 70S30C Bioactive Glass with Magnesium/Zinc Substitution. Key Engineering Materials, 0, 493-494, 55-60.	0.4	9
22	The Equilibrium between Calcite and Apatite Precipitation onto Bioglass from Three Different Aqueous Media. Key Engineering Materials, 0, 493-494, 102-107.	0.4	2
23	Use of bioactive glasses as bone substitutes in orthopaedics and traumatology. , 2011, , 189-208.		2
24	Structure and biological activity of glasses and ceramics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 1271-1280.	3.4	32
25	Si and Ca Individually and Combinatorially Target Enhanced MC3T3-E1 Subclone 4 Early Osteogenic Marker Expression. Journal of Oral Implantology, 2012, 38, 325-336.	1.0	41
26	Zinc-Inhibited MMP-Mediated Collagen Degradation after Different Dentine Demineralization Procedures. Caries Research, 2012, 46, 201-207.	2.0	86
27	Bioactive Class for Alveolar Ridge Augmentation. Journal of Craniofacial Surgery, 2012, 23, e220-e222.	0.7	7
28	Ceramic Identity Contributes to Mechanical Properties and Osteoblast Behavior on Macroporous Composite Scaffolds. Journal of Functional Biomaterials, 2012, 3, 382-397.	4.4	12
29	Biodegradable metallic materials for orthopaedic implantations: A review. Technology and Health Care, 2012, 20, 345-362.	1.2	15
30	Ceramic and Polymer Biomaterials. Materia Japan, 2012, 51, 313-315.	0.1	0
31	A novel glass ionomer cement containing MgCO3 apatite induced the increased proliferation and differentiation of human pulp cells in vitro. Dental Materials Journal, 2012, 31, 772-778.	1.8	4
32	Magnesium ontaining Bioactive Glasses for Biomedical Applications. International Journal of Applied Glass Science, 2012, 3, 221-253.	2.0	158
33	Local drug delivery to the bone by drug-releasing implants: perspectives of nano-engineered titania nanotube arrays. Therapeutic Delivery, 2012, 3, 857-873.	2.2	99
34	Short-range structure and in vitro behavior of ZnO–CaO–P2O5 bioglasses. Journal of Non-Crystalline Solids, 2012, 358, 2803-2809.	3.1	18
35	Stem Cell and Biomaterials Research in Dental Tissue Engineering and Regeneration. Dental Clinics of North America, 2012, 56, 495-520.	1.8	59
36	Experimental Resin Cements Containing Bioactive Fillers Reduce Matrix Metalloproteinase–mediated Dentin CollagenÂDegradation. Journal of Endodontics, 2012, 38, 1227-1232.	3.1	58
37	A ZnO-doped adhesive reduced collagen degradation favouring dentine remineralization. Journal of Dentistry, 2012, 40, 756-765.	4.1	71

#	Article	IF	CITATIONS
38	Effects of Niobium Ions Released from Calcium Phosphate Invert Glasses Containing Nb ₂ O ₅ on Osteoblast-Like Cell Functions. ACS Applied Materials & Interfaces, 2012, 4, 5684-5690.	8.0	70
39	Mesoporous bioactive glasses: structure characteristics, drug/growth factor delivery and bone regeneration application. Interface Focus, 2012, 2, 292-306.	3.0	276
40	Gallium-containing phosphoâ€silicate glasses: Synthesis and in vitro bioactivity. Materials Science and Engineering C, 2012, 32, 1401-1406.	7.3	42
41	Incorporation of B2O3 in CaO-SiO2-P2O5 bioactive glass system for improving strength of low-temperature co-fired porous glass ceramics. Journal of Non-Crystalline Solids, 2012, 358, 1171-1179.	3.1	77
42	Versatile fabrication of nanoscale sol–gel bioactive glass particles for efficient bone tissue regeneration. Journal of Materials Chemistry, 2012, 22, 16906.	6.7	64
43	Bone as Target Organ for Metals: The Case of f-Elements. Chemical Research in Toxicology, 2012, 25, 1161-1175.	3.3	103
44	Osteochondral tissue engineering: scaffolds, stem cells and applications. Journal of Cellular and Molecular Medicine, 2012, 16, 2247-2270.	3.6	255
45	Scaffolds for vascularized bone regeneration: advances and challenges. Expert Review of Medical Devices, 2012, 9, 457-460.	2.8	19
46	Structural and in vitro study of cerium, gallium and zinc containing sol–gel bioactive glasses. Journal of Materials Chemistry, 2012, 22, 13698.	6.7	71
47	Ceramic modifications of porous titanium: Effects on macrophage activation. Tissue and Cell, 2012, 44, 391-400.	2.2	27
48	Development of a composite based on hydroxyapatite and magnesium and zincâ€containing sol–gel-derived bioactive glass for bone substitute applications. Materials Science and Engineering C, 2012, 32, 2330-2339.	7.3	74
49	Bioactive glasses as carriers for bioactive molecules and therapeutic drugs: a review. Journal of Materials Science: Materials in Medicine, 2012, 23, 2317-2333.	3.6	125
50	Surface reactivity and in vitro biological evaluation of sol gel derived silver/calcium silicophosphate bioactive glass. Biotechnology and Bioprocess Engineering, 2012, 17, 746-754.	2.6	37
51	Tissue Engineering III: Cell - Surface Interactions for Tissue Culture. Advances in Biochemical Engineering/Biotechnology, 2012, , .	1.1	8
52	Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites. Progress in Biomaterials, 2012, 1, 2.	4.5	175
53	Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. Journal of the Royal Society Interface, 2012, 9, 401-419.	3.4	354
54	Degradation of Implant Materials. , 2012, , .		27
55	Enhanced early osteogenic differentiation by silicon-substituted hydroxyapatite ceramics fabricated via ultrasonic spray pyrolysis route. Journal of Materials Science: Materials in Medicine, 2012, 23, 2923-2932.	3.6	45

	CITATION	Report	
#	Article	IF	CITATIONS
56	Bioactive glass-derived trabecular coating: a smart solution for enhancing osteointegration of prosthetic elements. Journal of Materials Science: Materials in Medicine, 2012, 23, 2369-2380.	3.6	57
57	Characterization of drug-release kinetics in trabecular bone from titania nanotube implants. International Journal of Nanomedicine, 2012, 7, 4883.	6.7	32
58	Nanofibrous gelatin–silica hybrid scaffolds mimicking the native extracellular matrix (ECM) using thermally induced phase separation. Journal of Materials Chemistry, 2012, 22, 14133.	6.7	104
59	MgO-Doped Tantalum Coating on Ti: Microstructural Study and Biocompatibility Evaluation. ACS Applied Materials & Interfaces, 2012, 4, 577-580.	8.0	50
60	Physically Crosslinked Nanocomposites from Silicateâ€Crosslinked PEO: Mechanical Properties and Osteogenic Differentiation of Human Mesenchymal Stem Cells. Macromolecular Bioscience, 2012, 12, 779-793.	4.1	116
61	Osteoclastogenesis and osteoclastic resorption of tricalcium phosphate: Effect of strontium and magnesium doping. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2450-2461.	4.0	64
62	Biological responses of human bone marrow mesenchymal stem cells to Srâ€M‣i (M = Zn, Mg) silicate bioceramics. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2979-2990.	4.0	54
63	Sol–gel derived 45S5 bioglass: synthesis, microstructural evolution and thermal behaviour. Journal of Materials Science: Materials in Medicine, 2012, 23, 1849-1866.	3.6	131
64	Initial Attatchment of rMSC and MGâ€63 Cells on Patterned Bioglass® Substrates. Advanced Engineering Materials, 2012, 14, B38.	3.5	25
65	Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms. Applied Microbiology and Biotechnology, 2012, 95, 299-311.	3.6	198
66	Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering. Acta Biomaterialia, 2012, 8, 792-801.	8.3	117
67	Regression model for predicting selected thermal properties of next-generation bioactive glasses. Acta Biomaterialia, 2012, 8, 2324-2330.	8.3	3
68	Dissolution Kinetics of a Bioactive Glass by Continuous Measurement. Journal of the American Ceramic Society, 2012, 95, 3130-3137.	3.8	39
69	Synthesis, characterization and inÂvitro studies of zinc and carbonate co-substituted nano-hydroxyapatite for biomedical applications. Materials Chemistry and Physics, 2012, 134, 1127-1135.	4.0	115
70	Microwave conversion of eggshells into flower-like hydroxyapatite nanostructure for biomedical applications. Materials Letters, 2012, 76, 198-200.	2.6	109
71	Design and processing of ZnO doped tricalcium phosphate based materials: Influence of β/α polymorph phase assemblage on microstructural evolution. Journal of the European Ceramic Society, 2012, 32, 569-577.	5.7	18
72	Plasmaâ€ 5 prayed Ceramic Coatings for Osseointegration. International Journal of Applied Ceramic Technology, 2013, 10, 1-10.	2.1	35
73	Novel strontium-doped bioactive glass nanoparticles enhance proliferation and osteogenic differentiation of human bone marrow stromal cells. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	39

#	Article	IF	CITATIONS
74	Preparation method: structure–bioactivity correlation in mesoporous bioactive glass. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	12
75	Incorporation of bioactive glass in calcium phosphate cement: An evaluation. Acta Biomaterialia, 2013, 9, 5728-5739.	8.3	54
76	Strong bonding between sputtered bioglass–ceramic films and Ti-substrate implants induced by atomic inter-diffusion post-deposition heat-treatments. Applied Surface Science, 2013, 280, 530-538.	6.1	42
77	Structural role of zinc in biodegradation of alkali-free bioactive glasses. Journal of Materials Chemistry B, 2013, 1, 3073.	5.8	54
78	Diverse applications of fibers surface-functionalized with nano- and microparticles. Composites Science and Technology, 2013, 79, 77-86.	7.8	6
79	Micro PIXE-RBS for the study of Sr release at bioactive glass scaffolds/biological medium interface. Nuclear Instruments & Methods in Physics Research B, 2013, 306, 153-157.	1.4	7
80	Tetracycline-encapsulated P(3HB) microsphere-coated 45S5 Bioglass®-based scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2013, 24, 2809-2817.	3.6	22
81	Bioactivity and cytotoxicity of glass and glass–ceramics based on the 3CaO·P2O5–SiO2–MgO system. Journal of Materials Science: Materials in Medicine, 2013, 24, 2171-2180.	3.6	22
82	Cotton wool-like poly(lactic acid)/vaterite composite scaffolds releasing soluble silica for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2013, 24, 1649-1658.	3.6	24
83	Examining porous bio-active glass as a potential osteo-odonto-keratoprosthetic skirt material. Journal of Materials Science: Materials in Medicine, 2013, 24, 1217-1227.	3.6	24
84	Effect of nano-sized bioactive glass particles on the angiogenic properties of collagen based composites. Journal of Materials Science: Materials in Medicine, 2013, 24, 1261-1269.	3.6	62
85	A review of bioactive silicate ceramics. Biomedical Materials (Bristol), 2013, 8, 032001.	3.3	248
86	Towards the controlled release of metal nanoparticles from biomaterials: Physico-chemical, morphological and bioactivity features of Cu-containing sol–gel glasses. Applied Surface Science, 2013, 283, 240-248.	6.1	23
87	Thin Films and Coatings in Biology. Biological and Medical Physics Series, 2013, , .	0.4	6
88	Strategies to prevent hydrolytic degradation of the hybrid layer—A review. Dental Materials, 2013, 29, 999-1011.	3.5	313
89	Tracking the formation of vaterite particles containing aminopropyl-functionalized silsesquioxane and their structure for bone regenerative medicine. Journal of Materials Chemistry B, 2013, 1, 4446.	5.8	38
90	Molecular mechanisms of biomaterial-driven osteogenic differentiation in human mesenchymal stromal cells. Integrative Biology (United Kingdom), 2013, 5, 920-931.	1.3	88
91	A New Calcium Releasing Nano-composite Biomaterial for Bone Tissue Engineering Scaffolds. Procedia Engineering, 2013, 59, 78-84.	1.2	16

#	Article		CITATIONS
92	Material and Biological Issues Related to the Use of Inorganic Materials at the Bone–Implant Interface. , 2013, , 417-430.		0
93	The calcium silicate/alginate composite: Preparation and evaluation of its behavior as bioactive injectable hydrogels. Acta Biomaterialia, 2013, 9, 9107-9117.	8.3	129
94	Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol–gel method. Materials Science and Engineering C, 2013, 33, 3795-3801.	7.3	83
95	A Zn-doped etch-and-rinse adhesive may improve the mechanical properties and the integrity at the bonded-dentin interface. Dental Materials, 2013, 29, e142-e152.	3.5	76
96	Simple Synthesis of Mesostructured Bioactive Glass Foams and Their Bioactivity Study by Micro-PIXE Method. Journal of Physical Chemistry C, 2013, 117, 23066-23071.	3.1	2
97	Curcumin release from cerium, gallium and zinc containing mesoporous bioactive glasses. Microporous and Mesoporous Materials, 2013, 180, 92-101.	4.4	64
98	In vitro reactivity of Cu doped 45S5 Bioglass® derived scaffolds for bone tissue engineering. Journal of Materials Chemistry B, 2013, 1, 5659.	5.8	119
99	Effect of bioactive borate glass microstructure on bone regeneration, angiogenesis, and hydroxyapatite conversion in a rat calvarial defect model. Acta Biomaterialia, 2013, 9, 8015-8026.	8.3	113
100	Solubility of Calcium Phosphate Glasses and Glass Ceramic Materials in Water and Physiological Media. Glass and Ceramics (English Translation of Steklo I Keramika), 2013, 70, 158-163.	0.6	8
101	Fe–Pd based ferromagnetic shape memory actuators for medical applications: Biocompatibility, effect of surface roughness and protein coatings. Acta Biomaterialia, 2013, 9, 5845-5853.	8.3	45
102	Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments. Applied Surface Science, 2013, 285, 664-673.	6.1	104
103	Evaluation of Angiogenesis of Bioactive Glass in the Arteriovenous Loop Model. Tissue Engineering - Part C: Methods, 2013, 19, 479-486.	2.1	77
104	Stimulatory effects of the ionic products from Ca–Mg–Si bioceramics on both osteogenesis and angiogenesis in vitro. Acta Biomaterialia, 2013, 9, 8004-8014.	8.3	192
105	Osteocompatibility characterization of polyacrylonitrile carbon nanofibers containing bioactive glass nanoparticles. Carbon, 2013, 56, 288-295.	10.3	46
106	The interactions of Mg2+/Zn2+-containing silicate materials with stem cells and bacteria. Materials Letters, 2013, 112, 105-108.	2.6	5
107	Stimulation of proangiogenesis by calcium silicate bioactive ceramic. Acta Biomaterialia, 2013, 9, 5379-5389.	8.3	203
108	Integrin binding and MAPK signal pathways in primary cell responses to surface chemistry of calcium silicate cements. Biomaterials, 2013, 34, 6589-6606.	11.4	132
109	Dissolution patterns of biocompatible glasses in 2-amino-2-hydroxymethyl-propane-1,3-diol (Tris) buffer. Acta Biomaterialia, 2013, 9, 5400-5410.	8.3	62

#	Article	IF	Citations
110	Therapeutic inorganic ions in bioactive glasses to enhance bone formation and beyond. Biomaterials Science, 2013, 1, 254-256.	5.4	165
111	Nagelschmidtite bioceramics with osteostimulation properties: material chemistry activating osteogenic genes and WNT signalling pathway of human bone marrow stromal cells. Journal of Materials Chemistry B, 2013, 1, 876.	5.8	37
112	Sol-gel derived bioactive glass ceramics for dental applications. , 2013, , 194-231.		7
113	Selective laser densification of lithium aluminosilicate glass ceramic tapes. Applied Surface Science, 2013, 265, 610-614.	6.1	15
114	Fabrication and characterization of ZrO2–CaO–P2O5–Na2O–SiO2 bioactive glass ceramics. Journal of Materials Science, 2013, 48, 1863-1872.	3.7	24
115	Osteogenic Differentiation of Human Dental Pulp Stromal Cells on 45S5 Bioglass [®] Based Scaffolds <i>In Vitro</i> and <i>In Vivo</i> . Tissue Engineering - Part A, 2013, 19, 707-715.	3.1	61
116	Synthesis, processing and characterization of a bioactive glass composition for bone regeneration. Ceramics International, 2013, 39, 2519-2526.	4.8	40
117	Preparation of porous spheres containing wollastonite by an electrospray method. Materials Letters, 2013, 95, 107-109.	2.6	7
118	Unique microstructural design of ceramic scaffolds for bone regeneration under load. Acta Biomaterialia, 2013, 9, 7014-7024.	8.3	51
119	Investigating the mechanical durability of bioactive glasses as a function of structure, solubility and incubation time. Journal of Non-Crystalline Solids, 2013, 380, 25-34.	3.1	20
120	Fabrication and characterization of bioactive β-Ca2SiO4/PHBV composite scaffolds. Materials Science and Engineering C, 2013, 33, 2294-2301.	7.3	33
121	Bone regeneration in rat calvarial defects implanted with fibrous scaffolds composed of a mixture of silicate and borate bioactive glasses. Acta Biomaterialia, 2013, 9, 9126-9136.	8.3	75
122	Collagen hydrogels incorporated with surface-aminated mesoporous nanobioactive glass: Improvement of physicochemical stability and mechanical properties is effective for hard tissue engineering. Acta Biomaterialia, 2013, 9, 9508-9521.	8.3	152
123	Fabrication and <i>in vitro</i> characterization of bioactive glass composite scaffolds for bone regeneration. Biofabrication, 2013, 5, 045005.	7.1	81
124	InÂvivo stimulation of bone formation by aluminum and oxygen plasma surface-modified magnesium implants. Biomaterials, 2013, 34, 9863-9876.	11.4	99
125	Low-modulus Mg/PCL hybrid bone substitute for osteoporotic fracture fixation. Biomaterials, 2013, 34, 7016-7032.	11.4	112
126	Studies on influence of aluminium ions on the bioactivity of B2O3–SiO2–P2O5–Na2O–CaO glass system by means of spectroscopic studies. Applied Surface Science, 2013, 287, 46-53.	6.1	61
127	Structural and surface studies on calcium phospho-silicate glass-ceramics containing zinc and iron oxide. Journal of Non-Crystalline Solids, 2013, 376, 221-228.	3.1	6

ARTICLE IF CITATIONS # Utilizing acid immersion to elevate the performance of zeolite in liquid adsorption of 128 3.2 11 Nâ€²-nitrosonornicotine (NNN). Solid State Sciences, 2013, 16, 143-151. Mechanical properties of bioactive glass (13-93) scaffolds fabricated by robotic deposition for 129 8.3 178 structural bone repair. Acta Biomaterialia, 2013, 9, 7025-7034. Activating titanium oxide coatings for orthopedic implants. Surface and Coatings Technology, 2013, 130 4.8 42 233, 57-64. Bone formation controlled by biologically relevant inorganic ions: Role and controlled delivery 223 from phosphate-based glasses. Advanced Drug Delivery Reviews, 2013, 65, 405-420. Bone Regeneration in Sheep Using <i>Acropora </i>Coral, a Natural Resorbable Scaffold, and 132 3.1 46 Autologous Mesenchymal Stem Cells. Tissue Engineering - Part A, 2013, 19, 1554-1563. Bioactive ceramics: from bone grafts to tissue engineering. RSC Advances, 2013, 3, 11116. 3.6 Review of bioactive glass: From Hench to hybrids. Acta Biomaterialia, 2013, 9, 4457-4486. 134 8.3 1,839 Nanoscale Bioactive Glasses in Medical Applications. International Journal of Applied Glass Science, 2.0 90 2013, 4, 136-148. 136 Bioactive Glasses: From Macro to Nano. International Journal of Applied Glass Science, 2013, 4, 149-161. 2.0 71 Microstructural characterization and in vitro bioactivity of porous glass-ceramic scaffolds for bone regeneration by synchrotron radiation X-ray microtomography. Journal of the European Ceramic 5.7 Society, 2013, 33, 1553-1565. Bio-inspired silica–collagen materials: applications and perspectives in the medical field. Biomaterials 138 5.482 Science, 2013, 1, 688. Bioactive silicate materials stimulate angiogenesis in fibroblast and endothelial cell co-culture 8.3 system through paracrine effect. Acta Biomaterialia, 2013, 9, 6981-6991. Fabrication and mechanical evaluation of hydroxyapatite/oxide nano-composite materials. Materials 140 7.3 30 Science and Engineering C, 2013, 33, 4126-4132. Porous 3D modeled scaffolds of bioactive glass and photocrosslinkable poly($\hat{l}\mu$ -caprolactone) by stereolithography. Composites Science and Technology, 2013, 74, 99-106. 141 Bonding strength of glass-ceramic trabecular-like coatings to ceramic substrates for prosthetic 142 7.3 36 applications. Materials Science and Engineering C, 2013, 33, 1530-1538. Effect of various additives on microstructure, mechanical properties, and in vitro bioactivity of 143 sodium oxide-calcium oxide-silica-phosphorus pentoxide glass–ceramics. Journal of Colloid and 9.4 Interface Science, 2013, 405, 296-304. Dental applications of nanostructured bioactive glass and its composites. Wiley Interdisciplinary 144 6.1 40 Reviews: Nanomedicine and Nanobiotechnology, 2013, 5, 399-410. Bioactive Silicate Nanoplatelets for Osteogenic Differentiation of Human Mesenchymal Stem Cells. 145 21.0 448 Advanced Materials, 2013, 25, 3329-3336.

#	Article	IF	CITATIONS
146	Perspectives on the role of nanotechnology in bone tissue engineering. Dental Materials, 2013, 29, 103-115.	3.5	123
147	Magnetic and degradable polymer/bioactive glass composite nanoparticles for biomedical applications. Colloids and Surfaces B: Biointerfaces, 2013, 101, 196-204.	5.0	49
148	Interaction of Ferromagnetic Shape Memory Alloys and RGD Peptides for Mechanical Coupling to Cells: from Ab Initio Calculations to Cell Studies. Advanced Functional Materials, 2013, 23, 1383-1391.	14.9	12
149	Sodium fluoride induces apoptosis in odontoblasts via a JNK-dependent mechanism. Toxicology, 2013, 308, 138-145.	4.2	37
150	Controlled Copper Ion Release from Phosphate-Based Glasses Improves Human Umbilical Vein Endothelial Cell Survival in a Reduced Nutrient Environment. Tissue Engineering - Part A, 2013, 19, 548-557.	3.1	41
151	Multifunctional bioactive glass scaffolds coated with layers of poly(d,l-lactide-co-glycolide) and poly(n-isopropylacrylamide-co-acrylic acid) microgels loaded with vancomycin. Materials Science and Engineering C, 2013, 33, 3760-3767.	7.3	37
152	Cytocompatibility, degradation, mechanical property retention and ion release profiles for phosphate glass fibre reinforced composite rods. Materials Science and Engineering C, 2013, 33, 1914-1924.	7.3	29
153	Structural Investigation of the Surface of Bioglass 45S5 Enriched with Calcium Ions. Journal of the American Ceramic Society, 2013, 96, 1464-1469.	3.8	25
154	Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering. Expert Opinion on Drug Delivery, 2013, 10, 1353-1365.	5.0	91
155	Neocellularization and neovascularization of nanosized bioactive glassâ€coated decellularized trabecular bone scaffolds. Journal of Biomedical Materials Research - Part A, 2013, 101A, 827-841.	4.0	26
156	Aluminum Silicate Nanotube Modification of Cotton-Like Siloxane-poly(L-lactic acid)-vaterite Composites. Advances in Materials Science and Engineering, 2013, 2013, 1-6.	1.8	1
157	AP40 Bioactive Class Ceramic by Sol-Gel Synthesis: <i>In Vitro</i> Dissolution and Cell-Mediated Bioresorption. Key Engineering Materials, 0, 541, 41-50.	0.4	15
158	Collagen/silica nanocomposites and hybrids for bone tissue engineering. Nanotechnology Reviews, 2013, 2, 427-447.	5.8	27
159	Bioactive Surface Modification of Hydroxyapatite. BioMed Research International, 2013, 2013, 1-9.	1.9	23
160	Quenched/unquenched nano bioactive glass-ceramics: Synthesis and in vitro bioactivity evaluation in Ringer's solution with BSA. Chemical Industry and Chemical Engineering Quarterly, 2013, 19, 231-239.	0.7	3
161	White-Ceramic Conversion on Ti-29Nb-13Ta-4.6Zr Surface for Dental Applications. Advances in Materials Science and Engineering, 2013, 2013, 1-9.	1.8	10
162	Effects of zinc and strontium substitution in tricalcium phosphate on osteoclast differentiation and resorption. Biomaterials Science, 2013, 1, 74-82.	5.4	82
163	Microwaveâ€Assisted Hydrothermal Synthesis of Submicrometer Willemite Phase Zinc Silicate and Its Zinc Ion Release Behavior. Journal of the American Ceramic Society, 2013, 96, 657-664.	3.8	9

#	Article	IF	CITATIONS
164	<i>In vitro</i> antistaphylococcal effects of a novel 45S5 bioglass/agar - gelatin biocomposite films. Journal of Applied Microbiology, 2013, 115, 604-612.	3.1	22
165	45S5-Bioglass [®] -Based 3D-Scaffolds Seeded with Human Adipose Tissue-Derived Stem Cells Induce <i>In Vivo</i> Vascularization in the CAM Angiogenesis Assay. Tissue Engineering - Part A, 2013, 19, 2703-2712.	3.1	48
166	Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution. Journal of Biomaterials Applications, 2013, 27, 872-890.	2.4	86
167	Preparation of CaO-SiO ₂ Glass-Ceramic Spheres by Electrospraying Combined with Sol-Gel Method. Journal of Nanomaterials, 2013, 2013, 1-5.	2.7	7
168	Preparation of siloxane-containing vaterite particles with red-blood-cell-like morphologies and incorporation of calcium-salt polylactide for bone regenerative medicine. Journal of the Ceramic Society of Japan, 2013, 121, 792-796.	1.1	5
169	Development of vapor deposited silica sol–gel particles for use as a bioactive materials system. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1682-1693.	4.0	6
170	Cooling rate and size effects on the medium-range structure of multicomponent oxide glasses simulated by molecular dynamics. Journal of Chemical Physics, 2013, 139, 114501.	3.0	57
171	Development of biomaterials with inorganic ions stimulating osteogenic cell functions. Journal of the Ceramic Society of Japan, 2013, 121, 377-381.	1.1	2
172	Preparation of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)-based composites releasing soluble silica for bone regeneration. Journal of the Ceramic Society of Japan, 2013, 121, 753-758.	1.1	6
173	Crystal growth on bioactive glass sputter-coated alumina in artificial saliva. Dental Materials Journal, 2013, 32, 775-780.	1.8	12
174	A Novel Injectable Calcium Phosphate Cement-Bioactive Glass Composite for Bone Regeneration. PLoS ONE, 2013, 8, e62570.	2.5	63
175	Preparation of Laponite Bioceramics for Potential Bone Tissue Engineering Applications. PLoS ONE, 2014, 9, e99585.	2.5	62
176	Support for the initial attachment, growth and differentiation of MG-63 cells: a comparison between nano-size hydroxyapatite and micro-size hydroxyapatite in composites. International Journal of Nanomedicine, 2014, 9, 3687.	6.7	27
177	Magnesium ion implantation on a micro/nanostructured titanium surface promotes its bioactivity and osteogenic differentiation function. International Journal of Nanomedicine, 2014, 9, 2387.	6.7	63
178	Scaffolds of PDLLA/bioglass 58S produced via selective laser sintering. Materials Research, 2014, 17, 33-38.	1.3	23
179	Radiofrequency-triggered release for on-demand delivery of therapeutics from titania nanotube drug-eluting implants. Nanomedicine, 2014, 9, 1263-1275.	3.3	37
180	Polymer Nanocarriers for Dentin Adhesion. Journal of Dental Research, 2014, 93, 1258-1263.	5.2	47
181	Magnesium-Containing Nanostructured Hybrid Scaffolds for Enhanced Dentin Regeneration. Tissue Engineering - Part A, 2014, 20, 2422-2433.	3.1	71

#	Article	IF	CITATIONS
182	Energetics of Silicaâ€Poor Glasses in the Systems <scp><scp>MgO</scp></scp> – <scp>SiO</scp> ₂ and <scp><scp>Mg</scp></scp> _{0.5} <scp>Ca</scp> _{0.5} <scp>O</scp> Journal of the American Ceramic Society, 2014, 97, 451-456.	3.8–<	scp> <scp>Si</scp>
184	Enhancing <i>In Vitro</i> Bioactivity of Meltâ€Đerived 45S5 Bioglass [®] by Comminution in a Stirred Media Mill. Journal of the American Ceramic Society, 2014, 97, 150-156.	3.8	39
185	The potential of encapsulating "raw materials―in 3D osteochondral gradient scaffolds. Biotechnology and Bioengineering, 2014, 111, 829-841.	3.3	47
186	Advanced bioactive and biodegradable ceramic biomaterials. , 2014, , 187-219.		2
187	Antibacterial property expressed by a novel calcium phosphate glass. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 423-429.	3.4	16
188	Chemical imaging of the reconstruction of new bone and trace elements inside bioactive glass scaffolds <i>in vivo</i> : a multimodal and quantitative microâ€ion beam analysis. Surface and Interface Analysis, 2014, 46, 702-706.	1.8	5
189	Nanostructured Titanate with Different Metal Ions on the Surface of Metallic Titanium: A Facile Approach for Regulation of rBMSCs Fate on Titanium Implants. Small, 2014, 10, 3169-3180.	10.0	49
190	Effects of Cuâ€doped 45S5 bioactive glass on the lipid peroxidationâ€associated growth of human osteoblastâ€like cells <i>in vitro</i> . Journal of Biomedical Materials Research - Part A, 2014, 102, 3556-3561.	4.0	51
191	Healing of critical-size segmental defects in rat femora using strong porous bioactive glass scaffolds. Materials Science and Engineering C, 2014, 42, 816-824.	7.3	30
192	Introduction to biomedical foams. , 2014, , 3-39.		12
193	Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste. Materials, 2014, 7, 5565-5580.	2.9	22
194	Incorporation of silica particles into decellularized tissue biomaterial and its effect on macrophage activation. RSC Advances, 2014, 4, 63457-63465.	3.6	4
195	Zinc Induces Apatite and Scholzite Formation during Dentin Remineralization. Caries Research, 2014, 48, 276-290.	2.0	55
196	Preparation and in vitro evaluation of polyurethane composite scaffolds based on glycerol esterified castor oil and hydroxyapatite. Materials Research Innovations, 2014, 18, 160-168.	2.3	5
197	Biomimetic Scaffolds Containing Chitosan and Hydroxyapatite for Bone Tissue Engineering. Advanced Materials Research, 0, 971-973, 21-25.	0.3	4
198	Macroporous and nanometre scale fibrous PLA and PLA–HA composite scaffolds fabricated by a bio safe strategy. RSC Advances, 2014, 4, 61491-61502.	3.6	21
199	Growth mechanism of bioglass nanoparticles in polyacrylonitrile-based carbon nanofibers. RSC Advances, 2014, 4, 64299-64309.	3.6	12
200	Novel resorbable glass-ceramic scaffolds for hard tissue engineering: From the parent phosphate glass to its bone-like macroporous derivatives. Journal of Biomaterials Applications, 2014, 28, 1287-1303.	2.4	29

#	Article	IF	CITATIONS
201	Bioactivity of Mineral Trioxide Aggregate and Mechanism of Action. , 2014, , 61-85.		4
202	<i>In Vitro</i> Degradation and Conversion of Meltâ€Derived Microfibrous Borate (13â€93B3) Bioactive Glass Doped with Metal Ions. Journal of the American Ceramic Society, 2014, 97, 3501-3509.	3.8	28
203	Investigating the effects of surface-initiated polymerization of Îμ-caprolactone to bioactive glass particles on the mechanical properties of settable polymer/ceramic composites. Journal of Materials Research, 2014, 29, 2398-2407.	2.6	16
204	Reticulated bioactive scaffolds with improved textural properties for bone tissue engineering: Nanostructured surfaces and porosity. Journal of Biomedical Materials Research - Part A, 2014, 102, 2982-2992.	4.0	20
205	Novel akermanite-based bioceramics from preceramic polymers and oxide fillers. Ceramics International, 2014, 40, 1029-1035.	4.8	34
206	In-vitro characterization of antibacterial bioactive glass containing ceria. Ceramics International, 2014, 40, 729-737.	4.8	97
207	Synthesis of biomedical composite scaffolds by laser sintering: Mechanical properties and in vitro bioactivity evaluation. Applied Surface Science, 2014, 297, 1-8.	6.1	31
208	Early dentine remineralisation: Morpho-mechanical assessment. Journal of Dentistry, 2014, 42, 384-394.	4.1	16
209	Role of glass structure in defining the chemical dissolution behavior, bioactivity and antioxidant properties of zinc and strontium co-doped alkali-free phosphosilicate glasses. Acta Biomaterialia, 2014, 10, 3264-3278.	8.3	64
210	Cellular responses to titanium successively treated by magnesium and silver PIII&D. Surface and Coatings Technology, 2014, 256, 9-14.	4.8	15
211	Cellular response to rare earth mixtures (La and Gd) as components of degradable Mg alloys for medical applications. Colloids and Surfaces B: Biointerfaces, 2014, 117, 312-321.	5.0	35
212	Double layer bioglass-silica coatings on 316L stainless steel by sol–gel method. Ceramics International, 2014, 40, 993-1000.	4.8	56
213	Bioglass/alginate composite hydrogel beads as cell carriers for bone regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 42-51.	3.4	68
214	Biomaterials for orbital implants and ocular prostheses: Overview and future prospects. Acta Biomaterialia, 2014, 10, 1064-1087.	8.3	87
215	Novel selenium containing boro-phosphate glasses: Preparation and structural study. Materials Science and Engineering C, 2014, 39, 61-66.	7.3	38
216	Nanocomposite hydrogels for biomedical applications. Biotechnology and Bioengineering, 2014, 111, 441-453.	3.3	916
217	Electrophoretic deposition of bioactive glass nanopowders on magnesium based alloy for biomedical applications. Ceramics International, 2014, 40, 7879-7888.	4.8	54
218	In vitro reactivity of Sr-containing bioactive glass (type 1393) nanoparticles. Journal of Non-Crystalline Solids, 2014, 387, 41-46.	3.1	50

\mathbf{C}	TAT	ON	DEDC	NDT.
	IAI	UN	KEPU	жт

#	Article	IF	CITATIONS
219	Mechanical properties and reliability of glass–ceramic foam scaffolds for bone repair. Materials Letters, 2014, 118, 27-30.	2.6	67
220	Low-temperature sintering of 45S5 Bioglass®-based glass ceramics: Effect of biphasic mixing approach on the mechanical and biological properties. Materials Letters, 2014, 126, 154-158.	2.6	9
221	Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors. Journal of Controlled Release, 2014, 193, 282-295.	9.9	306
222	Magnesium-containing bioactive polycrystalline silicate-based ceramics and glass-ceramics for biomedical applications. Current Opinion in Solid State and Materials Science, 2014, 18, 147-167.	11.5	166
223	A review of the bioactivity of hydraulic calcium silicate cements. Journal of Dentistry, 2014, 42, 517-533.	4.1	152
224	Chemical interaction of 10-MDP (methacryloyloxi-decyl-dihydrogen-phosphate) in zinc-doped self-etch adhesives. Journal of Dentistry, 2014, 42, 359-365.	4.1	21
225	Introduction to biomaterials and implantable device design. , 2014, , 1-31.		2
226	Graphene-reinforced mechanical properties of calcium silicate scaffolds by laser sintering. RSC Advances, 2014, 4, 12782-12788.	3.6	35
227	New porous polycaprolactone–silica composites for bone regeneration. Materials Science and Engineering C, 2014, 40, 418-426.	7.3	34
228	Individual and combined effects of the elements Zn, Mg and Sr on the surface reactivity of a SiO2·CaO·Na2O·P2O5 bioglass system. Journal of Non-Crystalline Solids, 2014, 386, 19-28.	3.1	39
229	Bioactive glasses: Importance of structure and properties in bone regeneration. Journal of Molecular Structure, 2014, 1073, 24-30.	3.6	90
230	Bioactivated Materials for Cell and Tissue Guidance. , 2014, , 137-150.		3
231	Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis – A review. Acta Biomaterialia, 2014, 10, 557-579.	8.3	597
232	Electrospun nanofibrous scaffolds of poly (l-lactic acid)-dicalcium silicate composite via ultrasonic-aging technique for bone regeneration. Materials Science and Engineering C, 2014, 35, 426-433.	7.3	39
233	Calcium phosphate-bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 990-995.	7.1	302
234	Directing osteogenesis of stem cells with hydroxyapatite precipitated electrospun eri–tasar silk fibroin nanofibrous scaffold. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1440-1457.	3.5	19
235	Silver-containing bioactive glasses for tissue engineering applications. , 2014, , 177-211.		13
237	Current challenges in atomistic simulations of glasses for biomedical applications. Physical Chemistry Chemical Physics, 2014, 16, 3874-3880.	2.8	23

		CITATION R	EPORT	
#	Article		IF	Citations
238	Bioactive glass foams for tissue engineering applications. , 2014, , 191-212.			5
239	Samarium doped glass-reinforced hydroxyapatite with enhanced osteoblastic performance antibacterial properties for bone tissue regeneration. Journal of Materials Chemistry B, 20 5872-5881.	ce and 014, 2,	5.8	40
240	Stimulation of osteogenic protein expression for rat bone marrow stromal cells involved signalling pathway by the ions released from Ca ₇ Si ₂ P ₂ O ₁₆ bioceramics. Journal of Chemistry B, 2014, 2, 885-891.	in the ERK of Materials	5.8	23
241	Bioceramics for skeletal bone regeneration. , 2014, , 180-216.			18
242	Zinc Incorporation Improves Biological ActivityÂofÂBeta-tricalciumÂSilicate Resin–base of Endodontics, 2014, 40, 1840-1845.	ed Cement. Journal	3.1	23
243	Monitoring of hydroxyapatite conversion by luminescence intensity of Eu3+ ions during mineralization of Eu3+-doped Î ² -Ca2SiO4. Optical Materials, 2014, 37, 525-530.		3.6	11
244	Effect of borosilicate glass on the mechanical and biodegradation properties of 45S5-der bioactive glass-ceramics. Journal of Non-Crystalline Solids, 2014, 405, 91-99.	ived	3.1	22
245	Bioactive glass and glassâ \in "ceramic foam scaffolds for bone tissue restoration. , 2014, ,	213-248.		6
246	In vitro antibacterial capacity and cytocompatibility of SiO ₂ –CaO–P ₂ O ₅ meso-macroporous glass s with ZnO. Journal of Materials Chemistry B, 2014, 2, 4836-4847.	scaffolds enriched	5.8	88
247	Synthesis of radial mesoporous bioactive glass particles to deliver osteoactivin gene. Jour Materials Chemistry B, 2014, 2, 7045-7054.	rnal of	5.8	44
248	In vitro endothelial cell response to ionic dissolution products from boron-doped bioactiv the SiO ₂ –CaO–P ₂ O ₅ –Na ₂ O Materials Chemistry B, 2014, 2, 7620-7630.	<i>r</i> e glass in system. Journal of	5.8	71
249	Development of Novel Mesoporous Silica-Based Bioactive Glass Scaffolds with Drug Deliv Capabilities. Advances in Science and Technology, 0, , .	very	0.2	6
250	Kaolin-reinforced 3D MBC scaffolds with hierarchical architecture and robust mechanical for bone tissue engineering. Journal of Materials Chemistry B, 2014, 2, 3782-3790.	strength	5.8	26
251	Scaffold-based regeneration of skeletal tissues to meet clinical challenges. Journal of Mat Chemistry B, 2014, 2, 7272-7306.	terials	5.8	98
252	Bioactive glass hybrids: a simple route towards the gelatin–SiO ₂ –CaO s Communications, 2014, 50, 8701.	system. Chemical	4.1	16
253	Fabrication of a novel triphasic and bioactive ceramic and evaluation of its in vitro and in cytocompatibility and osteogenesis. Journal of Materials Chemistry B, 2014, 2, 1866.	vivo	5.8	15
254	Structure, biodegradation behavior and cytotoxicity of alkali-containing alkaline-earth phosphosilicate glasses. Materials Science and Engineering C, 2014, 44, 159-165.		7.3	33
255	Evolution of a Mesoporous Bioactive Glass Scaffold Implanted in Rat Femur Evaluated by ⁴⁵ Ca Labeling, Tracing, and Histological Analysis. ACS Applied Materials &a 2014, 6, 3528-3535.	mp; Interfaces,	8.0	17

#	Article	IF	CITATIONS
256	Cobalt-Releasing 1393 Bioactive Glass-Derived Scaffolds for Bone Tissue Engineering Applications. ACS Applied Materials & amp; Interfaces, 2014, 6, 2865-2877.	8.0	99
257	The influence of local structure and surface morphology on the antibacterial activity of silver-containing calcium borosilicate glasses. Journal of Non-Crystalline Solids, 2014, 404, 98-103.	3.1	34
258	Emerging trends and new developments in regenerative medicine: a scientometric update (2000 – 2014). Expert Opinion on Biological Therapy, 2014, 14, 1295-1317.	3.1	503
259	Drug-releasing implants: current progress, challenges and perspectives. Journal of Materials Chemistry B, 2014, 2, 6157-6182.	5.8	112
260	Preparation and characterization of bioactive and degradable composites containing ordered mesoporous calcium-magnesium silicate and poly(l-lactide). Applied Surface Science, 2014, 317, 1090-1099.	6.1	9
261	Advanced yolk–shell hydroxyapatite for bone graft materials: kilogram-scale production and structure-in vitro bioactivity relationship. RSC Advances, 2014, 4, 25234.	3.6	8
262	The effects of 3D bioactive glass scaffolds and BMP-2 on bone formation in rat femoral critical size defects and adjacent bones. Biomedical Materials (Bristol), 2014, 9, 045013.	3.3	25
263	Antibiotic-free composite bone cements with antibacterial and bioactive properties. A preliminary study. Materials Science and Engineering C, 2014, 43, 65-75.	7.3	39
264	Effect of sodium oxide and magnesia on structure, in vitro bioactivity and degradability of wollastonite. Materials Letters, 2014, 135, 237-240.	2.6	15
265	Mineral Trioxide Aggregate in Dentistry. , 2014, , .		13
266	Sol–gel derived bioactive glasses with low tendency to crystallize: Synthesis, post-sintering bioactivity and possible application for the production of porous scaffolds. Materials Science and Engineering C, 2014, 43, 573-586.	7.3	58
267	Effect of silicon content on the surface morphology of silicon-substituted hydroxyapatite bio-ceramics treated by a hydrothermal vapor method. Ceramics International, 2014, 40, 14661-14667.	4.8	17
268	Lithium release from β-tricalcium phosphate inducing cementogenic and osteogenic differentiation of both hPDLCs and hBMSCs. Biomaterials Science, 2014, 2, 1230.	5.4	33
269	Addressing the optimal silver content in bioactive glass systems in terms of BSA adsorption. Journal of Materials Chemistry B, 2014, 2, 5799-5808.	5.8	27
270	Synthesis, Characterization, and <i>In Vitro</i> Bioactivity of Sol-Gel-Derived SiO ₂ –CaO–P ₂ O ₅ –MgO-SrO Bioactive Glass. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2014, 44, 692-701.	0.6	57
271	Zoledronate and Ion-releasing Resins Impair Dentin Collagen Degradation. Journal of Dental Research, 2014, 93, 999-1004.	5.2	24
272	Injectable Dopamine-Modified Poly(ethylene glycol) Nanocomposite Hydrogel with Enhanced Adhesive Property and Bioactivity. ACS Applied Materials & Interfaces, 2014, 6, 16982-16992.	8.0	286
273	Tissue engineering scaffolds of mesoporous magnesium silicate and poly(ε-caprolactone)–poly(ethylene glycol)–poly(ε-caprolactone) composite. Journal of Materials Science: Materials in Medicine, 2014, 25, 1415-1424.	3.6	22

#	Article	IF	CITATIONS
274	Excess entropy and thermal behavior of Cu- and Ti-doped bioactive glasses. Journal of Thermal Analysis and Calorimetry, 2014, 117, 579-588.	3.6	21
275	Preparation, Characterization, In Vitro Bioactivity, and Cellular Responses to a Polyetheretherketone Bioactive Composite Containing Nanocalcium Silicate for Bone Repair. ACS Applied Materials & Interfaces, 2014, 6, 12214-12225.	8.0	86
276	Bioactivity of zinc-doped dental adhesives. Journal of Dentistry, 2014, 42, 403-412.	4.1	44
277	Bioactive ceramics and glasses for tissue engineering. , 2014, , 67-114.		17
278	Silicate bioceramics enhanced vascularization and osteogenesis through stimulating interactions between endothelia cells and bone marrow stromal cells. Biomaterials, 2014, 35, 3803-3818.	11.4	216
279	Bioactive Glass: An <i>Inâ€Vitro</i> Comparative Study of Doping with Nanoscale Copper and Silver Particles. International Journal of Applied Glass Science, 2014, 5, 255-266.	2.0	91
280	Biodegradation assessment of nanostructured fluoridated hydroxyapatite coatings on biomedical grade magnesium alloy. Ceramics International, 2014, 40, 15149-15158.	4.8	35
281	Gelatin-bioactive glass composites scaffolds with controlled macroporosity. Chemical Engineering Journal, 2014, 256, 9-13.	12.7	30
282	Increase in VEGF secretion from human fibroblast cells by bioactive glass S53P4 to stimulate angiogenesis in bone. Journal of Biomedical Materials Research - Part A, 2014, 102, 4055-4061.	4.0	73
283	Alternate dipping preparation of biomimetic apatite layers in the presence of carbonate ions. Biomedical Materials (Bristol), 2014, 9, 015003.	3.3	9
284	The silver influence on the structure and antibacterial properties of the bioactive 10B2O3â^'30Na2Oâ^'60P2O2 glass. Journal of Non-Crystalline Solids, 2014, 402, 182-186.	3.1	25
285	Meltâ€electrospun polycaprolactone strontiumâ€substituted bioactive glass scaffolds for bone regeneration. Journal of Biomedical Materials Research - Part A, 2014, 102, 3140-3153.	4.0	77
287	Structural and Optical Properties of Erbium and Ytterbium Codoped Germanoniobophosphate Glasses. Journal of the American Ceramic Society, 2014, 97, 2462-2470.	3.8	5
288	Influence of fluoride additions on biological and mechanical properties of Na2O–CaO–SiO2–P2O5 glass–ceramics. Materials Science and Engineering C, 2014, 35, 171-178.	7.3	28
289	Effect of ZrO2 additions on the crystallization, mechanical and biological properties of MgO–CaO–SiO2–P2O5–CaF2 bioactive glass-ceramics. Colloids and Surfaces B: Biointerfaces, 2014, 118 226-233.	3,5.0	32
290	In vitro assessment of three-dimensionally plotted nagelschmidtite bioceramic scaffolds with varied macropore morphologies. Acta Biomaterialia, 2014, 10, 463-476.	8.3	76
291	Characterization of aqueous interactions of copper-doped phosphate-based glasses by vapour sorption. Acta Biomaterialia, 2014, 10, 3317-3326.	8.3	27
292	Intrafibrillar-silicified collagen scaffolds enhance the osteogenic capacity of human dental pulp stem	4.1	30

#	Article	IF	CITATIONS
293	Enamelled coatings produced with low-alkaline bioactive glasses. Surface and Coatings Technology, 2014, 248, 1-8.	4.8	19
294	Biological performance of titania containing phosphate-based glasses for bone tissue engineering applications. Materials Science and Engineering C, 2014, 35, 307-313.	7.3	20
295	Odontogenic differentiation and dentin formation of dental pulp cells under nanobioactive glass induction. Acta Biomaterialia, 2014, 10, 2792-2803.	8.3	71
296	Development and inÂvitro assessment of bioactive glass/polymer nanostructured composites with silver. Journal of Composite Materials, 2014, 48, 63-70.	2.4	12
297	Bioceramics in ophthalmology. Acta Biomaterialia, 2014, 10, 3372-3397.	8.3	42
298	Mg- and/or Sr-doped tricalcium phosphate/bioactive glass composites: Synthesis, microstructure and biological responsiveness. Materials Science and Engineering C, 2014, 42, 312-324.	7.3	43
299	Bone marrow stromal cells on a three-dimensional bioactive fiber mesh undergo osteogenic differentiation in the absence of osteogenic media supplements: The effect of silanol groups. Acta Biomaterialia, 2014, 10, 4175-4185.	8.3	16
300	Stimulation of bone growth following zinc incorporation into biomaterials. Biomaterials, 2014, 35, 6882-6897.	11.4	241
301	The effects of PEG assisted synthesis and zinc addition on gamma irradiated bioactive glasses. Composites Part B: Engineering, 2014, 66, 83-88.	12.0	9
302	In vitro degradability, bioactivity and cell responses to mesoporous magnesium silicate for the induction of bone regeneration. Colloids and Surfaces B: Biointerfaces, 2014, 120, 38-46.	5.0	58
303	Soluble silica inhibits osteoclast formation and bone resorption in vitro. Acta Biomaterialia, 2014, 10, 406-418.	8.3	99
304	Role of the P38 Pathway in Calcium Silicate Cement–induced Cell Viability and Angiogenesis-related Proteins of Human Dental Pulp Cell InÂVitro. Journal of Endodontics, 2014, 40, 818-824.	3.1	37
305	A review of bioactive glasses: Their structure, properties, fabrication and apatite formation. Journal of Biomedical Materials Research - Part A, 2014, 102, 254-274.	4.0	440
306	Preparation of calcium pyrophosphate glass-ceramics containing Nb ₂ O ₅ . Journal of the Ceramic Society of Japan, 2014, 122, 122-124.	1.1	12
307	Tuning of calcium silicate ceramics for environment-friendly material applications. Journal of the Ceramic Society of Japan, 2014, 122, 858-862.	1.1	4
308	Calcium phosphate cement with silicate ion releasing ability by incorporating calcium silicate hydrate. Journal of the Ceramic Society of Japan, 2014, 122, 591-595.	1.1	2
311	Ultrahigh strength of three-dimensional printed diluted magnesium doping wollastonite porous scaffolds. MRS Communications, 2015, 5, 631-639.	1.8	41
312	Anisotropic Composites of Desaminotyrosine and Desaminotyrosyl Tyrosine Functionalized Gelatin and Bioactive Glass Microparticles. Materials Research Society Symposia Proceedings, 2015, 1718, 9-14.	0.1	0

	CITATION RE	PORT	
#	Article	IF	Citations
313	Unanticipated stabilization of zinc-silicate glasses by addition of lanthanum: Implications for therapeutic inorganic ion delivery systems. Journal of Non-Crystalline Solids, 2015, 429, 83-92.	3.1	5
314	Development and Characterization of PEEK/B ₂ O ₃ -Doped 45S5 Bioactive Glass Composite Coatings Obtained by Electrophoretic Deposition. Key Engineering Materials, 0, 654, 165-169.	0.4	11
315	The osteogenic response of mesenchymal stromal cells to strontium-substituted bioactive glasses. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 619-631.	2.7	64
316	New horizon for high performance Mg-based biomaterial with uniform degradation behavior: Formation of stacking faults. Scientific Reports, 2015, 5, 13933.	3.3	47
317	A bioactive glass nanocomposite scaffold toughed by multi-wall carbon nanotubes for tissue engineering. Journal of the Ceramic Society of Japan, 2015, 123, 485-491.	1.1	15
319	Toward Smart Implant Synthesis: Bonding Bioceramics of Different Resorbability to Match Bone Growth Rates. Scientific Reports, 2015, 5, 10677.	3.3	42
322	In-vitro study of copper doped SiO2-CaO-P2O5 system for bioactivity and antimicrobial properties. AIP Conference Proceedings, 2015, , .	0.4	4
323	On modeling and nanoanalysis of caries-affected dentin surfaces restored with Zn-containing amalgam and in vitro oral function. Biointerphases, 2015, 10, 041004.	1.6	10
324	Characterization of Y2O3 and CeO2 doped SiO2-SrO-Na2O glasses. Biomedical Glasses, 2015, 1, .	2.4	2
325	Development and performance analysis of Si-CaP/fine particulate bone powder combined grafts for bone regeneration. BioMedical Engineering OnLine, 2015, 14, 47.	2.7	8
326	Starâ€Shaped, Biodegradable, and Elastomeric PLLAâ€PEGâ€POSS Hybrid Membrane With Biomineralization Activity for Guiding Bone Tissue Regeneration. Macromolecular Bioscience, 2015, 15, 1656-1662.	4.1	33
327	THE ROLE OF NIOBIUM IONS IN CALCIUM PHOSPHATE INVERT GLASSES FOR BONE REGENERATION. Phosphorus Research Bulletin, 2015, 30, 30-34.	0.6	0
328	Exploring the Materialâ€Induced Transcriptional Landscape of Osteoblasts on Bone Graft Materials. Advanced Healthcare Materials, 2015, 4, 1691-1700.	7.6	12
329	Enhanced osteoconductivity of polyethersulphone nanofibres loaded with bioactive glass nanoparticles in <i>inÂvitro</i> and <i>inÂvivo</i> models. Cell Proliferation, 2015, 48, 455-464.	5.3	47
330	Silicaâ€based mesoporous nanobiomaterials as promoter of bone regeneration process. Journal of Biomedical Materials Research - Part A, 2015, 103, 3703-3716.	4.0	38
331	Surfaceâ€Active Borate Glasses as Antifouling Materials. Advanced Materials Interfaces, 2015, 2, 1500370.	3.7	2
332	Inhibition of enamel demineralization and bond-strength properties of bioactive glass containing 4-META/MMA-TBB-based resin adhesive. European Journal of Oral Sciences, 2015, 123, 202-207.	1.5	27
333	In vitro hydrolysis and magnesium release of poly(<scp>d</scp> , <scp>l</scp> â€lactideâ€coâ€glycolide)â€based composites containing bioresorbable glasses and magnesium hydroxide. Journal of Applied Polymer Science, 2015, 132, .	2.6	4

#	Article	IF	CITATIONS
334	Changes in actin and tubulin expression in osteogenic cells cultured on bioactive glassâ€based surfaces. Microscopy Research and Technique, 2015, 78, 1046-1053.	2.2	3
335	Matriz porosa do BV60S no tratamento de defeitos ósseos crÃŧicosem rádios de cães. Arquivo Brasileiro De Medicina Veterinaria E Zootecnia, 2015, 67, 993-1002.	0.4	2
336	Novel Nanostructured Zn-substituted Monetite Based Biomaterial for Bone Regeneration. Journal of Nanomedicine & Nanotechnology, 2015, 06, .	1.1	4
337	Sintering of alumina ceramics reinforced with a bioactive glass of 3CaO.P ₂ O ₅ -SiO ₂ -MgO system. Ceramica, 2015, 61, 160-167.	0.8	2
338	Bioactive Glasses: Frontiers and Challenges. Frontiers in Bioengineering and Biotechnology, 2015, 3, 194.	4.1	250
339	Development of Magnesium and Siloxane-Containing Vaterite and Its Composite Materials for Bone Regeneration. Frontiers in Bioengineering and Biotechnology, 2015, 3, 195.	4.1	14
340	Bioceramics and Scaffolds: A Winning Combination for Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2015, 3, 202.	4.1	261
341	Nanoparticle-Integrated Hydrogels as Multifunctional Composite Materials for Biomedical Applications. Gels, 2015, 1, 162-178.	4.5	100
342	Mechanisms of in Vivo Degradation and Resorption of Calcium Phosphate Based Biomaterials. Materials, 2015, 8, 7913-7925.	2.9	160
343	Preparation of Cotton-Wool-Like Poly(lactic acid)-Based Composites Consisting of Core-Shell-Type Fibers. Materials, 2015, 8, 7979-7987.	2.9	5
344	Composites of Polymer Hydrogels and Nanoparticulate Systems for Biomedical and Pharmaceutical Applications. Nanomaterials, 2015, 5, 2054-2130.	4.1	297
345	Therapeutic Ion-Releasing Bioactive Glass Ionomer Cements with Improved Mechanical Strength and Radiopacity. Frontiers in Materials, 2015, 2, .	2.4	25
346	Degradability, bioactivity, and osteogenesis of biocomposite scaffolds of lithium-containing mesoporous bioglass and mPEG-PLGA-b-PLL copolymer. International Journal of Nanomedicine, 2015, 10, 4125.	6.7	19
347	Composition and Modifications of Dental Implant Surfaces. Journal of Oral Implants, 2015, 2015, 1-14.	1.0	24
349	Bidirectional regulation of zinc embedded titania nanorods: antibiosis and osteoblastic cell growth. RSC Advances, 2015, 5, 14470-14481.	3.6	12
350	Interdisciplinary approach to cell–biomaterial interactions: biocompatibility and cell friendly characteristics of RKKP glass–ceramic coatings on titanium. Biomedical Materials (Bristol), 2015, 10, 035005.	3.3	16
351	Role of the p38 pathway in mineral trioxide aggregateâ€induced cell viability and angiogenesisâ€related proteins of dental pulp cell <i>in vitro</i> . International Endodontic Journal, 2015, 48, 236-245.	5.0	36
352	Dendrimer templated bioactive glass-ceramic nanovehicle for gene delivery applications. RSC Advances, 2015, 5, 56794-56807.	3.6	25

		CITATION REPORT	
#	Article	IF	Citations
353	Advances in Metallic Biomaterials. Springer Series in Biomaterials Science and Engineering, 2015	5, , . 1.0	17
354	Synthesis and mechanical evaluation of Sr-doped calcium-zirconium-silicate (baghdadite) and its impact on osteoblast cell proliferation and ALP activity. Biomedical Materials (Bristol), 2015, 10, 055013.	3.3	27
355	Directional and temporal variation of the mechanical properties of robocast scaffold during resorption. Journal of Materials Science: Materials in Medicine, 2015, 26, 229.	3.6	2
356	Effects of silicon on osteoclast cell mediated degradation, in vivo osteogenesis and vasculogene of brushite cement. Journal of Materials Chemistry B, 2015, 3, 8973-8982.	sis 5.8	56
357	Characterisation of Bioglass based foams developed via replication of natural marine sponges. Advances in Applied Ceramics, 2015, 114, S56-S62.	1.1	40
358	Waste derived glass ceramic composites prepared by low temperature sintering/sinter-crystallise Advances in Applied Ceramics, 2015, 114, S17-S25.	ation. 1.1	16
359	A new iron calcium phosphate material to improve the osteoconductive properties of a biodegra ceramic: a study in rabbit calvaria. Biomedical Materials (Bristol), 2015, 10, 055012.	idable 3.3	13
360	Mesoporous bioactive glasses: Relevance of their porous structure compared to that of classical bioglasses. Biomedical Glasses, 2015, 1, .	2.4	58
361	Bioactive glass-reinforced bioceramic ink writing scaffolds: sintering, microstructure and mechanical behavior. Biofabrication, 2015, 7, 035010.	7.1	61
362	Effect of CeO2 and Y2O3 on microstructure, bioactivity and degradability of laser cladding CaO coating on titanium alloy. Colloids and Surfaces B: Biointerfaces, 2015, 127, 15-21.	–SiO2 5.0	61
363	Electrophoretic deposition of mesoporous bioactive glass on glass–ceramic foam scaffolds fo tissue engineering. Journal of Materials Science: Materials in Medicine, 2015, 26, 5346.	r bone 3.6	49
364	Bioactivity evolution of the surface functionalized bioactive glasses. Journal of Biomedical Mater Research - Part B Applied Biomaterials, 2015, 103, 261-272.	ials 3.4	30
365	Aging Time and Temperature Effects on the Structure and Bioactivity of Gelâ€Derived 45S5 Glassâ€Ceramics. Journal of the American Ceramic Society, 2015, 98, 30-38.	3.8	109
366	RKKP bioactive glass-ceramic material through an aqueous sol-gel process. Ceramics Internation 2015, 41, 3371-3380.	al, 4.8	19
367	How can bioactive glasses be useful in ocular surgery?. Journal of Biomedical Materials Research Part A, 2015, 103, 1259-1275.	- 4.0	32
368	Fiber glass–bioactive glass composite for bone replacing and bone anchoring implants. Denta Materials, 2015, 31, 371-381.	3.5	79
369	The future of bioactive ceramics. Journal of Materials Science: Materials in Medicine, 2015, 26, 8	36. 3.6	80
370	Three-dimensional endothelial cell morphogenesis under controlled ion release from copper-dop phosphate glass. Journal of Controlled Release, 2015, 200, 222-232.	ed 9.9	10

#	Article	IF	CITATIONS
371	Characterization of nickel-doped biphasic calcium phosphate/graphene nanoplatelet composites for biomedical application. Materials Science and Engineering C, 2015, 49, 656-668.	7.3	76
372	Toughening and functionalization of bioactive ceramic and glass bone scaffolds by biopolymer coatings and infiltration: a review of the last 5 years. Expert Review of Medical Devices, 2015, 12, 93-111.	2.8	88
373	Understanding the composition–structure–bioactivity relationships in diopside (CaO·MgO·2SiO2)–tricalcium phosphate (3CaO·P2O5) glass system. Acta Biomaterialia, 2015, 15, 210-226	. ^{8.3}	34
374	The role of osteoclasts in bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 1133-1149.	2.7	108
375	Evidence of Catalase Mimetic Activity in Ce ³⁺ /Ce ⁴⁺ Doped Bioactive Glasses. Journal of Physical Chemistry B, 2015, 119, 4009-4019.	2.6	119
376	Effect of ion substitution on properties of bioactive glasses: A review. Ceramics International, 2015, 41, 7241-7251.	4.8	216
377	Bioactive Glasses—Structure and Properties. Angewandte Chemie - International Edition, 2015, 54, 4160-4181.	13.8	283
378	Investigating the influence of Na+ and Sr2+ on the structure and solubility of SiO2–TiO2–CaO–Na2O/SrO bioactive glass. Journal of Materials Science: Materials in Medicine, 2015, 26, 85.	3.6	9
379	Feasibility of silica-hybridized collagen hydrogels as three-dimensional cell matrices for hard tissue engineering. Journal of Biomaterials Applications, 2015, 30, 338-350.	2.4	15
380	Nanoporous structured carbon nanofiber–bioactive glass composites for skeletal tissue regeneration. Journal of Materials Chemistry B, 2015, 3, 5300-5309.	5.8	19
381	Functional and molecular structural analysis of dentine interfaces promoted by a Zn-doped self-etching adhesive and an in vitro load cycling model. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 50, 131-149.	3.1	19
382	Microstructure, in vitro bioactivity and degradability of various magnesia-containing wollastonite. Materials Letters, 2015, 159, 459-462.	2.6	16
383	Rationalizing the Biodegradation of Glasses for Biomedical Applications Through Classical and Ab-initio Simulations. Springer Series in Materials Science, 2015, , 255-273.	0.6	2
384	Bioactive Ceramic Coatings. Springer Series in Biomaterials Science and Engineering, 2015, , 103-126.	1.0	1
385	In vitro cell response to Co-containing 1393 bioactive glass. Materials Science and Engineering C, 2015, 57, 157-163.	7.3	33
386	Three-dimensional zinc incorporated borosilicate bioactive glass scaffolds for rodent critical-sized calvarial defects repair and regeneration. Colloids and Surfaces B: Biointerfaces, 2015, 130, 149-156.	5.0	32
387	Investigating the effect of silver coating on the solubility, antibacterial properties, and cytocompatibility of glass microspheres. Journal of Biomaterials Applications, 2015, 30, 450-462.	2.4	4
388	Therapeutically relevant aspects in bone repair and regeneration. Materials Today, 2015, 18, 573-589.	14.2	101

#	Article	IF	CITATIONS
389	Preparation and biocompatibility evaluation of bioactive glass–forsterite nanocomposite powder for oral bone defects treatment applications. Materials Science and Engineering C, 2015, 56, 409-416.	7.3	12
391	Phase composition, microstructure and in vitro bioactivity of laser cladding CaO–ZrO2–SiO2 system coatings on titanium alloy. Materials Letters, 2015, 157, 139-142.	2.6	8
392	On the Collagen Mineralization. A Review. Medicine and Pharmacy Reports, 2015, 88, 15-22.	0.4	31
393	Degradation and silicon excretion of the calcium silicate bioactive ceramics during bone regeneration using rabbit femur defect model. Journal of Materials Science: Materials in Medicine, 2015, 26, 197.	3.6	36
394	Novel Co-akermanite (Ca ₂ CoSi ₂ O ₇) bioceramics with the activity to stimulate osteogenesis and angiogenesis. Journal of Materials Chemistry B, 2015, 3, 6773-6782.	5.8	42
395	Preferential sputtering in phosphate glass systems for the processing of bioactive coatings. Thin Solid Films, 2015, 589, 534-542.	1.8	25
396	In vivo evaluation of a magnesium-based degradable intramedullary nailing system in a sheep model. Acta Biomaterialia, 2015, 25, 369-383.	8.3	80
397	Bioactive Wollastonite-Diopside Foams from Preceramic Polymers and Reactive Oxide Fillers. Materials, 2015, 8, 2480-2494.	2.9	36
398	45S5 Bioglass®–MWCNT composite: processing and bioactivity. Journal of Materials Science: Materials in Medicine, 2015, 26, 199.	3.6	26
399	Effect of zinc oxide and zirconia on structure, degradability and in vitro bioactivity of wollastonite. Ceramics International, 2015, 41, 10160-10169.	4.8	36
400	Bioactive polymethylmethacrylate bone cement modified with combinations of phosphate group-containing monomers and calcium acetate. Journal of Biomaterials Applications, 2015, 29, 1296-1303.	2.4	5
401	Influence of ZnO/MgO substitution on sintering, crystallisation, and bio-activity of alkali-free glass-ceramics. Materials Science and Engineering C, 2015, 53, 252-261.	7.3	27
402	Development of a transparent, non-cytotoxic, silver ion-exchanged glass with antimicrobial activity and low ion elution. Enzyme and Microbial Technology, 2015, 72, 65-71.	3.2	6
403	Correlation of the composition of biominerals with their ability of stimulating intracellular DNA sensors and inflammatory cytokines. Biomaterials, 2015, 54, 106-115.	11.4	7
404	Biphasic silica/apatite co-mineralized collagen scaffolds stimulate osteogenesis and inhibit RANKL-mediated osteoclastogenesis. Acta Biomaterialia, 2015, 19, 23-32.	8.3	48
405	Novel tricalcium silicate/magnesium phosphate composite bone cement having high compressive strength, in vitro bioactivity and cytocompatibility. Acta Biomaterialia, 2015, 21, 217-227.	8.3	99
406	Bone tissue engineering using silica-based mesoporous nanobiomaterials:Recent progress. Materials Science and Engineering C, 2015, 55, 401-409.	7.3	118
407_	Zebrafish: A possible tool to evaluate bioactive ions. Acta Biomaterialia, 2015, 19, 10-14.	8.3	15

#	Article	IF	CITATIONS
408	In-situ hybridization of calcium silicate and hydroxyapatite-gelatin nanocomposites enhances physical property and in vitro osteogenesis. Journal of Materials Science: Materials in Medicine, 2015, 26, 92.	3.6	12
409	Bioactive glass/hydroxyapatite composites: Mechanical properties and biological evaluation. Materials Science and Engineering C, 2015, 51, 196-205.	7.3	83
410	Sol–gel synthesis and <i>in vitro</i> bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics. Biomedical Materials (Bristol), 2015, 10, 025001.	3.3	103
411	Effect of size of bioactive glass nanoparticles on mesenchymal stem cell proliferation for dental and orthopedic applications. Materials Science and Engineering C, 2015, 53, 142-149.	7.3	63
412	Bioactive glass reinforced elastomer composites for skeletal regeneration: A review. Materials Science and Engineering C, 2015, 53, 175-188.	7.3	73
413	A poly(glycerol sebacate)-coated mesoporous bioactive glass scaffold with adjustable mechanical strength, degradation rate, controlled-release and cell behavior for bone tissue engineering. Colloids and Surfaces B: Biointerfaces, 2015, 131, 1-11.	5.0	45
414	Sparse feature selection methods identify unexpected global cellular response to strontium-containing materials. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4280-4285.	7.1	61
415	Human urine-derived stem cells can be induced into osteogenic lineage by silicate bioceramics via activation of the Wnt/β-catenin signaling pathway. Biomaterials, 2015, 55, 1-11.	11.4	76
416	Effect of ion release from Cu-doped 45S5 Bioglass® on 3D endothelial cell morphogenesis. Acta Biomaterialia, 2015, 19, 15-22.	8.3	72
418	Angiogenesis stimulated by novel nanoscale bioactive glasses. Biomedical Materials (Bristol), 2015, 10, 025005.	3.3	58
419	Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair. Biomaterials, 2015, 52, 358-366.	11.4	200
420	Synthesis and in vitro bioactivity assessment of injectable bioglassâ^'organic pastes for bone tissue repair. Ceramics International, 2015, 41, 9373-9382.	4.8	13
421	A highly bioactive and biodegradable poly(glycerol sebacate)–silica glass hybrid elastomer with tailored mechanical properties for bone tissue regeneration. Journal of Materials Chemistry B, 2015, 3, 3222-3233.	5.8	62
422	Mechanical and chemical characterisation of demineralised human dentine after amalgam restorations. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 47, 65-76.	3.1	8
423	Linear release of strontium ions from high borate glasses via lanthanide/alkali substitutions. Journal of Non-Crystalline Solids, 2015, 430, 1-8.	3.1	19
424	Effects of low-level laser therapy on the expression of osteogenic genes during the initial stages of bone healing in rats: a microarray analysis. Lasers in Medical Science, 2015, 30, 2325-2333.	2.1	34
425	The evaluation of physical properties and in vitro cell behavior of PHB/PCL/sol–gel derived silica hybrid scaffolds and PHB/PCL/fumed silica composite scaffolds. Colloids and Surfaces B: Biointerfaces, 2015, 136, 93-98.	5.0	28
426	Crack-free polydimethylsiloxane–bioactive glass–poly(ethylene glycol) hybrid monoliths with controlled biomineralization activity and mechanical property for bone tissue regeneration. Colloids and Surfaces B: Biointerfaces, 2015, 136, 126-133.	5.0	17

#	Article	IF	CITATIONS
427	Design of a thermosensitive bioglass/agarose–alginate composite hydrogel for chronic wound healing. Journal of Materials Chemistry B, 2015, 3, 8856-8864.	5.8	87
428	Core–shell fibrous stem cell carriers incorporating osteogenic nanoparticulate cues for bone tissue engineering. Acta Biomaterialia, 2015, 28, 183-192.	8.3	29
429	Investigating the Vascularization of Tissue-Engineered Bone Constructs Using Dental Pulp Cells and 45S5 Bioglass [®] Scaffolds. Tissue Engineering - Part A, 2015, 21, 2034-2043.	3.1	25
430	Micro-structural evolution and biomineralization behavior of carbon nanofiber/bioactive glass composites induced by precursor aging time. Colloids and Surfaces B: Biointerfaces, 2015, 136, 585-593.	5.0	14
431	An FTIR and ESR study of iron doped calcium borophosphate glass-ceramics. Journal of Molecular Structure, 2015, 1101, 170-175.	3.6	25
432	Bioaggregate Inhibits Osteoclast Differentiation, Fusion, andÂBone Resorption InÂVitro. Journal of Endodontics, 2015, 41, 1500-1506.	3.1	11
433	Reprint of: Review of bioactive glass: From Hench to hybrids. Acta Biomaterialia, 2015, 23, S53-S82.	8.3	442
434	Bioactive Glass-Biopolymer Composites. , 2015, , 1-26.		0
435	Biological Impact of Bioactive Glasses and Their Dissolution Products. Frontiers of Oral Biology, 2015, 17, 22-32.	1.5	34
436	Cellulose Nanocrystals—Bioactive Glass Hybrid Coating as Bone Substitutes by Electrophoretic Co-deposition: In Situ Control of Mineralization of Bioactive Glass and Enhancement of Osteoblastic Performance. ACS Applied Materials & Interfaces, 2015, 7, 24715-24725.	8.0	63
437	Interfacial Reaction-Driven Formation of Silica Carbonate Biomorphs with Subcellular Topographical Features and Their Biological Activity. ACS Applied Materials & Interfaces, 2015, 7, 23412-23417.	8.0	15
438	Elastomeric and mechanically stiff nanocomposites from poly(glycerol sebacate) and bioactive nanosilicates. Acta Biomaterialia, 2015, 26, 34-44.	8.3	56
439	Towards 4th generation biomaterials: a covalent hybrid polymer–ormoglass architecture. Nanoscale, 2015, 7, 15349-15361.	5.6	26
440	Novel nanocomposite biomaterials with controlled copper/calcium release capability for bone tissue engineering multifunctional scaffolds. Journal of the Royal Society Interface, 2015, 12, 20150509.	3.4	28
441	Preparation and characterization of laser cladding wollastonite derived bioceramic coating on titanium alloy. Biointerphases, 2015, 10, 031007.	1.6	5
442	Opening paper 2015- Some comments on Bioglass: Four Eras of Discovery and Development. Biomedical Glasses, 2015, 1, .	2.4	92
443	Influence of textural properties on biomineralization behavior of mesoporous bioactive glasses. Biomedical Glasses, 2015, 1, .	2.4	4
444	Preparation and characterization of fibrous chitosan-glued phosphate glass fiber scaffolds for bone regeneration. Journal of Materials Science: Materials in Medicine, 2015, 26, 224.	3.6	8

#	Article	IF	CITATIONS
445	Zinc-containing bioactive glasses for bone regeneration, dental and orthopedic applications. Biomedical Classes, 2015, 1, .	2.4	43
446	Self-etching zinc-doped adhesives improve the potential of caries-affected dentin to be functionally remineralized. Biointerphases, 2015, 10, 031002.	1.6	32
447	Development of silica grafted poly(1,8-octanediol-co-citrates) hybrid elastomers with highly tunable mechanical properties and biocompatibility. Journal of Materials Chemistry B, 2015, 3, 2986-3000.	5.8	26
448	Porous and strong three-dimensional carbon nanotube coated ceramic scaffolds for tissue engineering. Journal of Materials Chemistry B, 2015, 3, 8337-8347.	5.8	12
449	Preparation, physicochemical properties and in vitro bioactivity of hierarchically porous bioactive glass scaffolds. RSC Advances, 2015, 5, 98796-98804.	3.6	1
450	In vitro chemical and biological effects of Ag, Cu and Cu + Zn adjunction in 46S6 bioactive glasses. Materials Research Express, 2015, 2, 095402.	1.6	3
451	Preparation and Characterization of Low Temperature Heat-Treated 45S5 Bioactive Glass-Ceramic Analogues. Biomedical Glasses, 2015, 1, .	2.4	16
452	Synthesis, Osteoblast, and Osteoclast Viability of Amorphous and Crystalline Tri-Magnesium Phosphate. ACS Biomaterials Science and Engineering, 2015, 1, 52-63.	5.2	40
453	Magnesium coated phosphate glass fibers for unidirectional reinforcement of polycaprolactone composites. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1424-1432.	3.4	5
454	Composition-structure-properties relationship of strontium borate glasses for medical applications. Journal of Biomedical Materials Research - Part A, 2015, 103, 2344-2354.	4.0	17
455	Effects of bioactive cements incorporating zinc-bioglass nanoparticles on odontogenic and angiogenic potential of human dental pulp cells. Journal of Biomaterials Applications, 2015, 29, 954-964.	2.4	41
456	Recycling of pre-stabilized municipal waste incinerator fly ash and soda-lime glass into sintered glass-ceramics. Journal of Cleaner Production, 2015, 89, 224-230.	9.3	97
457	Bioactivity evolution of calcium-free borophosphate glass with addition of titanium dioxide. Journal of Non-Crystalline Solids, 2015, 410, 112-117.	3.1	18
458	Atomic-scale models of early-stage alkali depletion and SiO ₂ -rich gel formation in bioactive glasses. Physical Chemistry Chemical Physics, 2015, 17, 2696-2702.	2.8	12
459	Synergistic effect of nanomaterials and BMP-2 signalling in inducing osteogenic differentiation of adipose tissue-derived mesenchymal stem cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 219-228.	3.3	28
460	Angiogenic effects of ionic dissolution products released from a boron-doped 45S5 bioactive glass. Journal of Materials Chemistry B, 2015, 3, 1142-1148.	5.8	87
461	PCL/chitosan/Zn-doped nHA electrospun nanocomposite scaffold promotes adipose derived stem cells adhesion and proliferation. Carbohydrate Polymers, 2015, 118, 133-142.	10.2	158
462	Bioactive glasses beyond bone and teeth: Emerging applications in contact with soft tissues. Acta Biomaterialia, 2015, 13, 1-15.	8.3	432

#	Article	IF	CITATIONS
463	Synthesis and characterisation of porous luminescent glass ceramic scaffolds containing europium for bone tissue engineering. Advances in Applied Ceramics, 2015, 114, 164-174.	1.1	28
464	The bifunctional regulation of interconnected Zn-incorporated ZrO ₂ nanoarrays in antibiosis and osteogenesis. Biomaterials Science, 2015, 3, 665-680.	5.4	32
465	Combining Collagen and Bioactive Glasses for Bone Tissue Engineering: A Review. Advanced Healthcare Materials, 2015, 4, 176-194.	7.6	107
466	Investigating the solubility and cytocompatibility of CaO–Na ₂ O–SiO ₂ /TiO ₂ bioactive glasses. Journal of Biomedical Materials Research - Part A, 2015, 103, 709-720.	4.0	10
467	Enhancement mechanisms of graphene in nano-58S bioactive glass scaffold: mechanical and biological performance. Scientific Reports, 2014, 4, 4712.	3.3	125
468	Odontogenic stimulation of human dental pulp cells with bioactive nanocomposite fiber. Journal of Biomaterials Applications, 2015, 29, 854-866.	2.4	43
469	Progress in Bioactive Metal and, Ceramic Implants for Load- Bearing Application. , 0, , .		9
470	Porous Bioglass Scaffold for Orthopedics Applications. Medziagotyra, 2016, 22, .	0.2	0
471	Doped Bioactive Glass Materials in Bone Regeneration. , 0, , .		23
472	Bioactive and Antibacterial Glass Powders Doped with Copper by Ion-Exchange in Aqueous Solutions. Materials, 2016, 9, 405.	2.9	30
473	Application of nanobioceramics in bone tissue engineering. , 2016, , 353-379.		0
474	Periodontal Bone Substitutes Application Techniques and Cost Evaluation: A Review. American Journal of Engineering and Applied Sciences, 2016, 9, 951-961.	0.6	0
475	Placenta Derived Mesenchymal Stem Cells Hosted on RKKP Glass-Ceramic: A Tissue Engineering Strategy for Bone Regenerative Medicine Applications. BioMed Research International, 2016, 2016, 1-11.	1.9	10
476	Sol-Gel Derived Mg-Based Ceramic Scaffolds Doped with Zinc or Copper Ions: Preliminary Results on Their Synthesis, Characterization, and Biocompatibility. International Journal of Biomaterials, 2016, 2016, 1-11.	2.4	30
477	A Comparative Evaluation of the Mechanical Properties of Two Calcium Phosphate/Collagen Composite Materials and Their Osteogenic Effects on Adipose-Derived Stem Cells. Stem Cells International, 2016, 2016, 1-12.	2.5	17
478	Hybrid Ceramo-Polymeric Nanocomposite for Biomimetic Scaffolds Design and Preparation. American Journal of Engineering and Applied Sciences, 2016, 9, 1096-1105.	0.6	23
479	Synthesis of Monodispersed Ag-Doped Bioactive Glass Nanoparticles via Surface Modification. Materials, 2016, 9, 225.	2.9	50
480	Scientometric overview regarding the nanobiomaterials in dentistry. , 2016, , 425-453.		6

#	Article	IF	CITATIONS
481	Bioactive Glass Nanoparticles: From Synthesis to Materials Design for Biomedical Applications. Materials, 2016, 9, 288.	2.9	202
482	Versatile Production of Poly(Epsilon-Caprolactone) Fibers by Electrospinning Using Benign Solvents. Nanomaterials, 2016, 6, 75.	4.1	105
483	Novel biocompatible and resorbable UV-transparent phosphate glass based optical fiber. Optical Materials Express, 2016, 6, 2040.	3.0	56
484	Tailoring the Structure of Bioactive Glasses: From the Nanoscale to Macroporous Scaffolds. International Journal of Applied Glass Science, 2016, 7, 195-205.	2.0	23
485	Human mesenchymal stromal cells response to biomimetic octacalcium phosphate containing strontium. Journal of Biomedical Materials Research - Part A, 2016, 104, 1946-1960.	4.0	21
486	Saosâ€2 cellâ€mediated mineralization on collagen gels: Effect of densification and bioglass incorporation. Journal of Biomedical Materials Research - Part A, 2016, 104, 1121-1134.	4.0	14
487	Bioactive vapor deposited calciumâ€phosphate silica sol–gel particles for directing osteoblast behavior. Journal of Biomedical Materials Research - Part A, 2016, 104, 2135-2148.	4.0	4
488	Mechanical behaviour of degradable phosphate glass fibres and composites—a review. Biomedical Materials (Bristol), 2016, 11, 014105.	3.3	34
489	Bioactive Glass Innovations Through Academiaâ€Industry Collaboration. International Journal of Applied Glass Science, 2016, 7, 139-146.	2.0	10
490	Highâ€resolution synchrotron <scp>X</scp> â€ray analysis of bioglassâ€enriched hydrogels. Journal of Biomedical Materials Research - Part A, 2016, 104, 1194-1201.	4.0	17
491	Regulating proliferation and differentiation of osteoblasts on poly(<scp> </scp> -lactide)/gelatin composite nanofibers via timed biomineralization. Journal of Biomedical Materials Research - Part A, 2016, 104, 1968-1980.	4.0	20
492	Investigating the effect of <scp>T</scp> i <scp>O</scp> ₂ on the structure and biocompatibility of bioactive glass. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 1703-1712.	3.4	10
493	Hybrid cross-linked hydrogels based on fibrous protein/block copolymers and layered silicate nanoparticles: tunable thermosensitivity, biodegradability and mechanical durability. RSC Advances, 2016, 6, 62944-62957.	3.6	67
494	Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances. Journal of Biomedical Materials Research - Part A, 2016, 104, 1250-1275.	4.0	117
495	Enhanced osteoprogenitor elongated collagen fiber matrix formation by bioactive glass ionic silicon dependent on Sp7 (osterix) transcription. Journal of Biomedical Materials Research - Part A, 2016, 104, 2604-2615.	4.0	9
496	Self-Healing Elastin–Bioglass Hydrogels. Biomacromolecules, 2016, 17, 2619-2625.	5.4	53
497	Bioactive and biocompatible copper containing glass-ceramics with remarkable antibacterial properties and high cell viability designed for future in vivo trials. Biomaterials Science, 2016, 4, 1252-1265.	5.4	42
498	Structure–composition relationships of bioactive borophosphosilicate glasses probed by multinuclear ¹¹ B, ²⁹ Si, and ³¹ P solid state NMR. RSC Advances, 2016, 6, 101288-101303.	3.6	50

#	Article	IF	CITATIONS
499	Synthesis of semicrystalline nanocapsular structures obtained by Thermally Induced Phase Separation in nanoconfinement. Scientific Reports, 2016, 6, 32727.	3.3	21
500	Special Section of Papers presented at the Larry L. Hench Memorial Symposium on Bioactive Glasses at the Annual Meeting of the Glass & Optical Materials Division (GOMD) of the American Ceramic Society, held from 22nd to 26th May 2016 in Madison, Wisconsin, USA. Biomedical Glasses, 2016, 2, .	2.4	0
501	Sodium-free mixed alkali bioactive glasses. Biomedical Glasses, 2016, 2, .	2.4	14
502	What Can We Learn from Atomistic Simulations of Bioactive Glasses?. Advanced Structured Materials, 2016, , 119-145.	0.5	2
503	Stem Cells Commitment on Graphene-Based Scaffolds. Carbon Nanostructures, 2016, , 103-133.	0.1	0
504	Cell studies of hybridized carbon nanofibers containing bioactive glass nanoparticles using bone mesenchymal stromal cells. Scientific Reports, 2016, 6, 38685.	3.3	16
505	Graphene-based Materials in Health and Environment. Carbon Nanostructures, 2016, , .	0.1	5
506	Bioactive Materials: Definitions and Application in Tissue Engineering and Regeneration Therapy. Advanced Structured Materials, 2016, , 1-17.	0.5	3
507	Biocompatible Glasses for Controlled Release Technology. Advanced Structured Materials, 2016, , 285-315.	0.5	2
508	An Introduction and History of the Bioactive Glasses. Advanced Structured Materials, 2016, , 19-47.	0.5	4
509	The Evolution, Control, and Effects of the Compositions of Bioactive Glasses on Their Properties and Applications. Advanced Structured Materials, 2016, , 85-117.	0.5	2
510	45S5 Bioglass Based Scaffolds for Skeletal Repair. Advanced Structured Materials, 2016, , 183-201.	0.5	1
511	Biocompatible Glasses. Advanced Structured Materials, 2016, , .	0.5	10
512	Monodispersed strontium containing bioactive glass nanoparticles and MC3T3-E1 cellular response. Biomedical Glasses, 2016, 2, .	2.4	18
513	Effect of BaO modifier on the metaphosphate composition by means of conductivity and modulus representation. , 2016, , .		0
514	Evaluation of in vivo angiogenetic effects of copper doped bioactive glass scaffolds in the AV loop model. Biomedical Glasses, 2016, 2, .	2.4	9
515	Corrosion behavior of Mg-3Zn/bioglass (45S5) composite in simulated body fluid (SBF) and phosphate buffered saline (PBS) solution. AIP Conference Proceedings, 2016, , .	0.4	4
516	Structural and microstructural studies of zinc-doped glasses from NaCaPO4-SiO2 system. Journal of Non-Crystalline Solids, 2016, 441, 66-73.	3.1	15

ARTICLE IF CITATIONS Bioactivity and Mechanical Stability of 45S5 Bioactive Glass Scaffolds Based on Natural Marine 517 2.5 35 Sponges. Annals of Biomedical Engineering, 2016, 44, 1881-1893. Structure and dissolution behavior of orthophosphate MgO–CaO–P 2 O 5 –Nb 2 O 5 glass and 2.6 glass-ceramic. Materials Letters, 2016, 175, 135-138. The effect of ZnO â†" Ta2O5 substitution on the structural and thermal properties of 519 4.4 22 SiO2-ZnO-SrO-CaO-P2O5 glasses. Materials Characterization, 2016, 114, 218-224. Effect of copper-doped silicate 13â \in '93 bioactive glass scaffolds on the response of MC3T3-E1 cells in vitro and on bone regeneration and angiogenesis in rat calvarial defects in vivo. Materials Science and Engineering C, 2016, 67, 440-452. Size-Dependent Mechanism of Intracellular Localization and Cytotoxicity of Mono-Disperse Spherical 521 Mesoporous Nano- and Micron-Bioactive Class Particles. Journal of Biomedical Nanotechnology, 2016, 1.1 34 12, 863-877. Advanced zinc-doped adhesives for high performance at the resin-carious dentin interface. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 62, 247-267. 3.1 Preparation of calcium silicate/decellularized porcine myocardial matrix crosslinked by procyanidins 523 3.6 7 for cardiac tissue engineering. RSC Advances, 2016, 6, 35091-35101. The effect of magnesium alloy wires and tricalcium phosphate particles on apatite mineralization on 524 2.6 polylactide-based composites. Materials Letters, 2016, 180, 1-5. Surface functionalization with strontium-containing nanocomposite coatings via EPD. Colloids and 525 5.0 34 Surfaces B: Biointerfaces, 2016, 146, 97-106. Preparation and in-vitro characterization of electrospun bioactive glass nanotubes as mesoporous 4.8 carriers for ibuprofen. Ceramics International, 2016, 42, 10935-10942. Glass-ceramic coated Mg-Ca alloys for biomedical implant applications. Materials Science and 527 7.364 Engineering C, 2016, 64, 362-369. 528 Degradation of Glass and Glass Ceramics., 2016, , . Structural analysis of xSrOâ€"(50 â[°] x)CaOâ€"50P 2 O 5 glasses with x = 0, 5, or 10 mol% for potential use in a local delivery system for osteomyelitis treatment. Materials Science and Engineering C, 2016, 58, 529 7.3 4 639-647. Synthesis and Characterization of Silver-containing Sol-gel Derived Bioactive Glass Coating. 1.1 Protection of Metals and Physical Chemistry of Surfaces, 2016, 52, 285-290. Effect of Aluminum Ion Incorporation on the Bioactivity and Structure in Mesoporous Bioactive 531 29 6.7 Glasses. Chemistry of Materials, 2016, 28, 3254-3264. Comparative evaluation of a biomimic collagen/hydroxyapatite/ \hat{l}^2 -tricaleium phosphate scaffold in 2.2 alveolar ridge preservation with Bio-Oss Collagen. Frontiers of Materials Science, 2016, 10, 122-133. Powder bed generation in integrated modelling of additive layer manufacturing of orthopaedic 533 3.018 implants. International Journal of Advanced Manufacturing Technology, 2016, 87, 519-530. Nanoscale bioactive glass activates osteoclastic differentiation of RAW 264.7 cells. Nanomedicine, 534 3.3 2016, 11, 1093-1105

#	Article	IF	CITATIONS
535	Magnesium and silver doped CaO–Na 2 O–SiO 2 –P 2 O 5 bioceramic nanoparticles as implant materials. Ceramics International, 2016, 42, 12651-12662.	4.8	27
	Fabrication of Minerals Substituted Porous Hydroxyapaptite/Poly(3,4-ethylenedioxy) Tj ETQq1 1 0.784314 rgBT /0	Overlock	10 Tf 50 712
536	Its Antibacterial and Biological Activities for Orthopedic Applications. ACS Applied Materials & Interfaces. 2016. 8. 12404-12421.	8.0	31
537	Fabrication and characterization of Mg-doped chitosan–gelatin nanocompound coatings for titanium surface functionalization. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 954-971.	3.5	21
538	Substantial enhancement of corrosion resistance and bioactivity of magnesium by incorporating calcium silicate particles. RSC Advances, 2016, 6, 47897-47906.	3.6	12
539	Biocomposites for Orthopedic and Dental Application. Key Engineering Materials, 0, 672, 261-275.	0.4	10
540	Bioactive glass nanoparticles designed for multiple deliveries of lithium ions and drugs: Curative and restorative bone treatment. European Journal of Pharmaceutical Sciences, 2016, 91, 243-250.	4.0	38
541	Preparation and in vitro osteogenic, angiogenic and antibacterial properties of cuprorivaite (CaCuSi ₄ O ₁₀ , Cup) bioceramics. RSC Advances, 2016, 6, 45840-45849.	3.6	55
542	Magnesium Phosphate Cement Systems for Hard Tissue Applications: A Review. ACS Biomaterials Science and Engineering, 2016, 2, 1067-1083.	5.2	155
543	Ca3(PO4)2 precipitated layering of an in situ hybridized PVA/Ca2O4Si nanofibrous antibacterial wound dressing. International Journal of Pharmaceutics, 2016, 507, 41-49.	5.2	16
544	Coral Scaffolds in Bone Tissue Engineering and Bone Regeneration. , 2016, , 691-714.		4
545	Improved properties of composite collagen hydrogels: protected oligourethanes and silica particles as modulators. Journal of Materials Chemistry B, 2016, 4, 6497-6509.	5.8	21
546	Monodispersed lysozyme-functionalized bioactive glass nanoparticles with antibacterial and anticancer activities. Biomedical Materials (Bristol), 2016, 11, 035012.	3.3	25
547	Advances in collagen, chitosan and silica biomaterials for oral tissue regeneration: from basics to clinical trials. Journal of Materials Chemistry B, 2016, 4, 6913-6929.	5.8	29
548	Stem Cell Differentiation Mediated by Biomaterials/Surfaces. , 2016, , 187-251.		0
549	Timing of calcium nitrate addition affects morphology, dispersity and composition of bioactive glass nanoparticles. RSC Advances, 2016, 6, 95101-95111.	3.6	64
551	A study on microstructural characterization of the interface between apatite-wollastonite based glass ceramic and feldspathic dental porcelain. Ceramics International, 2016, 42, 19245-19249.	4.8	6
552	Physicochemical properties and biocompatibility of PZL/PLGA/bioglass composite scaffolds for bone tissue engineering. RSC Advances, 2016, 6, 97096-97106.	3.6	5
553	Polymeric Biomaterials for Tissue Regeneration. , 2016, , .		4

#	Article	IF	CITATIONS
554	Improving the osteogenesis and degradability of biomimetic hybrid materials using a combination of bioglass and collagen I. Materials and Design, 2016, 112, 67-79.	7.0	10
555	Comprehensive Review on the Use of Graphene-Based Substrates for Regenerative Medicine and Biomedical Devices. ACS Applied Materials & Interfaces, 2016, 8, 26431-26457.	8.0	141
556	Biomaterials for catalysed mineralization of dental hard tissues. , 2016, , 365-376.		2
557	Mineralogenic characteristics of osteogenic lineage-committed human dental pulp stem cells following their exposure to a discoloration-free calcium aluminosilicate cement. Dental Materials, 2016, 32, 1235-1247.	3.5	11
558	Synthesis, physico-chemical and biological characterization of strontium and cobalt substituted bioactive glasses for bone tissue engineering. Journal of Non-Crystalline Solids, 2016, 449, 133-140.	3.1	77
559	Biomedical Applications of Functionalized ZnO Nanomaterials: from Biosensors to Bioimaging. Advanced Materials Interfaces, 2016, 3, 1500494.	3.7	138
560	3D plotting of highly uniform Sr ₅ (PO ₄) ₂ SiO ₄ bioceramic scaffolds for bone tissue engineering. Journal of Materials Chemistry B, 2016, 4, 6200-6212.	5.8	40
561	Reinforcement of poly-l-lactic acid electrospun membranes with strontium borosilicate bioactive glasses for bone tissue engineering. Acta Biomaterialia, 2016, 44, 168-177.	8.3	53
562	The effect of mesoporous bioglass on osteogenesis and adipogenesis of osteoporotic BMSCs. Journal of Biomedical Materials Research - Part A, 2016, 104, 3004-3014.	4.0	28
563	Understanding the role of dip-coating process parameters in the mechanical performance of polymer-coated bioglass robocast scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 64, 253-261.	3.1	25
564	Zinc-Containing Restorations Create Amorphous Biogenic Apatite at the Carious Dentin Interface: A X-Ray Diffraction (XRD) Crystal Lattice Analysis. Microscopy and Microanalysis, 2016, 22, 1034-1046.	0.4	7
565	Influence of single and binary doping of strontium and lithium on in vivo biological properties of bioactive glass scaffolds. Scientific Reports, 2016, 6, 32964.	3.3	45
566	Biomineralised interpenetrating network hydrogels for bone tissue engineering. Bioinspired, Biomimetic and Nanobiomaterials, 2016, 5, 12-23.	0.9	13
567	Osteogenic and angiogenic activities of silicon-incorporated TiO2 nanotube arrays. Journal of Materials Chemistry B, 2016, 4, 5548-5559.	5.8	39
568	Osteogenic differentiation of mesenchymal stem cells on a poly (octanediol citrate)/bioglass composite scaffold in vitro. Materials and Design, 2016, 109, 434-442.	7.0	15
569	Bioactivity and osteoinductivity of glasses and glassceramics and their material determinants. Ceramics International, 2016, 42, 14313-14325.	4.8	44
570	Injectable and self-healing dynamic hydrogel containing bioactive glass nanoparticles as a potential biomaterial for bone regeneration. RSC Advances, 2016, 6, 69156-69166.	3.6	44
571	Determination of copper in composite biomaterials by capillary electrophoresis: an UV-direct method based on in situ complex formation. Analytical Methods, 2016, 8, 7767-7773.	2.7	5

#	Article	IF	CITATIONS
572	Development of zinc-halloysite nanotube/minerals substituted hydroxyapatite bilayer coatings on titanium alloy for orthopedic applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 511, 357-365.	4.7	32
573	Bioglass and Bioactive Glasses and Their Impact on Healthcare. International Journal of Applied Glass Science, 2016, 7, 423-434.	2.0	226
574	Biological Adhesives. , 2016, , .		23
575	A Novel Strategy for Preparation of Si-HA Coatings on C/C Composites by Chemical Liquid Vaporization Deposition/Hydrothermal Treatments. Scientific Reports, 2016, 6, 31309.	3.3	10
576	Bioactive calcium silicate extracts regulate the morphology and stemness of human embryonic stem cells at the initial stage. RSC Advances, 2016, 6, 104666-104674.	3.6	5
577	Strontium-Substituted Submicrometer Bioactive Classes Modulate Macrophage Responses for Improved Bone Regeneration. ACS Applied Materials & Interfaces, 2016, 8, 30747-30758.	8.0	136
578	Rapid fabrication of dense 45S5 Bioglass [®] compacts through spark plasma sintering and evaluation of their <i>in vitro</i> biological properties. Biomedical Materials (Bristol), 2016, 11, 065006.	3.3	4
579	ZnO quantum dots modified bioactive glass nanoparticles with pH-sensitive release of Zn ions, fluorescence, antibacterial and osteogenic properties. Journal of Materials Chemistry B, 2016, 4, 7936-7949.	5.8	44
580	Annual Conference of the German Society for Biomaterials 2016 – Abstracts. BioNanoMaterials, 2016, 17, 1-182.	1.4	6
581	Histological response of soda-lime glass-ceramic bactericidal rods implanted in the jaws of beagle dogs. Scientific Reports, 2016, 6, 31478.	3.3	8
582	Improvement in degradability of 58s glass scaffolds by ZnO and β-TCP modification. Bioengineered, 2016, 7, 342-351.	3.2	7
583	Biomimetic Adhesives and Coatings Based on Mussel Adhesive Proteins. , 2016, , 345-378.		9
584	Novel Method for Fabrication of Samples for Cell Testing of Bioceramics in Granular form. Journal of Applied Biomaterials and Functional Materials, 2016, 14, 449-454.	1.6	0
585	Unveiling the effect of threeâ€dimensional bioactive fibre mesh scaffolds functionalized with silanol groups on bacteria growth. Journal of Biomedical Materials Research - Part A, 2016, 104, 2189-2199.	4.0	5
586	Review and the state of the art: Sol–gel and melt quenched bioactive glasses for tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 1248-1275.	3.4	131
587	The Influence of Cu ²⁺ and Mn ²⁺ Ions on the Structure and Crystallization of Diopside–Calcium Pyrophosphate Bioglasses. International Journal of Applied Glass Science, 2016, 7, 345-354.	2.0	5
588	Synthesis, characterization and in-vitro studies of strontium-zinc co-substituted fluorohydroxyapatite for biomedical applications. Journal of Non-Crystalline Solids, 2016, 445-446, 81-87.	3.1	20
589	Fabrication and characterization of strontium incorporated 3-D bioactive glass scaffolds for bone tissue from biosilica. Materials Science and Engineering C, 2016, 68, 350-357.	7.3	40

#	Article	IF	CITATIONS
590	Enhancing the biological properties of carbon nanofibers by controlling the crystallization of incorporated bioactive glass via silicon content. RSC Advances, 2016, 6, 53958-53966.	3.6	5
591	Combined and individual doxorubicin/vancomycin drug loading, release kinetics and apatite formation for the CaO–CuO–P ₂ O ₅ –SiO ₂ –B ₂ O ₃ mesoporous glasses. RSC Advances, 2016, 6, 51046-51056.	3.6	29
592	A bioceramic with enhanced osteogenic properties to regulate the function of osteoblastic and osteocalastic cells for bone tissue regeneration. Biomedical Materials (Bristol), 2016, 11, 035018.	3.3	25
593	Intrinsic Antibacterial Borosilicate Classes for Bone Tissue Engineering Applications. ACS Biomaterials Science and Engineering, 2016, 2, 1143-1150.	5.2	26
594	Bioactive Glass-Biopolymer Composites for Applications in Tissue Engineering. , 2016, , 325-356.		7
595	Human treated dentin matrices combined with Zn-doped, Mg-based bioceramic scaffolds and human dental pulp stem cells towards targeted dentin regeneration. Dental Materials, 2016, 32, e159-e175.	3.5	32
596	Design and Properties of Novel Substituted Borosilicate Bioactive Glasses and Their Glass-Ceramic Derivatives. Crystal Growth and Design, 2016, 16, 3731-3740.	3.0	18
597	Bioactivity of Y ₂ O ₃ and CeO ₂ doped SiO ₂ -SrO-Na ₂ O glass-ceramics. Journal of Biomaterials Applications, 2016, 31, 165-180.	2.4	8
598	Submicron-to-nanoscale structure characterization and organization of crystals in dentin bioapatites. RSC Advances, 2016, 6, 45265-45278.	3.6	7
599	Three-dimensional polymer coated 45S5-type bioactive glass scaffolds seeded with human mesenchymal stem cells show bone formation in vivo. Journal of Materials Science: Materials in Medicine, 2016, 27, 119.	3.6	48
600	Design of air aging induced surface patterns on 45S5 Bioglass® compacted by spark plasma sintering. Journal of Non-Crystalline Solids, 2016, 445-446, 69-76.	3.1	10
601	Injectable osteogenic and angiogenic nanocomposite hydrogels for irregular bone defects. Biomedical Materials (Bristol), 2016, 11, 035017.	3.3	51
602	Hydroxyapatite and tricalcium phosphate composites with bioactive glass as second phase: State of the art and current applications. Journal of Biomedical Materials Research - Part A, 2016, 104, 1030-1056.	4.0	107
603	Biomaterials Obtained by Gelation. , 2016, , 1-42.		0
604	Investigating structural features which control the dissolution of bioactive phosphate glasses: Beyond the network connectivity. Journal of Non-Crystalline Solids, 2016, 432, 31-34.	3.1	46
605	A Freestanding Sol-Gel Technique for Growth of Nanowire Arrays in SiO 2 -CaO-P 2 O 5 -ZrO 2 System. Silicon, 2016, 8, 233-237.	3.3	1
606	Structure and physicochemical properties of CaO–P2O5–Nb2O5–Na2O glasses. Journal of Non-Crystalline Solids, 2016, 432, 60-64.	3.1	34
607	Gallic acid grafting to a ferrimagnetic bioactive glass-ceramic. Journal of Non-Crystalline Solids, 2016, 432, 167-175.	3.1	26

#	Article	IF	CITATIONS
608	Ectopic bone formation in rapidly fabricated acellular injectable dense collagen-Bioglass hybrid scaffolds via gel aspiration-ejection. Biomaterials, 2016, 85, 128-141.	11.4	68
609	Porous SiO2 nanofiber grafted novel bioactive glass–ceramic coating: A structural scaffold for uniform apatite precipitation and oriented cell proliferation on inert implant. Materials Science and Engineering C, 2016, 62, 206-214.	7.3	25
610	Osteogenic cell response to 3-D hydroxyapatite scaffolds developed via replication of natural marine sponges. Journal of Materials Science: Materials in Medicine, 2016, 27, 22.	3.6	25
611	Role of pore size and morphology in musculo-skeletal tissue regeneration. Materials Science and Engineering C, 2016, 61, 922-939.	7.3	305
612	Synthesis of hydroxyapatite from eggshell powders through ball milling and heat treatment. Journal of Asian Ceramic Societies, 2016, 4, 85-90.	2.3	93
613	Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 716-721.	7.1	337
614	Influence of different amount of Na 2 O additive on the structure, mechanical properties and degradability of bioactive wollastonite. Ceramics International, 2016, 42, 1439-1445.	4.8	12
615	Bioglass promotes wound healing by affecting gap junction connexin 43 mediated endothelial cell behavior. Biomaterials, 2016, 84, 64-75.	11.4	114
616	Thermal-based regulation on biomineralization and biological properties of bioglass nanoparticles decorated PAN-based carbon nanofibers. RSC Advances, 2016, 6, 428-438.	3.6	4
617	Sol–gel based materials for biomedical applications. Progress in Materials Science, 2016, 77, 1-79.	32.8	608
618	Electrophoretic co-deposition of cellulose nanocrystals-45S5 bioactive glass nanocomposite coatings on stainless steel. Applied Surface Science, 2016, 362, 323-328.	6.1	20
619	In vitro degradation and angiogenesis of the porous calcium silicate–gelatin composite scaffold. Journal of Materials Chemistry B, 2016, 4, 505-512.	5.8	15
620	Calculations of the local structure and EPR parameters for Cu2+ ions in xMgO–(30 â^' x)Na2O–69B2O3 glasses at different composition x. Journal of Non-Crystalline Solids, 2016, 432, 535-539.	3.1	24
621	Novel antibacterial ocular prostheses: Proof of concept and physico-chemical characterization. Materials Science and Engineering C, 2016, 60, 467-474.	7.3	29
622	Enhancing the Gelation and Bioactivity of Injectable Silk Fibroin Hydrogel with Laponite Nanoplatelets. ACS Applied Materials & Interfaces, 2016, 8, 9619-9628.	8.0	114
623	Yb3+/Tb3+ co-doped GdPO4 transparent magnetic glass-ceramics for spectral conversion. Journal of Alloys and Compounds, 2016, 674, 162-167.	5.5	33
624	Study of hMSC proliferation and differentiation on Mg and Mg–Sr containing biphasic β-tricalcium phosphate and amorphous calcium phosphate ceramics. Materials Science and Engineering C, 2016, 64, 219-228.	7.3	19
625	In Vitro and In Vivo Evaluation of Whitlockite Biocompatibility: Comparative Study with Hydroxyapatite and <i>β</i> â€Tricalcium Phosphate. Advanced Healthcare Materials, 2016, 5, 128-136.	7.6	103

#	Article	IF	CITATIONS
626	Mechanical and biological properties of bioglass/magnesium composites prepared via microwave sintering route. Materials and Design, 2016, 99, 521-527.	7.0	63
627	Different response of osteoblastic cells to Mg2+, Zn2+ and Sr2+ doped calcium silicate coatings. Journal of Materials Science: Materials in Medicine, 2016, 27, 56.	3.6	35
628	Mechanical characterization of glass-ceramic scaffolds at multiple characteristic lengths through nanoindentation. Journal of the European Ceramic Society, 2016, 36, 2403-2409.	5.7	27
629	Controlling particle size in the Stöber process and incorporation of calcium. Journal of Colloid and Interface Science, 2016, 469, 213-223.	9.4	133
630	Sericin Covalent Immobilization onto Cellulose Acetate Membrane for Biomedical Applications. ACS Sustainable Chemistry and Engineering, 2016, 4, 1765-1774.	6.7	143
631	Zinc-modified nanopolymers improve the quality of resin–dentin bonded interfaces. Clinical Oral Investigations, 2016, 20, 2411-2420.	3.0	31
632	Assembly of HE800 exopolysaccharide produced by a deep-sea hydrothermal bacterium into microgels for protein delivery applications. Carbohydrate Polymers, 2016, 142, 213-221.	10.2	18
633	Synthesis, structure, bioactivity and biocompatibility of melt-derived P2O5 aOâ€B2O3â€K2Oâ€MoO3 glasses. Journal of Non-Crystalline Solids, 2016, 439, 67-73.	3.1	19
634	A biocompatible hybrid material with simultaneous calcium and strontium release capability for bone tissue repair. Materials Science and Engineering C, 2016, 62, 429-438.	7.3	21
635	Luminescence concentration quenching and site-occupancy of Eu 2+ ions in Na 2 Ca 2 Si 3 O 9 phosphors derived from 45S5 glass-ceramics. Optical Materials, 2016, 54, 190-194.	3.6	5
636	Gene delivery nanocarriers of bioactive glass with unique potential to load BMP2 plasmid DNA and to internalize into mesenchymal stem cells for osteogenesis and bone regeneration. Nanoscale, 2016, 8, 8300-8311.	5.6	77
637	Novel alkali borosilicate glasses: Preparation, structural investigation and thermal study. Korean Journal of Chemical Engineering, 2016, 33, 1456-1461.	2.7	12
638	Inhibitor encapsulated, self-healable and cytocompatible chitosan multilayer coating on biodegradable Mg alloy: a pH-responsive design. Journal of Materials Chemistry B, 2016, 4, 2498-2511.	5.8	79
639	Designing biomaterials based on biomineralization for bone repair and regeneration. , 2016, , 377-404.		4
640	Influence of strontium on the structure and biological properties of sol–gel-derived mesoporous bioactive glass (MBG) powder. Journal of Sol-Gel Science and Technology, 2016, 78, 539-549.	2.4	44
641	Controlling the ion release from mixed alkali bioactive glasses by varying modifier ionic radii and molar volume. Journal of Materials Chemistry B, 2016, 4, 3121-3134.	5.8	79
642	Stimulation of apoptotic pathways in liver cancer cells: An alternative perspective on the biocompatibility and the utility of biomedical glasses. Journal of Biomaterials Applications, 2016, 30, 1445-1459.	2.4	7
643	Adsorption behavior of proteins on calcium silicate hydrate in Tris and phosphate buffer solutions. Materials Letters, 2016, 167, 112-114.	2.6	5
#	Article	IF	CITATIONS
-----	---	-----	-----------
644	Improving interfacial adhesion with epoxy matrix using hybridized carbon nanofibers containing calcium phosphate nanoparticles for bone repairing. Materials Science and Engineering C, 2016, 61, 174-179.	7.3	16
645	Bioglass Activated Skin Tissue Engineering Constructs for Wound Healing. ACS Applied Materials & Interfaces, 2016, 8, 703-715.	8.0	180
646	In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds. Acta Biomaterialia, 2016, 30, 319-333.	8.3	137
647	Fabrication and characterization of nanostructure diopside scaffolds using the space holder method: Effect of different space holders and compaction pressures. Materials and Design, 2016, 91, 193-200.	7.0	40
648	Tailoring properties of porous Poly (vinylidene fluoride) scaffold through nano-sized 58s bioactive glass. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 97-109.	3.5	15
649	Design, selection and characterization of novel glasses and glass-ceramics for use in prosthetic applications. Ceramics International, 2016, 42, 1482-1491.	4.8	41
650	Novel glass-like coatings for cardiovascular implant application: Preparation, characterization and cellular interaction. Materials Science and Engineering C, 2016, 58, 812-816.	7.3	6
651	In vitro degradation behavior and cytocompatibility of a bioceramic anodization films on the biodegradable magnesium alloy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 488, 82-92.	4.7	29
652	A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers. Journal of Materials Science, 2016, 51, 271-310.	3.7	252
653	Biosilicate® — A multipurpose, highly bioactive glass-ceramic. In vitro, in vivo and clinical trials. Journal of Non-Crystalline Solids, 2016, 432, 90-110.	3.1	130
654	Mesoporous Bioactive Glass-Based Controlled Release Systems. , 2016, , 139-159.		1
655	Simultaneous mechanical property and biodegradation improvement of wollastonite bioceramic through magnesium dilute doping. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 54, 60-71.	3.1	74
656	An injectable borate bioactive glass cement for bone repair: Preparation, bioactivity and setting mechanism. Journal of Non-Crystalline Solids, 2016, 432, 150-157.	3.1	37
657	Investigating the structure–diffusion–bioactivity relationship of strontium containing bioactive glasses using molecular dynamics based computer simulations. Journal of Non-Crystalline Solids, 2016, 432, 35-40.	3.1	22
658	Development and characterization of lithium-releasing silicate bioactive glasses and their scaffolds for bone repair. Journal of Non-Crystalline Solids, 2016, 432, 65-72.	3.1	63
659	Dissolution behavior of the bioactive glass S53P4 when sodium is replaced by potassium, and calcium with magnesium or strontium. Journal of Non-Crystalline Solids, 2016, 432, 41-46.	3.1	32
660	Glasses in bone regeneration: A multiscale issue. Journal of Non-Crystalline Solids, 2016, 432, 9-14.	3.1	33
661	Bioactive glasses: Special applications outside the skeletal system. Journal of Non-Crystalline Solids, 2016, 432, 15-30.	3.1	221

#	Article	IF	Citations
662	Physico-chemical and in vitro cellular properties of different calcium phosphate-bioactive glass composite chitosan-collagen (CaP@ChiCol) for bone scaffolds. , 2017, 105, 1758-1766.		10
663	Host responses to a strontium releasing high boron glass using a rabbit bilateral femoral defect model. , 2017, 105, 1818-1827.		14
664	Bioactive glass plus laser phototherapy as promise candidates for dentine hypersensitivity treatment. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 107-116.	3.4	27
665	Injectable polyethylene glycol-laponite composite hydrogels as articular cartilage scaffolds with superior mechanical and rheological properties. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 105-114.	3.4	40
666	Characterization and biocompatibility of a fibrous glassy scaffold. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1141-1151.	2.7	23
667	Strategies to direct vascularisation using mesoporous bioactive glass-based biomaterials for bone regeneration. International Materials Reviews, 2017, 62, 392-414.	19.3	44
668	Future Perspectives of Bioactive Glasses for the Clinical Applications. Series in Bioengineering, 2017, , 301-326.	0.6	1
669	Effect of copper nanoparticles on the cell viability of polymer composites. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 462-468.	3.4	17
670	Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles. Advanced Materials, 2017, 29, 1604634.	21.0	565
672	Tailoring the delivery of therapeutic ions from bioactive scaffolds while inhibiting their apatite nucleation: a coaxial electrospinning strategy for soft tissue regeneration. RSC Advances, 2017, 7, 3992-3999.	3.6	8
673	Characterization of the mechanical behaviors and bioactivity of tetrapod ZnO whiskers reinforced bioactive glass/gelatin composite scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 68, 8-15.	3.1	26
674	Electrodiffusion versus Chemical Diffusion in Alkali Calcium Phosphate Glasses: Implication of Structural Changes. Journal of Physical Chemistry C, 2017, 121, 3203-3211.	3.1	8
675	Morphological, mechanical, and <i>in vitro</i> cytocompatibility analysis of poly(vinyl) Tj ETQq0 0 0 rgBT /Overlo of Polymer Analysis and Characterization, 2017, 22, 139-151.	ock 10 Tf 5 1.9	50 267 Td (ald 9
678	lons-modified nanoparticles affect functional remineralization and energy dissipation through the resin-dentin interface. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 68, 62-79.	3.1	37
679	The innovative applications of therapeutic nanostructures in dentistry. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1543-1562.	3.3	51
680	Engineering the surface functionality of 45S5 bioactive glass-based scaffolds by the heterogeneous nucleation and growth of silver particles. Journal of Materials Science, 2017, 52, 9082-9090.	3.7	8
681	Improving the biocompatibility of tobermorite by incorporating calcium phosphate clusters. Bio-Medical Materials and Engineering, 2017, 28, 31-36.	0.6	3
682	Bioactive glass-ceramic scaffolds: Processing and properties. MRS Bulletin, 2017, 42, 226-232.	3.5	36

# 683	ARTICLE Transparent glass-ceramics for optical applications. MRS Bulletin, 2017, 42, 200-205.	IF 3.5	CITATIONS
684	Bioactive gel-glasses with distinctly different compositions: Bioactivity, viability of stem cells and antibiofilm effect against Streptococcus mutans. Materials Science and Engineering C, 2017, 76, 233-241.	7.3	26
685	Synthesis and dissolution behaviour of CaO/SrO-containing sol–gel-derived 58S glasses. Journal of Materials Science, 2017, 52, 8858-8870.	3.7	17
686	Fabrication of Zn-Sr–doped laser-spinning glass nanofibers with antibacterial properties. Journal of Biomaterials Applications, 2017, 31, 819-831.	2.4	19
687	Dual-functional bone implants with antibacterial ability and osteogenic activity. Journal of Materials Chemistry B, 2017, 5, 1943-1953.	5.8	33
688	A patterned nanocomposite membrane for high-efficiency healing of diabetic wound. Journal of Materials Chemistry B, 2017, 5, 1926-1934.	5.8	27
689	Intrinsic Ultrahigh Drug/miRNA Loading Capacity of Biodegradable Bioactive Glass Nanoparticles toward Highly Efficient Pharmaceutical Delivery. ACS Applied Materials & Interfaces, 2017, 9, 8460-8470.	8.0	65
690	Porous 45S5 Bioglass®-based scaffolds using stereolithography: Effect of partial pre-sintering on structural and mechanical properties of scaffolds. Materials Science and Engineering C, 2017, 75, 1281-1288.	7.3	64
691	Inhibition of multiâ€species oral biofilm by bromide doped bioactive glass. Journal of Biomedical Materials Research - Part A, 2017, 105, 1994-2003.	4.0	22
692	Substituted Borosilicate Glasses with Improved Osteogenic Capacity for Bone Tissue Engineering. Tissue Engineering - Part A, 2017, 23, 1331-1342.	3.1	15
693	Development of a bioactive glass-polymer composite for wound healing applications. Materials Science and Engineering C, 2017, 76, 224-232.	7.3	85
694	Nanoengineered Osteoinductive and Elastomeric Scaffolds for Bone Tissue Engineering. ACS Biomaterials Science and Engineering, 2017, 3, 590-600.	5.2	91
695	Functionalized Polymeric Membrane with Enhanced Mechanical and Biological Properties to Control the Degradation of Magnesium Alloy. Advanced Healthcare Materials, 2017, 6, 1601269.	7.6	46
696	Effects of Ca/P molar ratios on regulating biological functions of hybridized carbon nanofibers containing bioactive glass nanoparticles. Biomedical Materials (Bristol), 2017, 12, 025019.	3.3	10
697	Influence of strontium for calcium substitution on the glass–ceramic network and biomimetic behavior in the ternary system SiO2–CaO–MgO. Journal of Materials Science, 2017, 52, 8871-8885.	3.7	8
698	Influence of calcium and phosphorus release from bioactive glasses on viability and differentiation of dental pulp stem cells. Journal of Materials Science, 2017, 52, 8928-8941.	3.7	30
699	PHBV/bioglass composite scaffolds with co-cultures of endothelial cells and bone marrow stromal cells improve vascularization and osteogenesis for bone tissue engineering. RSC Advances, 2017, 7, 22197-22207.	3.6	22
700	Cell behavior of human mesenchymal stromal cells in response to silica/collagen based xerogels and calcium deficient culture conditions. Biomedical Materials (Bristol), 2017, 12, 045003.	3.3	13

#	ARTICLE	IF	CITATIONS
701	Osteoblast-like cell responses to silicate ions released from 45S5-type bioactive glass and siloxane-doped vaterite. Journal of Materials Science, 2017, 52, 8942-8956.	3.7	18
702	Novel bioglasses for bone tissue repair and regeneration: Effect of glass design on sintering ability, ion release and biocompatibility. Materials and Design, 2017, 129, 239-248.	7.0	28
703	Mechanical, structural and dissolution properties of heat treated thin-film phosphate based glasses. Applied Surface Science, 2017, 416, 605-617.	6.1	15
704	Biomedical applications of natural-based polymers combined with bioactive glass nanoparticles. Journal of Materials Chemistry B, 2017, 5, 4555-4568.	5.8	60
705	Enhancing the Bioactivity of Yttria-Stabilized Tetragonal Zirconia Ceramics via Grain-Boundary Activation. ACS Applied Materials & Interfaces, 2017, 9, 16015-16025.	8.0	16
706	Prevention of bacterial adhesion to zwitterionic biocompatible mesoporous glasses. Acta Biomaterialia, 2017, 57, 472-486.	8.3	17
707	RhBMP-2 loaded MBG/PEGylated poly(glycerol sebacate) composite scaffolds for rapid bone regeneration. Journal of Materials Chemistry B, 2017, 5, 4633-4647.	5.8	33
708	Microscopic and spectroscopic evidences for multiple ion-exchange reactions controlling biomineralization of CaO.MgO.2SiO 2 nanoceramics. Ceramics International, 2017, 43, 8502-8508.	4.8	13
709	Highly degradable porous melt-derived bioactive glass foam scaffolds for bone regeneration. Acta Biomaterialia, 2017, 57, 449-461.	8.3	84
710	Calcium phosphates and silicon: exploring methods of incorporation. Biomaterials Research, 2017, 21, 6.	6.9	11
712	Structural, thermal, in vitro degradation and cytocompatibility properties of P2O5-B2O3-CaO-MgO-Na2O-Fe2O3 glasses. Journal of Non-Crystalline Solids, 2017, 457, 77-85.	3.1	19
713	Role of magnesium oxide and strontium oxide as modifiers in silicate-based bioactive glasses: Effects on thermal behaviour, mechanical properties and in-vitro bioactivity. Materials Science and Engineering C, 2017, 72, 566-575.	7.3	74
714	Clinical and Molecular Perspectives of Reparative Dentin Formation. Dental Clinics of North America, 2017, 61, 93-110.	1.8	46
715	Strontium- and cobalt-substituted bioactive glasses seeded with human umbilical cord perivascular cells to promote bone regeneration via enhanced osteogenic and angiogenic activities. Acta Biomaterialia, 2017, 58, 502-514.	8.3	139
716	Antibacterial Properties of Bioactive Glasses. , 2017, , 357-382.		0
717	Non-random bonding of mono/divalent cations in mixed phosphate glasses. Journal of Non-Crystalline Solids, 2017, 470, 38-46.	3.1	4
718	A mini review focused on the proangiogenic role of silicate ions released from silicon-containing biomaterials. Journal of Tissue Engineering, 2017, 8, 204173141770733.	5.5	105
719	Bioactive glass containing silicone composites for left ventricular assist device drivelines: role of Bioglass 45S5® particle size on mechanical properties and cytocompatibility. Journal of Materials Science, 2017, 52, 9023-9038.	3.7	18

#	Article	IF	CITATIONS
720	Polymeric microspheres: a delivery system for osteogenic differentiation. Polymers for Advanced Technologies, 2017, 28, 1595-1609.	3.2	10
721	Innovative Biomaterials in Bone Tissue Engineering and Regenerative Medicine. Pancreatic Islet Biology, 2017, , 63-84.	0.3	3
722	Systematic evaluation of the osteogenic capacity of low-melting bioactive glass-reinforced 45S5 Bioglass porous scaffolds in rabbit femoral defects. Biomedical Materials (Bristol), 2017, 12, 035010.	3.3	7
724	Effects of Composites Containing Bioactive Glasses on Demineralized Dentin. Journal of Dental Research, 2017, 96, 999-1005.	5.2	86
725	Glass-based coatings on biomedical implants: a state-of-the-art review. Biomedical Glasses, 2017, 3, 1-17.	2.4	76
726	All-Solid-State Na/S Batteries with a Na ₃ PS ₄ Electrolyte Operating at Room Temperature. Chemistry of Materials, 2017, 29, 5232-5238.	6.7	126
727	Comparison of the effects of 45S5 and 1393 bioactive glass microparticles on hMSC behavior. Journal of Biomedical Materials Research - Part A, 2017, 105, 2772-2782.	4.0	37
728	Bioactive-glass ceramic with two crystalline phases (BioS-2P) for bone tissue engineering. Biomedical Materials (Bristol), 2017, 12, 045018.	3.3	11
729	Ceramic Biomaterials. Topics in Mining, Metallurgy and Materials Engineering, 2017, , 29-38.	1.6	0
730	Bioactive glass coating on gelatin scaffolds at ambient temperature: easy route to make polymer scaffolds become bioactive. Journal of Materials Science, 2017, 52, 9129-9139.	3.7	17
731	Optimisation of lithium-substituted bioactive glasses to tailor cell response for hard tissue repair. Journal of Materials Science, 2017, 52, 8832-8844.	3.7	38
732	Clinical Applications of Biomaterials. , 2017, , .		9
733	How Did Bioactive Glasses Revolutionize Medical Science? A Tribute to Larry Hench. , 2017, , 1-34.		1
735	Bivalent cationic ions doped bioactive glasses: the influence of magnesium, zinc, strontium and copper on the physical and biological properties. Journal of Materials Science, 2017, 52, 8812-8831.	3.7	114
736	Combined chemical and structural signals of biomaterials synergistically activate cell-cell communications for improving tissue regeneration. Acta Biomaterialia, 2017, 55, 249-261.	8.3	41
737	Sol-gel processing of bioactive glass nanoparticles: A review. Advances in Colloid and Interface Science, 2017, 249, 363-373.	14.7	257
738	Dissolution behavior of CaO-MgO-SiO2-based bioceramic powders in simulated physiological environments. Ceramics International, 2017, 43, 9583-9592.	4.8	26
739	Silica-based Nanoceramics. , 2017, , 23-48.		1

#	Article	IF	CITATIONS
740	Strontium-Containing Mesoporous Bioactive Glass for Regeneration of Osteoporotic Bone and Periodontal Tissue. , 2017, , 187-212.		0
741	ROS mediated high anti-bacterial efficacy of strain tolerant layered phase pure nano-calcium hydroxide. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 72, 110-128.	3.1	32
742	Biocompatible hollow-strut, silica enriched zirconia foams. Bio-Medical Materials and Engineering, 2017, 27, 647-656.	0.6	3
743	Osteoblast-like cell responses to ion products released from magnesium- and silicate-containing calcium carbonates. Bio-Medical Materials and Engineering, 2017, 28, 47-56.	0.6	10
744	Cerium-doped bioactive 45S5 glasses: spectroscopic, redox, bioactivity and biocatalytic properties. Journal of Materials Science, 2017, 52, 8845-8857.	3.7	43
745	Effect of processing parameters on textural and bioactive properties of sol–gel-derived borate glasses. Journal of Materials Science, 2017, 52, 8973-8985.	3.7	26
746	Copper-containing glass polyalkenoate cements based on SiO2–ZnO–CaO–SrO–P2O5 glasses: glass characterization, physical and antibacterial properties. Journal of Materials Science, 2017, 52, 8886-8903.	3.7	26
747	Interphase coordination design in carbamate-siloxane/vaterite composite microparticles towards tuning ion-releasing properties. Advanced Powder Technology, 2017, 28, 1349-1355.	4.1	4
748	Deposition of nanodiopside coatings on metallic biomaterials to stimulate apatite-forming ability. Materials and Design, 2017, 123, 120-127.	7.0	23
749	Novel bioactive glass-AuNP composites for biomedical applications. Materials Science and Engineering C, 2017, 76, 752-759.	7.3	20
750	Bioinspired Nanofeatured Substrates: Suitable Environment for Bone Regeneration. ACS Applied Materials & Interfaces, 2017, 9, 12791-12801.	8.0	18
751	Biocompatibility and bioactivity of porous polymer-derived Ca-Mg silicate ceramics. Acta Biomaterialia, 2017, 50, 56-67.	8.3	56
752	In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions. Materials Science and Engineering C, 2017, 73, 447-455.	7.3	34
753	New highly bioactive crystallization-resistant glass for tissue engineering applications. Translational Materials Research, 2017, 4, 014002.	1.2	23
754	Comparison of 3D-Printed Poly-É›-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix . Tissue Engineering - Part A, 2017, 23, 503-514.	3.1	157
755	Bioactive Glasses. Series in Bioengineering, 2017, , .	0.6	16
756	Bioactive glasses as delivery systems for antimicrobial agents. Journal of Applied Microbiology, 2017, 122, 1424-1437.	3.1	34
757	Facile synthesis of hollow mesoporous bioactive glasses with tunable shell thickness and good monodispersity by micro-emulsion method. Materials Letters, 2017, 189, 325-328.	2.6	20

#		IE	CITATIONS
#	Ion Release Microstructural and Biological Properties of iRoot BP Plus and ProRoot MTA Exposed to	IF	CHATIONS
758	an Acidic Environment. Journal of Endodontics, 2017, 43, 163-168.	3.1	36
759	Antimicrobial activity of ZnO/silica gel nanocomposites prepared by a simple and fast solid-state method. Surface and Coatings Technology, 2017, 310, 129-133.	4.8	18
760	Cu2+, Co2+ and Cr3+ doping of a calcium phosphate cement influences materials properties and response of human mesenchymal stromal cells. Materials Science and Engineering C, 2017, 73, 99-110.	7.3	41
761	Review - bioactive glass implants for potential application in structural bone repair. Biomedical Glasses, 2017, 3, .	2.4	14
762	Synthesis and characteristics of sol-gel bioactive SiO2-P2O5-CaO-Ag2O glasses. Journal of Non-Crystalline Solids, 2017, 476, 108-113.	3.1	55
763	Development and Characterization of Gallium-Doped Bioactive Glasses for Potential Bone Cancer Applications. ACS Biomaterials Science and Engineering, 2017, 3, 3425-3432.	5.2	31
764	Synergetic stimulation of nanostructure and chemistry cues on behaviors of fibroblasts and endothelial cells. Colloids and Surfaces B: Biointerfaces, 2017, 160, 500-509.	5.0	8
765	Effect of copper on the up-regulation/down-regulation of genes, cytotoxicity and ion dissolution for mesoporous bioactive glasses. Biomedical Materials (Bristol), 2017, 12, 045020.	3.3	10
766	Biological Effect of Ions in Calcium Phosphates on Bone Regeneration. Frontiers in Nanobiomedical Research, 2017, , 125-146.	0.1	0
767	Biological Coatings for Implant Surface Modification. Frontiers in Nanobiomedical Research, 2017, , 183-228.	0.1	2
768	Design of Silicate-Based Bioactive Materials for Bone Tissue Repair and Reconstruction. Frontiers in Nanobiomedical Research, 2017, , 257-284.	0.1	0
769	Composite Colloidal Gels Made of Bisphosphonateâ€Functionalized Gelatin and Bioactive Glass Particles for Regeneration of Osteoporotic Bone Defects. Advanced Functional Materials, 2017, 27, 1703438.	14.9	71
770	Titanium addition influences antibacterial activity of bioactive glass coatings on metallic implants. Heliyon, 2017, 3, e00420.	3.2	23
771	Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models. Acta Biomaterialia, 2017, 62, 1-28.	8.3	432
772	Effect of chloride ions in Tris buffer solution on bioactive glass apatite mineralization. International Journal of Applied Glass Science, 2017, 8, 438-449.	2.0	17
773	Regeneration of dental–pulp complex-like tissue using phytic acid derived bioactive glasses. RSC Advances, 2017, 7, 22063-22070.	3.6	22
774	Strontium and magnesium ions released from bioactive titanium metal promote early bone bonding in a rabbit implant model. Acta Biomaterialia, 2017, 63, 383-392.	8.3	58
775	Preparation, characterization, bioactivity and degradation behavior in vitro of copper-doped calcium polyphosphate as a candidate material forÂbone tissue engineering. RSC Advances, 2017, 7, 42614-42626.	3.6	15

#	Article	IF	CITATIONS
776	Effect of magnesium content on bioactivity of near invert phosphateâ€based glasses. International Journal of Applied Glass Science, 2017, 8, 391-402.	2.0	12
777	Bioactive glasses in wound healing: hope or hype?. Journal of Materials Chemistry B, 2017, 5, 6167-6174.	5.8	162
778	Dissolution behavior of CaOâ€MgO‣iO ₂ â€based multiphase bioceramic powders and effects of the released ions on osteogenesis. Journal of Biomedical Materials Research - Part A, 2017, 105, 3159-3168.	4.0	20
779	Intracellular co-delivery of Sr ion and phenamil drug through mesoporous bioglass nanocarriers synergizes BMP signaling and tissue mineralization. Acta Biomaterialia, 2017, 60, 93-108.	8.3	79
780	Mineral trioxide aggregate improves healing response of periodontal tissue to injury in mice. Journal of Periodontal Research, 2017, 52, 1058-1067.	2.7	12
781	Bioglass® 45S5â€based composites for bone tissue engineering and functional applications. Journal of Biomedical Materials Research - Part A, 2017, 105, 3197-3223.	4.0	78
782	Bioactivity and antibacterial activity against E-coli of calcium-phosphate-based glasses: Effect of silver content and crystallinity. Ceramics International, 2017, 43, 13800-13809.	4.8	19
783	Facile synthesis and in vitro bioactivity of radial mesoporous bioactive glasses. Materials Letters, 2017, 206, 205-209.	2.6	8
784	A highly bioactive bone extracellular matrix-biomimetic nanofibrous system with rapid angiogenesis promotes diabetic wound healing. Journal of Materials Chemistry B, 2017, 5, 7285-7296.	5.8	82
785	Bio-inspired bioactive glasses for efficient microRNA and drug delivery. Journal of Materials Chemistry B, 2017, 5, 6376-6384.	5.8	19
786	Nanostructured titanium foam with metal ions incorporation for promoting osteogenic differentiation of mesenchymal stem cells. Journal of Alloys and Compounds, 2017, 729, 816-822.	5.5	6
787	Controlling the microstructure of lyophilized porous biocomposites by the addition of ZnOâ€doped bioglass. International Journal of Applied Ceramic Technology, 2017, 14, 1107-1116.	2.1	9
788	Effective UV/Ozone irradiation method for decontamination of hydroxyapatite surfaces. Heliyon, 2017, 3, e00372.	3.2	12
789	Structure of active cerium sites within bioactive glasses. Journal of the American Ceramic Society, 2017, 100, 5086-5095.	3.8	16
790	Investigation of Osteoinductive Effects of Different Compositions of Bioactive Glass Nanoparticles for Bone Tissue Engineering. ASAIO Journal, 2017, 63, 512-517.	1.6	13
791	Si-doped porous TiO2 coatings enhanced in vitro angiogenic behavior of human umbilical vein endothelial cells. Colloids and Surfaces B: Biointerfaces, 2017, 159, 493-500.	5.0	20
792	Silicate-based bioceramics regulating osteoblast differentiation through a BMP2 signalling pathway. Journal of Materials Chemistry B, 2017, 5, 7297-7306.	5.8	36
793	Formation of apatite nano-needles on novel gel derived SiO2-P2O5-CaO-SrO-Ag2O bioactive glasses. Ceramics International, 2017, 43, 15214-15220.	4.8	36

#	Article	IF	CITATIONS
794	The effects of Sr concentration on physicochemical properties, bioactivity and biocompatibility of sub-micron bioactive glasses spheres. Advanced Powder Technology, 2017, 28, 2713-2722.	4.1	13
796	Advances in the induction of osteogenesis by zinc surface modification based on titanium alloy substrates for medical implants. Journal of Alloys and Compounds, 2017, 726, 1072-1084.	5.5	42
797	Long term effects of bioactive glass particulates on dental pulp stem cells in vitro. Biomedical Glasses, 2017, 3, .	2.4	17
798	Growth and Differentiation of Myoblastic Precursor Cells on Thin Films of Metallo‧upramolecular Coordination Polyelectrolyte (MEPE). Advanced Materials Interfaces, 2017, 4, 1600272.	3.7	2
799	Strontium and fluorine co-doped biphasic calcium phosphate: characterization and in vitro cytocompatibility analysis. Biomedical Physics and Engineering Express, 2017, 3, 045004.	1.2	2
800	Effect of zinc oxide doping on in vitro degradation of magnesium silicate bioceramics. Materials Letters, 2017, 207, 100-103.	2.6	18
801	Development of a clay based bioink for 3D cell printing for skeletal application. Biofabrication, 2017, 9, 034103.	7.1	238
802	High Borate Networks as a Platform to Modulate Temporal Release of Therapeutic Metal Ions Gallium and Strontium. Biomedical Glasses, 2017, 3, .	2.4	0
803	Biomedical applications of hybrid polymer composite materials. , 2017, , 343-408.		10
804	Electrophoretic Deposition, Microstructure, and Corrosion Resistance of Porous Sol–Gel Glass/Polyetheretherketone Coatings on the Ti-13Nb-13Zr Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 2660-2673.	2.2	18
805	Sensitivity of novel silicate and borate-based glass structures on in vitro bioactivity and degradation behaviour. Ceramics International, 2017, 43, 12651-12657.	4.8	14
806	Synthesis and in vitro studies of sol-gel derived lithium substituted 58S bioactive glass. Ceramics International, 2017, 43, 12835-12843.	4.8	43
807	Melt electrospinning writing of defined scaffolds using polylactide-poly(ethylene glycol) blends with 45S5 bioactive glass particles. Materials Letters, 2017, 205, 257-260.	2.6	39
808	Preparation of Ca doping ZrO 2 coating on NiTi shape memory alloy by cathodic plasma electrolytic deposition and its structure, in-vitro bioactivity and biocompatibility analysis. Surface and Coatings Technology, 2017, 325, 136-144.	4.8	16
809	Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue. Acta Biomaterialia, 2017, 59, 2-11.	8.3	178
810	Effect of modified compound calcium phosphate cement on the differentiation and osteogenesis of bone mesenchymal stem cells. Journal of Orthopaedic Surgery and Research, 2017, 12, 102.	2.3	4
811	A zinc oxideâ€modified hydroxyapatiteâ€based cement facilitated new crystallineâ€stoichiometric and amorphous apatite precipitation on dentine. International Endodontic Journal, 2017, 50, e109-e119.	5.0	10
812	PDLLA scaffolds with Cu―and Znâ€doped bioactive glasses having multifunctional properties for bone regeneration. Journal of Biomedical Materials Research - Part A, 2017, 105, 746-756.	4.0	52

#	Article	IF	CITATIONS
813	Novel ion-doped mesoporous glasses for bone tissue engineering: Study of their structural characteristics influenced by the presence of phosphorous oxide. Journal of Non-Crystalline Solids, 2017, 455, 90-97.	3.1	38
814	Synthesis of copper-containing bioactive glass nanoparticles using a modified Stöber method for biomedical applications. Colloids and Surfaces B: Biointerfaces, 2017, 150, 159-167.	5.0	73
815	Antiâ€biofilm properties of bioactive glasses embedding organic active compounds. Journal of Biomedical Materials Research - Part A, 2017, 105, 672-679.	4.0	35
816	Odontogenic differentiation and biomineralization potential of dental pulp stem cells inside Mg-based bioceramic scaffolds under low-level laser treatment. Lasers in Medical Science, 2017, 32, 201-210.	2.1	37
817	Orthopedic implant biomaterials with both osteogenic and anti-infection capacities and associated in vivo evaluation methods. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 123-142.	3.3	73
818	Wetspun poly-L-(lactic acid)-borosilicate bioactive glass scaffolds for guided bone regeneration. Materials Science and Engineering C, 2017, 71, 252-259.	7.3	11
819	Influence of implantation voltage on the biological properties of zinc-implanted titanium. Surface and Coatings Technology, 2017, 312, 75-80.	4.8	6
820	Biodegradable ceramic-polymer composites for biomedical applications: A review. Materials Science and Engineering C, 2017, 71, 1175-1191.	7.3	149
821	Promoting angiogenesis with mesoporous microcarriers through a synergistic action of delivered silicon ion and VEGF. Biomaterials, 2017, 116, 145-157.	11.4	137
822	Formation and structural analysis of 15MgO–15CaO–8P2O5–4SiO2 glass. Journal of Non-Crystalline Solids, 2017, 457, 73-76.	3.1	16
823	Harnessing Wharton's jelly stem cell differentiation into bone-like nodule on calcium phosphate substrate without osteoinductive factors. Acta Biomaterialia, 2017, 49, 575-589.	8.3	21
824	Facile and innovative method for bioglass surface modification: Optimization studies. Materials Science and Engineering C, 2017, 72, 86-97.	7.3	20
825	A novel tantalum-containing bioglass. Part II. Development of a bioadhesive for sternal fixation and repair. Materials Science and Engineering C, 2017, 71, 401-411.	7.3	33
826	A novel tantalum-containing bioglass. Part I. Structure and solubility. Materials Science and Engineering C, 2017, 72, 202-211.	7.3	23
827	Bioglass and bioceramic composites processed by Spark Plasma Sintering (SPS): biological evaluation Versus SBF test. Biomedical Glasses, 2017, 3, .	2.4	0
828	Research on the Preparation of HA/PEEK Gradient Composites by Impregnation Method and the Biosecurity. Materials Science Forum, 2017, 893, 35-42.	0.3	2
829	Ceramics for bone replacement. , 2017, , 249-278.		5
830	Session 10: Glass - An Innovative Biomaterial. Biomedizinische Technik, 2017, 62, .	0.8	0

#	Article	IF	Citations
832	Mechanical and biological characterization of alkaline substituted orthophosphate bone substitutes containing meta- and diphosphates. Biomedical Materials (Bristol), 2017, 12, 055007.	3.3	3
833	Doped Calcium Silicate Ceramics: A New Class of Candidates for Synthetic Bone Substitutes. Materials, 2017, 10, 153.	2.9	78
834	Nurse's A-Phase Material Enhance Adhesion, Growth and Differentiation of Human Bone Marrow-Derived Stromal Mesenchymal Stem Cells. Materials, 2017, 10, 347.	2.9	6
835	In Vitro Degradation of Borosilicate Bioactive Glass and Poly(l-lactide-co-ε-caprolactone) Composite Scaffolds. Materials, 2017, 10, 1274.	2.9	17
836	Novel Development of Phosphate Treated Porous Hydroxyapatite. Materials, 2017, 10, 1405.	2.9	8
837	Porous scaffolds. , 2017, , 27-59.		7
838	Electrophoretic Deposition as a New Bioactive Glass Coating Process for Orthodontic Stainless Steel. Coatings, 2017, 7, 199.	2.6	12
839	Surface Plasmon Resonance or Biocompatibility—Key Properties for Determining the Applicability of Noble Metal Nanoparticles. Materials, 2017, 10, 836.	2.9	32
840	Design and Development of Ceramics and Glasses. , 2017, , 315-329.		15
841	Divalent Metal Ions Induced Osteogenic Differentiation of MC3T3E1. IOP Conference Series: Materials Science and Engineering, 2017, 275, 012004.	0.6	2
842	Bioceramic Scaffolds. , 0, , .		5
843	Fabrication Methodologies of Biomimetic and Bioactive Scaffolds for Tissue Engineering Applications. , 0, , .		5
845	Mechanical properties of bioactive glass/polymer composite scaffolds for repairing load bearing bones. International Journal of Applied Glass Science, 2018, 9, 188-197.	2.0	12
846	Alginate-aker injectable composite hydrogels promoted irregular bone regeneration through stem cell recruitment and osteogenic differentiation. Journal of Materials Chemistry B, 2018, 6, 1951-1964.	5.8	38
847	Novel injectable gellan gum hydrogel composites incorporating Zn- and Sr-enriched bioactive glass microparticles: High-resolution X-ray microcomputed tomography, antibacterial and in vitro testing. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1313-1326.	2.7	31
848	Bioactive Glasses: Sprouting Angiogenesis in Tissue Engineering. Trends in Biotechnology, 2018, 36, 430-444.	9.3	253
849	Incorporation of Cu-Containing Bioactive Glass Nanoparticles in Gelatin-Coated Scaffolds Enhances Bioactivity and Osteogenic Activity. ACS Biomaterials Science and Engineering, 2018, 4, 1546-1557.	5.2	40
850	Engineered Fe(OH) ₃ nanoparticle-coated and rhBMP-2-releasing PLGA microsphere scaffolds for promoting bone regeneration by facilitating cell homing and osteogenic differentiation. Journal of Materials Chemistry B, 2018, 6, 2831-2842.	5.8	15

#	Article	IF	CITATIONS
851	Crystallisation kinetics study in stabilisation treatment of sol-gel derived 45S5 bioglass. AIP Conference Proceedings, 2018, , .	0.4	4
852	l²-tricalcium phosphate composite ceramics with high compressive strength, enhanced osteogenesis and inhibited osteoclastic activities. Colloids and Surfaces B: Biointerfaces, 2018, 167, 318-327.	5.0	29
853	Substitutions of zinc in mesoporous silicate-based glasses and their physicochemical and biological properties. Journal of Non-Crystalline Solids, 2018, 491, 98-105.	3.1	8
854	Instant precipitation of KMgF ₃ :Ni ²⁺ nanocrystals with broad emission (1.3â€2.2Âμm) for potential combustion gas sensors. Journal of the American Ceramic Society, 2018, 101, 3890-3899.	3.8	25
855	Sequentially-crosslinked biomimetic bioactive glass/gelatin methacryloyl composites hydrogels for bone regeneration. Materials Science and Engineering C, 2018, 89, 119-127.	7.3	69
856	Periodic microstructures on bioactive glass surfaces enhance osteogenic differentiation of human mesenchymal stromal cells and promote osteoclastogenesis <i>in vitro</i> . Journal of Biomedical Materials Research - Part A, 2018, 106, 1965-1978.	4.0	6
857	Bioactive inorganic/organic nanocomposites for wound healing. Applied Materials Today, 2018, 11, 308-319.	4.3	110
858	Bone tissue engineering strategy based on the synergistic effects of silicon and strontium ions. Acta Biomaterialia, 2018, 72, 381-395.	8.3	72
859	Application of MBG as a coating material on mechanically stronger but less degradable ceramic scaffolds for enhanced osteogenesis. Materials Letters, 2018, 223, 105-108.	2.6	6
860	Novel multifunctional strontium-copper co-substituted mesoporous bioactive particles. Materials Letters, 2018, 223, 37-40.	2.6	19
861	Fabrication of Mesoporous Bioactive Glass Nanoparticles by Sol-Gel Method. Key Engineering Materials, 0, 765, 136-139.	0.4	2
862	Enhanced SaOS-2 cell adhesion, proliferation and differentiation on Mg-incorporated micro/nano-topographical TiO2 coatings. Applied Surface Science, 2018, 447, 767-776.	6.1	35
863	Gallium incorporation into phosphate based glasses: Bulk and thin film properties. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 82, 371-382.	3.1	19
864	The roles of ions on bone regeneration. Drug Discovery Today, 2018, 23, 879-890.	6.4	274
865	Highly efficient local delivery of endothelial progenitor cells significantly potentiates angiogenesis and full-thickness wound healing. Acta Biomaterialia, 2018, 69, 156-169.	8.3	92
866	Comparing the Effects of Chitosan Scaffolds Containing Various Divalent Metal Phosphates on Osteogenic Differentiation of Stem Cells from Human Exfoliated Deciduous Teeth. Biological Trace Element Research, 2018, 185, 316-326.	3.5	11
867	An aligned porous electrospun fibrous membrane with controlled drug delivery – An efficient strategy to accelerate diabetic wound healing with improved angiogenesis. Acta Biomaterialia, 2018, 70, 140-153.	8.3	163
868	(Fe/Sr) Codoped Biphasic Calcium Phosphate with Tailored Osteoblast Cell Functionality. ACS Biomaterials Science and Engineering, 2018, 4, 857-871.	5.2	45

ARTICLE IF CITATIONS # Carboxymethyl chitosanâ€"zinc coating for prevention of pin tract infection: An animal model. Journal 869 1.0 7 of Orthopaedic Surgery, 2018, 26, 230949901774998. Bioactive solâ€gel glasses: Processing, properties, and applications. International Journal of Applied Ceramic Technology, 2018, 15, 841-860. 870 2.1 124 Mesoporous bioactive glass embedding propolis and cranberry antibiofilm compounds. Journal of 871 4.0 26 Biomedical Materials Research - Part A, 2018, 106, 1614-1625. Enhanced osteogenic activity of Ti alloy implants by modulating strontium configuration in their surface oxide layers. RSC Advances, 2018, 8, 3051-3060. Vom Material zur Produktinnovation. Essentials, 2018, , . 873 0.1 0 A simple way of modulating in vitro angiogenic response using Cu and Co-doped bioactive glasses. 874 2.6 Materials Letters, 2018, 215, 87-90. Promoting osteogenic differentiation in pre-osteoblasts and reducing tibial fracture healing time 875 10.4 38 using functional nanofibers. Nano Research, 2018, 11, 3658-3677. Layered titanates with fibrous nanotopographic features as reservoir for bioactive ions to enhance 6.1 osteogenesis. Applied Surface Science, 2018, 436, 653-661. Alginates and Their Biomedical Applications. Springer Series in Biomaterials Science and Engineering, 877 1.0 25 2018,,. Development of a PCL-silica nanoparticles composite membrane for Guided Bone Regeneration. 7.3 Materials Science and Engineering C, 2018, 85, 154-161. Bottom-Up Assembly of Silica and Bioactive Glass Supraparticles with Tunable Hierarchical Porosity. 879 3.5 14 Langmuir, 2018, 34, 2063-2072. Copper-containing mesoporous bioactive glass promotes angiogenesis in an in vivo zebrafish model. 8.3 Acta Biomaterialia, 2018, 68, 272-285. Effect on growth and osteoblast mineralization of hydroxyapatite-zirconia (HA-ZrO ₂) 881 3.3 13 obtained by a new low temperature system. Biomedical Materials (Bristol), 2018, 13, 035001. Development of mesoporous bioactive glass nanoparticles and its use in bone tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2878-2887. 3.4 46 In Situ Silication of Polymer Nanofibers to Engineer Multiâ€Biofunctional Composites. ChemistrySelect, 883 1.5 34 2018, 3, 3762-3773. Nanocomposite Hydrogel Adhered to Concrete Material for Aquaculture of Marine Organism. 884 2.4 Macromolecular Résearch, 2018, 26, 717-723. The effects of morphology on physicochemical properties, bioactivity and biocompatibility of 885 4.1 18 micro-/nano-bioactive glasses. Advanced Powder Technology, 2018, 29, 1812-1819. Synergistic effect of strontium and silicon in strontium-substituted sub-micron bioactive glass for enhanced osteogenesis. Materials Science and Engineering C, 2018, 89, 245-255.

# 887	ARTICLE Positive effect of wrapping poly caprolactone/polyethylene glycol fibrous films on the mechanical properties of 45S5 bioactive glass scaffolds. International Journal of Applied Ceramic Technology, 2018, 15, 921-929.	IF 2.1	CITATIONS 3
888	Advances in osteobiologic materials for bone substitutes. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1448-1468.	2.7	98
889	The effect of dentine pre-treatment using bioglass and/or polyacrylic acid on the interfacial characteristics of resin-modified glass ionomer cements. Journal of Dentistry, 2018, 73, 32-39.	4.1	19
890	Bioglass and bioceramic composites processed by Spark Plasma Sintering (SPS): biological evaluation Versus SBF test. Biomedical Classes, 2018, 4, 21-31.	2.4	15
891	Synthesis, characterization and solubility analysis of amorphous SiO 2 -CaO-Na 2 O-P 2 O 5 scaffolds for hard tissue repair. Journal of Non-Crystalline Solids, 2018, 490, 1-12.	3.1	6
892	Effect of addition of titanium on structural, mechanical and biological properties of 45S5 glass-ceramic. Ceramics International, 2018, 44, 11682-11692.	4.8	22
893	Controlled crystallization of photocatalytic active Bismuth oxyfluoride/Bismuth fluoride on SrO-Bi2O3-B2O3transparent glass ceramic. Journal of the European Ceramic Society, 2018, 38, 3635-3642.	5.7	16
894	An atomic-level look at the structure-property relationship of cerium-doped glasses using classical molecular dynamics. Journal of Non-Crystalline Solids, 2018, 498, 331-337.	3.1	9
895	Bioactive dental materials—Do they exist and what does bioactivity mean?. Dental Materials, 2018, 34, 693-694.	3.5	126
896	Anticancer drug carriers using dicalcium phosphate/dextran/CMCnanocomposite scaffolds. Journal of Drug Delivery Science and Technology, 2018, 45, 315-322.	3.0	4
897	Assessment of calcium sulfate hemihydrate–Tricalcium silicate composite for bone healing in a rabbit femoral condyle model. Materials Science and Engineering C, 2018, 88, 53-60.	7.3	33
898	3D printing: prospects and challenges. , 2018, , 299-379.		8
899	Developing a novel magnesium glycerophosphate/silicate-based organic-inorganic composite cement for bone repair. Materials Science and Engineering C, 2018, 87, 104-111.	7.3	24
900	Bioactivity and mineralization of natural hydroxyapatite from cuttlefish bone and Bioglass [®] coâ€sintered bioceramics. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1131-e1142.	2.7	30
901	Hydroxyapatite coatings containing Zn and Si on Ti-6Al-4Valloy by plasma electrolytic oxidation. Applied Surface Science, 2018, 432, 337-346.	6.1	28
902	Materials-Directed Differentiation of Mesenchymal Stem Cells for Tissue Engineering and Regeneration. ACS Biomaterials Science and Engineering, 2018, 4, 1115-1127.	5.2	105
903	Crystallization behavior of 45S5 bioactive glass modified by therapeutic ions. International Journal of Applied Glass Science, 2018, 9, 62-69.	2.0	4
904	Development of a novel bioactive glass suitable for osteosarcomaâ€related bone grafts. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1186-1193.	3.4	11

#	Article	IF	CITATIONS
905	In Vitro Bioactivity Behavior of some Borate Glasses and their Glass-Ceramic Derivatives Containing Zn2+, Ag+ or Cu2+ by Immersion in Phosphate Solution and their Anti-Microbial Activity. Silicon, 2018, 10, 943-957.	3.3	22
906	Properties of PLDLA/bioglass scaffolds produced by selective laser sintering. Polymer Bulletin, 2018, 75, 1299-1309.	3.3	17
907	Development and characterization of niobium-releasing silicate bioactive glasses for tissue engineering applications. Journal of the European Ceramic Society, 2018, 38, 871-876.	5.7	33
908	Bimetallic alginate nanocomposites: New antimicrobial biomaterials for biomedical application. Materials Letters, 2018, 212, 32-36.	2.6	17
909	Surface modification of valve metals using plasma electrolytic oxidation for antibacterial applications: A review. Journal of Biomedical Materials Research - Part A, 2018, 106, 590-605.	4.0	74
910	Confinement of a polymer chain: An entropic study by Monte Carlo method. AICHE Journal, 2018, 64, 416-426.	3.6	4
911	Cytotoxicity, chemical stability, and surface properties of ferroelectric ceramics for biomaterials. Journal of the American Ceramic Society, 2018, 101, 440-449.	3.8	18
912	Formulation and biological actions of nano-bioglass ceramic particles doped with Calcarea phosphorica for bone tissue engineering. Materials Science and Engineering C, 2018, 83, 202-209.	7.3	16
913	Graphene based scaffolds on bone tissue engineering. Bioengineered, 2018, 9, 38-47.	3.2	84
914	Boron-containing bioactive glasses in bone and soft tissue engineering. Journal of the European Ceramic Society, 2018, 38, 855-869.	5.7	169
915	Low-melt bioactive glass-reinforced 3D printing akermanite porous cages with highly improved mechanical properties for lumbar spinal fusion. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1149-1162.	2.7	11
916	Role of geometrical cues in bone marrow-derived mesenchymal stem cell survival, growth and osteogenic differentiation. Journal of Biomaterials Applications, 2018, 32, 906-919.	2.4	17
917	Hydrolysis, setting properties and inÂvitro characterization of wollastonite/newberyite bone cement mixtures. Journal of Biomaterials Applications, 2018, 32, 871-885.	2.4	12
918	Alginate Utilization in Tissue Engineering and Cell Therapy. Springer Series in Biomaterials Science and Engineering, 2018, , 121-155.	1.0	13
919	Hollow mesoporous zirconia delivery system for biomineralization precursors. Acta Biomaterialia, 2018, 67, 366-377.	8.3	14
920	Structural effect of cobalt ions added to a borophosphate-based glass system. Journal of Non-Crystalline Solids, 2018, 481, 562-567.	3.1	19
921	Effects of plateletâ€rich plasma on biological activity and bone regeneration of brushiteâ€based calcium phosphate cement. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2316-2326.	3.4	7
922	Understanding the structural drivers governing glass–water interactions in borosilicate based model bioactive glasses. Acta Biomaterialia, 2018, 65, 436-449.	8.3	43

#	Article	IF	CITATIONS
923	Mesoporous silica-based bioactive glasses for antibiotic-free antibacterial applications. Materials Science and Engineering C, 2018, 83, 99-107.	7.3	134
924	In vitro osteogenesis by intracellular uptake of strontium containing bioactive glass nanoparticles. Acta Biomaterialia, 2018, 66, 67-80.	8.3	99
925	Organic composite-mediated surface coating of human acellular bone matrix with strontium. Materials Science and Engineering C, 2018, 84, 12-20.	7.3	22
926	In vitro genotoxicity of asbestos substitutes induced by coupled stimulation of dissolved high-valence ions and oxide radicals. Environmental Science and Pollution Research, 2018, 25, 22356-22367.	5.3	5
927	Dissolution behavior of Mg/Si-doped vaterite particles in biodegradable polymer composites. EXPRESS Polymer Letters, 2018, 12, 171-179.	2.1	3
928	Medical applications. , 2018, , 83-114.		0
929	Bioactive nanoparticle-based formulations increase survival area of perforator flaps in a rat model. PLoS ONE, 2018, 13, e0207802.	2.5	15
930	Characterization and osteogenic evaluation of mesoporous magnesium–calcium silicate/polycaprolactone/polybutylene succinate composite scaffolds fabricated by rapid prototyping. RSC Advances, 2018, 8, 33882-33892.	3.6	9
931	Fabrication and characterization of laponite-calcium phosphate based cement for filling bone defects. Materials Today: Proceedings, 2018, 5, 15754-15760.	1.8	5
932	When size matters: Biological response to strontium- and cobalt-substituted bioactive glass particles. Materials Today: Proceedings, 2018, 5, 15768-15775.	1.8	15
933	Synergistic combination of bioactive glasses and polymers for enhanced bone tissue regeneration. Materials Today: Proceedings, 2018, 5, 15532-15539.	1.8	29
934	Influence of Ga3+ ions on the structure and in vitro bioactivity of B2O3–SiO2–Na2O–CaO glass system. Materials Today: Proceedings, 2018, 5, 26245-26254.	1.8	2
935	12 Knochenersatzmaterialien. , 2018, , .		0
936	Single-Chain Atomic Crystals as Extracellular Matrix-Mimicking Material with Exceptional Biocompatibility and Bioactivity. Nano Letters, 2018, 18, 7619-7627.	9.1	24
937	Electrospun PLGA membrane incorporated with andrographolide-loaded mesoporous silica nanoparticles for sustained antibacterial wound dressing. Nanomedicine, 2018, 13, 2881-2899.	3.3	43
938	Bone-like Polymeric Composites with a Combination of Bioactive Glass and Hydroxyapatite: Simultaneous Enhancement of Mechanical Performance and Bioactivity. ACS Biomaterials Science and Engineering, 2018, 4, 4434-4442.	5.2	10
939	Bioactive Carbon-Based Hybrid 3D Scaffolds for Osteoblast Growth. ACS Applied Materials & Interfaces, 2018, 10, 43874-43886.	8.0	32
940	Bioactivity and Antibacterial Studies on Silver Nanoparticles Embedded Calcium Borosilicate Ceramics. Materials Science Forum, 0, 928, 249-254.	0.3	2

#	Article	IF	CITATIONS
941	Bioactive glass-polycaprolactone fiber membrane and response of dental pulp stem cells in vitro. Biomedical Glasses, 2018, 4, 123-130.	2.4	7
942	Bioactive Glasses and Glass-Ceramics for Healthcare Applications in Bone Regeneration and Tissue Engineering. Materials, 2018, 11, 2530.	2.9	196
943	Gelatinâ€coating increases inâ€vivo bone formation capacity of threeâ€dimensional 45S5â€bioactive glassâ€based crystalline scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2018, 13, 179-190.	2.7	7
944	Selenium-Modified TiO ₂ Nanoarrays with Antibacterial and Anticancer Properties for Postoperation Therapy Applications. ACS Applied Bio Materials, 2018, 1, 1656-1666.	4.6	18
945	Microstructure, Mechanical Properties and in vitro Biological Behavior of Silicon Nitride Ceramics. Materials Research, 2018, 21, .	1.3	8
946	A Mini-Review on the Bioactive Glass-Based Composites in Soft Tissue Repair. Bioceramics Development and Applications, 2018, 08, .	0.3	2
947	The comprehensive in vitro evaluation of eight different calcium phosphates: Significant parameters for cell behavior. Journal of the American Ceramic Society, 2018, 102, 2882.	3.8	11
948	Response of mouse bone marrow mesenchymal stem cells to graphene-containing grid-like bioactive glass scaffolds produced by robocasting. Journal of Biomaterials Applications, 2018, 33, 488-500.	2.4	8
949	Dosage and composition of bioactive glasses differentially regulate angiogenic and osteogenic response of human MSCs. Journal of Biomedical Materials Research - Part A, 2018, 106, 2827-2837.	4.0	16
950	The influence of cobalt incorporation and cobalt precursor selection on the structure and bioactivity of sol–gel-derived bioactive glass. Journal of Sol-Gel Science and Technology, 2018, 88, 309-321.	2.4	23
951	Cellulose-Based Hydrogels for Pharmaceutical and Biomedical Applications. Polymers and Polymeric Composites, 2018, , 1-28.	0.6	1
952	Multi-compartment scaffold fabricated via 3D-printing as in vitro co-culture osteogenic model. Scientific Reports, 2018, 8, 15130.	3.3	30
953	Biological interactions of a calcium silicate based cement (Biodentineâ,,¢) with Stem Cells from Human Exfoliated Deciduous teeth. Dental Materials, 2018, 34, 1797-1813.	3.5	21
954	Dissolution of borate and borosilicate bioactive glasses and the influence of ion (Zn, Cu) doping in different solutions. Journal of Non-Crystalline Solids, 2018, 502, 22-34.	3.1	56
955	Scaffolds Fabricated from Natural Polymers/Composites by Electrospinning for Bone Tissue Regeneration. Advances in Experimental Medicine and Biology, 2018, 1078, 49-78.	1.6	38
956	Improvement of in vitro behavior of an Mg alloy using a nanostructured composite bioceramic coating. Journal of Materials Science: Materials in Medicine, 2018, 29, 159.	3.6	17
957	Enhancing Corrosion Resistance, Osteoinduction, and Antibacterial Properties by Zn/Sr Additional Surface Modification of Magnesium Alloy. ACS Biomaterials Science and Engineering, 2018, 4, 4289-4298.	5.2	32
958	Endodontic medicine: interrelationships among apical periodontitis, systemic disorders, and tissue responses of dental materials. Brazilian Oral Research, 2018, 32, e68.	1.4	27

#	Article	IF	CITATIONS
959	The effect of S53P4-based borosilicate glasses and glass dissolution products on the osteogenic commitment of human adipose stem cells. PLoS ONE, 2018, 13, e0202740.	2.5	44
960	Advances in bionanocomposites for biomedical applications. , 2018, , 379-399.		3
961	A Facile Flow-Casting Production of Bioactive Glass Coatings on Porous Titanium for Bone Tissue Engineering. Materials, 2018, 11, 1540.	2.9	8
962	Improved in situ seeding of 3D printed scaffolds using cell-releasing hydrogels. Biomaterials, 2018, 185, 194-204.	11.4	60
963	Low pressure spark plasma sintered hydroxyapatite and Bioglass® composite scaffolds for bone tissue repair. Ceramics International, 2018, 44, 23052-23062.	4.8	15
964	Fabrication of a Cu/Zn co-incorporated calcium phosphate scaffold-derived GDF-5 sustained release system with enhanced angiogenesis and osteogenesis properties. RSC Advances, 2018, 8, 29526-29534.	3.6	17
965	Production and Physicochemical Characterization of Cu-Doped Silicate Bioceramic Scaffolds. Materials, 2018, 11, 1524.	2.9	20
966	Recent Overviews in Functional Polymer Composites for Biomedical Applications. Polymers, 2018, 10, 739.	4.5	114
967	Bioactive glasses entering the mainstream. Drug Discovery Today, 2018, 23, 1700-1704.	6.4	96
968	Effect of a biomimetic titania mesoporous coating doped with Sr on the osteogenic activity. Materials Science and Engineering C, 2018, 91, 153-162.	7.3	16
969	Fabrication of in vitro 3D mineralized tissue by fusion of composite spheroids incorporating biomineral-coated nanofibers and human adipose-derived stem cells. Acta Biomaterialia, 2018, 74, 464-477.	8.3	44
970	Bioactive glasses – When glass science and technology meet regenerative medicine. Ceramics International, 2018, 44, 14953-14966.	4.8	82
971	Boron-containing micro/nano-structured TiO2/bioceramics coatings with modulatory effects on SaOS-2 cell response. Materials Letters, 2018, 228, 29-32.	2.6	4
972	Biodegradable Si3N4 bioceramic sintered with Sr, Mg and Si for spinal fusion: Surface characterization and biological evaluation. Applied Materials Today, 2018, 12, 260-275.	4.3	22
973	Effect of water glass coating of tricalcium phosphate on in vitro cellular proliferation and osteogenic differentiation. Journal of Biomaterials Applications, 2018, 33, 196-204.	2.4	3
974	Ultra-fast, highly efficient and green synthesis of bioactive forsterite nanopowder via microwave irradiation. Materials Science and Engineering C, 2018, 92, 236-244.	7.3	22
975	Bioactive coatings on porous titanium for biomedical applications. Surface and Coatings Technology, 2018, 349, 584-592.	4.8	32
976	Assembly Preparation of Multilayered Biomaterials with High Mechanical Strength and Bone-Forming Bioactivity. Chemistry of Materials, 2018, 30, 4646-4657.	6.7	32

ARTICLE

IF CITATIONS

977	Biomaterials Obtained by Gelation. , 2018, , 3555-3596.		0
978	The effect of strontium and silver on the bioactivity of a quaternary bioglass in the system SiO2-CaO-Na2O-P2O5. Journal of Physics: Conference Series, 2018, 984, 012011.	0.4	2
979	Settable polymer/ceramic composite bone grafts stabilize weight-bearing tibial plateau slot defects and integrate with host bone in an ovine model. Biomaterials, 2018, 179, 29-45.	11.4	19
980	Fluoride doping into SiO2-MgO-CaO bioactive glass nanoparticles: bioactivity, biodegradation and biocompatibility assessments. Ceramics International, 2018, 44, 17506-17513.	4.8	23
981	The Cu-containing TiO2 coatings with modulatory effects on macrophage polarization and bactericidal capacity prepared by micro-arc oxidation on titanium substrates. Colloids and Surfaces B: Biointerfaces, 2018, 170, 242-250.	5.0	66
982	Highly dispersed lithium doped mesoporous silica nanospheres regulating adhesion, proliferation, morphology, ALP activity and osteogenesis related gene expressions of BMSCs. Colloids and Surfaces B: Biointerfaces, 2018, 170, 563-571.	5.0	28
983	The Incorporation of Strontium to Improve Bone-Regeneration Ability of Mesoporous Bioactive Glasses. Materials, 2018, 11, 678.	2.9	64
984	Composition-property relations of bioactive silicate glasses. , 2018, , 1-35.		2
985	Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. , 2018, , 201-233.		9
986	Bioactive glass composites for bone and musculoskeletal tissue engineering. , 2018, , 285-336.		6
987	Fe-Doped Sol-Gel Glasses and Glass-Ceramics for Magnetic Hyperthermia. Materials, 2018, 11, 173.	2.9	45
988	Bioceramics and bone healing. EFORT Open Reviews, 2018, 3, 173-183.	4.1	112
989	Bioactive glass combined with zein as composite material for the application in bone tissue engineering. Biomedical Glasses, 2018, 4, 72-81.	2.4	6
990	Studies on effect of CuO addition on mechanical properties and in vitro cytocompatibility in 1393 bioactive glass scaffold. Materials Science and Engineering C, 2018, 93, 341-355.	7.3	37
991	Effects of Fe2O3 addition and annealing on the mechanical and dissolution properties of MgO-and CaO-containing phosphate glass fibres for bio-applications. Biomedical Glasses, 2018, 4, 57-71.	2.4	14
992	Applications of Metals for Bone Regeneration. International Journal of Molecular Sciences, 2018, 19, 826.	4.1	159
993	Impact of a Porous Si-Ca-P Monophasic Ceramic on Variation of Osteogenesis-Related Gene Expression of Adult Human Mesenchymal Stem Cells. Applied Sciences (Switzerland), 2018, 8, 46.	2.5	5
994	Enhanced NIR down-conversion of Yb3+ in fluorosilicate glass-ceramics co-doped with Bi ions. Optical Materials, 2018, 84, 189-194.	3.6	6

55

#	Article	IF	CITATIONS
995	Collagen as Coating Material for 45S5 Bioactive Glass-Based Scaffolds for Bone Tissue Engineering. International Journal of Molecular Sciences, 2018, 19, 1807.	4.1	47
996	Bioactive Glasses: From Parent 45S5 Composition to Scaffold-Assisted Tissue-Healing Therapies. Journal of Functional Biomaterials, 2018, 9, 24.	4.4	202
997	Bioactive Glasses: Where Are We and Where Are We Going?. Journal of Functional Biomaterials, 2018, 9, 25.	4.4	334
998	Role of the Short Distance Order in Glass Reactivity. Materials, 2018, 11, 415.	2.9	11
999	Synthesis and Characterization of Silver-Doped Mesoporous Bioactive Glass and Its Applications in Conjunction with Electrospinning. Materials, 2018, 11, 692.	2.9	42
1000	Bioactive and soluble glasses for wound-healing applications. , 2018, , 381-405.		7
1001	Influence of strontium on structure, bioactivity and corrosion behaviour of B2O3–SiO2–Na2O–CaO glasses-investigation by spectroscopic methods. Optical Materials, 2018, 84, 292-300.	3.6	11
1002	Cell interaction with bioactive glasses and ceramics. , 2018, , 145-180.		Ο
1003	Use of bioactive glasses as bone substitutes in orthopedics and traumatology. , 2018, , 337-364.		4
1004	Synthesis and characterization of manganese containing mesoporous bioactive glass nanoparticles for biomedical applications. Journal of Materials Science: Materials in Medicine, 2018, 29, 64.	3.6	68
1005	The effects of strontium incorporation on a novel gelatin/bioactive glass bone graft: In vitro and in vivo characterization. Ceramics International, 2018, 44, 14217-14227.	4.8	24
1007	The osteogenic, inflammatory and osteo-immunomodulatory performances of biomedical Ti-Ta metal–metal composite with Ca- and Si-containing bioceramic coatings. Colloids and Surfaces B: Biointerfaces, 2018, 169, 49-59.	5.0	27
1008	Effect of bioactive glass nanoparticles on biological properties of PLGA/collagen scaffold. Progress in Biomaterials, 2018, 7, 111-119.	4.5	22
1009	Simultaneous co-substitution of Sr2+/Fe3+ in hydroxyapatite nanoparticles for potential biomedical applications. Ceramics International, 2018, 44, 21338-21348.	4.8	48
1010	Bioactive sol-gel glass-coated wood-derived biocarbon scaffolds. Materials Letters, 2018, 232, 14-17.	2.6	7
1011	Tailoring the subchondral bone phase of a multi-layered osteochondral construct to support bone healing and a cartilage analog. Acta Biomaterialia, 2018, 78, 351-364.	8.3	12
1012	Mineralization and optical properties of Eu3+-doped tricalcium silicate soaked in dilute K2HPO4 aqueous solution. Optical Materials, 2018, 85, 32-40.	3.6	7
1013	New sintered wollastonite glass-ceramic for biomedical applications. Ceramics International, 2018, 44, 20019-20027.	4.8	17

#	Article	IF	CITATIONS
1014	Niobium addition to sol-gel derived bioactive glass powders and scaffolds: In vitro characterization and effect on pre-osteoblastic cell behavior. Dental Materials, 2018, 34, 1449-1458.	3.5	16
1015	Osteogenic Effect of ZnO-Mesoporous Glasses Loaded with Osteostatin. Nanomaterials, 2018, 8, 592.	4.1	29
1016	Bioactive ceramic composite material stability, characterization, and bonding to bone. , 2018, , 273-296.		9
1017	Nanosilicate embedded agarose hydrogels with improved bioactivity. Carbohydrate Polymers, 2018, 201, 105-112.	10.2	38
1018	Enhanced cellular osteogenic differentiation on Zn-containing bioglass incorporated TiO2 nanorod films. Journal of Materials Science: Materials in Medicine, 2018, 29, 136.	3.6	3
1019	Effects of the biological environment on ceramics: Degradation, cell response, and in vivo behavior. , 2018, , 407-437.		2
1020	Effects of a mesoporous bioactive glass on osteoblasts, osteoclasts and macrophages. Journal of Colloid and Interface Science, 2018, 528, 309-320.	9.4	38
1021	Tackling bioactive glass excessive in vitro bioreactivity: Preconditioning approaches for cell culture tests. Acta Biomaterialia, 2018, 75, 3-10.	8.3	131
1022	RhBMP-2 and concomitant rapid material degradation synergistically promote bone repair and regeneration with collagen–hydroxyapatite nanocomposites. Journal of Materials Chemistry B, 2018, 6, 4338-4350.	5.8	21
1023	A novel bi-phase Sr-doped magnesium phosphate/calcium silicate composite scaffold and its osteogenesis promoting effect. Ceramics International, 2018, 44, 16237-16245.	4.8	20
1024	Strontium-Doped Bioactive Glass Nanoparticles in Osteogenic Commitment. ACS Applied Materials & Interfaces, 2018, 10, 23311-23320.	8.0	55
1025	Promoting inÂvivo early angiogenesis with sub-micrometer strontium-contained bioactive microspheres through modulating macrophage phenotypes. Biomaterials, 2018, 178, 36-47.	11.4	194
1026	Hydrogels for biomedical applications. , 2018, , 403-438.		32
1027	Porous Biomaterials and Scaffolds for Tissue Engineering. , 2019, , 188-202.		5
1028	Toward Highly Dispersed Mesoporous Bioactive Glass Nanoparticles With High Cu Concentration Using Cu/Ascorbic Acid Complex as Precursor. Frontiers in Chemistry, 2019, 7, 497.	3.6	55
1029	Biological Response to Macroporous Chitosan-Agarose Bone Scaffolds Comprising Mg- and Zn-Doped Nano-Hydroxyapatite. International Journal of Molecular Sciences, 2019, 20, 3835.	4.1	37
1030	Bone-like nano-hydroxyapatite coating on low-modulus Ti–5Nb–5Mo alloy using hydrothermal and post-heat treatments. Thin Solid Films, 2019, 687, 137463.	1.8	6
1031	Titanium incorporated Zinc-Phosphate bioactive glasses for bone tissue repair and regeneration: Impact of Ti4+on physico-mechanical and in vitro bioactivity. Ceramics International, 2019, 45, 23715-23727.	4.8	25

#	Article	IF	CITATIONS
1032	Resorption of the calcium phosphate layer on S53P4 bioactive glass by osteoclasts. Journal of Materials Science: Materials in Medicine, 2019, 30, 94.	3.6	11
1033	Nanocellulose/bioactive glass cryogels as scaffolds for bone regeneration. Nanoscale, 2019, 11, 19842-19849.	5.6	93
1034	Bread-Derived Bioactive Porous Scaffolds: An Innovative and Sustainable Approach to Bone Tissue Engineering. Molecules, 2019, 24, 2954.	3.8	34
1035	Biomaterials for bone tissue engineering scaffolds: a review. RSC Advances, 2019, 9, 26252-26262.	3.6	502
1036	Development of copper-doped bioglass/alginate composite membranes: Preliminary results on their characterization and antimicrobial properties. Materials Today Communications, 2019, 21, 100583.	1.9	9
1037	Remineralization of early enamel caries lesions induced by bioactive particles: An in vitro speckle analysis. Photodiagnosis and Photodynamic Therapy, 2019, 28, 201-209.	2.6	5
1038	Antibacterial effect of a fluoride-containing ZnO/CuO nanocomposite. Nuclear Instruments & Methods in Physics Research B, 2019, 458, 184-188.	1.4	10
1039	Bioactive Glass/Polycaprolactone Hybrid with a Dual Cortical/Trabecular Structure for Bone Regeneration. ACS Applied Bio Materials, 2019, 2, 3473-3483.	4.6	18
1040	Multiple and Promising Applications of Strontium (Sr)-Containing Bioactive Glasses in Bone Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2019, 7, 161.	4.1	122
1041	Bioglass for skin regeneration. , 2019, , 225-250.		7
1042	Bioactive glass (45S5)-based 3D scaffolds coated with magnesium and zinc-loaded hydroxyapatite nanoparticles for tissue engineering applications. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110346.	5.0	39
1043	Alginate-bioactive glass containing Zn and Mg composite scaffolds for bone tissue engineering. International Journal of Biological Macromolecules, 2019, 137, 1256-1267.	7.5	81
1044	A zinc oxide-modified hydroxyapatite-based cement favored sealing ability in endodontically treated teeth. Journal of Dentistry, 2019, 88, 103162.	4.1	12
1045	Remarkable Body Architecture of Marine Sponges as Biomimetic Structure for Application in Tissue Engineering. Springer Series in Biomaterials Science and Engineering, 2019, , 27-50.	1.0	7
1046	Oral Bone Tissue Engineering: Advanced Biomaterials for Cell Adhesion, Proliferation and Differentiation. Materials, 2019, 12, 2296.	2.9	24
1047	Nanocatalytic Medicine. Advanced Materials, 2019, 31, e1901778.	21.0	396
1048	Mesoporous bioactive glasses for the combined application of osteosarcoma treatment and bone regeneration. Materials Science and Engineering C, 2019, 104, 109994.	7.3	35

#	Article	IF	CITATIONS
1050	iRoot BP Plus promotes osteo/odontogenic differentiation of bone marrow mesenchymal stem cells via MAPK pathways and autophagy. Stem Cell Research and Therapy, 2019, 10, 222.	5.5	36
1051	Insights into the effect of gold nanospheres, nanotriangles and spherical nanocages on the structural, morphological and biological properties of bioactive glasses. Journal of Non-Crystalline Solids, 2019, 522, 119552.	3.1	11
1052	Bioactıve Glassâ€Polymer Nanocomposites for Bone Tıssue Regeneration Applicatıons: A Revıew. Advanced Engineering Materials, 2019, 21, 1900287.	3.5	33
1053	Biomaterial based treatment of osteoclastic/osteoblastic cell imbalance – Gelatin-modified calcium/strontium phosphates. Materials Science and Engineering C, 2019, 104, 109933.	7.3	14
1055	Elastic Mechanical Properties of 45S5-Based Bioactive Glass–Ceramic Scaffolds. Materials, 2019, 12, 3244.	2.9	30
1056	P2O5-Free Cerium Containing Glasses: Bioactivity and Cytocompatibility Evaluation. Materials, 2019, 12, 3267.	2.9	9
1057	Introduction to biomaterials for skin repair and regeneration. , 2019, , xiii-xxvii.		10
1058	Evaluation of Strontium-Doped Nanobioactive Glass Cement for Dentin–Pulp Complex Regeneration Therapy. ACS Biomaterials Science and Engineering, 2019, 5, 6117-6126.	5.2	27
1059	Human Mesenchymal Stem Cell Combined with a New Strontium-Enriched Bioactive Glass: An ex-vivo Model for Bone Regeneration. Materials, 2019, 12, 3633.	2.9	25
1060	Dexamethasone loaded Laponite \hat{A}^{\otimes} /porous calcium phosphate cement for treatment of bone defects. Biomedical Materials (Bristol), 2019, 14, 055008.	3.3	8
1061	Bioactive coating of zirconia toughened alumina ceramic implants improves cancellous osseointegration. Scientific Reports, 2019, 9, 16692.	3.3	38
1063	Copper-incorporated bioactive glass-ceramics inducing anti-inflammatory phenotype and regeneration of cartilage/bone interface. Theranostics, 2019, 9, 6300-6313.	10.0	105
1064	Optical and spectroscopic study as a tool to probe the role of modifier oxides on bioactive behavior of zirconia added sodium boro silicate glass system. Optical Materials, 2019, 98, 109451.	3.6	5
1065	Cuttlefish Bone-Derived Biphasic Calcium Phosphate Scaffolds Coated with Sol-Gel Derived Bioactive Glass. Materials, 2019, 12, 2711.	2.9	5
1066	Composite Membranes of Poly(ε-caprolactone) with Bisphosphonate-Loaded Bioactive Glasses for Potential Bone Tissue Engineering Applications. Molecules, 2019, 24, 3067.	3.8	25
1067	Effects of ZnO addition on thermal properties, degradation and biocompatibility of P45Mg24Ca16Na(15â°'x)Znx glasses. Biomedical Glasses, 2019, 5, 53-66.	2.4	6
1068	Effect of ethanol/TEOS ratios and amount of ammonia on the properties of copper-doped calcium silicate nanoceramics. Journal of Materials Science: Materials in Medicine, 2019, 30, 98.	3.6	19
1069	Magnesium Silicate Bioceramics for Bone Regeneration: A Review. Journal of the Indian Institute of Science, 2019, 99, 261-288.	1.9	20

#	Article	IF	CITATIONS
1070	Supplementation with 45S5 Bioactive Glass Reduces In Vivo Resorption of the β-Tricalcium-Phosphate-Based Bone Substitute Material Vitoss. International Journal of Molecular Sciences, 2019, 20, 4253.	4.1	13
1071	Porous bioactive glass microspheres prepared by flame synthesis process. Materials Letters, 2019, 256, 126625.	2.6	21
1072	Apatite Forming Ability and Dissolution Behavior of Boron- and Calcium-Modified Silicon Oxycarbides in Comparison to Silicate Bioactive Glass. ACS Biomaterials Science and Engineering, 2019, 5, 5337-5347.	5.2	17
1073	Activating macrophages for enhanced osteogenic and bactericidal performance by Cu ion release from micro/nano-topographical coating on a titanium substrate. Acta Biomaterialia, 2019, 100, 415-426.	8.3	111
1074	Bioceramic akermanite enhanced vascularization and osteogenic differentiation of human induced pluripotent stem cells in 3D scaffolds in vitro and vivo. RSC Advances, 2019, 9, 25462-25470.	3.6	17
1075	Coating biodegradable magnesium alloys with electrospun poly-L-lactic acid-Ã¥kermanite-doxycycline nanofibers for enhanced biocompatibility, antibacterial activity, and corrosion resistance. Surface and Coatings Technology, 2019, 377, 124898.	4.8	71
1076	Strong mineralization ability of strontium zinc silicate: Formation of a continuous biomorphic mineralized layer with enhanced osteogenic activity. Colloids and Surfaces B: Biointerfaces, 2019, 176, 420-430.	5.0	9
1077	Bone remodeling-inspired dual delivery electrospun nanofibers for promoting bone regeneration. Nanoscale, 2019, 11, 60-71.	5.6	103
1078	Effect of pre-treatment of crystallized bioactive glass with cell culture media on structure, degradability, and biocompatibility. Materials Science and Engineering C, 2019, 97, 188-197.	7.3	16
1079	Surface morphology and cell behavior of Zn-coated Ti-6Al-4V alloy by RF-sputtering after PEO-treatment. Surface and Coatings Technology, 2019, 361, 386-395.	4.8	19
1080	Synergistic Effect of Porous Hydroxyapatite Scaffolds Combined with Bioactive Glass/Poly(lactic- <i>co</i> -glycolic acid) Composite Fibers Promotes Osteogenic Activity and Bioactivity. ACS Omega, 2019, 4, 2302-2310.	3.5	21
1081	In vitro cellular testing of strontium/calcium substituted phosphate glass discs and microspheres shows potential for bone regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 396-405.	2.7	18
1082	Functionalized cell-free scaffolds for bone defect repair inspired by self-healing of bone fractures: A review and new perspectives. Materials Science and Engineering C, 2019, 98, 1241-1251.	7.3	61
1083	Combinatorial effects of inorganic ions on adhesion and proliferation of osteoblastâ€like cells. Journal of Biomedical Materials Research - Part A, 2019, 107, 1042-1051.	4.0	28
1084	Nanostructured magnetic Mg2SiO4-CoFe2O4 composite scaffold with multiple capabilities for bone tissue regeneration. Materials Science and Engineering C, 2019, 99, 83-95.	7.3	49
1085	Evaluation of in vitro properties of 3D micro-macro porous zirconia scaffolds coated with 58S bioactive glass using MG-63 osteoblast-like cells. Journal of the European Ceramic Society, 2019, 39, 2545-2558.	5.7	27
1086	Electrospun Filaments Embedding Bioactive Glass Particles with Ion Release and Enhanced Mineralization. Nanomaterials, 2019, 9, 182.	4.1	17
1087	Biological Properties of Calcium Phosphate Bioactive Glass Composite Bone Substitutes: Current Experimental Evidence. International Journal of Molecular Sciences, 2019, 20, 305.	4.1	60

#	Article	IF	CITATIONS
1088	Hybrid particles derived from alendronate and bioactive glass for treatment of osteoporotic bone defects. Journal of Materials Chemistry B, 2019, 7, 796-808.	5.8	14
1089	Hectorite: Synthesis, modification, assembly and applications. Applied Clay Science, 2019, 177, 114-138.	5.2	64
1090	Niobo-phosphate bioactive glass films produced by pulsed laser deposition on titanium surfaces for improved cell adhesion. Ceramics International, 2019, 45, 18052-18058.	4.8	10
1091	A simple method to prepare hybrid hydroxyapatite scaffold mimicking nature bone. Ceramics International, 2019, 45, 18931-18936.	4.8	5
1092	Bioactive glass containing 90% SiO ₂ in hard tissue engineering: An in vitro and in vivo characterization study. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1651-1663.	2.7	9
1093	Bioactive glasses meet phytotherapeutics: The potential of natural herbal medicines to extend the functionality of bioactive glasses. Biomaterials, 2019, 217, 119288.	11.4	51
1094	Formation of hydroxyapatite on surface of SiO2– P2O5–CaO–SrO–ZnO bioactive glass synthesized through sol-gel route. Ceramics International, 2019, 45, 19323-19330.	4.8	45
1095	Preparation, characterization, in vitro bioactivity and protein loading/release property of mesoporous bioactive glass microspheres with different compositions. Advanced Powder Technology, 2019, 30, 1848-1857.	4.1	18
1096	Four-dimensional imaging and quantification of viscous flow sintering within a 3D printed bioactive glass scaffold using synchrotron X-rayÂtomography. Materials Today Advances, 2019, 2, 100011.	5.2	13
1097	Dissolution, bioactivity behavior, and cytotoxicity of rare earth ontaining bioactive glasses (REÂ=ÂGd,) Tj ETQo	1 1 0.784 2.1	314 rgBT /0
1098	Dose-response relationships between copper and its biocompatibility/antibacterial activities. Journal of Trace Elements in Medicine and Biology, 2019, 55, 127-135.	3.0	71
1099	Effect of Strontium Substitution on the Physicochemical Properties and Bone Regeneration Potential of 3D Printed Calcium Silicate Scaffolds. International Journal of Molecular Sciences, 2019, 20, 2729.	4.1	39
1100	Evaluating porous polylactide-co-glycolide/bioactive glass composite microsphere powders for laser sintering of scaffolds. Powder Technology, 2019, 354, 289-300.	4.2	10
1101	Properties of dental biomaterials. , 2019, , 7-35.		9
1102	Bioactive glasses—structure and applications. , 2019, , 453-476.		3
1103	Ag modified mesoporous bioactive glass nanoparticles for enhanced antibacterial activity in 3D infected skin model. Materials Science and Engineering C, 2019, 103, 109764.	7.3	80
1104	Nanocement Produced from Borosilicate Bioactive Glass Nanoparticles Composited with Alginate. Australian Journal of Chemistry, 2019, 72, 354.	0.9	8
1105	In vitro and in vivo evaluation of bioglass microspheres incorporated brushite cement for bone regeneration. Materials Science and Engineering C, 2019, 103, 109775.	7.3	35

#	Article	IF	CITATIONS
1106	Evolution of surface modification trends in bone related biomaterials: A review. Materials Chemistry and Physics, 2019, 233, 68-78.	4.0	79
1107	Mesoporous bioactive glasses (MBGs) in cancer therapy: Full of hope and promise. Materials Letters, 2019, 251, 241-246.	2.6	54
1108	Alginate-nanoparticles composites: kinds, reactions and applications. Materials Research Express, 2019, 6, 092001.	1.6	26
1109	Mesoporous bioactive glass nanoparticles doped with magnesium: drug delivery and acellular <i>in vitro</i> bioactivity. RSC Advances, 2019, 9, 12232-12246.	3.6	83
1110	Rapid evaluation of bioactive Ti-based surfaces using an in vitro titration method. Nature Communications, 2019, 10, 2062.	12.8	18
1111	Proteomic analysis of calcium-enriched sol–gel biomaterials. Journal of Biological Inorganic Chemistry, 2019, 24, 563-574.	2.6	16
1112	Impact of crystallinity and crystal size of nanostructured carbonated hydroxyapatite on preâ€osteoblast in vitro biocompatibility. Journal of Biomedical Materials Research - Part A, 2019, 107, 1965-1976.	4.0	13
1113	Polymer-based calcium phosphate scaffolds for tissue engineering applications. , 2019, , 585-618.		7
1114	Porous Phosphate-Based Glass Microspheres Show Biocompatibility, Tissue Infiltration, and Osteogenic Onset in an Ovine Bone Defect Model. ACS Applied Materials & Interfaces, 2019, 11, 15436-15446.	8.0	31
1115	Bioactive glass based scaffolds incorporating gelatin/manganese doped mesoporous bioactive glass nanoparticle coating. Ceramics International, 2019, 45, 14608-14613.	4.8	37
1116	Investigating the effect of Copper Addition on SiO2-ZnO-CaO-SrO-P2O5 Glass Polyalkenoate Cements: Physical, Mechanical and Biological Behavior. Biomedical Glasses, 2019, 5, 13-33.	2.4	11
1117	Osteostatin potentiates the bioactivity of mesoporous glass scaffolds containing Zn2+ ions in human mesenchymal stem cells. Acta Biomaterialia, 2019, 89, 359-371.	8.3	42
1118	Protein interactions with bioactive glass surfaces: A review. Applied Materials Today, 2019, 15, 350-371.	4.3	61
1119	Fabrication of strontium-releasable inorganic cement by incorporation of bioactive glass. Dental Materials, 2019, 35, 780-788.	3.5	13
1120	Effect of grain orientation and magnesium doping on β-tricalcium phosphate resorption behavior. Acta Biomaterialia, 2019, 89, 391-402.	8.3	37
1121	Remineralization effects of conventional and experimental ion-releasing materials in chemically or bacterially-induced dentin caries lesions. Dental Materials, 2019, 35, 772-779.	3.5	49
1122	Osteogenic differentiation of mesenchymal stem cells is enhanced in a 45S5-supplemented Î ² -TCP composite scaffold: an in-vitro comparison of Vitoss and Vitoss BA. PLoS ONE, 2019, 14, e0212799.	2.5	48
1123	In vitro evaluation of silver doped wollastonite synthesized from natural waste for biomedical applications. Ceramics International, 2019, 45, 25044-25051.	4.8	26

# 1124	ARTICLE Anti-inflammatory actions of folate-functionalized bioactive ion-releasing nanoparticles imply drug-free nanotherapy of inflamed tissues. Biomaterials, 2019, 207, 23-38.	IF 11.4	Citations
1125	Effect of Sm3+ ions concentration on borosilicate glasses for reddish orange luminescent device applications. Journal of Non-Crystalline Solids, 2019, 513, 152-158.	3.1	48
1126	Bioactive glass and glassâ€ceramic orbital implants. International Journal of Applied Ceramic Technology, 2019, 16, 1850-1863.	2.1	12
1127	Effects of collagen/β-tricalcium phosphate bone graft to regenerate bone in critically sized rabbit calvarial defects. Journal of Applied Biomaterials and Functional Materials, 2019, 17, 228080001882049.	1.6	25
1128	Cytocompatibility of Potential Bioactive Cerium-Doped Glasses based on 45S5. Materials, 2019, 12, 594.	2.9	21
1129	Programmable Electrofabrication of Porous Janus Films with Tunable Janus Balance for Anisotropic Cell Guidance and Tissue Regeneration. Advanced Functional Materials, 2019, 29, 1900065.	14.9	58
1130	Modification of honeycomb bioceramic scaffolds for bone regeneration under the condition of excessive bone resorption. Journal of Biomedical Materials Research - Part A, 2019, 107, 1314-1323.	4.0	15
1131	Bioactive glass fiber fabrication via a combination of sol-gel process with electro-spinning technique. Materials Science and Engineering C, 2019, 101, 521-538.	7.3	23
1132	Micro-Nano Bioactive Glass Particles Incorporated Porous Scaffold for Promoting Osteogenesis and Angiogenesis in vitro. Frontiers in Chemistry, 2019, 7, 186.	3.6	43
1133	Antibacterial polymer scaffold based on mesoporous bioactive glass loaded with in situ grown silver. Chemical Engineering Journal, 2019, 374, 304-315.	12.7	133
1134	A mechanically robust and flexible PEGylated poly(glycerol sebacate)/β-TCP nanoparticle composite membrane for guided bone regeneration. Journal of Materials Chemistry B, 2019, 7, 3279-3290.	5.8	24
1135	Production of polymer–bioactive glass nanocomposites for bone repair and substitution. , 2019, , 373-396.		2
1136	Thermally triggered injectable chitosan/silk fibroin/bioactive glass nanoparticle hydrogels for in-situ bone formation in rat calvarial bone defects. Acta Biomaterialia, 2019, 91, 60-71.	8.3	147
1137	Bioactive glass–based composites in bone tissue engineering: synthesis, processing, and cellular responses. , 2019, , 397-439.		0
1138	Optimized Bioactive Glass: the Quest for the Bony Graft. Advanced Healthcare Materials, 2019, 8, e1801542.	7.6	35
1139	2D Nanoclay for Biomedical Applications: Regenerative Medicine, Therapeutic Delivery, and Additive Manufacturing. Advanced Materials, 2019, 31, e1900332.	21.0	237
1140	Advantages of microfluidic systems for studying cell-biomaterial interactions—focus on bone regeneration applications. Biomedical Physics and Engineering Express, 2019, 5, 032001.	1.2	20
1141	Effects of manganese incorporation on the morphology, structure and cytotoxicity of spherical bioactive glass nanoparticles. Journal of Colloid and Interface Science, 2019, 547, 382-392.	9.4	43

#	Article	IF	Citations
1142	Toward the Development of an Innovative Implant: NiTi Alloy Functionalized by Multifunctional β-TCP+Ag/SiO ₂ Coatings. ACS Applied Bio Materials, 2019, 2, 987-998.	4.6	8
1143	Glass ionomer bone cements based on magnesium-containing bioactive glasses. Biomedical Glasses, 2019, 5, 1-12.	2.4	1
1144	Influence of zinc ions on structure, bioactivity, biocompatibility and antibacterial potential of melt-derived and gel-derived glasses from CaO-SiO2 system. Journal of Non-Crystalline Solids, 2019, 511, 86-99.	3.1	44
1145	Fabrication and characterization of biomimetic hydroxyapatite thin films for bone implants by direct ablation of a biogenic source. Materials Science and Engineering C, 2019, 99, 853-862.	7.3	32
1146	<p>Gadolinium-doped bioglass scaffolds promote osteogenic differentiation of hBMSC via the Akt/GSK3β pathway and facilitate bone repair in vivo</p> . International Journal of Nanomedicine, 2019, Volume 14, 1085-1100.	6.7	38
1147	Fundamental Theory of Biodegradable Metals—Definition, Criteria, and Design. Advanced Functional Materials, 2019, 29, 1805402.	14.9	226
1148	Mesoporous silica/organosilica nanoparticles: Synthesis, biological effect and biomedical application. Materials Science and Engineering Reports, 2019, 137, 66-105.	31.8	119
1149	Cation-doped bioactive ceramics: In vitro bioactivity and effect against bacteria of the oral cavity. Ceramics International, 2019, 45, 9231-9244.	4.8	10
1150	Freeze-cast composite scaffolds prepared from sol-gel derived 58S bioactive glass and polycaprolactone. Ceramics International, 2019, 45, 9891-9900.	4.8	16
1151	In Vitro Assessment of Bioactive Class Coatings on Alumina/Zirconia Composite Implants for Potential Use in Prosthetic Applications. International Journal of Molecular Sciences, 2019, 20, 722.	4.1	23
1152	Synergistic Effects of Silicon/Zinc Doped Brushite and Silk Scaffolding in Augmenting the Osteogenic and Angiogenic Potential of Composite Biomimetic Bone Grafts. ACS Biomaterials Science and Engineering, 2019, 5, 1462-1475.	5.2	22
1153	The Interface Between Degradable Mg and Tissue. Jom, 2019, 71, 1447-1455.	1.9	30
1154	Corrosion and bone healing of Mg-Y-Zn-Zr-Ca alloy implants: Comparative in vivo study in a non-immobilized rat femoral fracture model. Journal of Biomaterials Applications, 2019, 33, 1178-1194.	2.4	16
1155	Component effects of bioactive glass on corrosion resistance and in vitro biological properties of apatite-matrix coatings. Bio-Medical Materials and Engineering, 2019, 30, 207-218.	0.6	5
1156	Fabrication and Microstructure of Laminated HAP–45S5 Bioglass Ceramics by Spark Plasma Sintering. Materials, 2019, 12, 484.	2.9	7
1157	Bioactive Glasses as Angiogenic Agents for Tissue Engineering. , 2019, , .		0
1158	Tantalum-45S5Bioglass composite foams prepared in thermal dealloying process. International Journal of Refractory Metals and Hard Materials, 2019, 81, 58-62.	3.8	2
1159	Wood-based nanocellulose and bioactive glass modified gelatin–alginate bioinks for 3D bioprinting of bone cells. Biofabrication, 2019, 11, 035010.	7.1	125

#	Article	IF	CITATIONS
1160	Synthesis and physico-chemical characterization of fluoride (F)- and silver (Ag)-substituted sol-gel mesoporous bioactive glasses. Biomedical Glasses, 2019, 5, 185-192.	2.4	12
1161	Bioactivity and dissolution behavior of boron-containing bioactive glasses under static and dynamic conditions in different media. Biomedical Glasses, 2019, 5, 124-139.	2.4	33
1162	Inorganic fibers for biomedical engineering applications. , 2019, , 1-32.		1
1163	Atomic-scale clustering inhibits the bioactivity of fluoridated phosphate glasses. Biomedical Glasses, 2019, 5, 76-84.	2.4	5
1164	Effect of Silica Nanoparticles on Wear Mechanism of Alginate-Polyacrylamide Hydrogel Matrix as a Load-Bearing Biomaterial. Key Engineering Materials, 2019, 823, 15-20.	0.4	4
1165	Favorable angiogenic properties of the borosilicate bioactive glass 0106-B1 result in enhanced <i>in vivo</i> osteoid formation compared to 45S5 Bioglass. Biomaterials Science, 2019, 7, 5161-5176.	5.4	38
1166	Progress in electrospun composite nanofibers: composition, performance and applications for tissue engineering. Journal of Materials Chemistry B, 2019, 7, 7075-7089.	5.8	95
1167	Angiogenesis-promoted bone repair with silicate-shelled hydrogel fiber scaffolds. Biomaterials Science, 2019, 7, 5221-5231.	5.4	40
1168	Mesoporous bioactive glasses for biomedical composites. , 2019, , 355-391.		4
1169	In-vivo performance of plasma-sprayed CaO–MgO–SiO2-based bioactive glass-ceramic coating on Ti–6Al–4V alloy for bone regeneration. Heliyon, 2019, 5, e02824.	3.2	18
1170	Novel Polymeric Nanocarriers Reduced Zinc and Doxycycline Toxicity in the Nematode Caenorhabditis elegans. Antioxidants, 2019, 8, 550.	5.1	14
1171	Advanced Open-Celled Structures from Low-Temperature Sintering of a Crystallization-Resistant Bioactive Glass. Materials, 2019, 12, 3653.	2.9	10
1172	Some Aspects of the Human Body's Hydraulics. OnLine Journal of Biological Sciences, 2019, 19, 159-185.	0.4	0
1173	Tuning of ion-release capability from bio-ceramic-polymer composites for enhancing cellular activity. Royal Society Open Science, 2019, 6, 190612.	2.4	9
1174	Highly Porous Polymer-Derived Bioceramics Based on a Complex Hardystonite Solid Solution. Materials, 2019, 12, 3970.	2.9	7
1175	Ga and Ce ion-doped phosphate glass fibres with antibacterial properties and their composite for wound healing applications. Journal of Materials Chemistry B, 2019, 7, 6981-6993.	5.8	35
1176	[ARTICLE WITHDRAWN] Wound Dressings Based on Rubidium-Doped Bioactive Glass Nanospheres Promote Diabetic Wound Healing. Journal of Biomedical Nanotechnology, 2019, 15, 2059-2071.	1.1	11
1177	Bioactive magnetic glass-ceramics for cancer treatment. Biomedical Glasses, 2019, 5, 148-177.	2.4	24

#	Article	IF	CITATIONS
1178	Bone morphogenic protein expression and bone formation are induced by bioactive glass S53P4 scaffolds <i>in vivo</i> . Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 847-857.	3.4	17
1179	Molecularly engineered metal-based bioactive soft materials – Neuroactive magnesium ion/polymer hybrids. Acta Biomaterialia, 2019, 85, 310-319.	8.3	32
1180	Electrospinning of nanocomposite nanofibers from cyclodextrin and laponite. Composites Communications, 2019, 12, 33-38.	6.3	19
1181	Development of PMMA-Mon-CNT bone cement with superior mechanical properties and favorable biological properties for use in bone-defect treatment. Materials Letters, 2019, 240, 9-12.	2.6	56
1182	In Vitro Properties for Bioceramics Composed of Silica and Titanium Oxide Composites. Applied Sciences (Switzerland), 2019, 9, 66.	2.5	6
1183	Effect of synthetic amorphous calcium phosphate nanoparticles on the physicochemical and biological properties of resin-modified glass ionomer cements. Materials Science and Engineering C, 2019, 98, 227-240.	7.3	11
1184	Binary bioactive glass composite scaffolds for bone tissue engineering—Structure and mechanical properties in micro and nano scale. A preliminary study. Micron, 2019, 119, 64-71.	2.2	14
1185	Investigation of citric acid-assisted sol-gel synthesis coupled to the self-propagating combustion method for preparing bioactive glass with high structural homogeneity. Materials Science and Engineering C, 2019, 97, 669-678.	7.3	23
1186	Bi-functionalization of glass surfaces with poly-l-lysine conjugated silica particles and polyethylene glycol for selective cellular attachment and proliferation. Journal of Materials Science, 2019, 54, 2501-2513.	3.7	1
1187	Homogeneous hydroxyapatite/alginate composite hydrogel promotes calcified cartilage matrix deposition with potential for three-dimensional bioprinting. Biofabrication, 2019, 11, 015015.	7.1	70
1188	Facile Synthesis of Mg ²⁺ â€Doped Carbon Dots as Novel Biomaterial Inducing Cell Osteoblastic Differentiation. Particle and Particle Systems Characterization, 2019, 36, 1800315.	2.3	30
1189	Mechanical properties of resorbable calcium-phosphate glass optical fiber and capillaries. Journal of Alloys and Compounds, 2019, 778, 410-417.	5.5	23
1190	Isothermal phase transformations of bovine-derived hydroxyapatite/bioactive glass: A study by design of experiments. Journal of the European Ceramic Society, 2019, 39, 1613-1624.	5.7	11
1191	The studies of cytotoxicity and antibacterial activity of composites with ZnOâ€doped bioglass. International Journal of Applied Ceramic Technology, 2019, 16, 541-551.	2.1	17
1192	Dual-ion delivery for synergistic angiogenesis and bactericidal capacity with silica-based microsphere. Acta Biomaterialia, 2019, 83, 322-333.	8.3	41
1193	The Antimicrobial Efficacy of Hypoxia Mimicking Cobalt Oxide Doped Phosphate-Based Classes against Clinically Relevant Gram Positive, Gram Negative Bacteria and a Fungal Strain. ACS Biomaterials Science and Engineering, 2019, 5, 283-293.	5.2	16
1194	Bioactive glass based scaffolds coated with gelatin for the sustained release of icariin. Bioactive Materials, 2019, 4, 1-7.	15.6	37
1195	Cu-Releasing Bioactive Glass Coatings and Their in Vitro Properties. ACS Applied Materials & Interfaces, 2019, 11, 5812-5820.	8.0	49

#	Article	IF	CITATIONS
1196	Cellulose-Based Hydrogels for Pharmaceutical and Biomedical Applications. Polymers and Polymeric Composites, 2019, , 1103-1130.	0.6	2
1197	In vitro bioactivity and degradation behaviour of β-wollastonite derived from natural waste. Materials Science and Engineering C, 2019, 98, 109-117.	7.3	73
1198	Triple-Bioinspired Burying/Crosslinking Interfacial Coassembly Strategy for Layer-by-Layer Construction of Robust Functional Bioceramic Self-Coatings for Osteointegration Applications. ACS Applied Materials & Interfaces, 2019, 11, 4447-4469.	8.0	31
1199	S53P4 Bioactive Glass Inorganic Ions for Vascularized Bone Tissue Engineering by Dental Pulp Pluripotent-Like Stem Cell Cocultures. Tissue Engineering - Part A, 2019, 25, 1213-1224.	3.1	7
1200	Strontium ions promote inÂvitro human bone marrow stromal cell proliferation and differentiation in calciumâ€lacking media. Development Growth and Differentiation, 2019, 61, 166-175.	1.5	14
1201	Correlation between Cells-on-Chips materials and cell adhesion/proliferation focused on material's surface free energy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 565, 188-194.	4.7	9
1202	Can bioactive glasses be useful to accelerate the healing of epithelial tissues?. Materials Science and Engineering C, 2019, 97, 1009-1020.	7.3	74
1203	Mesoporous zinc silicate bio-composite: Preparation, characterization and in vitro evaluation. Microporous and Mesoporous Materials, 2019, 277, 124-131.	4.4	7
1204	Hydrogel Nanocomposite Systems. , 2019, , 319-349.		9
1205	Angiogenic Attributes of Multifaceted Bioactive Glass: Its Therapeutic Potential on Soft Tissues and Drug Delivery Utilization. , 2019, , 331-353.		0
1206	Modulatory effect of simultaneously released magnesium, strontium, and silicon ions on injectable silk hydrogels for bone regeneration. Materials Science and Engineering C, 2019, 94, 976-987.	7.3	33
1207	Stored potential energy increases and elastic properties alterations are produced after restoring dentin with Zn-containing amalgams. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 91, 109-121.	3.1	5
1208	Study on MgxSr3-x(PO4)2 bioceramics as potential bone grafts. Colloids and Surfaces B: Biointerfaces, 2019, 175, 158-165.	5.0	21
1209	Biomimetic fabrication of new bioceramics-introduced fibrous scaffolds: From physicochemical characteristics to in vitro biological properties. Materials Science and Engineering C, 2019, 94, 547-557.	7.3	13
1210	Controlled release of DNA from zinc and magnesium ion-doped hydroxyapatites. Research on Chemical Intermediates, 2019, 45, 23-32.	2.7	8
1211	Bioactive Glasses for Treatment of Bone Infections. , 2019, , 383-415.		5
1212	Effect of different surface treatments on bioactivity of porous titanium implants. Journal of Materials Science and Technology, 2019, 35, 418-426.	10.7	27
1213	Bioactive Surface Coatings for Enhancing Osseointegration of Dental Implants. , 2019, , 313-329.		24

#	Article	IF	CITATIONS
1214	Nanoengineered biomaterials for bone/dental regeneration. , 2019, , 13-38.		5
1215	The development of Cu-incorporated micro/nano-topographical bio-ceramic coatings for enhanced osteoblast response. Applied Surface Science, 2019, 465, 575-583.	6.1	29
1216	Bioactive Glass Scaffolds for Bone Tissue Engineering. , 2019, , 417-442.		7
1217	Multifunctional Bioactive Glasses and Glass-Ceramics: Beyond â€~Traditional' Bioactivity. , 2019, , 35-67.		1
1218	Bioactive Glasses in Gene Regulation and Proliferation. , 2019, , 175-200.		1
1219	Boron-Containing Bioactive Glasses for Bone Regeneration. , 2019, , 219-249.		7
1220	Bioactive Glasses and Glass-Ceramics for Ophthalmological Applications. , 2019, , 357-382.		1
1221	Bioactive Glass and Glass Fiber Composite: Biomedical/Dental Applications. , 2019, , 467-495.		3
1222	Zinc silicate mineral-coated scaffold improved in vitro osteogenic differentiation of equine adipose-derived mesenchymal stem cells. Research in Veterinary Science, 2019, 124, 444-451.	1.9	17
1223	In Vitro Bioactivity Behavior of Some Borophosphate Classes Containing Dopant of ZnO, CuO or SrO Together with their Glass-Ceramic Derivatives and their Antimicrobial Activity. Silicon, 2019, 11, 197-208.	3.3	20
1224	Vacuumed collagenâ€impregnated bioglass scaffolds: Characterization and influence on proliferation and differentiation of bone marrow stromal cells. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 211-222.	3.4	1
1225	Dentin sealing and antibacterial effects of silver-doped bioactive glass/mesoporous silica nanocomposite: an in vitro study. Clinical Oral Investigations, 2019, 23, 253-266.	3.0	38
1226	Mechanical and <i>in vitro</i> degradation behavior of magnesiumâ€bioactive glass composites prepared by SPS for biomedical applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 352-365.	3.4	27
1227	Effects of Zn and Si ions on the corrosion behaviors of PEO-treated Ti-6Al-4V alloy. Applied Surface Science, 2019, 477, 79-90.	6.1	20
1228	Novel 3D-printed methacrylated chitosan-laponite nanosilicate composite scaffolds enhance cell growth and biomineral formation in MC3T3 pre-osteoblasts. Journal of Materials Research, 2020, 35, 58-75.	2.6	46
1229	Phosphate glass fibres with therapeutic ions release capability – a review. Advances in Applied Ceramics, 2020, 119, 1-14.	1.1	32
1230	Synthetic bone graft substitutes: Calcium-based biomaterials. , 2020, , 125-157.		11
1231	Review: Silicon oxycarbide based materials for biomedical applications. Applied Materials Today, 2020, 18, 100482.	4.3	24

#	Article	IF	CITATIONS
1232	In vitro and in vivo osteogenic potential of niobiumâ€doped 45S5 bioactive glass: A comparative study. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1372-1387.	3.4	19
1233	Vancomycin release kinetics from Mg–Ca silicate porous microspheres developed for controlled drug delivery. Ceramics International, 2020, 46, 508-512.	4.8	24
1234	Roles of strontium and hierarchy structure on the in vitro biological response and drug release mechanism of the strontium-substituted bioactive glass microspheres. Materials Science and Engineering C, 2020, 107, 110336.	7.3	10
1235	Biocompatibility of borosilicate glassâ€ceramics based LTCC materials for microfluidic biosensor application. International Journal of Applied Ceramic Technology, 2020, 17, 365-371.	2.1	1
1236	Implant surface modifications and new development in surface coatings. , 2020, , 89-124.		2
1237	Biomimetic Elastomeric Bioactive Siloxaneâ€Based Hybrid Nanofibrous Scaffolds with miRNA Activation: A Joint Physicoâ€Chemicalâ€Biological Strategy for Promoting Bone Regeneration. Advanced Functional Materials, 2020, 30, 1906013.	14.9	32
1238	Silicate-based nanoceramics in regenerative medicine. , 2020, , 255-273.		7
1239	Growth of bone like hydroxyapatite and cell viability studies on CeO2 doped CaO–P2O5–MgO–SiO2 bioceramics. Materials Chemistry and Physics, 2020, 243, 122352.	4.0	20
1240	Synthesis and characterization of magnesium-lanthanum dual doped bioactive glasses. Ceramics International, 2020, 46, 10503-10511.	4.8	14
1241	Facilitated vascularization and enhanced bone regeneration by manipulation hierarchical pore structure of scaffolds. Materials Science and Engineering C, 2020, 110, 110622.	7.3	37
1242	Influence of zinc oxide addition on the biological activity and electrical transport properties of TeO2–Li2O–B2O3 glasses. Materialia, 2020, 9, 100575.	2.7	16
1243	An insight into the corrosion of alkali aluminoborosilicate glasses in acidic environments. Physical Chemistry Chemical Physics, 2020, 22, 1881-1896.	2.8	35
1244	A soft-chemistry approach to the synthesis of amorphous calcium ortho/pyrophosphate biomaterials of tunable composition. Acta Biomaterialia, 2020, 103, 333-345.	8.3	18
1245	The role of CaO/SiO2 ratio and P2O5 content in gel-derived bioactive glass-polymer composites in the modulation of their bioactivity and osteoinductivity in human BMSCs. Materials Science and Engineering C, 2020, 109, 110535.	7.3	10
1246	Osteoblast response to zirconia modified-ORMOSILs. Materials Science and Engineering C, 2020, 109, 110546.	7.3	4
1247	Preliminary studies of the effect of doping of chromium oxide in SiO2-CaO-P2O5 bioceramics for bone regeneration applications. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 229, 118000.	3.9	7
1248	In vitro bactericidal and drug release properties of vancomycin-amino surface functionalized bioactive glass nanoparticles. Materials Chemistry and Physics, 2020, 241, 122423.	4.0	13
1249	Primary osteoblasts, osteoblast precursor cells or osteoblastâ€like cell lines: Which human cell types are (most) suitable for characterizing 45S5â€bioactive glass?. Journal of Biomedical Materials Research - Part A, 2020, 108, 663-674.	4.0	38

#	Article	IF	CITATIONS
1250	Polymeric nanoparticles for endodontic therapy. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 103, 103606.	3.1	24
1251	Removal of heavy metals in aquatic environment by graphene oxide composites: a review. Environmental Science and Pollution Research, 2020, 27, 190-209.	5.3	70
1252	Role of Biomaterials and Controlled Architecture on Tendon/Ligament Repair and Regeneration. Advanced Materials, 2020, 32, e1904511.	21.0	97
1253	Toward the fabrication of extruded microstructured bioresorbable phosphate glass optical fibers. International Journal of Applied Glass Science, 2020, 11, 632-640.	2.0	13
1254	Irradiationâ€induced brittleâ€ŧoâ€ductile transition in αâ€quartz. Journal of the American Ceramic Society, 2020, 103, 3962-3970.	3.8	10
1255	Modulating the cobalt dose range to manipulate multisystem cooperation in bone environment: a strategy to resolve the controversies about cobalt use for orthopedic applications. Theranostics, 2020, 10, 1074-1089.	10.0	32
1256	Advances in dual functional antimicrobial and osteoinductive biomaterials for orthopaedic applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102143.	3.3	47
1257	Model-driven design of bioactive glasses: from molecular dynamics through machine learning. International Materials Reviews, 2020, 65, 297-321.	19.3	31
1258	Niobium containing bioactive glasses as remineralizing filler for adhesive resins. Dental Materials, 2020, 36, 221-228.	3.5	24
1259	Synthesis of sol–gel derived calcium silicate particles and development of a bioactive endodontic cement. Dental Materials, 2020, 36, 135-144.	3.5	19
1260	3D printing of metal-organic framework nanosheets-structured scaffolds with tumor therapy and bone construction. Biofabrication, 2020, 12, 025005.	7.1	87
1261	Sintering of magnesiumâ€strontium doped hydroxyapatite nanocrystals: Towards the production of 3D biomimetic bone scaffolds. Journal of Biomedical Materials Research - Part A, 2020, 108, 633-644.	4.0	29
1262	Biological response to an experimental implant for tibial tuberosity advancement in dogs: A pre-clinical study. Research in Veterinary Science, 2020, 128, 183-196.	1.9	7
1263	Antibacterial Efficiency of Zn, Mg and Sr Doped Bioactive Glass for Bone Tissue Engineering. Journal of Nanoscience and Nanotechnology, 2020, 20, 2465-2472.	0.9	15
1264	Effect of bioactive Biosilicate [®] /F18 glass scaffolds on osteogenic differentiation of human adipose stem cells. Journal of Biomedical Materials Research - Part A, 2021, 109, 1293-1308.	4.0	5
1265	Fabrication and characterization of Ag―and Gaâ€doped mesoporous glassâ€coated scaffolds based on natural marine sponges with improved mechanical properties. Journal of Biomedical Materials Research - Part A, 2021, 109, 1309-1327.	4.0	7
1266	Dosimetric behavior of modified borate bioglass containing copper for low photon dose measurements using luminescence characteristics. Journal of Materials Science: Materials in Electronics, 2020, 31, 20452-20459.	2.2	10
1267	Mechanochemical and in vitro cytocompatibility evaluation of zirconia modified silver substituted 1393 bioactive glasses. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2022, 61, 64-75.	1.9	5

#	Article	IF	CITATIONS
1268	Contemporary restorative ion-releasing materials: current status, interfacial properties and operative approaches. British Dental Journal, 2020, 229, 450-458.	0.6	23
1269	Influence of low amounts of zinc or magnesium substitution on ion release and apatite formation of Bioglass 45S5. Journal of Materials Science: Materials in Medicine, 2020, 31, 86.	3.6	15
1270	Biological properties of copper-doped biomaterials for orthopedic applications: A review of antibacterial, angiogenic and osteogenic aspects. Acta Biomaterialia, 2020, 117, 21-39.	8.3	116
1271	New perspectives: In-situ tissue engineering for bone repair scaffold. Composites Part B: Engineering, 2020, 202, 108445.	12.0	98
1272	Sol-gel coatings incorporating borosilicate bioactive glass enhance anti corrosive and surface performance of stainless steel implants. Journal of Electroanalytical Chemistry, 2020, 876, 114735.	3.8	28
1273	Microstructure, mechanical properties and in vitro biocompatibilities of a novel bionic hydroxyapatite bone scaffold prepared by the addition of boron nitride. Journal of Materials Science, 2020, 55, 14501-14515.	3.7	10
1274	Facile synthesis and in vitro bioactivity of radial mesoporous bioactive glass with high phosphorus and calcium content. Advanced Powder Technology, 2020, 31, 3307-3317.	4.1	12
1275	Periosteum structure/function-mimicking bioactive scaffolds with piezoelectric/chem/nano signals for critical-sized bone regeneration. Chemical Engineering Journal, 2020, 402, 126203.	12.7	33
1276	3D printed Sr-containing composite scaffolds: Effect of structural design and material formulation towards new strategies for bone tissue engineering. Composites Science and Technology, 2020, 191, 108069	7.8	78
	100007.		
1277	Recent advances in bioelectronics chemistry. Chemical Society Reviews, 2020, 49, 7978-8035.	38.1	54
1277 1278	Recent advances in bioelectronics chemistry. Chemical Society Reviews, 2020, 49, 7978-8035. Combined Experimental and Computational Approach toward the Structural Design of Borosilicate-Based Bioactive Glasses. Journal of Physical Chemistry C, 2020, 124, 17655-17674.	38.1 3.1	54
1277 1278 1279	Recent advances in bioelectronics chemistry. Chemical Society Reviews, 2020, 49, 7978-8035. Combined Experimental and Computational Approach toward the Structural Design of Borosilicate-Based Bioactive Classes. Journal of Physical Chemistry C, 2020, 124, 17655-17674. Bioactive nanoceramics. , 2020, , 233-257.	38.1	54 18 3
1277 1278 1279 1280	Recent advances in bioelectronics chemistry. Chemical Society Reviews, 2020, 49, 7978-8035. Combined Experimental and Computational Approach toward the Structural Design of Borosilicate-Based Bioactive Glasses. Journal of Physical Chemistry C, 2020, 124, 17655-17674. Bioactive nanoceramics. , 2020, , 233-257. Effect of manganese, zinc, and copper on the biological and osteogenic properties of mesoporous bioactive glass nanoparticles. Journal of Biomedical Materials Research - Part A, 2021, 109, 1457-1467.	38.13.14.0	54 18 3 38
1277 1278 1279 1280 1281	Recent advances in bioelectronics chemistry. Chemical Society Reviews, 2020, 49, 7978-8035. Combined Experimental and Computational Approach toward the Structural Design of Borosilicate-Based Bioactive Glasses. Journal of Physical Chemistry C, 2020, 124, 17655-17674. Bioactive nanoceramics. , 2020, , 233-257. Effect of manganese, zinc, and copper on the biological and osteogenic properties of mesoporous bioactive glass nanoparticles. Journal of Biomedical Materials Research - Part A, 2021, 109, 1457-1467. A review of <i>in vitro </i> cell culture testing methods for bioactive glasses and other biomaterials for hard tissue regeneration. Journal of Materials Chemistry B, 2020, 8, 10941-10953.	38.1 3.1 4.0 5.8	 54 18 3 38 30
1277 1278 1279 1280 1281 1282	Recent advances in bioelectronics chemistry. Chemical Society Reviews, 2020, 49, 7978-8035. Combined Experimental and Computational Approach toward the Structural Design of Borosilicate-Based Bioactive Glasses. Journal of Physical Chemistry C, 2020, 124, 17655-17674. Bioactive nanoceramics. , 2020, , 233-257. Effect of manganese, zinc, and copper on the biological and osteogenic properties of mesoporous bioactive glass nanoparticles. Journal of Biomedical Materials Research - Part A, 2021, 109, 1457-1467. A review of <i>in vitro</i> cell culture testing methods for bioactive glasses and other biomaterials for hard tissue regeneration. Journal of Materials Chemistry B, 2020, 8, 10941-10953. Customized Borosilicate Bioglass Scaffolds With Excellent Biodegradation and Osteogenesis for Mandible Reconstruction. Frontiers in Bioengineering and Biotechnology, 2020, 8, 610284.	 38.1 3.1 4.0 5.8 4.1 	 54 18 3 38 30 16
1277 1278 1279 1280 1281 1282 1283	Recent advances in bioelectronics chemistry. Chemical Society Reviews, 2020, 49, 7978-8035. Combined Experimental and Computational Approach toward the Structural Design of Borosilicate-Based Bioactive Glasses. Journal of Physical Chemistry C, 2020, 124, 17655-17674. Bioactive nanoceramics. , 2020, , 233-257. Effect of manganese, zinc, and copper on the biological and osteogenic properties of mesoporous bioactive glass nanoparticles. Journal of Biomedical Materials Research - Part A, 2021, 109, 1457-1467. A review of <i>in vitro </i> cell culture testing methods for bioactive glasses and other biomaterials for hard tissue regeneration. Journal of Materials Chemistry B, 2020, 8, 10941-10953. Customized Borosilicate Bioglass Scaffolds With Excellent Biodegradation and Osteogenesis for Mandible Reconstruction. Frontiers in Bioengineering and Biotechnology, 2020, 8, 610284. Bioinorganic supplementation of calcium phosphate-based bone substitutes to improve <i>in wivo Bioinorganic supplementation of calcium phosphate-based bone substitutes to improve<i>in wivo Bioinorganic supplementation of calcium phosphate-based bone substitutes to improve<i>in wivo Bioinorganic supplementation of calcium phosphate-based bone substitutes to improve<i>in wivo Bioinorganic supplementation of calcium phosphate-based bone substitutes to improve<i>in wivo Octo, 8, 4792-4809.</i></i></i></i></i>	 38.1 3.1 4.0 5.8 4.1 5.4 	 54 18 3 38 30 16 15
1277 1278 1279 1280 1281 1282 1283	Recent advances in bioelectronics chemistry. Chemical Society Reviews, 2020, 49, 7978-8035. Combined Experimental and Computational Approach toward the Structural Design of Borosilicate-Based Bioactive Classes. Journal of Physical Chemistry C, 2020, 124, 17655-17674. Bioactive nanoceramics. , 2020, , 233-257. Effect of manganese, zinc, and copper on the biological and osteogenic properties of mesoporous bioactive glass nanoparticles. Journal of Biomedical Materials Research - Part A, 2021, 109, 1457-1467. A review of <i>in vitro</i> cell culture testing methods for bioactive glasses and other biomaterials for hard tissue regeneration. Journal of Materials Chemistry B, 2020, 8, 10941-10953. Customized Borosilicate Bioglass Scaffolds With Excellent Biodegradation and Osteogenesis for Mandible Reconstruction. Frontiers in Bioengineering and Biotechnology, 2020, 8, 610284. Biolonorganic supplementation of calcium phosphate-based bone substitutes to improve <i>in vivo</i> vyo A review of systematic review and meta-analysis of animal studies. Biomaterials Science, 2020, 8, 4792-4809. <i>in vitro for bone tissue engineering. RSC Advances, 2020, 10, 23813-23828.</i>	 38.1 3.1 4.0 5.8 4.1 5.4 3.6 	 54 18 3 38 30 16 15 8

#	Article	IF	CITATIONS
1286	Evaluations of hydroxyapatite and bioactive glass in the repair of critical size bone defects in rat calvaria. Journal of Oral Biology and Craniofacial Research, 2020, 10, 422-429.	1.9	8
1287	<i>In vitro</i> and <i>in vivo</i> studies on ultrafine-grained biodegradable pure Mg, Mg–Ca alloy and Mg–Sr alloy processed by high-pressure torsion. Biomaterials Science, 2020, 8, 5071-5087.	5.4	35
1288	Porous chitosan/ZnOâ€doped bioglass composites as carriers of bioactive peptides. International Journal of Applied Ceramic Technology, 2020, 17, 2807-2816.	2.1	8
1289	Effect of strontium doping on bone nodule formation of sol-gel derived bioglass. AIP Conference Proceedings, 2020, , .	0.4	1
1290	In vitro osteogenic performance of two novel strontium and zincâ€containing glass polyalkenoate cements. Journal of Biomedical Materials Research - Part A, 2021, 109, 1366-1378.	4.0	6
1291	Characterisation of osteogenic and vascular responses of hMSCs to Ti-Co doped phosphate glass microspheres using a microfluidic perfusion platform. Journal of Tissue Engineering, 2020, 11, 204173142095471.	5.5	16
1292	Recent advances and future perspectives of sol–gel derived porous bioactive glasses: a review. RSC Advances, 2020, 10, 33782-33835.	3.6	108
1293	Inflammation and biomaterials: role of the immune response in bone regeneration by inorganic scaffolds. Journal of Materials Chemistry B, 2020, 8, 9404-9427.	5.8	71
1294	Bioactive Glasses: A Promising Therapeutic Ion Release Strategy for Enhancing Wound Healing. ACS Biomaterials Science and Engineering, 2020, 6, 5399-5430.	5.2	99
1295	Drug Delivery Applications of Three-Dimensional Printed (3DP) Mesoporous Scaffolds. Pharmaceutics, 2020, 12, 851.	4.5	27
1296	In Vivo Validation of Spray-Dried Mesoporous Bioactive Glass Microspheres Acting as Prolonged Local Release Systems for BMP-2 to Support Bone Regeneration. Pharmaceutics, 2020, 12, 823.	4.5	17
1297	Novel antimicrobial phosphate-free glass–ceramic scaffolds for bone tissue regeneration. Scientific Reports, 2020, 10, 13171.	3.3	12
1298	Three dimensional printed bioglass/gelatin/alginate composite scaffolds with promoted mechanical strength, biomineralization, cell responses and osteogenesis. Journal of Materials Science: Materials in Medicine, 2020, 31, 77.	3.6	20
1299	Enhancing Mechanical Properties and Biological Performances of Injectable Bioactive Glass by Gelatin and Chitosan for Bone Small Defect Repair. Biomedicines, 2020, 8, 616.	3.2	22
1300	Sustained Calcium(II)-Release to Impart Bioactivity in Hybrid Glass Scaffolds for Bone Tissue Engineering. Pharmaceutics, 2020, 12, 1192.	4.5	7
1301	Strontium-Modified Scaffolds Based on Mesoporous Bioactive Glasses/Polyvinyl Alcohol Composites for Bone Regeneration. Materials, 2020, 13, 5526.	2.9	14
1302	<p>Impacts of a Nano-Laponite Ceramic on Surface Performance, Apatite Mineralization, Cell Response, and Osseointegration of a Polyimide-Based Biocomposite</p> . International Journal of Nanomedicine, 2020, Volume 15, 9389-9405.	6.7	7
1303	A Review of Bioactive Glass/Natural Polymer Composites: State of the Art. Materials, 2020, 13, 5560.	2.9	86
#	Article	IF	CITATIONS
------	---	------	-----------
1304	A Novel Bioactive Glass Containing Therapeutic Ions with Enhanced Biocompatibility. Materials, 2020, 13, 4600.	2.9	13
1305	Synergistic use of biomaterials and licensed therapeutics to manipulate bone remodelling and promote non-union fracture repair. Advanced Drug Delivery Reviews, 2020, 160, 212-233.	13.7	19
1306	Combined Fluorescence-Based in Vitro Assay for the Simultaneous Detection of Cell Viability and Alkaline Phosphatase Activity during Osteogenic Differentiation of Osteoblast Precursor Cells. Methods and Protocols, 2020, 3, 30.	2.0	20
1307	<i>In vitro</i> effects of the co-release of icariin and strontium from bioactive glass submicron spheres on the reduced osteogenic potential of rat osteoporotic bone marrow mesenchymal stem cells. Biomedical Materials (Bristol), 2020, 15, 055023.	3.3	10
1308	Incorporation of Boron in Mesoporous Bioactive Glass Nanoparticles Reduces Inflammatory Response and Delays Osteogenic Differentiation. Particle and Particle Systems Characterization, 2020, 37, 2000054.	2.3	30
1309	Preconditioning of Bioactive Glasses before Introduction to Static Cell Culture: What Is Really Necessary?. Methods and Protocols, 2020, 3, 38.	2.0	26
1311	Copper-Doped Ordered Mesoporous Bioactive Glass: A Promising Multifunctional Platform for Bone Tissue Engineering. Bioengineering, 2020, 7, 45.	3.5	29
1312	Zeinâ€Based Electrospun Fibers Containing Bioactive Glass with Antibacterial Capabilities. Macromolecular Bioscience, 2020, 20, e2000059.	4.1	16
1313	Borate bioactive glass prevents zoledronateâ€induced osteonecrosis of the jaw by restoring osteogenesis and angiogenesis. Oral Diseases, 2020, 26, 1706-1717.	3.0	12
1314	In vivo bioactivity assessment of strontium-containing soda-lime-borate glass implanted in femoral defect of rat. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 3953-3964.	3.7	9
1315	Zirconia-containing wollastonite ceramics derived from biowaste resources for bone tissue engineering. Biomedical Materials (Bristol), 2020, 15, 055025.	3.3	6
1316	Ceramics, Glasses, and Glass-Ceramics. , 2020, , 289-305.		5
1317	Koh group influence on titanium surfaces and pure sol-gel silica for enhanced osteogenic activity. Journal of Biomaterials Applications, 2020, 35, 405-421.	2.4	2
1318	Impact of the pulling rate on the redox state and magnetic domains of Fe-Si-O glass ceramic processed by LFZ method. Materials Research Bulletin, 2020, 131, 110972.	5.2	8
1319	Bioactive Glass Nanoparticles for Tissue Regeneration. ACS Omega, 2020, 5, 12716-12726.	3.5	42
1320	Comparison of the Influence of 45S5 and Cu-Containing 45S5 Bioactive Glass (BG) on the Biological Properties of Novel Polyhydroxyalkanoate (PHA)/BG Composites. Materials, 2020, 13, 2607.	2.9	9
1321	Cell-free 3D wet-electrospun PCL/silk fibroin/Sr2+ scaffold promotes successful total meniscus regeneration in a rabbit model. Acta Biomaterialia, 2020, 113, 196-209.	8.3	45
1322	Effects of Medium pH and Preconditioning Treatment on Protein Adsorption on 45S5 Bioactive Glass Surfaces. Advanced Materials Interfaces, 2020, 7, 2000420.	3.7	12

	CITATION R	EPORT	
#	Article	IF	CITATIONS
1323	Materials design for bone-tissue engineering. Nature Reviews Materials, 2020, 5, 584-603.	48.7	851
1324	Degradative Effects of the Biological Environment on Ceramic Biomaterials. , 2020, , 955-971.		7
1325	Zinc Silicate/Nano-Hydroxyapatite/Collagen Scaffolds Promote Angiogenesis and Bone Regeneration via the p38 MAPK Pathway in Activated Monocytes. ACS Applied Materials & Interfaces, 2020, 12, 16058-16075.	8.0	128
1326	Effects of tricalcium silicate/sodium alginate/calcium sulfate hemihydrate composite cements on osteogenic performances in vitro and in vivo. Journal of Biomaterials Applications, 2020, 34, 1422-1436.	2.4	16
1327	Co-incorporation of graphene oxide/silver nanoparticle into poly-L-lactic acid fibrous: A route toward the development of cytocompatible and antibacterial coating layer on magnesium implants. Materials Science and Engineering C, 2020, 111, 110812.	7.3	78
1328	Three-dimensional observation and analysis of remineralization in dentinal caries lesions. Scientific Reports, 2020, 10, 4387.	3.3	17
1329	The effects of Fe3+ and Co2+ substitution in Ca10-x-yFexCoy(PO4)6(OH)2 hydroxyapatite nanoparticles: Magnetic, antibacterial, and improved drug release behavior. Ceramics International, 2020, 46, 16104-16118.	4.8	17
1330	Electrospinning 3D bioactive glasses for wound healing. Biomedical Materials (Bristol), 2020, 15, 015014.	3.3	30
1331	Strontium modulates osteogenic activity of bone cement composed of bioactive borosilicate glass particles by activating Wnt/l²-catenin signaling pathway. Bioactive Materials, 2020, 5, 334-347.	15.6	42
1332	High-Strength Fiber-Reinforced Composite Hydrogel Scaffolds as Biosynthetic Tendon Graft Material. ACS Biomaterials Science and Engineering, 2020, 6, 1887-1898.	5.2	25
1333	Nanoclay-functionalized 3D nanofibrous scaffolds promote bone regeneration. Journal of Materials Chemistry B, 2020, 8, 3842-3851.	5.8	28
1334	Mechanical and degradative properties of PLDLA biodegradable pins with bioactive glass fibers in a beagle model. Biomedical Materials (Bristol), 2020, 15, 035010.	3.3	4
1335	Chorioallantoic Membrane Assay as Model for Angiogenesis in Tissue Engineering: Focus on Stem Cells. Tissue Engineering - Part B: Reviews, 2020, 26, 519-539.	4.8	43
1336	Review on calcium―and magnesiumâ€based silicates for bone tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2020, 108, 1546-1562.	4.0	65
1337	Bioactive Glass (BG) ICIE16 Shows Promising Osteogenic Properties Compared to Crystallized 45S5-BG. International Journal of Molecular Sciences, 2020, 21, 1639.	4.1	37
1338	Effect of nanoscale bioactive glass with radial spherical particles on osteogenic differentiation of rat bone marrow mesenchymal stem cells. Journal of Materials Science: Materials in Medicine, 2020, 31, 29.	3.6	7
1339	Machine learning as a tool to design glasses with controlled dissolution for healthcare applications. Acta Biomaterialia, 2020, 107, 286-298.	8.3	55
1340	Advanced Theragenerative Biomaterials with Therapeutic and Regeneration Multifunctionality. Advanced Functional Materials, 2020, 30, 2002621.	14.9	35

#	Article	IF	CITATIONS
1341	Structural analysis of porous bioactive glass scaffolds using micro-computed tomographic images. Journal of Materials Science, 2020, 55, 12705-12724.	3.7	9
1342	Presents some Biologically Structured Materials. OnLine Journal of Biological Sciences, 2020, 20, 8-36.	0.4	0
1343	Cellular response to calcium phosphate cements. , 2020, , 369-393.		2
1344	In vitro and in vivo evaluation of the pH-neutral bioactive glass as high performance bone grafts. Materials Science and Engineering C, 2020, 116, 111249.	7.3	13
1345	Local intramyocardial delivery of bioglass with alginate hydrogels for post-infarct myocardial regeneration. Biomedicine and Pharmacotherapy, 2020, 129, 110382.	5.6	21
1346	Borocarbonitrides nanosheets engineered 3D-printed scaffolds for integrated strategy of osteosarcoma therapy and bone regeneration. Chemical Engineering Journal, 2020, 401, 125989.	12.7	37
1347	Sol-gel derived strontium-doped SiO2–CaO–MgO–P2O5 bioceramics for faster growth of bone like hydroxyapatite and their in vitro study for orthopedic applications. Materials Chemistry and Physics, 2020, 245, 122763.	4.0	13
1348	Effect of Cu- and Zn-Doped Bioactive Glasses on the In Vitro Bioactivity, Mechanical and Degradation Behavior of Biodegradable PDLLA Scaffolds. Materials, 2020, 13, 2908.	2.9	18
1349	Advancing bioinks for 3D bioprinting using reactive fillers: A review. Acta Biomaterialia, 2020, 113, 1-22.	8.3	141
1350	Engineered biomaterials for in situ tissue regeneration. Nature Reviews Materials, 2020, 5, 686-705.	48.7	420
1351	Osteogenic activity of a titanium surface modified with silicon-doped titanium dioxide. Materials Science and Engineering C, 2020, 110, 110682.	7.3	22
1352	Effects of bioactive glass coating by electrophoretic deposition on esthetical, bending, and frictional performance of orthodontic stainless steel wire. Dental Materials Journal, 2020, 39, 593-600.	1.8	4
1353	Multiphase matrix of silica, culture medium and air for 3D mammalian cell culture. Cytotechnology, 2020, 72, 271-282.	1.6	6
1354	Hybrid Bone Scaffold Induces Bone Bridging in Goat Calvarial Critical Size Defects Without Growth Factor Augmentation. Regenerative Engineering and Translational Medicine, 2020, 6, 189-200.	2.9	1
1355	Effect of ion doping in silica-based nanoparticles on the hemolytic and oxidative activity in contact with human erythrocytes. Chemico-Biological Interactions, 2020, 318, 108974.	4.0	27
1356	Plasma electrolytic oxidation of Ti-6Al-4V alloy in electrolytes containing bone formation ions. Applied Surface Science, 2020, 513, 145776.	6.1	17
1357	Monodispersed βâ€Glycerophosphateâ€Decorated Bioactive Glass Nanoparticles Reinforce Osteogenic Differentiation of Adipose Stem Cells and Bone Regeneration In Vivo. Particle and Particle Systems Characterization, 2020, 37, 1900462.	2.3	6
1358	Recent advances in periodontal regeneration: A biomaterial perspective. Bioactive Materials, 2020, 5, 297-308.	15.6	144

#	Article	IF	CITATIONS
1359	Functional element coatings on Ti-alloys for biomaterials by plasma electrolytic oxidation. Thin Solid Films, 2020, 699, 137896.	1.8	11
1360	Electrospun poly(<scp>d,l</scp> â€lactide)/gelatin/glassâ€ceramics tricomponent nanofibrous scaffold for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2020, 108, 1064-1076.	4.0	24
1361	Adult stem cell response to doped bioactive borate glass. Journal of Materials Science: Materials in Medicine, 2020, 31, 13.	3.6	11
1362	Prospects of antibacterial bioactive glass nanofibers for wound healing: An in vitro study. International Journal of Applied Glass Science, 2020, 11, 320-328.	2.0	19
1363	Bioactive Poreâ€Forming Bone Adhesives Facilitating Cell Ingrowth for Fracture Healing. Advanced Materials, 2020, 32, e1907491.	21.0	54
1364	A Study on the Biocompatibility of MgO Coating Prepared by Anodic Oxidation Method on Magnesium Metal. Journal of Bionic Engineering, 2020, 17, 76-91.	5.0	8
1365	Inorganic Biomaterials for Regenerative Medicine. ACS Applied Materials & Interfaces, 2020, 12, 5319-5344.	8.0	135
1366	Antioxidant mesoporous Ce-doped bioactive glass nanoparticles with anti-inflammatory and pro-osteogenic activities. Materials Today Bio, 2020, 5, 100041.	5.5	66
1367	Superior biocompatibility and comparable osteoinductive properties: Sodium-reduced fluoride-containing bioactive glass belonging to the CaO–MgO–SiO2 system as a promising alternative to 45S5 bioactive glass. Bioactive Materials, 2020, 5, 55-65.	15.6	51
1368	Role of magnesium and aluminum substitution on the structural properties and bioactivity of bioglasses synthesized from biogenic silica. Bioactive Materials, 2020, 5, 66-73.	15.6	33
1369	A new bioactive glass with extremely high crystallization temperature and outstanding biological performance. Materials Science and Engineering C, 2020, 110, 110699.	7.3	22
1370	Artificial ligament made from silk protein/Laponite hybrid fibers. Acta Biomaterialia, 2020, 106, 102-113.	8.3	41
1371	Comparison between Bioactive Sol-Gel and Melt-Derived Glasses/Glass-Ceramics Based on the Multicomponent SiO2–P2O5–CaO–MgO–Na2O–K2O System. Materials, 2020, 13, 540.	2.9	57
1372	Dolomite-Foamed Bioactive Silicate Scaffolds for Bone Tissue Repair. Materials, 2020, 13, 628.	2.9	27
1373	Mechanism of in vitro reaction of a new scaffold ceramic similar to porous bone. Journal of the European Ceramic Society, 2020, 40, 2200-2206.	5.7	6
1374	Electrophoretic processing of chitosan based composite scaffolds with Nb-doped bioactive glass for bone tissue regeneration. Journal of Materials Science: Materials in Medicine, 2020, 31, 43.	3.6	20
1375	Osteogenic properties of manganeseâ€doped mesoporous bioactive glass nanoparticles. Journal of Biomedical Materials Research - Part A, 2020, 108, 1806-1815.	4.0	35
1376	The Dual Effect of Copper and Gamma Irradiation on Chronic Wound Healing of Nanobioactive Glass. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 3646-3657.	3.7	10

#	Article	IF	Citations
1377	Enhanced biological properties of collagen/chitosan-coated poly(ε-caprolactone) scaffold by surface modification with GHK-Cu peptide and 58S bioglass. Progress in Biomaterials, 2020, 9, 25-34.	4.5	8
1378	Novel Osteoinductive and Osteogenic Scaffolds of Monetite, Amorphous Calcium Phosphate, Hydroxyapatite, and Silica Gel: Influence of the Hydroxyapatite/Monetite Ratio on Their <i>In Vivo</i> Behavior and on Their Physical and Chemical Properties. ACS Biomaterials Science and Engineering, 2020. 6. 3440-3453.	5.2	11
1379	Cu, Zn doped borate bioactive glasses: antibacterial efficacy and dose-dependent <i>in vitro</i> modulation of murine dendritic cells. Biomaterials Science, 2020, 8, 2143-2155.	5.4	56
1380	Manuka honey and bioactive glass impart methylcellulose foams with antibacterial effects for wound-healing applications. Biomedical Materials (Bristol), 2020, 15, 065002.	3.3	23
1381	New insights into the crystallization process of solâ€gel–derived 45S5 bioactive glass. Journal of the American Ceramic Society, 2020, 103, 4234-4247.	3.8	28
1382	On the in Vitro Biocompatibility Testing of Bioactive Glasses. Materials, 2020, 13, 1816.	2.9	14
1383	Effect of bioglass nanoparticles on the properties and bioactivity of poly(lactic acid) films. Journal of Biomedical Materials Research - Part A, 2020, 108, 2032-2043.	4.0	12
1384	Integrating eggshell-derived CaCO3/MgO nanocomposites and chitosan into a biomimetic scaffold for bone regeneration. Chemical Engineering Journal, 2020, 395, 125098.	12.7	60
1385	In vitro and in vivo studies on pure Mg, Mg–1Ca and Mg–2Sr alloys processed by equal channel angular pressing. Nano Materials Science, 2020, 2, 96-108.	8.8	24
1386	Hydroxyapatite derived from food industry bio-wastes: Syntheses, properties and its potential multifunctional applications. Ceramics International, 2020, 46, 17149-17175.	4.8	68
1387	Multifunctional Copper-Containing Mesoporous Glass Nanoparticles as Antibacterial and Proangiogenic Agents for Chronic Wounds. Frontiers in Bioengineering and Biotechnology, 2020, 8, 246.	4.1	33
1388	The Effect of Mesoporous Bioactive Class Nanoparticles/Graphene Oxide Composites on the Differentiation and Mineralization of Human Dental Pulp Stem Cells. Nanomaterials, 2020, 10, 620.	4.1	26
1389	New iron-doped multilayer ceramic scaffold with noncontinuous bioactive behavior. Ceramics International, 2020, 46, 16388-16396.	4.8	3
1390	Multi-targeted B and Co co-doped 45S5 bioactive glasses with angiogenic potential for bone regeneration. Materials Science and Engineering C, 2020, 112, 110909.	7.3	29
1391	Effect of bioglass on <i>in vitro</i> bioactivity and cytocompatibility of biphasic α-tricalcium phosphate/gypsum cements. Materials Technology, 2021, 36, 400-411.	3.0	6
1392	Biomimetic trace metals improve bone regenerative properties of calcium phosphate bioceramics. Journal of Biomedical Materials Research - Part A, 2021, 109, 666-681.	4.0	14
1393	Strontium substitution of gelatin modified calcium hydrogen phosphates as porous hard tissue substitutes. Journal of Biomedical Materials Research - Part A, 2021, 109, 722-732.	4.0	2
1394	In-vitro mechanical and biological evaluation of novel zirconia reinforced bioglass scaffolds for bone repair. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 114, 104164.	3.1	22

#	Article	IF	Citations
1395	Bioactive and Biodegradable Polymer-Based Composites. , 2021, , 674-700.		1
1396	Dimethyloxallyl glycine/nanosilicates-loaded osteogenic/angiogenic difunctional fibrous structure for functional periodontal tissue regeneration. Bioactive Materials, 2021, 6, 1175-1188.	15.6	37
1397	Adhesion improvement and in vitro characterisation of 45S5 bioactive glass coatings obtained by atmospheric plasma spraying. Surface and Coatings Technology, 2021, 405, 126560.	4.8	14
1398	A 3D nanostructured calcium-aluminum-silicate scaffold with hierarchical meso-macroporosity for bone tissue regeneration: Fabrication, sintering behavior, surface modification and in vitro studies. Journal of the European Ceramic Society, 2021, 41, 941-962.	5.7	24
1399	Degradability and biocompatibility of bioglass/poly(amino acid) composites with different surface bioactivity as bone repair materials. Journal of Applied Polymer Science, 2021, 138, 49751.	2.6	10
1400	Development of orthophosphosilicate glass/poly(lactic acid) composite anisotropic scaffolds for simultaneous reconstruction of bone quality and quantity. Journal of Biomedical Materials Research - Part A, 2021, 109, 788-803.	4.0	14
1401	Production of a novel poly(É›â€caprolactone)â€methylcellulose electrospun wound dressing by incorporating bioactive glass and Manuka honey. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 180-192.	3.4	37
1402	Bioactivity in SBF versus trace element effects: The isolated role of Mg2+ and Zn2+ in osteoblast behavior. Materials Science and Engineering C, 2021, 118, 111320.	7.3	15
1403	Current advances concerning the most cited metal ions doped bioceramics and silicate-based bioactive glasses for bone tissue engineering. Ceramics International, 2021, 47, 2999-3012.	4.8	74
1404	Bioglass/carbonate apatite/collagen composite scaffold dissolution products promote human osteoblast differentiation. Materials Science and Engineering C, 2021, 118, 111393.	7.3	16
1405	Bioglass enhances the production of exosomes and improves their capability of promoting vascularization. Bioactive Materials, 2021, 6, 823-835.	15.6	61
1406	Developing a biodegradable tricalcium silicate/glucono-delta-lactone/calcium sulfate dihydrate composite cement with high preliminary mechanical property for bone filling. Materials Science and Engineering C, 2021, 119, 111621.	7.3	15
1407	Materials roles for promoting angiogenesis in tissue regeneration. Progress in Materials Science, 2021, 117, 100732.	32.8	81
1408	Tantalum-containing mesoporous bioactive glass powder for hemostasis. Journal of Biomaterials Applications, 2021, 35, 924-932.	2.4	13
1409	Gelatin/bioactive glass composite scaffold for promoting the migration and odontogenic differentiation of bone marrow mesenchymal stem cells. Polymer Testing, 2021, 93, 106915.	4.8	8
1410	Hybrid gelatin/oxidized chondroitin sulfate hydrogels incorporating bioactive glass nanoparticles with enhanced mechanical properties, mineralization, and osteogenic differentiation. Bioactive Materials, 2021, 6, 890-904.	15.6	89
1411	Synthesis and characterization of barium-doped bioactive glass with potential anti-inflammatory activity. Ceramics International, 2021, 47, 7143-7158.	4.8	24
1412	Bioactive element coatings on nano-mesh formed Ti-6Al-4V alloy surface using plasma electrolytic oxidation. Surface and Coatings Technology, 2021, 406, 126649.	4.8	13

#	Article	IF	CITATIONS
1413	Role of alkali metal oxide type on the degradation and in vivo biocompatibility of sodaâ€limeâ€borate bioactive glass. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 1059-1073.	3.4	5
1414	Dual-temporal bidirectional immunomodulation of Cu-Zn Bi-layer nanofibrous membranes for sequentially enhancing antibacterial activity and osteogenesis. Applied Materials Today, 2021, 22, 100888.	4.3	17
1415	Design of silica-doped calcium carbonates and their composites for biomedical use. , 2021, , 245-260.		0
1416	Bioactive glass variants for tissue engineering: From the macro- to the nanoscale. , 2021, , 353-373.		0
1417	Porous bioactive glass micro- and nanospheres with controlled morphology: developments, properties and emerging biomedical applications. Materials Horizons, 2021, 8, 300-335.	12.2	69
1418	Copper-containing bioactive glasses and glass-ceramics: From tissue regeneration to cancer therapeutic strategies. Materials Science and Engineering C, 2021, 121, 111741.	7.3	65
1419	A review of biomimetic scaffolds for bone regeneration: Toward a cellâ€free strategy. Bioengineering and Translational Medicine, 2021, 6, e10206.	7.1	69
1420	The mechanism of the crystalline characteristics of spinel-induced epitaxial growth of diopside in CMAS glass-ceramics. Journal of the European Ceramic Society, 2021, 41, 1603-1612.	5.7	8
1421	Mesoporous bioactive glass composition effects on degradation and bioactivity. Bioactive Materials, 2021, 6, 1921-1931.	15.6	53
1422	Comprehensive assessment of bioactive glass and glass-ceramic scaffold permeability: experimental measurements by pressure wave drop, modelling and computed tomography-based analysis. Acta Biomaterialia, 2021, 119, 405-418.	8.3	21
1423	Rational design of bioceramic scaffolds with tuning pore geometry by stereolithography: Microstructure evaluation and mechanical evolution. Journal of the European Ceramic Society, 2021, 41, 1672-1682.	5.7	41
1424	3D printed bioceramics fabricated using negative thermoresponsive hydrogels and silicone oil sealing to promote bone formation in calvarial defects. Ceramics International, 2021, 47, 5464-5476.	4.8	5
1425	3D printed bioactive and antibacterial silicate glass-ceramic scaffold by fused filament fabrication. Materials Science and Engineering C, 2021, 118, 111516.	7.3	19
1426	Characterization of nanosized hydroxyapatite prepared by an aqueous precipitation method using eggshells and mulberry leaf extract. Journal of the Korean Ceramic Society, 2021, 58, 116-122.	2.3	9
1427	Novel threeâ€dimensional bioglass functionalized gelatin nanofibrous scaffolds for bone regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 517-526.	3.4	13
1428	An improved process for the fabrication and surface treatment of custom-made titanium cranioplasty implants informed by surface analysis. Journal of Biomaterials Applications, 2021, 35, 602-614.	2.4	2
1429	Polymer and Ceramic Nanotechnology for Biomedical Applications. , 2021, , 1357-1375.		0
1430	A Review of Phosphate and Borate Sol–Gel Glasses for Biomedical Applications. Advanced NanoBiomed Research, 2021, 1, 2000055.	3.6	23

#	Article	IF	CITATIONS
1431	Application of Bioceramics in Ophthalmology. , 2021, , 326-334.		0
1432	Cytotoxicity and Bioactivity of Mineral Trioxide Aggregate and Bioactive Endodontic Type Cements: A Systematic Review. International Journal of Clinical Pediatric Dentistry, 2021, 14, 30-39.	0.8	6
1433	Incorporation of Bioglass Improved the Mechanical Stability and Bioactivity of Alginate/Carboxymethyl Chitosan Hydrogel Wound Dressing. ACS Applied Bio Materials, 2021, 4, 1677-1692.	4.6	34
1434	Nd-doped Calcium Silicate: Photothermal Effect, Fluorescence Performance, and Biological Properties of Its Composite Electrospun Membrane. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 974.	1.3	0
1435	Bioactive Glasses and Glass-Ceramics. , 2021, , 614-623.		1
1436	A nano approach towards the creation of a biointerface as stimulator of osteogenic differentiation. Materials Science and Engineering C, 2021, 120, 111746.	7.3	4
1437	Dissolution kinetics of a sodium borosilicate glass in Tris buffer solutions: impact of Tris concentration and acid (HCl/HNO ₃) identity. Physical Chemistry Chemical Physics, 2021, 23, 16165-16179.	2.8	7
1438	Strontium ions protect hearts against myocardial ischemia/reperfusion injury. Science Advances, 2021, 7, .	10.3	55
1439	Engineering next-generation bioinks with nanoparticles: moving from reinforcement fillers to multifunctional nanoelements. Journal of Materials Chemistry B, 2021, 9, 5025-5038.	5.8	25
1440	The Effect of the Incorporation of Catalase Mimetic Activity Cations on the Structural, Thermal and Chemical Durability Properties of the 45S5 Bioglass®. SSRN Electronic Journal, 0, , .	0.4	0
1441	Nanosilver-loaded PMMA bone cement doped with different bioactive glasses – evaluation of cytocompatibility, antibacterial activity, and mechanical properties. Biomaterials Science, 2021, 9, 3112-3126.	5.4	22
1442	Nanostructured Bulk Titanium with Enhanced Properties—Strategies and Prospects for Dental Applications. Advanced Engineering Materials, 2021, 23, 2000909.	3.5	10
1443	Structural Role of CeO ₂ in the Modified Borate Glass-Ceramics. New Journal of Glass and Ceramics, 2021, 11, 34-43.	1.4	4
1444	Tailoring Pyro- and Orthophosphate Species to Enhance Stem Cell Adhesion to Phosphate Glasses. International Journal of Molecular Sciences, 2021, 22, 837.	4.1	3
1445	3D printing of Cu-doped bioactive glass composite scaffolds promotes bone regeneration through activating the HIF-1 \hat{l} + and TNF- \hat{l} + pathway of hUVECs. Biomaterials Science, 2021, 9, 5519-5532.	5.4	43
1446	The biocompatibility of glass-fibre reinforced composites (GFRCs) – a systematic review. Journal of Prosthodontic Research, 2021, 65, 273-283.	2.8	3
1447	Calcium-based ceramic biomaterials. , 2021, , 333-394.		2
1448	Biomaterial design strategies to address obstacles in craniomaxillofacial bone repair. RSC Advances, 2021, 11, 17809-17827.	3.6	22

		CITATION RE	PORT	
# 1449	ARTICLE Bionanocomposite hydrogels for regenerative medicine and biomedical applications. , 20	021,,91-118.	IF	Citations
1450	Porosity Pattern of 3D Chitosan/Bioactive Glass Tissue Engineering Scaffolds Prepared for Regeneration. Open Dentistry Journal, 2021, 15, 41-56.	or Bone	0.5	4
1451	Protein Adsorption on SiO2-CaO Bioactive Glass Nanoparticles with Controllable Ca Cor Nanomaterials, 2021, 11, 561.	itent.	4.1	11
1452	Enhancing Bioactivity of Hydroxyapatite Scaffolds Using Fibrous Type I Collagen. Frontie Bioengineering and Biotechnology, 2021, 9, 631177.	ers in	4.1	18
1453	Li-doped bioglass® 45S5 for potential treatment of prevalent oral diseases. Journal of [105, 103575.	Jentistry, 2021,	4.1	15
1455	Hydroxyapatite Based Materials for Bone Tissue Engineering: A Brief and Comprehensive Crystals, 2021, 11, 149.	Introduction.	2.2	113
1456	Impact of Glass Composition on Hydrolytic Degradation of Polylactide/Bioactive Glass C Materials, 2021, 14, 667.	omposites.	2.9	7
1457	A Polymer for Application as a Matrix Phase in a Concept of In Situ Curable Bioresorbabl Load-Bearing Continuous Fiber Reinforced Composite Fracture Fixation Plates. Molecule 1256.	e Bioactive s, 2021, 26,	3.8	4
1458	Bone cement as a local chemotherapeutic drug delivery carrier in orthopedic oncology: <i>i</i> Journal of Bone Oncology, 2021, 26, 100345.	A review.	2.4	16
1459	Morphology regulation of Sr-substituted hydroxyapatite by l-glutamic acid in a solvent-a temperature-dependent manner. Colloids and Surfaces A: Physicochemical and Engineer 2021, 613, 126117.	and initial ing Aspects,	4.7	2
1460	Osteointegration, antimicrobial and antibiofilm activity of orthopaedic titanium surfaces silver and strontium-doped hydroxyapatite using a novel blasting process. Drug Delivery Translational Research, 2021, 11, 702-716.	s coated with and	5.8	11
1461	Simple and Acid-Free Hydrothermal Synthesis of Bioactive Glass 58SiO2-33CaO-9P2O5 2021, 11, 283.	(wt%). Crystals,	2.2	4
1462	Electrospinning of in situ synthesized silica-based and calcium phosphate bioceramics fo in bone tissue engineering: AÂreview. Acta Biomaterialia, 2021, 123, 123-153.	or applications	8.3	42
1463	Biogenic hydroxyapatite powders: Effects of source and processing methodologies on physicochemical properties and bioactive response. Materials Characterization, 2021, 1	73, 110950.	4.4	17
1464	lonic dissolution products of Cerium-doped bioactive glass nanoparticles promote cellul osteogenic differentiation and extracellular matrix formation of human bone marrow de mesenchymal stromal cells. Biomedical Materials (Bristol), 2021, 16, 035028.	ar rived	3.3	22
1465	Regeneration of pulpâ€dentine complexâ€like tissue in a rat experimental model under microenvironment using high phosphorousâ€containing bioactive glasses. International Journal, 2021, 54, 1129-1141.	an inflammatory Endodontic	5.0	4
1466	Holmium-Containing Bioactive Glasses Dispersed in Poloxamer 407 Hydrogel as a Therag Composite for Bone Cancer Treatment. Materials, 2021, 14, 1459.	generative	2.9	17
1467	Fe ₃ O ₄ /bioactive glass nanostructure: a promising therapeutic osteosarcoma treatment. Biomedical Materials (Bristol), 2021, 16, 035016.	platform for	3.3	11

#	Article	IF	CITATIONS
1468	Combining bioresorbable polyesters and bioactive glasses: Orthopedic applications of composite implants and bone tissue engineering scaffolds. Applied Materials Today, 2021, 22, 100923.	4.3	18
1469	Titanium and Protein Adsorption: An Overview of Mechanisms and Effects of Surface Features. Materials, 2021, 14, 1590.	2.9	84
1470	Role of Zinc-Doped Bioactive Glass Encapsulated with Microspherical Gelatin in Localized Supplementation for Tissue Regeneration: A Contemporary Review. Molecules, 2021, 26, 1823.	3.8	9
1471	Bioactivity—Symphony or Cacophony? A Personal View of a Tangled Field. Prosthesis, 2021, 3, 75-84.	2.9	10
1472	Scaffold Fabrication Technologies and Structure/Function Properties in Bone Tissue Engineering. Advanced Functional Materials, 2021, 31, 2010609.	14.9	370
1473	Digital light processing strength-strong ultra-thin bioceramic scaffolds for challengeable orbital bone regeneration and repair in Situ. Applied Materials Today, 2021, 22, 100889.	4.3	13
1474	Physicochemical and Biological Properties of Mg-Doped Calcium Silicate Endodontic Cement. Materials, 2021, 14, 1843.	2.9	11
1475	Antioxidant Activity of Silica-Based Bioactive Glasses. ACS Biomaterials Science and Engineering, 2021, 7, 2309-2316.	5.2	11
1476	Features of biodegradation of sol-gel bioactive glass 60S doped with Ga, Ge. Molecular Crystals and Liquid Crystals, 2021, 719, 29-38.	0.9	2
1477	Structural role of Nd2O3 as aÂdopant material in modified borate glasses and glass ceramics. Journal of Materials Science: Materials in Electronics, 2021, 32, 12348-12357.	2.2	16
1478	Polymeric zinc-doped nanoparticles for high performance in restorative dentistry. Journal of Dentistry, 2021, 107, 103616.	4.1	18
1479	Tellurium: A new active element for innovative multifunctional bioactive glasses. Materials Science and Engineering C, 2021, 123, 111957.	7.3	17
1480	Influence of calcium ion-modified implant surfaces in protein adsorption and implant integration. International Journal of Implant Dentistry, 2021, 7, 32.	2.7	16
1481	Structures and Dissolution Behaviors of Quaternary CaO-SrO-P2O5-TiO2 Glasses. Materials, 2021, 14, 1736.	2.9	6
1482	Mixed Metal Oxide Nanoparticle Formulations for the Treatment of Seroma. ACS Biomaterials Science and Engineering, 2021, 7, 2676-2686.	5.2	4
1483	From rose petal to bone scaffolds: Using nature to fabricate osteon-like scaffolds for bone tissue engineering applications. Ceramics International, 2021, 47, 21633-21633.	4.8	6
1484	Impact of Zinc- or Copper-Doped Mesoporous Bioactive Glass Nanoparticles on the Osteogenic Differentiation and Matrix Formation of Mesenchymal Stromal Cells. Materials, 2021, 14, 1864.	2.9	20
1485	On the production of novel zirconia-reinforced bioactive glassÂporous structures for bone repair. Journal of Materials Science, 2021, 56, 11682-11697.	3.7	1

#	Article	IF	CITATIONS
1486	Copper-containing bioactive glass/PVA membranes for guided bone regeneration. Journal of Non-Crystalline Solids, 2021, 557, 120628.	3.1	9
1487	Three-Dimensionally Ordered Macroporous-Mesoporous Bioactive Glass Ceramics for Drug Delivery Capacity and Evaluation of Drug Release. , 0, , .		1
1488	Integration of Mesoporous Bioactive Glass Nanoparticles and Curcumin into PHBV Microspheres as Biocompatible Composite for Drug Delivery Applications. Molecules, 2021, 26, 3177.	3.8	14
1489	Corrosion and antibacterial performance of novel selective-laser-melted (SLMed) Ti-xCu biomedical alloys. Journal of Alloys and Compounds, 2021, 864, 158415.	5.5	29
1490	Effects of incorporated vanadium and its chemical states on morphology and mesostructure of mesoporous bioactive glass particles. Microporous and Mesoporous Materials, 2021, 319, 111061.	4.4	12
1491	Inorganic Agents for Enhanced Angiogenesis of Orthopedic Biomaterials. Advanced Healthcare Materials, 2021, 10, e2002254.	7.6	35
1492	Advanced Strategies of Biomimetic Tissueâ€Engineered Grafts for Bone Regeneration. Advanced Healthcare Materials, 2021, 10, e2100408.	7.6	66
1493	S53P4 bioactive glass scaffolds induce BMP expression and integrative bone formation in a critical-sized diaphysis defect treated with a single-staged induced membrane technique. Acta Biomaterialia, 2021, 126, 463-476.	8.3	21
1494	Development and physicochemical characterization of novel porous phosphate glass bone graft substitute and in vitro comparison with xenograft. Journal of Materials Science: Materials in Medicine, 2021, 32, 60.	3.6	1
1495	The effect of magnesium on bioactivity, rheology and biology behaviors of injectable bioactive glass-gelatin-3-glycidyloxypropyl trimethoxysilane nanocomposite-paste for small bone defects repair. Ceramics International, 2021, 47, 12526-12536.	4.8	9
1497	3D Printing of Strontium Silicate Microcylinderâ€Containing Multicellular Biomaterial Inks for Vascularized Skin Regeneration. Advanced Healthcare Materials, 2021, 10, e2100523.	7.6	46
1498	Microstructure, mechanical and biological properties of laser cladding derived CaO-SiO2-MgO system ceramic coatings on titanium alloys. Applied Surface Science, 2021, 548, 149296.	6.1	20
1499	Alliance of gallium and strontium potently mediates the osteoclastic and osteogenic activities of β-tricalcium phosphate bioceramic scaffolds. Chemical Engineering Journal, 2021, 412, 128709.	12.7	16
1500	Bioactive Glass: Methods for Assessing Angiogenesis and Osteogenesis. Frontiers in Cell and Developmental Biology, 2021, 9, 643781.	3.7	28
1501	A microfluidics-based method for culturing osteoblasts on biomimetic hydroxyapatite. Acta Biomaterialia, 2021, 127, 327-337.	8.3	18
1502	The effect of borate bioactive glass on the printability of methylcellulose-manuka honey hydrogels. Journal of Materials Research, 2021, 36, 3843-3850.	2.6	6
1503	Biomaterials and osteoradionecrosis of the jaw: Review of the literature according to the SWiM methodology. European Annals of Otorhinolaryngology, Head and Neck Diseases, 2022, 139, 208-215.	0.7	3
1504	Polybutylene-adipate-terephthalate and niobium-containing bioactive glasses composites: Development of barrier membranes with adjusted properties for guided bone regeneration. Materials Science and Engineering C, 2021, 125, 112115.	7.3	16

		0101	
#	Article	IF	CITATIONS
1505	Mesoporous bioactive glasses for regenerative medicine. Materials Today Bio, 2021, 11, 100121.	5.5	45
1506	Porosity parameters in biomaterial science: Definition, impact, and challenges in tissue engineering. Frontiers of Materials Science, 2021, 15, 352-373.	2.2	23
1507	Early-stage bone regeneration of hyaluronic acid supplemented with porous 45s5 bioglass-derived granules: an injectable system. Biomedical Materials (Bristol), 2021, 16, 045034.	3.3	4
1508	A Gallium-doped cement for the treatment of bone cancers. The effect of ZnO ↔ Ga ₂ O ₃ substitution of an ionomeric glass series on the rheological, mechanical, pH and ion-eluting properties of their corresponding glass polyalkenoate cements. Materials Research Express. 2021. 8. 065401.	1.6	0
1509	Y-PSZ/Bioglass 45S5 composite obtained by the infiltration technique of porous pre-sintered bodies using sacrificial molding. Research, Society and Development, 2021, 10, e57510716920.	0.1	0
1510	Dissolution, bioactivity behavior, and cytotoxicity of 19. <scp>58Li₂O</scp> ·11. <scp>10ZrO₂</scp> ·69. <scp>32SiO₂</scp> glass–ceramic. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 67-78.	. 3.4	8
1511	Polymer-Based Honeycomb Films on Bioactive Glass: Toward a Biphasic Material for Bone Tissue Engineering Applications. ACS Applied Materials & Interfaces, 2021, 13, 29984-29995.	8.0	10
1512	The effect of Ag substitution on physicochemical and biological properties of sol-gel derived 60%SiO2–31%CaO–4%P2O5–5%Li2O (mol%) quaternary bioactive glass. Ceramics International, 2021, 47, 15985-15994.	4.8	14
1513	Polymer (PCL) fibers with Znâ€doped mesoporous bioactive glass nanoparticles for tissue regeneration. International Journal of Applied Glass Science, 2021, 12, 588-600.	2.0	12
1514	Effective Actions of Ion Release from Mesoporous Bioactive Glass and Macrophage Mediators on the Differentiation of Osteoprogenitor and Endothelial Progenitor Cells. Pharmaceutics, 2021, 13, 1152.	4.5	14
1515	Physicochemical Properties, Cytocompatibility, and Biocompatibility of a Bioactive Glass Based Retrograde Filling Material. Nanomaterials, 2021, 11, 1828.	4.1	5
1516	Electrophoretically deposited high molecular weight chitosan/bioactive glass composite coatings on WE43 magnesium alloy. Surface and Coatings Technology, 2021, 418, 127232.	4.8	22
1517	Toward the understanding of crystallization, mechanical properties and reactivity of multicomponent bioactive glasses. Acta Materialia, 2021, 213, 116977.	7.9	14
1518	Advances in 3D-Printed Surface-Modified Ca-Si Bioceramic Structures and Their Potential for Bone Tumor Therapy. Materials, 2021, 14, 3844.	2.9	5
1519	Low-temperature synthesis of bioactive glass-ceramic microspheres: Effect of processing parameters on the size and morphology. Ceramics International, 2021, 47, 19895-19905.	4.8	4
1520	A Bioglass-Based Antibiotic (Vancomycin) Releasing Bone Void Filling Putty to Treat Osteomyelitis and Aid Bone Healing. International Journal of Molecular Sciences, 2021, 22, 7736.	4.1	15
1521	<i>In vitro</i> dissolution of bioactive glass S53P4 microspheres. Journal of the American Ceramic Society, 2022, 105, 1658-1670.	3.8	8
1522	Bioactive Class Fiber-Reinforced Plastic Composites Prompt a Crystallographic Lophelia Atoll-Like Skeletal Microarchitecture Actuating Periosteal Cambium. ACS Applied Materials & Materia	8.0	3

ΙΤΛΤΙΟΝ

P

#	Article	IF	CITATIONS
1523	Hyaluronic acid hydrogels reinforced with laser spun bioactive glass micro- and nanofibres doped with lithium. Materials Science and Engineering C, 2021, 126, 112124.	7.3	9
1524	Thermo-responsive chitosan/silk fibroin/amino-functionalized mesoporous silica hydrogels with strong and elastic characteristics for bone tissue engineering. International Journal of Biological Macromolecules, 2021, 182, 1746-1758.	7.5	22
1525	Electrophoretic deposition of composite coatings based on alginate matrix/45S5 bioactive glass particles doped with B, Zn or Sr. Surface and Coatings Technology, 2021, 418, 127183.	4.8	13
1526	Multi-functional silica-based mesoporous materials for simultaneous delivery of biologically active ions and therapeutic biomolecules. Acta Biomaterialia, 2021, 129, 1-17.	8.3	87
1527	Immunomodulatory bioactive glasses for tissue regeneration. Acta Biomaterialia, 2021, 133, 168-186.	8.3	71
1528	Effects of iRoot SP on osteogenic differentiation of human stem cells from apical papilla. BMC Oral Health, 2021, 21, 407.	2.3	7
1529	Selective and caspase-independent cytotoxicity of bioactive glasses towards giant cell tumor of bone derived neoplastic stromal cells but not to bone marrow derived stromal cells. Biomaterials, 2021, 275, 120977.	11.4	9
1530	Combination of Na-Ca-phosphate and fluorapatite in wollastonite-diopside glass-ceramic: degradation and biocompatibility. Journal of Non-Crystalline Solids, 2021, 566, 120888.	3.1	5
1531	Accelerated bioactive behavior of Nagelschmidtite bioceramics: Mimicking the nano and microstructural aspects of biological mineralization. Journal of the European Ceramic Society, 2021, 41, 7921-7934.	5.7	2
1532	Tailoring effect of Y2O3 on water resistance of Na2O–ZnO–Al2O3–B2O3 glasses. Journal of Rare Earths, 2022, 40, 1316-1322.	4.8	3
1533	Biological Evaluation of a New Sodium-Potassium Silico-Phosphate Glass for Bone Regeneration: In Vitro and In Vivo Studies. Materials, 2021, 14, 4546.	2.9	7
1534	Effect of buffer in simulated body fluid on morphology and crystallinity of hydroxyapatite precipitated on 45S5 bioactive glass-derived glass–ceramic scaffolds: comparison of Good's buffer systems and TRIS. Materials Today Chemistry, 2021, 21, 100527.	3.5	2
1535	Bioactive Glass Applications: A Literature Review of Human Clinical Trials. Materials, 2021, 14, 5440.	2.9	90
1536	The effects of TiO2 nanotubes on the biocompatibility of 3D printed Cu-bearing TC4 alloy. Materials and Design, 2021, 207, 109831.	7.0	17
1537	Characterization and Biotechnological Potential of Extracellular Polysaccharides Synthesized by Alteromonas Strains Isolated from French Polynesia Marine Environments. Marine Drugs, 2021, 19, 522.	4.6	23
1538	Engineering of a Hollowâ€Structured Cu _{2â^'} <i>_X</i> S Nanoâ€Homojunction Platform for Near Infraredâ€Triggered Infected Wound Healing and Cancer Therapy. Advanced Functional Materials, 2021, 31, 2106700.	14.9	52
1539	Optimized sintering and mechanical properties of Y-TZP ceramics for dental restorations by adding lithium disilicate glass ceramics. Journal of Advanced Ceramics, 2021, 10, 1326-1337.	17.4	15
1540	Structural and elemental characterization of glass and ceramic particles for bone surgery. Dental Materials, 2021, 37, 1350-1357.	3.5	9

#	Article	IF	CITATIONS
1541	Electrophoretic deposition of bioactive glass/zirconia core-shell nanoparticles on Ti6Al4V substrate. Ceramics International, 2021, 47, 34959-34969.	4.8	12
1542	Cerium Containing Bioactive Glasses: A Review. ACS Biomaterials Science and Engineering, 2021, 7, 4388-4401.	5.2	36
1543	3D direct printing of mechanical and biocompatible hydrogel meta-structures. Bioactive Materials, 2022, 10, 48-55.	15.6	13
1544	Thermo-magnetic properties of Fe2O3-doped lithium zinc silicate glass-ceramics for magnetic applications. Ceramics International, 2021, 47, 25467-25474.	4.8	7
1545	Degradable photothermal bioactive glass composite hydrogel for the sequential treatment of tumor-related bone defects: From anti-tumor to repairing bone defects. Chemical Engineering Journal, 2021, 419, 129520.	12.7	38
1546	Nanocomposite coating of albumin/Li-containing bioactive glass nanospheres promotes osteogenic activity of PEEK. Journal of Materials Science: Materials in Medicine, 2021, 32, 120.	3.6	3
1547	Bioactive Glass Flakes as Innovative Fillers in Chitosan Membranes for Guided Bone Regeneration. Advanced Engineering Materials, 2022, 24, 2101042.	3.5	5
1548	Preparation and characterization of microrod hydroxyapatite bundles obtained from oyster shells through microwave irradiation. Journal of the Australian Ceramic Society, 2021, 57, 1541-1551.	1.9	9
1549	Advances in bioactive glass-containing injectable hydrogel biomaterials for tissue regeneration. Acta Biomaterialia, 2021, 136, 1-36.	8.3	61
1550	Enhanced osteogenesis of titanium with nano-Mg(OH)2 film and a mechanism study via whole genome expression analysis. Bioactive Materials, 2021, 6, 2729-2741.	15.6	14
1551	Spectroscopic studies of transition metal ion-doped borate glasses for optical applications. Materials Today: Proceedings, 2022, 49, 1875-1879.	1.8	3
1552	Nanocomposite electrospun fibers of poly(ε-caprolactone)/bioactive glass with shape memory properties. Bioactive Materials, 2022, 11, 230-239.	15.6	15
1553	Characteristics of a multi-component MgO-based bioceramic coating synthesized in-situ by plasma electrolytic oxidation. Journal of Magnesium and Alloys, 2021, 9, 1595-1608.	11.9	14
1554	3D printing of PCL/nano-hydroxyapatite scaffolds derived from biogenic sources for bone tissue engineering. Sustainable Materials and Technologies, 2021, 29, e00318.	3.3	26
1555	Effect of bioactive glasses containing strontium and potassium on dentin permeability. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 517-526.	3.4	6
1556	Hypoxia-mimicking 3D bioglass-nanoclay scaffolds promote endogenous bone regeneration. Bioactive Materials, 2021, 6, 3485-3495.	15.6	44
1557	Ion therapy of pulmonary fibrosis by inhalation of ionic solution derived from silicate bioceramics. Bioactive Materials, 2021, 6, 3194-3206.	15.6	15
1558	Bioactive glass/poloxamer 407 hydrogel composite as a drug delivery system: The interplay between glass dissolution and drug release kinetics. Colloids and Surfaces B: Biointerfaces, 2021, 206, 111934.	5.0	19

#	Article	IF	CITATIONS
1559	The impact of Nb2O5 on in-vitro bioactivity and antibacterial activity of CaF2–CaO–B2O3–P2O5–SrO glass system. Ceramics International, 2021, 47, 28328-28337.	4.8	9
1560	Facile extrusion 3D printing of gelatine methacrylate/Laponite nanocomposite hydrogel with high concentration nanoclay for bone tissue regeneration. International Journal of Biological Macromolecules, 2021, 188, 72-81.	7.5	45
1561	Structural characterization, in vitro bioactivity, and antibacterial evaluation of low silver-doped bioactive glasses. Ceramics International, 2021, 47, 29036-29046.	4.8	18
1562	Bioactive glass promotes the barrier functional behaviors of keratinocytes and improves the Re-epithelialization in wound healing in diabetic rats. Bioactive Materials, 2021, 6, 3496-3506.	15.6	25
1563	K+/Sr2+/Na+ triple-doped hydroxyapatites/GelMA composite hydrogel scaffold for the repair of bone defects. Ceramics International, 2021, 47, 30929-30937.	4.8	8
1564	Melt-derived copper-doped ferrimagnetic glass-ceramic for tumor treatment. Ceramics International, 2021, 47, 31749-31755.	4.8	3
1565	Facile synthesis of multi-functional nano-composites by precise loading of Cu2+ onto MgO nano-particles for enhanced osteoblast differentiation, inhibited osteoclast formation and effective bacterial killing. Materials Science and Engineering C, 2021, 130, 112442.	7.3	8
1566	Development of a bioactive and radiopaque bismuth doped baghdadite ceramic for bone tissue engineering. Bone, 2021, 153, 116147.	2.9	10
1567	Dual-functional polyetheretherketone surface modification for regulating immunity and bone metabolism. Chemical Engineering Journal, 2021, 426, 130806.	12.7	31
1568	Self-assembled nanocomposite hydrogels enhanced by nanoparticles phosphonate-magnesium coordination for bone regeneration. Applied Materials Today, 2021, 25, 101182.	4.3	10
1569	Design, in vitro bioactivity and in vivo influence on oxidative stress and matrix metalloproteinases of bioglasses in experimental skin wound. Journal of Trace Elements in Medicine and Biology, 2021, 68, 126846.	3.0	6
1570	Molybdenum trioxide enhances viability, osteogenic differentiation and extracellular matrix formation of human bone marrow-derived mesenchymal stromal cells. Journal of Trace Elements in Medicine and Biology, 2021, 68, 126827.	3.0	4
1571	Tracing the toxic ions of an endodontic tricalcium silicate-based sealer in local tissues and body organs. Journal of Trace Elements in Medicine and Biology, 2021, 68, 126856.	3.0	2
1572	New solutions for combatting implant bacterial infection based on silver nano-dispersed and gallium incorporated phosphate bioactive glass sputtered films: A preliminary study. Bioactive Materials, 2022, 8, 325-340.	15.6	31
1573	Effects of strontium and zinc substituted plasma sprayed hydroxyapatite coating on bone-like apatite layer formation and cell-material interaction. Materials Chemistry and Physics, 2022, 275, 125219.	4.0	16
1574	Microfluidic-assisted synthesis of Mg-containing bioactive glass nanosphere/alginate microsphere with controllable ion release process. Materials Letters, 2022, 306, 130891.	2.6	0
1575	Electrospun bioactive glass and organic-inorganic hybrid fibers for tissue regeneration and drug delivery. , 2021, , 77-110.		2
1576	Preparation of Calcium Phosphate-Biodegradable Polymer Composites with Ion-Releasing Ability for Enhancing Bone Formation. Materials Transactions, 2021, 62, 118-123.	1.2	0

#	Article	IF	CITATIONS
1577	Barrier membranes for tissue regeneration in dentistry. Biomaterial Investigations in Dentistry, 2021, 8, 54-63.	1.8	30
1578	Bioactive glasses and electrospun composites that release cobalt to stimulate the HIF pathway for wound healing applications. Biomaterials Research, 2021, 25, 1.	6.9	65
1579	Nanocomposite scaffolds for accelerating chronic wound healing by enhancing angiogenesis. Journal of Nanobiotechnology, 2021, 19, 1.	9.1	382
1580	Polymer and Ceramic Nanotechnology for Biomedical Applications. , 2021, , 1-20.		0
1581	Understanding Crystallization, Mechanical Properties and Reactivity of Multicomponent Bioactive Glasses Through Molecular Dynamics Simulations. SSRN Electronic Journal, 0, , .	0.4	0
1582	Additive-Manufactured Gyroid Scaffolds of Magnesium Oxide, Phosphate Glass Fiber and Polylactic Acid Composite for Bone Tissue Engineering. Polymers, 2021, 13, 270.	4.5	12
1583	Nanobased Biodegradable Hydrogel for Biomedical Application. Gels Horizons: From Science To Smart Materials, 2021, , 81-107.	0.3	0
1584	Bioâ€cellular <scp>glass–ceramic</scp> composite with embedded calcium phosphate from eggshell for alternative biomaterials in medical and dental applications. Journal of Applied Polymer Science, 2021, 138, 50439.	2.6	4
1585	The biocompatibility of glass-fibre reinforced composites (GFRCs) – a systematic review. Journal of Prosthodontic Research, 2021, 65, 273-283.	2.8	4
1586	Cork-derived hierarchically porous hydroxyapatite with different stoichiometries for biomedical and environmental applications. Materials Chemistry Frontiers, 0, , .	5.9	9
1587	A Review on Biodegradable Polymeric Materials for Bone Tissue Engineering (BTE) Applications. , 2021, ,		0
1588	Accelerated Bone Regeneration by MOF Modified Multifunctional Membranes through Enhancement of Osteogenic and Angiogenic Performance. Advanced Healthcare Materials, 2021, 10, e2001369.	7.6	67
1589	Solution combustion synthesis (SCS) of theranostic ions doped biphasic calcium phosphates; kinetic of ions release in simulated body fluid (SBF) and reactive oxygen species (ROS) generation. Materials Science and Engineering C, 2021, 118, 111533.	7.3	19
1590	Biological Roles and Delivery Strategies for Ions to Promote Osteogenic Induction. Frontiers in Cell and Developmental Biology, 2020, 8, 614545.	3.7	39
1591	Ion release behavior of vanadium-doped mesoporous bioactive glass particles and the effect of the released ions on osteogenic differentiation of BMSCs <i>via</i> the FAK/MAPK signaling pathway. Journal of Materials Chemistry B, 2021, 9, 7848-7865.	5.8	12
1592	Design of novel organic–inorganic composite bone cements with high compressive strength, <i>in vitro</i> bioactivity and cytocompatibility. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 2365-2377.	3.4	23
1593	Degradation of Bioceramics. , 2012, , 195-252.		2
1594	Advances in Antimicrobial and Osteoinductive Biomaterials. , 2020, , 3-34.		3

#	Article	IF	CITATIONS
1595	Variation in Properties of Bioactive Glasses After Surface Modification. , 2017, , 35-63.		10
1596	Bioactive Glasses. Springer Handbooks, 2019, , 813-849.	0.6	2
1597	Bioactive Glass: Chronology, Characterization, and Genetic Control of Tissue Regeneration. Springer Series in Biomaterials Science and Engineering, 2014, , 51-70.	1.0	5
1598	Bioactive Scaffolds with Multifunctional Properties for Hard Tissue Regenerations. Springer Series in Biomaterials Science and Engineering, 2017, , 371-388.	1.0	1
1599	Biocompatibility of Thin Films. Biological and Medical Physics Series, 2013, , 11-67.	0.4	2
1600	Nanofiber composites in bone tissue engineering. , 2017, , 301-323.		5
1601	Optical properties of Sm3+ doped strontium bismuth borosilicate glasses for laser applications. Optical Materials, 2019, 89, 68-79.	3.6	41
1602	Influence of strontium dopant on bioactivity and osteoblast activity of spray pyrolyzed strontium-doped mesoporous bioactive glasses Journal of Asian Ceramic Societies, 2021, 9, 221-228.	2.3	5
1603	BMP-2 and hMSC dual delivery onto 3D printed PLA-Biogel scaffold for critical-size bone defect regeneration in rabbit tibia. Biomedical Materials (Bristol), 2021, 16, 015019.	3.3	30
1604	Rapid Regeneration of Vascularized Bone by Nanofabricated Amorphous Silicon Oxynitrophosphide (SiONP) Overlays. Journal of Biomedical Nanotechnology, 2019, 15, 1241-1255.	1.1	12
1605	Bioactive Glasses as Composite Components. , 2012, , 239-258.		5
1606	Silicate-Based Bioactive Ceramics for Bone Regeneration Application. , 2013, , 25-46.		5
1607	The Osteogenic Potential of Mesoporous Bioglasses/Silk and Non-Mesoporous Bioglasses/Silk Scaffolds in Ovariectomized Rats: In vitro and In vivo Evaluation. PLoS ONE, 2013, 8, e81014.	2.5	39
1608	Bioactive Copper-Doped Class Scaffolds Can Stimulate Endothelial Cells in Co-Culture in Combination with Mesenchymal Stem Cells. PLoS ONE, 2014, 9, e113319.	2.5	87
1609	Effects of nanosilver and nanozinc incorporated mesoporous calcium-silicate nanoparticles on the mechanical properties of dentin. PLoS ONE, 2017, 12, e0182583.	2.5	28
1610	Biologically structured materials. Independent Journal of Management & Production, 2020, 11, 1119.	0.4	1
1611	OsteossÃntese femoral associada ao biovidro 60S em tamanduá-bandeira: relato de caso. Arquivo Brasileiro De Medicina Veterinaria E Zootecnia, 2020, 72, 737-743.	0.4	3
1612	Efeito do produto iônico do biovidro 60S na diferenciação osteogênica de células-tronco mesenquimais do tecido adiposo de cães. Arquivo Brasileiro De Medicina Veterinaria E Zootecnia, 2015, 67, 969-978.	0.4	5

#	Article	IF	CITATIONS
1613	In Vivo Biological Effects of Marine Biosilica on a Tibial Bone Defect in Rats. Brazilian Archives of Biology and Technology, 0, 63, .	0.5	6
1614	An nMgO containing scaffold: Antibacterial activity, degradation properties and cell responses. International Journal of Bioprinting, 2018, 4, 120.	3.4	20
1615	Development of glass-related biomaterials for enhanced bone regeneration via stimulation of cell function. Journal of the Ceramic Society of Japan, 2020, 128, 349-356.	1.1	4
1616	Hybrid Organic-Inorganic Scaffolding Biomaterials for Regenerative Therapies. Current Organic Chemistry, 2014, 18, 2299-2314.	1.6	36
1617	Development and Validation of a Capillary Zone Electrophoresis Method for the Determination of Calcium in Composite Biomaterials. Current Analytical Chemistry, 2014, 10, 465-472.	1.2	4
1618	Stem Cells in Skeletal Tissue Engineering: Technologies and Models. Current Stem Cell Research and Therapy, 2016, 11, 453-474.	1.3	11
1619	Development and Characterization of Lanthanides Doped Hydroxyapatite Composites for Bone Tissue Application. , 2013, , 87-115.		8
1620	A bioglass sustained-release scaffold with ECM-like structure for enhanced diabetic wound healing. Nanomedicine, 2020, 15, 2241-2253.	3.3	17
1621	Proliferation and osteogenic differentiation of human periodontal ligament cells on akermanite and β-TCP bioceramics. , 2011, 22, 68-83.		95
1622	In vitro bioactivity of soda lime borate glasses with substituted SrO in sodium phosphate solution. Processing and Application of Ceramics, 2014, 8, 167-177.	0.8	20
1623	Silicon nitride with titania, calcia and silica additives for orthopaedic applications. Processing and Application of Ceramics, 2020, 14, 63-70.	0.8	3
1624	Laser sintering of nano 13-93 glass scaffolds: Microstructure, mechanical properties and bioactivity. Science of Sintering, 2015, 47, 31-39.	1.4	6
1625	A Guided Walk through the World of Mesoporous Bioactive Glasses (MBGs): Fundamentals, Processing, and Applications. Nanomaterials, 2020, 10, 2571.	4.1	40
1626	In vivo Effects of Bioactive Glass S53P4 or Beta Tricalcium Phosphate on Osteogenic Differentiation of Human Adipose Stem Cells after Incubation with BMP-2. Journal of Stem Cell Research & Therapy, 2012, 02, .	0.3	4
1627	Osteoclast Response to Bioactive Surface Modification of Hydroxyapatite. Open Journal of Stomatology, 2014, 04, 340-344.	0.4	4
1628	A zinc-doped endodontic cement facilitates functional mineralization and stress dissipation at the dentin surface. Medicina Oral, Patologia Oral Y Cirugia Bucal, 2018, 23, 0-0.	1.7	2
1629	Effect of Silver Nanoparticles, Zinc Oxide Nanoparticles and Titanium Dioxide Nanoparticles on Microshear Bond Strength to Enamel and Dentin. Journal of Contemporary Dental Practice, 2018, 19, 1405-1412.	0.5	14
1630	Sealants and White Spot Lesions in Orthodontics: A Review. Journal of Contemporary Dental Practice, 2020, 21, 808-814.	0.5	8

#	Article	IF	Citations
1631	DEVELOPMENT OF POLY (LACTIC-CO-GLYCOLIC ACID)/ BIOGLASS FIBERS USING AN ELECTROSPINNING TECHNIQUE. Latin American Applied Research, 2018, 48, 131-138.	0.4	2
1632	To Build or Not to Build: The Interface of Bone Graft Substitute Materials in Biological Media from the View Point of the Cells. , 0, , .		2
1633	Ion-Doped Silicate Bioceramic Coating of Ti-Based Implant. Iranian Biomedical Journal, 2016, 20, 189-200.	0.7	7
1634	Phosphorous pentoxide-free bioactive glass exhibits dose-dependent angiogenic and osteogenic capacities which are retained in glass polymeric composite scaffolds. Biomaterials Science, 2021, 9, 7876-7894.	5.4	3
1635	Multifarious applications of bioactive glasses in soft tissue engineering. Biomaterials Science, 2021, 9, 8111-8147.	5.4	6
1636	Large-pore-size Ti6Al4V scaffolds with different pore structures for vascularized bone regeneration. Materials Science and Engineering C, 2021, 131, 112499.	7.3	32
1637	Tailoring the biodegradability and bioactivity of green-electrospun polycaprolactone fibers by incorporation of bioactive glass nanoparticles for guided bone regeneration. European Polymer Journal, 2021, 161, 110841.	5.4	10
1638	Research Progress of Bioactive Class and Its Application in Orthopedics. Advanced Materials Interfaces, 2021, 8, 2100606.	3.7	5
1639	High throughput synthesis and screening of zinc-doped biphasic calcium phosphate for bone regeneration. Applied Materials Today, 2021, 25, 101225.	4.3	9
1640	Enhanced osteogenesis and angiogenesis of calcium phosphate cement incorporated with zinc silicate by synergy effect of zinc and silicon ions. Materials Science and Engineering C, 2021, 131, 112490.	7.3	24
1641	Tailoring of Bioactive Glasses. , 2012, , 43-58.		0
1642	Soft Bioactive Coatings based on Electrophoretically Deposited Bioactive Glass Nanoparticles and Polycaprolactone. , 2013, , .		0
1643	Mesoporous Bioactive Glasses for Drug Delivery and Bone Tissue Regeneration. , 2013, , 1-24.		0
1645	A comparative study of the preventive effect of chlorhexidine o. 12% and nano zinc oxide particles on the distraction of collagen scaffolding of the hybrid layer by two immunohistochemistry and microleakage tests. Dentistry and Medical Research, 2014, 2, 33.	0.3	1
1646	Self-Assembly and Nano-layering of Apatitic Calcium Phosphates in Biomaterials. Springer Series in Biomaterials Science and Engineering, 2014, , 97-169.	1.0	0
1647	Bioactive Glass–Biopolymer Composites for Applications in Tissue Engineering. , 2015, , 1-26.		0
1648	Cytotoxicity of Metallic Biomaterials. Springer Series in Biomaterials Science and Engineering, 2015, , 323-348.	1.0	0
1649	Bioactive Glass-Biopolymer Composites. , 2015, , 1-26.		0

#	Article	IF	CITATIONS
1650	Translational Regenerative Approaches for Bone Reconstruction. , 2015, , 101-117.		0
1651	Effect of Transition Metal Addition in the Bioactivity of Borate Bioglass Dental Materials. The Journal of Dentists, 2015, 3, 11-21.	0.1	0
1653	Degradation of Glass and Glass Ceramics. , 2016, , .		1
1654	Bioactive Glass in Tissue Engineering: Progress and Challenges. Advances in Tissue Engineering & Regenerative Medicine Open Access, 2016, 1, .	0.1	0
1655	Scaffolds Reinforced by Fibers or Tubes for Hard Tissue Repair. , 2017, , 225-260.		0
1656	Synthesis and Functionalization of Mesoporous Bioactive Glasses for Drug Delivery. , 2017, , 257-286.		0
1657	Spreading and proliferation of cultured rat bone marrow stromal cells on the surface of bioactive glass ceramics. Biopolymers and Cell, 2017, 33, 48-57.	0.4	3
1658	Design and characteristics of hydroxyapatites: effect of radiation. , 2018, , .		0
1659	The effect of various concentrations of HA-TCP derived from cockle shell synthesis on scaffold porosity. Dental Journal: Majalah Kedokteran Gigi, 2018, 51, 114-118.	0.2	1
1660	Bioactivity of PLGA-gel-derived bioglass composites. Science Technology and Innovation, 2018, 3, 27-34.	0.0	0
1661	Comparative antibacterial study between bioactive glasses and vancomycin hydrochloride against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Egyptian Pharmaceutical Journal(Egypt), 2019, 18, 304.	0.4	2
1662	Bioactive Glasses: Prospects in Bone Tissue Engineering. Materials Horizons, 2019, , 67-83.	0.6	0
1663	Biologically structured materials. Independent Journal of Management & Production, 2019, 10, 1772.	0.4	0
1664	Preparation of Calcium Phosphate-Biodegradable Polymer Composites with Ion-Releasing Ability for Enhancing Bone Formation. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2020, 67, 278-283.	0.2	0
1665	Trabecular prostheses. Independent Journal of Management & Production, 2020, 11, 1223.	0.4	1
1666	Effect of Magnesium-Based Coatings on Titanium or Zirconia Substrates on Bone Regeneration and Implant Osseointegration- A Systematic Review. Frontiers in Materials, 2021, 8, .	2.4	7
1667	Factors governing the sinterability, In vitro dissolution, apatite formation and antibacterial properties in B2O3 incorporated S53P4 based glass powders. Ceramics International, 2022, 48, 4512-4525.	4.8	3
1668	Influence of P ₂ O ₅ Content on In Vitro Behavior of CaO-ZnO-P ₂ O ₅ Bioglass Powder Compacts. Transactions of the Materials Research Society of Japan, 2020, 45, 201-206.	0.2	3

#	Article	IF	CITATIONS
1669	iRoot SP Promotes Osteo/Odontogenesis of Bone Marrow Mesenchymal Stem Cells via Activation of NF-κB and MAPK Signaling Pathways. Stem Cells International, 2020, 2020, 1-15.	2.5	8
1670	Modelling the elastic mechanical properties of bioactive glass-derived scaffolds. Biomedical Glasses, 2020, 6, 50-56.	2.4	3
1671	Coating of hydroxyapatite and substituted apatite on dental and orthopedic implants. , 2020, , 327-353.		0
1672	Insights into Nanotools for Dental Interventions. Environmental Chemistry for A Sustainable World, 2020, , 53-79.	0.5	3
1673	Polymer-based composites for musculoskeletal regenerative medicine. , 2020, , 33-82.		2
1675	An Injectable Composite Bone Cement Based on Mesoporous Borosilicate Bioactive Glass Spheres. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2020, 35, 1398.	1.3	3
1677	Synthesis and Characterization of ZnO(MgO)-CaO-SiO2-P2O5 Bioglass Obtained by Sol-Gel Method in Presence of Surfactant Agent. Gels, 2021, 7, 187.	4.5	9
1678	Room temperature Raman spectroscopy and 29Si MAS NMR combined with high temperature Raman spectroscopy and DFT calculation of xMgO-(1-x)CaO–SiO2 glasses and melts. Ceramics International, 2022, 48, 4911-4920.	4.8	5
1679	Effect of glycerol and H3PO4 on the bioactivity and degradability of rod-like SBA-15 particles with active surface for bone tissue engineering applications. Microporous and Mesoporous Materials, 2022, 329, 111543.	4.4	5
1680	Bioresorbable Composites for Bone Reconstruction. Nanotechnologies in Russia, 2020, 15, 400-414.	0.7	0
1681	Development of Scaffold Materials with Ion-releasing Ability for Stimulating Osteoblasts. Materia Japan, 2020, 59, 606-611.	0.1	0
1685	Scaffolds with drug delivery capability. , 2022, , 817-840.		0
1686	Bioactive glasses and ceramics for tissue engineering. , 2022, , 111-178.		2
1687	A preliminary investigation on the P2O5-Ta2O5 substitution in the parent 58S bioglass. Materials Letters, 2022, 308, 131181.	2.6	1
1688	Green biosynthesis of hydroxyapatite-silver nanoparticle nanocomposite using aqueous Indian curry leaf (Murraya koengii) extract and its biological properties. Materials Chemistry and Physics, 2022, 277, 125455.	4.0	14
1689	Multifunctional antimicrobial materials: From rational design to biomedical applications. Progress in Materials Science, 2022, 125, 100887.	32.8	108
1690	Wound closure, angiogenesis and antibacterial behaviors of tetracalcium phosphate/hydroxyethyl cellulose/hyaluronic acid/gelatin composite dermal scaffolds. Journal of Biomaterials Science, Polymer Edition, 2021, , 1-22.	3.5	2
1691	Spark plasma sintering, mechanical and in-vitro behavior of a novel Sr- and Mg-containing bioactive glass for biomedical applications. Journal of the European Ceramic Society, 2022, 42, 1776-1783.	5.7	4

#	Article	IF	CITATIONS
1692	Synthesis and Characterization of Novel Calcium-Silicate Nanobioceramics with Magnesium: Effect of Heat Treatment on Biological, Physical and Chemical Properties. Ceramics, 2021, 4, 628-651.	2.6	5
1693	Silver-doped calcium silicate sol-gel glasses with a cotton-wool-like structure for wound healing. Materials Science and Engineering C, 2022, 134, 112561.	7.3	7
1694	Molecular Indicators of Biomaterials Osteoinductivity - Cell Migration, BMP Production and Signalling Turns a Key. Stem Cell Reviews and Reports, 2022, 18, 672-690.	3.8	2
1695	Copper source determines chemistry and topography of implant coatings to optimally couple cellular responses and antibacterial activity. Materials Science and Engineering C, 2022, 134, 112550.	7.3	12
1696	An In Vitro Evaluation of the Biological and Osteogenic Properties of Magnesium-Doped Bioactive Glasses for Application in Bone Tissue Engineering. International Journal of Molecular Sciences, 2021, 22, 12703.	4.1	12
1697	3D printing of polycaprolactone/bioactive glass composite scaffolds for in situ bone repair. Ceramics International, 2022, 48, 7491-7499.	4.8	23
1698	Effect of Sr, Mg and Fe substitution on the physico-chemical and biological properties of Si Ca P multilayer scaffolds. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2021, , .	1.9	1
1699	Chapter 5. Inorganic Biomaterials to Support the Formation and Repair of Bone Tissue. Inorganic Materials Series, 2021, , 242-304.	0.7	0
1700	Advances in the Development of Biodegradable Polymeric Materials for Biomedical Applications. , 2021, , .		0
1701	Surface modification of magnesium with a novel composite coating for application in bone tissue engineering. Surface and Coatings Technology, 2022, 433, 128078.	4.8	3
1702	ION RELEASE BEHAVIOR OF SILICOPHOSPHATE GLASSES CONTAINING SIX-FOLD COORDINATED SILICON STRUCTURE. Phosphorus Research Bulletin, 2022, 38, 1-4.	0.6	3
1703	Effect of Li+/Na+ exchange on mechanical behavior and biological activity of lithium disilicate glass-ceramic. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 126, 105036.	3.1	4
1704	Properties of a nanobioglass synthesized from rice husk for bone prostheses applications. Materials Chemistry and Physics, 2022, 277, 125517.	4.0	3
1705	Characterization and Biological Performance of Marine Sponge Collagen. Brazilian Archives of Biology and Technology, 0, 64, .	0.5	0
1706	Enhancing the Bioactivity of Hydroxyapatite Bioceramic via Encapsulating with Silica-Based Bioactive Glass Sol. SSRN Electronic Journal, 0, , .	0.4	0
1707	Sustained Local Ionic Homeostatic Imbalance (SLIHI) Caused by Calcification Modulates Inflammation to Trigger Ectopic Bone Formation. SSRN Electronic Journal, 0, , .	0.4	1
1708	Corrosion Resistance and Cytocompatibility of Magnesium–Calcium Alloys Modified with Zinc- or Gallium-Doped Calcium Phosphate Coatings. ACS Applied Materials & Interfaces, 2022, 14, 104-122.	8.0	14
1709	Comparison of Effects of Calcium and Magnesium Doping on the Structure and Biological Properties of NaTaO3 Film on Tantalum. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 1448-1458.	3.7	1

#	Article	IF	CITATIONS
1710	Synthesis and characterization of sol-gel bioactive glass nanoparticles doped with boron and copper. Ceramics International, 2022, 48, 13706-13718.	4.8	20
1711	Development of Bioglass/PEEK Composite Coating by Cold Gas Spray for Orthopedic Implants. Journal of Thermal Spray Technology, 2022, 31, 186-196.	3.1	11
1712	Gallium containing bioactive materials: A review of anticancer, antibacterial, and osteogenic properties. Bioactive Materials, 2022, 17, 125-146.	15.6	45
1713	Mesoporous Bioglasses Enriched with Bioactive Agents for Bone Repair, with a Special Highlight of MarÃa Vallet-RegÃ's Contribution. Pharmaceutics, 2022, 14, 202.	4.5	9
1714	Hydroxyapatite forming ability, ion release and antibacterial activity of the melt-derived SiO2–P2O5–Na2O–CaO–F glasses modified by replacing CaO with SrO and ZnO. Ceramics International, 2022, 48, 12430-12441.	4.8	4
1715	PTH 1-34-functionalized bioactive glass improves peri-implant bone repair in orchiectomized rats: Microscale and ultrastructural evaluation. Materials Science and Engineering C, 2022, , 112688.	7.3	4
1716	Enhancing the bioactivity of hydroxyapatite bioceramic via encapsulating with silica-based bioactive glass sol. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 128, 105104.	3.1	11
1717	Orchestrated tumor apoptosis (Cu2+) and bone tissue calcification (Ca2+) by hierarchical Copper/Calcium-ensembled bioactive silica for osteosarcoma therapy. Chemical Engineering Journal, 2022, 435, 134820.	12.7	17
1718	A practical review over surface modification, nanopatterns, emerging materials, drug delivery systems, and their biophysiochemical properties for dental implants: Recent progresses and advances. Nanotechnology Reviews, 2022, 11, 637-679.	5.8	3
1719	A Selfâ€Assembled Matrix System for Cellâ€Bioengineering Applications in Different Dimensions, Scales, and Geometries. Small, 2022, 18, e2104758.	10.0	3
1720	Angiogenesis, Osseointegration, and Antibacterial Applications of Polyelectrolyte Multilayer Coatings Incorporated With Silver/Strontium Containing Mesoporous Bioactive Glass on 316L Stainless Steel. Frontiers in Bioengineering and Biotechnology, 2022, 10, 818137.	4.1	17
1721	Zn-containing Adhesives Facilitate Collagen Protection and Remineralization at the Resin-Dentin Interface: A Narrative Review. Polymers, 2022, 14, 642.	4.5	4
1722	Bioceramic coatings on metallic implants: An overview. Ceramics International, 2022, 48, 8987-9005.	4.8	62
1723	Advances in Nanoenabled 3D Matrices for Cartilage Repair. SSRN Electronic Journal, 0, , .	0.4	0
1724	Bioactive glass-ceramic for bone tissue engineering: an in vitro and in vivo study focusing on osteoclasts. Brazilian Oral Research, 2022, 36, e022.	1.4	2
1725	Use of bioactive glass doped with magnesium or strontium for bone regeneration: A rabbit critical-size calvarial defects study. Dental Research Journal, 2022, 19, 18.	0.6	4
1726	Evaluation of the effect of a glass ionomer cement containing fluoro-zinc-silicate glass on dentin remineralization using the ultrasonic pulse-echo method. Dental Materials Journal, 2022, 41, 560-566.	1.8	5
1727	Effect of Zn and Ga doping on bioactivity, degradation, and antibacterial properties of borate 1393-B3 bioactive glass. Ceramics International, 2022, 48, 16404-16417.	4.8	25

#	Article	IF	CITATIONS
1728	Chemical Compounds Released from Specific Osteoinductive Bioactive Materials Stimulate Human Bone Marrow Mesenchymal Stem Cell Migration. International Journal of Molecular Sciences, 2022, 23, 2598.	4.1	1
1729	Inorganic biomaterialsâ€based bioinks for threeâ€dimensional bioprinting of regenerative scaffolds. View, 2022, 3, .	5.3	20
1730	Effect of local ion concentrations on the in vitro reactions of bioactive glass 45S5 particles. International Journal of Applied Glass Science, 2022, 13, 695-707.	2.0	6
1731	Surface Engineering for Dental Implantology: Favoring Tissue Responses Along the Implant. Tissue Engineering - Part A, 2022, 28, 555-572.	3.1	18
1732	Bioactive Glasses in Periodontal Regeneration: Existing Strategies and Future Prospects—A Literature Review. Materials, 2022, 15, 2194.	2.9	9
1733	Biomaterial–Related Cell Microenvironment in Tissue Engineering and Regenerative Medicine. Engineering, 2022, 13, 31-45.	6.7	42
1734	Hierarchical Therapeutic Ionâ€Based Microspheres with Precise Ratioâ€Controlled Delivery as Microscaffolds for In Situ Vascularized Bone Regeneration. Advanced Functional Materials, 2022, 32, .	14.9	25
1735	Graphene oxide encapsulated forsterite scaffolds to improve mechanical properties and antibacterial behavior. Biomedical Materials (Bristol), 2022, 17, 035011.	3.3	6
1736	Effect of boron oxide on mechanical and thermal properties of bioactive glass coatings for biomedical applications. Journal of the American Ceramic Society, 2022, 105, 3986-4008.	3.8	8
1737	Sol-gel bioactive glass containing biomaterials for restorative dentistry: A review. Dental Materials, 2022, 38, 725-747.	3.5	30
1739	Poly(<scp>d,l</scp> -lactide)-Grafted Bioactive Glass Nanoparticles: From Nanobricks to Freeze-Cast Scaffolds for Bone Substitution. ACS Applied Nano Materials, 2022, 5, 5278-5291.	5.0	5
1740	Three routes for the synthesis of the bioceramic powder of the CaO-MgO-SiO2 system. Ceramics International, 2022, 48, 9681-9691.	4.8	4
1741	Sustained local ionic homeostatic imbalance caused by calcification modulates inflammation to trigger heterotopic ossification. Acta Biomaterialia, 2022, 145, 1-24.	8.3	10
1742	Bioactive glass nanoparticles inhibit osteoclast differentiation and osteoporotic bone loss by activating IncRNA NRON expression in the extracellular vesicles derived from bone marrow mesenchymal stem cells. Biomaterials, 2022, 283, 121438.	11.4	30
1743	Fabrication of highly bioactive zirconia ceramics via grainâ€boundary activation for dental implants. Journal of the American Ceramic Society, 2022, 105, 5069-5081.	3.8	6
1744	A novel apatite-inspired Sr5(PO4)2SiO4 plasma-sprayed coating on Ti alloy promoting biomineralization, osteogenesis and angiogenesis. Ceramics International, 2022, 48, 10979-10989.	4.8	6
1745	Surface Characteristics of Dental Implant Doped with Si, Mg, Ca, and P Ions via Plasma Electrolytic Oxidation. Journal of Korean Institute of Metals and Materials, 2022, 60, 263-271.	1.0	2
1747	The effect of the incorporation of catalase mimetic activity cations on the structural, thermal and chemical durability properties of the 45S5 Bioglass®. Acta Materialia, 2022, 229, 117801.	7.9	7

#	Article	IF	CITATIONS
1748	Reinforcing the function of bone graft via the Ca-P ceramics dynamic behavior-enhanced osteogenic microenvironment for optimal bone regeneration and reconstruction. Applied Materials Today, 2022, 27, 101465.	4.3	1
1749	Thiolated hyaluronic acid/silk fibroin dual-network hydrogel incorporated with bioglass nanoparticles for wound healing. Carbohydrate Polymers, 2022, 288, 119334.	10.2	20
1750	MBG/ PGA-PCL composite scaffolds provide highly tunable degradation and osteogenic features. Bioactive Materials, 2022, 15, 53-67.	15.6	13
1751	Bioceramic-based scaffolds with antibacterial function for bone tissue engineering: A review. Bioactive Materials, 2022, 18, 383-398.	15.6	49
1752	Surface modification of titanium substrate via combining photothermal therapy and quorum-sensing-inhibition strategy for improving osseointegration and treating biofilm-associated bacterial infection. Bioactive Materials, 2022, 18, 228-241.	15.6	41
1753	Reducing relapse and accelerating osteogenesis in rapid maxillary expansion using an injectable mesoporous bioactive glass/fibrin glue composite hydrogel. Bioactive Materials, 2022, 18, 507-525.	15.6	13
1754	Nanostructured Zn-Substituted Monetite Based Material Induces Higher Bone Regeneration Than Anorganic Bovine Bone and β-Tricalcium Phosphate in Vertical Augmentation Model in Rabbit Calvaria. Nanomaterials, 2022, 12, 143.	4.1	1
1755	Custom-Made Poly(urethane) Coatings Improve the Mechanical Properties of Bioactive Glass Scaffolds Designed for Bone Tissue Engineering. Polymers, 2022, 14, 151.	4.5	1
1756	Incorporation of Zinc into Binary SiO2-CaO Mesoporous Bioactive Glass Nanoparticles Enhances Anti-Inflammatory and Osteogenic Activities. Pharmaceutics, 2021, 13, 2124.	4.5	16
1757	3D printing of poly(butylene adipateâ€coâ€terephthalate) (PBAT)/niobium containing bioactive glasses (BAGNb) scaffolds: Characterization of composites, in vitro bioactivity, and in vivo bone repair. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16, 267-278.	2.7	7
1759	Bioactive glasses incorporating less-common ions to improve biological and physical properties. Journal of Materials Science: Materials in Medicine, 2022, 33, 3.	3.6	64
1760	Interaction of monodispersed strontium containing bioactive glass nanoparticles with macrophages. Materials Science and Engineering C, 2022, 133, 112610.	7.3	15
1761	Potential of Fluoride-Containing Zinc Oxide and Copper Oxide Nanocomposites on Dentin Bonding Ability. Nanomaterials, 2022, 12, 1291.	4.1	8
1762	Low-Temperature Synthesis of Hollow \hat{l}^2 -Tricalcium Phosphate Particles for Bone Tissue Engineering Applications. ACS Biomaterials Science and Engineering, 2022, , .	5.2	2
1763	Synthesis, Processing and the Effect of Thermal Treatment on the Solubility, Antioxidant Potential and Cytocompatibility of Y2O3 and CeO2 doped SiO2-SrO-Na2O Glass-Ceramics. Journal of Biomaterials Applications, 2022, , 088532822210784.	2.4	1
1764	Chitosan regulated electrochemistry for dense hydroxyapatite/MgO nanocomposite coating with antibiosis and osteogenesis on titanium alloy. Colloids and Interface Science Communications, 2022, 48, 100616.	4.1	12
1765	Fabrication of Alkaline Earth Oxide-Containing Glass Adsorbents for Capturing Carbon Dioxide under Mild Conditions. Journal of CO2 Utilization, 2022, 61, 102001.	6.8	2
1769	Hydrogels and their role in bone tissue engineering: An overview. Journal of Pharmacy and Bioallied Sciences, 2021, 13, 908.	0.6	6

		CITATION REPORT		
#	Article		IF	CITATIONS
1770	Unique Nature of Phosphate and Borate Bioactive Glasses. Biomaterials Science Series	, 2022, , 1-9.	0.2	0
1771	Preparation and characterization of novel lithium magnesium phosphate bioceramic so facilitating bone generation. Journal of Materials Chemistry B, 2022, 10, 4040-4047.	affolds	5.8	12
1772	Bioinspired ceramics for bone tissue applications. , 2022, , 111-143.			0
1773	Clinical Products and Further Devices of Phosphates and Borates. Biomaterials Science 263-276.	Series, 2022, ,	0.2	0
1774	Bioceramics: materials, properties, and applications. , 2022, , 65-110.			0
1775	The Role of Phosphate Glasses in Bone Regeneration Remedies. Biomaterials Science S	eries, 2022, , 44-61.	0.2	1
1776	Dissociation of nanosilicates induces downstream endochondral differentiation gene e program. Science Advances, 2022, 8, eabl9404.	xpression	10.3	9
1777	Ultra-low binder content 3D printed calcium phosphate graphene scaffolds as resorbal osteoinductive matrices that support bone formation in vivo. Scientific Reports, 2022,	ble, 12, 6960.	3.3	9
1778	Strontium- and peptide-modified silicate nanostructures for dual osteogenic and antin activity. , 2022, 135, 212735.	icrobial		7
1779	Synthesis and characterization of sol–gel derived hydroxyapatite from a novel mix o biowastes and their potentials for biomedical applications. Materials Today: Proceedin 4182-4187.	f two natural gs, 2022, 62,	1.8	13
1780	Tunable Behavior in Solution of Amorphous Calcium Ortho/Pyrophosphate Materials: A <i>In Vitro</i> Study. ACS Biomaterials Science and Engineering, 2022, , .	n Acellular	5.2	3
1781	Effect of Angiogenesis in Bone Tissue Engineering. Annals of Biomedical Engineering, 2	2022, 50, 898-913.	2.5	22
1782	Gel dressing based on type I collagen modified with oligourethane and silica for skin w Biomedical Materials (Bristol), 2022, 17, 045005.	ound healing.	3.3	7
1783	Application of non-metal nanoparticles, as a novel approach, for improving the stability products: 2011–2021. Progress in Biomaterials, 2022, 11, 137-161.	v of blood	4.5	3
1784	Biomedical applications of threeâ€dimensional bioprinted craniofacial tissue engineeri Bioengineering and Translational Medicine, 2023, 8, .	ng.	7.1	16
1785	Electrospun fibers of poly (lactic acid) containing bioactive glass and magnesium oxide for bone tissue regeneration. International Journal of Biological Macromolecules, 2022	e nanoparticles , 210, 324-336.	7.5	12
1786	Nano-bioactive glass incorporated polymeric apatite/tricalcium phosphate cement con proliferation and osteogenic differentiation of human adipose-derived stem/stromal ce Today Communications, 2022, 31, 103590.	iposite supports Ils. Materials	1.9	3
1787	The effect of some modifier oxides on the radiation shielding properties of zirconia do borosilicate glasses. Radiation Physics and Chemistry, 2022, 197, 110164.	bed sodium	2.8	7

#	Article	IF	Citations
1788	Density-Diffusion Relationship in Soda-Lime Phosphosilicate. Journal of Non-Crystalline Solids, 2022, 590, 121665.	3.1	5
1789	Structure and dissolution behavior of boron-containing calcium phosphate invert glasses. Journal of Non-Crystalline Solids, 2022, 590, 121690.	3.1	2
1790	Zinc-Containing Sol–Gel Glass Nanoparticles to Deliver Therapeutic Ions. Nanomaterials, 2022, 12, 1691.	4.1	12
1791	Injectable bone cements: What benefits the combination of calcium phosphates and bioactive glasses could bring?. Bioactive Materials, 2023, 19, 217-236.	15.6	35
1792	In vitro and in ovo impact of the ionic dissolution products of boron-doped bioactive silicate glasses on cell viability, osteogenesis and angiogenesis. Scientific Reports, 2022, 12, .	3.3	12
1793	Comparative Study on Bioactive Filler/Biopolymer Scaffolds for Potential Application in Supporting Bone Tissue Regeneration. ACS Applied Polymer Materials, 2022, 4, 4306-4318.	4.4	7
1794	Highly elastic and bioactive bone biomimetic scaffolds based on platelet lysate and biomineralized cellulose nanocrystals. Carbohydrate Polymers, 2022, 292, 119638.	10.2	8
1795	Ceramic Nanofiber Materials for Wound Healing and Bone Regeneration: A Brief Review. Materials, 2022, 15, 3909.	2.9	11
1796	Characterization of Physical and Biological Properties of a Caries-Arresting Liquid Containing Copper Doped Bioglass Nanoparticles. Pharmaceutics, 2022, 14, 1137.	4.5	5
1797	Deposition of bioactive glass coatings based on a novel composition containing strontium and magnesium. Journal of the European Ceramic Society, 2022, 42, 6213-6221.	5.7	8
1798	Strong and Elastic Hydrogels from Dual-Crosslinked Composites Composed of Glycol Chitosan and Amino-Functionalized Bioactive Glass Nanoparticles. Nanomaterials, 2022, 12, 1874.	4.1	10
1799	PLGA Cageâ€like Structures Loaded with Sr/Mgâ€doped Hydroxyapatite for Repairing Osteoporotic Bone Defects. Macromolecular Bioscience, 0, , 2200092.	4.1	6
1800	Experimental data on the characterization of hydroxyapatite produced from a novel mixture of biowastes. Data in Brief, 2022, 42, 108305.	1.0	10
1801	Magnetic bioactive glass nano-heterostructures: a deeper insight into magnetic hyperthermia properties in the scope of bone cancer treatment. Biomaterials Science, 2022, 10, 3993-4007.	5.4	3
1805	A Review on the Recent Advancements on Therapeutic Effects of Ions in the Physiological Environments. Prosthesis, 2022, 4, 263-316.	2.9	7
1806	Extrusion-based 3D printing of bioactive glass scaffolds-process parameters and mechanical properties: A review. Bioprinting, 2022, 27, e00219.	5.8	12
1808	Porcine liver injury model to assess tantalum-containing bioactive glass powders for hemostasis. Journal of Materials Science: Materials in Medicine, 2022, 33, .	3.6	4
1809	Loading with Biomolecules Modulates the Antioxidant Activity of Cerium-Doped Bioactive Glasses. ACS Biomaterials Science and Engineering, 2022, 8, 2890-2898.	5.2	9

#	Article	IF	CITATIONS
1811	Strontium doped bioglass incorporated hydrogel-based scaffold for amplified bone tissue regeneration. Scientific Reports, 2022, 12, .	3.3	24
1816	Deconvoluting interrelationships between lowâ€energy vibrational modes and elastic properties in CaO–Al ₂ O ₃ glasses. Journal of the American Ceramic Society, 0, , .	3.8	0
1817	Tailoring Cu2+-loaded electrospun membranes with antibacterial ability for guided bone regeneration. , 2022, 139, 212976.		7
1818	In vitro dissolution and characterisation of flame-sprayed bioactive glass microspheres S53P4 and 13–93. Journal of Non-Crystalline Solids, 2022, 591, 121736.	3.1	7
1819	Optically active glass with a multifaceted approach. Journal of Non-Crystalline Solids: X, 2022, 15, 100105.	1.2	0
1820	Dual photothermal nanocomposites for drug-resistant infectious wound management. Nanoscale, 2022, 14, 11284-11297.	5.6	6
1821	Angiogenesis induction by bioactive glasses and glass-ceramics. , 2022, , 203-226.		0
1822	Quaternary bioactive glass-derived powders presenting submicrometric particles and antimicrobial activity. Ceramics International, 2022, 48, 29982-29990.	4.8	5
1823	Zn–Mn-Doped Mesoporous Bioactive Glass Nanoparticle-Loaded Zein Coatings for Bioactive and Antibacterial Orthopedic Implants. Journal of Functional Biomaterials, 2022, 13, 97.	4.4	14
1824	Injectability study and rheological evaluation of Pluronic-derived thermosensitive hydrogels containing mesoporous bioactive glass nanoparticles for bone regeneration. Journal of Materials Science, 2022, 57, 13027-13042	3.7	5
1826	Recent advances in silicate-based crystalline bioceramics for orthopedic applications: a review. Journal of Materials Science, 2022, 57, 13109-13151.	3.7	13
1827	Borate Bioactive Glasses (BBG): Bone Regeneration, Wound Healing Applications, and Future Directions. ACS Applied Bio Materials, 2022, 5, 3608-3622.	4.6	56
1828	Polycaprolactone/chlorinated bioglass scaffolds doped with Mg and Li ions: Morphological, physicochemical, and biological analysis. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2023, 111, 140-150	3.4	3
1829	Glass as a biomaterial: strategies for optimising bioactive glasses for clinical applications. Comptes Rendus - Geoscience, 2022, 354, 185-197.	1.2	2
1830	Microstructures and mechanical properties of biphasic calcium phosphate bioceramics fabricated by SLA 3D printing. Journal of Manufacturing Processes, 2022, 81, 433-443.	5.9	17
1831	Powder 3D Printing of Bone Scaffolds with Uniform and Gradient Pore Sizes Using Cuttlebone-Derived Calcium Phosphate and Glass-Ceramic. Materials, 2022, 15, 5139.	2.9	5
1832	Electron/Ion Microscopy of Low-temperature Sintered Y-TZP Ceramics with Additive of Lithium Disilicate Glass for Dental Restorations. Microscopy and Microanalysis, 2022, 28, 44-45.	0.4	0
1833	<scp>Threeâ€dimensional printing</scp> hydrogel scaffold with bioactivity and shapeâ€adaptability for potential application in irregular bone defect regeneration. Journal of Applied Polymer Science, 2022, 139, .	2.6	1

#	Article	IF	CITATIONS
1834	Rational design of nanofibrous scaffolds via bionic coating: Microstructural behavior and in vitro biological evaluation. Materials Today Communications, 2022, 32, 104098.	1.9	1
1835	Experimental borosilicate bioactive glasses: pulp cells cytocompatibility and mechanical characterisation. International Endodontic Journal, 0, , .	5.0	1
1836	Advances in nanoenabled 3D matrices for cartilage repair. Acta Biomaterialia, 2022, 150, 1-21.	8.3	6
1837	Bioactive antibacterial borate glass and glass-ceramics. Journal of Non-Crystalline Solids, 2022, 595, 121829.	3.1	6
1838	Fabrication of magnesium phosphate bone cement with enhanced osteogenic properties by employing zeolitic imidazolate framework-8. Journal of Materials Research, 2022, 37, 2761-2774.	2.6	9
1839	A Bilayer Membrane Doped with Struvite Nanowires for Guided Bone Regeneration. Advanced Healthcare Materials, 2022, 11, .	7.6	9
1840	Rapid Synthesis of Multifunctional Apatite via the Laser-Induced Hydrothermal Process. ACS Nano, 2022, 16, 12840-12851.	14.6	3
1841	3D printing of inorganic-biopolymer composites for bone regeneration. Biofabrication, 2022, 14, 042003.	7.1	19
1842	A Preliminary Study about the Role of Reactive Oxygen Species and Inflammatory Process after COVID-19 Vaccination and COVID-19 Disease. Clinics and Practice, 2022, 12, 599-608.	1.4	3
1843	Osteoimmunomodulation role of exosomes derived from immune cells on osseointegration. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	7
1844	Synthesis of nano hydroxyapatite from Hypopthalmichthys molitrix (silver carp) bone waste by two different methods: a comparative biophysical and in vitro evaluation on osteoblast MG63 cell lines. Biotechnology Letters, 2022, 44, 1175-1188.	2.2	3
1845	Effect of novel FUDMA-TEGDMA resin on resin-dentine adhesion strength. International Journal of Adhesion and Adhesives, 2022, 118, 103229.	2.9	0
1846	An innovative strategy for bioactivation of β-Ti12Mo6Zr2Fe alloy surface by dip-coating method with potential application in the biomedical field. Applied Surface Science, 2022, 603, 154460.	6.1	1
1847	Preparation of chitosan-sodium alginate/bioactive glass composite cartilage scaffolds with high cell activity and bioactivity. Ceramics International, 2023, 49, 1987-1996.	4.8	3
1848	Cytotoxicity and Antibacterial Activity of Mineral Trioxide Aggregate Cement with Radiopacity Introduced by ZrO2. Bioinorganic Chemistry and Applications, 2022, 2022, 1-16.	4.1	2
1849	Effects of cooling conditions and chitosan coating on the properties of porous calcium phosphate granules produced from hard clam shells. Advanced Powder Technology, 2022, 33, 103774.	4.1	3
1850	MOF-derived CuO@ZnO modified titanium implant for synergistic antibacterial ability, osteogenesis and angiogenesis. Colloids and Surfaces B: Biointerfaces, 2022, 219, 112840.	5.0	13
1851	In-situ forming hydrogel based on thiolated chitosan/carboxymethyl cellulose (CMC) containing borate bioactive glass for wound healing. International Journal of Biological Macromolecules, 2022, 222, 620-635.	7.5	15

# 1852	ARTICLE Bioactive glass-based fibrous wound dressings. Burns and Trauma, 2022, 10, .	IF 4.9	CITATIONS
1853	Porous biomaterials for tissue engineering: a review. Journal of Materials Chemistry B, 2022, 10, 8111-8165.	5.8	27
1854	A Review on the Application of Chitosan-Silk Fibroin Composites in the Biomedical Field. SSRN Electronic Journal, 0, , .	0.4	0
1855	Smart biomaterials and their potential applications in tissue engineering. Journal of Materials Chemistry B, 2022, 10, 6859-6895.	5.8	15
1856	A study of bioactive glass–ceramic's mechanical properties, apatite formation, and medical applications. RSC Advances, 2022, 12, 23143-23152.	3.6	9
1858	Advances in drug delivery and biomedical applications of hydroxyapatite-based systems: a review. Bulletin of Materials Science, 2022, 45, .	1.7	3
1859	Cancer Inhibition and In Vivo Osteointegration and Compatibility of Gallium-Doped Bioactive Glasses for Osteosarcoma Applications. ACS Applied Materials & Interfaces, 2022, 14, 45156-45166.	8.0	10
1861	Premixed Calcium Silicate-Based Root Canal Sealer Reinforced with Bioactive Glass Nanoparticles to Improve Biological Properties. Pharmaceutics, 2022, 14, 1903.	4.5	5
1862	Effective role of P2O5 on in vitro bioactivity of CaO–ZnO–P2O5/P2O5 glass composites. Journal of the Australian Ceramic Society, 0, , .	1.9	0
1863	Composite Ceramics in the Na2O–CaO–SiO2–P2O5 System Obtained from Pastes including Hydroxyapatite and an Aqueous Solution of Sodium Silicate. Ceramics, 2022, 5, 550-561.	2.6	7
1864	Therapeutic application of hydrogels for bone-related diseases. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	3
1865	Polymeric Nano-Composite Scaffolds for Bone Tissue Engineering: Review. Advanced Structured Materials, 2023, , 189-219.	0.5	0
1866	Structural, mechanical, and in vitro characterization of freeze-cast scaffolds prepared using a sol-gel-derived bioactive glass from the SiO2–CaO–Na2O–P2O5–K2O–MgO system. Ceramics International, 2023, 49, 2183-2193.	4.8	3
1867	Effect of S53P4 bioactive glass content on structural and in-vitro behavior of hydroxyapatite/bioactive glass mixtures prepared by mechanical milling. Ceramics International, 2023, 49, 4322-4330.	4.8	5
1868	Solid-state NMR of glasses. , 2022, , .		2
1869	Marine plankton exoskeletone-derived hydroxyapatite/polycaprolactone composite 3D scaffold for bone tissue engineering. Biomaterials Science, 2022, 10, 7055-7066.	5.4	1
1870	Antibacterial and osteoconductive polycaprolactone/polylactic acid/nano-hydroxyapatite/Cu@ZIF-8 GBR membrane with asymmetric porous structure. International Journal of Biological Macromolecules, 2023, 224, 1040-1051.	7.5	11
1871	Taguchi grey relational optimization of sol–gel derived hydroxyapatite from a novel mix of two natural biowastes for biomedical applications. Scientific Reports, 2022, 12,	3.3	8

#	Article	IF	CITATIONS
1872	Halide-containing bioactive glasses enhance osteogenesis in vitro and in vivo. , 2022, 143, 213173.		3
1873	In vivo biocompatibility of <scp>SrO</scp> and <scp>MgO</scp> doped brushite cements. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2023, 111, 599-609.	3.4	3
1874	Cryogenic 3D printing of bifunctional silicate nanoclay incorporated scaffolds for promoted angiogenesis and bone regeneration. Materials and Design, 2022, 223, 111220.	7.0	1
1875	Strontium-modified porous polyetheretherketone with the triple function of osteogenesis, and anti-inflammatory for bone grafting. , 2022, 143, 213160.		8
1876	Correlation between biological responses in vitro and in vivo to Ca-doped sol-gel coatings assessed using proteomic analysis. Colloids and Surfaces B: Biointerfaces, 2022, 220, 112962.	5.0	3
1877	Exploring the cellular uptake of hectorite clay mineral and its drug carrier capabilities. Colloids and Surfaces B: Biointerfaces, 2022, 220, 112931.	5.0	7
1878	Microspheres in bone regeneration: Fabrication, properties and applications. Materials Today Advances, 2022, 16, 100315.	5.2	5
1879	Chemical and mechanical stability of an ion-exchanged lithium disilicate glass in artificial saliva. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 137, 105563.	3.1	4
1880	Surface Properties and Antioxidant Activity of Silicate and Borosilicate Bioactive Glasses. Advanced Engineering Materials, 2023, 25, .	3.5	2
1881	Bioactivity Potential of Bioceramic-Based Root Canal Sealers: A Scoping Review. Life, 2022, 12, 1853.	2.4	6
1882	Highly water-stable bimetallic organic framework MgCu-MOF74 for inhibiting bacterial infection and promoting bone regeneration. Biomedical Materials (Bristol), 2022, 17, 065026.	3.3	7
1883	A Review onÂGraphene-based adsorbents for the remediation of toxic heavy metals from aqueous sources. International Journal of Environmental Science and Technology, 2023, 20, 11645-11672.	3.5	1
1884	Influence of Copper-Strontium Co-Doping on Bioactivity, Cytotoxicity and Antibacterial Activity of Mesoporous Bioactive Glass. Gels, 2022, 8, 743.	4.5	11
1885	In vitro bioactivity and biocompatibility of magnesium implants coated with poly(methyl methacrylate) - bioactive glass composite. Materials Today Communications, 2022, 33, 104872.	1.9	0
1886	Blending strategy to modify PEEK-based orthopedic implants. Composites Part B: Engineering, 2023, 250, 110427.	12.0	15
1887	Melt-Derived Bioactive Glasses: Approaches to Improve Thermal Stability and Antibacterial Property by Structure–Property Correlation. Advanced Structured Materials, 2022, , 205-242.	0.5	0
1888	Recent advances in regenerative biomaterials. Regenerative Biomaterials, 2022, 9, .	5.6	54
1889	Electrospun flexible magnesium-doped silica bioactive glass nanofiber membranes with anti-inflammatory and pro-angiogenic effects for infected wounds. Journal of Materials Chemistry B, 2023, 11, 359-376.	5.8	9

ARTICLE IF CITATIONS Strontium and simvastatin dual loaded hydroxyapatite microsphere reinforced $poly(\hat{l}\mu$ -caprolactone) 1890 6 5.8 scaffolds promote vascularized bone regeneration. Journal of Materials Chemistry B, 2023, 11, 1115-1130. 1891 Diş Hekimliğinde Biyoaktif Camların Kullanımı., 0, , . Nanofiber/hydrogel composite scaffold incorporated by silicon nanoparticles for sustained delivery 1892 of osteogenic factor: <i>inÂvitro</i> study. International Journal of Polymeric Materials and 0 3.4 Polymeric Biomaterials, 0, , 1-14. Achievements in Mesoporous Bioactive Glasses for Biomedical Applications. Pharmaceutics, 2022, 14, 1893 4.5 2636. Antibacterial Cu-Doped HA/TiO2 Bioactive Ceramic Composite Coating with Enhanced Adhesion on Pure 1894 2.5 1 Ti. Journal of Materials Engineering and Performance, 2023, 32, 6151-6159. Synthesis, photothermal effects, and antibacterial properties of lanthanum-doped hydroxyapatite. Ceramics International, 2023, 49, 11378-11392. 1895 4.8 Poly(Glycerol Succinate) as Coating Material for 1393 Bioactive Glass Porous Scaffolds for Tissue 1896 4.5 5 Engineering Applications. Polymers, 2022, 14, 5028. Hydroxyapatite–bioglass nanocomposites: Structural, mechanical, and biological aspects. Beilstein 2.8 Journal of Nanotechnology, 0, 13, 1490-1504. Bioactive Glasses as Carriers of Cancer-Targeted Drugs: Challenges and Opportunities in Bone Cancer 1898 2.9 5 Treatment. Materials, 2022, 15, 9082. A better roadmap for designing novel bioactive glasses: effective approaches for the development of innovative revolutionary bioglasses for future biomedical applications. Environmental Science and Pollution Research, 2023, 30, 116960-116983. 1899 5.3 Development of Poly(Glycerol Sebacate) and Its Derivatives: A Review of the Progress over the past 1900 10.9 5 Two Decades. Polymer Reviews, 2023, 63, 613-678. Melaleuca armillaris Essential Oil as an Antibacterial Agent: The Use of Mesoporous Bioactive Glass 1901 4.1 Nanoparticles as Drug Carrier. Nanomaterials, 2023, 13, 34. Modularized bioceramic scaffold/hydrogel membrane hierarchical architecture beneficial for 1902 6.9 5 periodontal tissue regeneration in dogs. Biomaterials Research, 2022, 26, . Highly elastic and self-healing nanostructured gelatin/clay colloidal gels with osteogenic capacity 1903 7.1 for minimally invasive and customized bone regeneration. Biofabrication, 2023, 15, 025001. Application and Molecular Mechanisms of Extracellular Vesicles Derived from Mesenchymal Stem 1904 2 2.4 Cells in Osteoporosis. Current Issues in Molecular Biology, 2022, 44, 6346-6367. Fabrication and biological properties of magnetic bioactive glass nanoparticles. Ceramics International, 2023, 49, 12925-12933. 4.8 Silver doped-silica nanoparticles reinforced poly (ethylene glycol) diacrylate/hyaluronic acid 1906 hydrogel dressings for synergistically accelerating bacterial-infected wound healing. Carbohydrate 10.2 22 Pólymers, 2023, 304, 120450. Multifunctional inorganic biomaterials: New weapons targeting osteosarcoma. Frontiers in 1907 Molecular Biosciences, 0, 9, .

#		IF	CITATIONS
" 1908	Formation of a novel Cu-containing bioactive glass nano-topography coating with strong bactericidal	12.0	8
1000	Heat Shock Protein 27 Is Involved in the Bioactive Glass Induced Osteogenic Response of Human	4.1	1
1909	Mesenchymal Stem Cells. Cells, 2023, 12, 224.	4.1	1
1910	Bioactive Glass-Ceramic Scaffolds Coated with Hyaluronic Acid–Fatty Acid Conjugates: A Feasibility Study. Journal of Functional Biomaterials, 2023, 14, 26.	4.4	1
1911	Structural and In Vitro Bioactivity of Phosphate-Based Glasses for Bone Regeneration. Advances in Material Research and Technology, 2023, , 113-152.	0.6	2
1912	Biodegradable BBG/PCL composite scaffolds fabricated by selective laser sintering for directed regeneration of critical-sized bone defects. Materials and Design, 2023, 225, 111543.	7.0	9
1913	Dissolution of Glass–Ceramic Scaffolds of Bioactive Glasses 45S5 and S53P4. , 2023, 1, 871-881.		5
1914	A review on borate bioactive glasses (BBG): effect of doping elements, degradation, and applications. Journal of Materials Chemistry B, 2023, 11, 955-973.	5.8	20
1915	Strontium-doped bioactive glass/PDA functionalized polyetheretherketone with immunomodulatory property for enhancing photothermal clearance of Staphylococcus aureus. Materials and Design, 2023, 225, 111552.	7.0	7
1916	Advances in ion-doping of Ca-Mg silicate bioceramics for bone tissue engineering. Coordination Chemistry Reviews, 2023, 478, 215001.	18.8	14
1917	Dissolution of bioactive glass S53P4 in a three-reactor cascade in continuous flow conditions. Open Ceramics, 2023, 13, 100327.	2.0	3
1918	Bioceramic materials with ionâ \in mediated multifunctionality for wound healing. , 2022, 1, .		20
1919	Comprehensive assessment of SrO and CuO co-incorporated 50S6P amorphous silicate bioactive glasses in vitro: Revealing bioactivity properties of bone graft biomaterial for bone tissue engineering applications. Ceramics International, 2023, 49, 13940-13952.	4.8	6
1920	Hydrogel Based on Nanoclay and Gelatin Methacrylate Polymeric Matrix as a Potential Osteogenic Application. Journal of Functional Biomaterials, 2023, 14, 74.	4.4	3
1921	The Localized Ionic Microenvironment in Bone Modelling/Remodelling: A Potential Guide for the Design of Biomaterials for Bone Tissue Engineering. Journal of Functional Biomaterials, 2023, 14, 56.	4.4	4
1922	Near-infrared light-driven multifunctional metal ion (Cu2+)-loaded polydopamine nanomotors for therapeutic angiogenesis in critical limb ischemia. Nano Research, 2023, 16, 5108-5120.	10.4	3
1923	Polymer nanocomposites for biomedical applications. , 2023, , 379-394.		1
1924	3D printed mesoporous bioactive glass, bioglass 45S5, and β-TCP scaffolds for regenerative medicine: A comparative inÂvitro study. Bio-Medical Materials and Engineering, 2023, , 1-20.	0.6	0
1925	Application and translation of nano calcium phosphates in biomedicine. , 2023, , 19-57.		0

#	Article	IF	CITATIONS
1926	Osteogenic cell proliferation and antibacterial properties of CaCu–NaTaO3 on biomedical tantalum. Materials Chemistry and Physics, 2023, 297, 127450.	4.0	3
1927	Primary human osteoblast and mesenchymal stem cell responses to apatite/tricalcium phosphate bone cement modified with polyacrylic acid and bioactive glass. Journal of Biomedical Materials Research - Part A, 2023, 111, 1406-1422.	4.0	3
1928	Sol-gel synthesis of lithium doped mesoporous bioactive glass nanoparticles and tricalcium silicate for restorative dentistry: Comparative investigation of physico-chemical structure, antibacterial susceptibility and biocompatibility. Frontiers in Bioengineering and Biotechnology, 0, 11, .	4.1	5
1929	Modern definition of bioactive glasses and glass-ceramics. Journal of Non-Crystalline Solids, 2023, 608, 122228.	3.1	21
1930	Trivalent rare earth elements substitution in 58S bioactive glass matrix for bone repair applications - An in vitro and in vivo study. Materials Chemistry and Physics, 2023, 300, 127533.	4.0	0
1931	3D printing of lithium osteogenic bioactive composite scaffold for enhanced bone regeneration. Composites Part B: Engineering, 2023, 256, 110641.	12.0	16
1932	Recent advances in the use of inorganic nanomaterials as anti caries agents. Heliyon, 2023, 9, e15326.	3.2	3
1933	Hard tissue repairing potency of mesoporous borosilicate bioactive glass: An in vitro assessment. Journal of Non-Crystalline Solids, 2023, 609, 122289.	3.1	2
1934	Sol-gel processing and characterization of binary P2O5-CaO and ternary P2O5-CaO-Li2O mesoporous phosphate bioactive glasses. Journal of Non-Crystalline Solids: X, 2023, 17, 100159.	1.2	1
1935	Improvement of bioactivity with dual bioceramic incorporation to nanofibrous PCL scaffolds. Materialia, 2023, 27, 101699.	2.7	4
1936	Advances in Bone Grafting Technology. , 2023, , 1-16.		0
1937	Silk–Inorganic Nanoparticle Hybrid Hydrogel as an Injectable Bone Repairing Biomaterial. Journal of Functional Biomaterials, 2023, 14, 86.	4.4	2
1938	Dexamethasone-doped nanoparticles improve mineralization, crystallinity and collagen structure of human dentin. Journal of Dentistry, 2023, 130, 104447.	4.1	2
1939	Material–Structure–Function Integrated Additive Manufacturing of Degradable Metallic Bone Implants for Loadâ€Bearing Applications. Advanced Functional Materials, 2023, 33, .	14.9	12
1940	The effect of Ag2O and MgO dopants on the bioactivity, biocompatibility, and antibacterial properties of 58S bioactive glass synthesized by the sol-gel method. Journal of Non-Crystalline Solids, 2023, 606, 122189.	3.1	9
1941	The Local Release of Teriparatide Incorporated in 45S5 Bioglass Promotes a Beneficial Effect on Osteogenic Cells and Bone Repair in Calvarial Defects in Ovariectomized Rats. Journal of Functional Biomaterials, 2023, 14, 93.	4.4	1
1942	Load-bearing composite fracture-fixation devices with tailored fibre placement for toy-breed dogs. Research in Veterinary Science, 2023, 156, 66-80.	1.9	1
1943	Niobiumâ€containing bioactive glasses modulate alkaline phosphatase activity during bone repair. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2023, 111, 1224-1231.	3.4	3

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1944	Cold hydrostatic sintering of 45S5 bioactive glass. European Journal of Materials, 2023	3, 3, 1-10.	2.6	2
1945	Insight into the development of versatile dentin bonding agents to increase the durabi bonding interface. Frontiers in Dental Medicine, 0, 4, .	lity of the	1.4	0
1946	Fabrication and characterization of novel rapid-setting and anti-washout bioactive glas direct pulp capping. Ceramics International, 2023, 49, 17827-17837.	is cements for	4.8	1
1947	In-vitro antimicrobial & biocompatibility study of Spherical 52S4.6 Submicron-Bios synthesized by Stöber Method: Effect of Ag Doping. Journal of Sol-Gel Science and Te 106, 67-84.	active glass chnology, 2023,	2.4	1
1948	Three-Dimensional Printing of Poly-L-Lactic Acid Composite Scaffolds with Enhanced Bi Controllable Zn Ion Release Capability by Coupling with Carbon-ZnO. Bioengineering, 2	ioactivity and 2023, 10, 307.	3.5	1
1949	Piezoelectric Bioactive Glasses Composite Promotes Angiogenesis by the Synergistic E Wireless Electrical Stimulation and Active Ions. Advanced Healthcare Materials, 2023,	iffect of 12, .	7.6	5
1950	Synthesis and characterization of Mg and Sr-modified calcium phosphate/gelatin biom for bone tissue engineering. Ceramics International, 2023, 49, 18255-18263.	imetic scaffolds	4.8	0
1952	Inâ€vivo evaluations of bone regenerative potential of two novel bioactive glasses. Jou Biomedical Materials Research - Part A, 2023, 111, 1264-1278.	rnal of	4.0	0
1953	Extensive Investigation on the Effect of Niobium Insertion on the Physical and Biologic of 45S5 Bioactive Glass for Dental Implant. International Journal of Molecular Sciences	al Properties , 2023, 24, 5244.	4.1	6
1954	Boron-based bioactive glasses: Properties, processing, characterization and applicatior International, 2023, 49, 19595-19605.	ns. Ceramics	4.8	8
1955	Magnetic Response Combined with Bioactive Ion Therapy: A RONS-Scavenging Theran Nanoplatform for Thrombolysis and Renal Ischemia–Reperfusion Injury. ACS Nano, 2	ostic 023, 17, 5695-5712.	14.6	6
1956	Bioactive Glass Inhibits Tumor Development from Giant Cell Tumor of Bone-Derived Ne Stromal Cells in a Chicken Chorioallantoic Membrane Assay. Cancers, 2023, 15, 1868.	poplastic	3.7	1
1957	Printability Evaluation of UV-Curable Aqueous Laponite/Urethane-Based PEG Inks. ACS Materials, 2023, 5, 2345-2358.	Applied Polymer	4.4	1
1958	In vitro evaluation of a novel Mg–Sn–Ge ternary alloy for orthopedic applications. and Compounds, 2023, 953, 169813.	Journal of Alloys	5.5	1
1959	Bioactive Glass Applications in Different Periodontal Lesions: A Narrative Review. Coati 716.	ngs, 2023, 13,	2.6	4
1960	Advances in Bone Grafting Technology. , 2023, , 1-16.			0
1961	Borosilicate sol–gel bioactive glasses and the effect of borate content on structure-prelationships. Journal of Sol-Gel Science and Technology, 0, , .	property	2.4	3
1962	Influence of the Structure on Magnetic Properties of Calcium-Phosphate Systems Dop Vanadium Ions. International Journal of Molecular Sciences, 2023, 24, 7366.	ed with Iron and	4.1	0

ARTICLE IF CITATIONS Dual-functional borosilicate glass (BSG) delivery implant for osteomyelitis treatment and bone 1963 12.0 3 regeneration. Composites Part B: Engineering, 2023, 259, 110749. Thermally stable bioactive borosilicate glasses: Composition–structure–property correlations. 1964 2.6 Journal of Materials Research, O, , . A colloidal hydrogel-based drug delivery system overcomes the limitation of combining bisphosphonates with bioactive glasses: in vitro evidence of a potential selective bone cancer treatment allied with bone regeneration. , 2023, 151, 213441. 1965 1 Fabrication of silver and strontium co-loaded chitosan–gelatin nanocomposite coatings with balanced antibacterial and osteogenic properties. Journal of Materials Research, 0, , . A comprehensive review on development of waste derived hydroxyapatite (HAp) for tissue engineering 1967 1.8 6 application. Materials Today: Proceedings, 2023, , . Manufacture of Bilayered Composite Hydrogels with Strong, Elastic, and Tough Properties for Osteochondral Repair Applications. Biomimetics, 2023, 8, 203. 1968 3.3 Advanced applications of strontium-containing biomaterials in bone tissue engineering. Materials 1969 5.5 7 Today Bio, 2023, 20, 100636. Chlorhexidine-loaded bioactive glass for incorporation into adhesive systems: Mechanical properties, antibacterial activity, cell viability, and hydroxyapatite precipitation. International Journal of Adhesion and Adhesives, 2023, 124, 103384. 2.9 Facile synthesis of electrospun antibacterial bioactive glass based micronanofibre (ABGmnf) for 1971 4.0 3 exalted wound healing: In vitro and in vivo studies. Materials Chemistry and Physics, 2023, 305, 127874. Comparison of hydrophilic and hydrophobic nano topographic surfaces of titanium alloys on 1.2 pre-osteoblastic cell interaction. Biomedical Physics and Engineering Express, 0, , . Multifunctional Zn and Ag co-doped bioactive glass nanoparticles for bone therapeutic and 1973 3 3.3 regeneration. Scientific Reports, 2023, 13, . Particulate beta-tricalcium phosphate and hydroxyapatite doped with silver promote inÂvitro 1974 0.6 osteoblast differentiation in MC3T3-E1 cells. Bio-Medical Materials and Engineering, 2023, , 1-14. The angiogenic potential of <scp>pH</scp>â€neutral borophosphate bioactive glasses. Journal of 1975 4.0 0 Biomedical Materials Research - Part A, O, , . Tissue response to a novel bone adhesive implanted subcutaneously in rats: A histological and gene expression analysis. Nano Select, 2023, 4, 408-418. 3.7 Nanoengineering multifunctional extracellular vesicles availably mitigate bone loss in osteoporosis through binding to RANKL and rebalancing the Treg/Th17 cells. Chemical Engineering Journal, 2023, 467, 1977 12.7 2 143391. From nanoscale to microscale hierarchical multifunctional nano borate bioactive glass for efficient 4.8 wound healing. Ceramics International, 2023, 49, 25908-25919. Improving osteoinduction and osteogenesis of Ti6Al4V alloy porous scaffold by regulating the pore 1979 3.6 4 structure. Frontiers in Chemistry, 0, 11, . Additive Manufacturing of Polymer/Bioactive Glass Scaffolds for Regenerative Medicine: A Review. 1980 4.5 Polymers, 2023, 15, 2473.
#	Article	IF	CITATIONS
1981	Potential application of inorganic nano-materials in modulation of macrophage function: Possible application in bone tissue engineering. Heliyon, 2023, 9, e16309.	3.2	0
1982	Role of bioglass derivatives in tissue regeneration and repair: A review. Reviews on Advanced Materials Science, 2023, 62, .	3.3	3
1983	Enhanced bioactivity and hydrothermal aging resistance of <scp>Yâ€TZP</scp> ceramics for dental implant. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 0, , .	3.4	0
1984	Program and Abstracts. Tissue Engineering - Part A, 2023, 29, 1-1650.	3.1	0
1985	Hydrogels as Scaffolds in Boneâ€Related Tissue Engineering and Regeneration. Macromolecular Bioscience, 2023, 23, .	4.1	1
1986	Angiogenic and immunomodulation role of ions for initial stages of bone tissue regeneration. Acta Biomaterialia, 2023, 166, 14-41.	8.3	9
1987	A comparative in vitro and in vivo analysis of the biological properties of the 45S5-, 1393-, and 0106-B1-bioactive glass compositions using human bone marrow-derived stromal cells and a rodent critical size femoral defect model. , 2023, 153, 213521.		5
1988	Bioactive Calcium Phosphate Coatings for Bone Implant Applications: A Review. Coatings, 2023, 13, 1091.	2.6	3
1989	Ameliorative effect of different mesoporous bioactive glass materials in experimental tibial defects in rats. Asian Biomedicine, 2022, 16, 237-248.	0.3	0
1990	An injectable MB/BG@LG sustained release lipid gel with antibacterial and osteogenic properties for efficient treatment of chronic periodontitis in rats. Materials Today Bio, 2023, 21, 100699.	5.5	1
1991	Wound healing performance of electrospun PVA/70S30C bioactive glass/Ag nanoparticles mats decorated with curcumin: In vitro and in vivo investigations. , 2023, 153, 213530.		2
1992	Influence of Sr2+ ions on structural, optical and bioactive behaviour of phosphoborate glass system. Journal of Molecular Structure, 2023, 1291, 136095.	3.6	1
1994	Proteolytically Resistant Bioactive Peptide-Grafted Sr/Mg-Doped Hardystonite Foams: Comparison of Two Covalent Functionalization Strategies. Biomimetics, 2023, 8, 185.	3.3	1
1995	Multifunctional 3D-printed bioceramic scaffolds: Recent strategies for osteosarcoma treatment. Journal of Tissue Engineering, 2023, 14, 204173142311703.	5.5	2
1996	Review: understanding the properties of amorphous materials with high-performance computing methods. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2023, 381, .	3.4	3
1997	Strategies for <i>inÂsitu</i> tissue engineering of vascularized bone regeneration (Review). Biomedical Reports, 2023, 18, .	2.0	1
1998	Application of Silk-Fibroin-Based Hydrogels in Tissue Engineering. Gels, 2023, 9, 431.	4.5	8
1999	Synthesis and Characterization of Nano-Hydroxyapatite Obtained from Eggshell via the Hydrothermal Process and the Precipitation Method. Molecules, 2023, 28, 4926.	3.8	6

#	Article	IF	CITATIONS
2000	3D multicellular micropatterning biomaterials for hair regeneration and vascularization. Materials Horizons, 2023, 10, 3773-3784.	12.2	3
2001	Structural and biological properties of novel Vanadium and Strontium co-doped HAp for tissue engineering applications. Ceramics International, 2023, 49, 30156-30169.	4.8	3
2002	3D Bioprinting of a Bioactive Composite Scaffold for Cell Delivery in Periodontal Tissue Regeneration. Biomolecules, 2023, 13, 1062.	4.0	4
2003	Drug loaded bioglass nanoparticles and their coating for efficient tissue and bone regeneration. Journal of Non-Crystalline Solids, 2023, 616, 122469.	3.1	3
2004	Dual loaded Ce-MBGs with bioactivity, antioxidant and antibacterial properties. Ceramics International, 2023, 49, 30875-30880.	4.8	0
2005	Plugâ€andâ€Play Multimaterial Chaotic Printing/Bioprinting to Produce Radial and Axial Micropatterns in Hydrogel Filaments. Advanced Materials Technologies, 0, , .	5.8	1
2006	Preparation of hydroxyapatite/bioactive glass/collagen scaffolds for use in tissue engineering. Journal of Non-Crystalline Solids, 2023, 616, 122492.	3.1	0
2007	3D printing of piezoelectric and bioactive barium titanate-bioactive glass scaffolds for bone tissue engineering. Materials Today Bio, 2023, 21, 100719.	5.5	3
2008	Determination of the sintering behaviour of apatite using multiple characterization techniques. International Journal of Environmental Science and Technology, 0, , .	3.5	0
2009	Advances in Organic–Inorganic Hybrid Latex Particles via In Situ Emulsion Polymerization. Polymers, 2023, 15, 2995.	4.5	7
2010	Surface modifications of biomaterials in different applied fields. RSC Advances, 2023, 13, 20495-20511.	3.6	11
2011	High Boron Content Enhances Bioactive Glass Biodegradation. Journal of Functional Biomaterials, 2023, 14, 364.	4.4	2
2012	Laser-based ion doping is a suitable alternative to dope biologically active ions into colloidal bioglass nanoparticles. Materials Advances, 0, , .	5.4	0
2015	Assessment of in-vitro bioactivity, biodegradability and antibacterial activity of polymer-derived 3D printed åkermanite scaffolds. Open Ceramics, 2023, , 100413.	2.0	1
2016	Cell-loaded genipin cross-linked collagen/gelatin skin substitute adorned with zinc-doped bioactive glass-ceramic for cutaneous wound regeneration. International Journal of Biological Macromolecules, 2023, 251, 125898.	7.5	2
2017	Collagen membrane functionalized with magnesium oxide via room-temperature atomic layer deposition promotes osteopromotive and antimicrobial properties. Bioactive Materials, 2023, 30, 46-61.	15.6	2
2018	Bi-lineage inducible and immunoregulatory electrospun fibers scaffolds for synchronous regeneration of tendon-to-bone interface. Materials Today Bio, 2023, 22, 100749.	5.5	1
2019	Local structure of nanosized bioglasses doped with yttrium and lanthanum by 29Si and 31P MAS NMR. Applied Nanoscience (Switzerland), 0, , .	3.1	0

#	Article	IF	CITATIONS
2020	Hydroxyapatite cross-linked in situ polyvinyl alcohol hydrogel for bionic calcified cartilage layer. Colloids and Surfaces B: Biointerfaces, 2023, 230, 113510.	5.0	2
2021	In Situ Emulsion Polymerization to Multifunctional Polymer Nanocomposites: A Review. Macromolecular Chemistry and Physics, 2023, 224, .	2.2	5
2022	Study of barium-based bioactive glass-ceramic/starch nanobiocomposite as a candidate graft material for bone repair. Journal of the Australian Ceramic Society, 2023, 59, 1453-1464.	1.9	1
2023	Advanced Bioactive Glasses: The Newest Achievements and Breakthroughs in the Area. Nanomaterials, 2023, 13, 2287.	4.1	4
2024	A tailored hydroxyapatite/magnesium silicate 3D composite scaffold: Mechanical, degradation, and bioactivity properties. Ceramics International, 2023, 49, 35438-35447.	4.8	1
2025	Incorporation of graphene oxide as a coupling agent in a 3D printed polylactic acid/hardystonite nanocomposite scaffold for bone tissue regeneration applications. International Journal of Biological Macromolecules, 2023, 253, 126510.	7.5	6
2026	The bioinorganic chemistry of the early transition metals in bone: distribution and uptake mechanisms. Coordination Chemistry Reviews, 2023, 495, 215396.	18.8	1
2027	The synergetic effect of hierarchical pores and micro-nano bioactive glass on promoting osteogenesis and angiogenesis in vitro. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 146, 106093.	3.1	1
2028	Clustering of fluoride and phosphate ions in bioactive glass from computer simulation. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2023, 381, .	3.4	1
2029	Structure, Radiation Shielding Characteristics, Bioactive Studies and Artificial Intelligence Density Prediction of Mixed Alkali B2O3-SiO2-CaO-ZnO Glasses. Silicon, 2023, 15, 7979-7993.	3.3	1
2030	Structural and in vitro biological properties of strontium substituted bio-waste derived wollastonite for bone regeneration. Ceramics International, 2023, 49, 36344-36352.	4.8	0
2031	Strong, elastic and degradation-tolerated hydrogels composed of chitosan, silk fibroin and bioglass nanoparticles with factor-bestowed activity for bone tissue engineering. International Journal of Biological Macromolecules, 2023, 253, 126619.	7.5	1
2032	Materials in the Na2O–CaO–SiO2–P2O5 System for Medical Applications. Materials, 2023, 16, 5981.	2.9	1
2033	Osteogenesis and cytocompatibility compression of cerium and gallium doped mesoporous bioactive glass-ceramics. Journal of Non-Crystalline Solids, 2023, 620, 122598.	3.1	0
2034	Preparation of lithium-containing magnesium phosphate-based composite ceramics having high compressive strength, osteostimulation and proangiogenic effects. Biomedical Materials (Bristol), 2023, 18, 065008.	3.3	0
2035	Recent advances in the application and biological mechanism of silicon nitride osteogenic properties: a review. Biomaterials Science, 2023, 11, 7003-7017.	5.4	0
2036	Enhanced Release of Calcium Ions from Hydroxyapatite Nanoparticles with an Increase in Their Specific Surface Area. Materials, 2023, 16, 6397.	2.9	2
2037	Cu–Sr Bilayer Bioactive Glass Nanoparticles/Polydopamine Functionalized Polyetheretherketone Enhances Osteogenic Activity and Prevents Implantâ€Associated Infections through Spatiotemporal Immunomodulation. Advanced Healthcare Materials, 2023, 12, .	7.6	4

#	Article	IF	CITATIONS
2038	Fabrication, structure, physical properties and FTIR spectroscopy of zirconate doped-borophosphate bioglasses. Optical and Quantum Electronics, 2023, 55, .	3.3	0
2039	Magnesium bioactive glass hybrid functionalized polyetheretherketone with immunomodulatory function to guide cell fate and bone regeneration. Colloids and Surfaces B: Biointerfaces, 2023, 230, 113523.	5.0	1
2040	Doped Multiple Nanoparticles with Hydroxyapatite Coating Show Diverse Health Effects in vivo. International Journal of Nanomedicine, 0, Volume 18, 5031-5054.	6.7	0
2041	Sol–Gel Technologies to Obtain Advanced Bioceramics for Dental Therapeutics. Molecules, 2023, 28, 6967.	3.8	3
2042	Study of the manganese and calcium synergetic influence on mesoporous bioactive glass characteristic. Journal of Non-Crystalline Solids, 2023, 622, 122656.	3.1	0
2043	Multifunctional bioactive glasses with spontaneous degradation for simultaneous osteosarcoma therapy and bone regeneration. , 2023, 154, 213626.		2
2044	Impact of 13-93 bio-glass inclusion on the machinability, in-vitro degradation, and biological behavior of Y-TZP-based bioceramic composite. Ceramics International, 2024, 50, 1087-1106.	4.8	0
2045	Electrophoretic Deposition of Nanohydroxyapatite on Homogenized Magnesium Based Alloy for Biomedical Applications. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 0, 61, 15-41.	0.5	0
2046	On the structure of Ag-containing sol-gel bioactive glasses: A surface crystal growth of metallic silver removes its network modifier role in the glass structure. Open Ceramics, 2023, 16, 100449.	2.0	1
2047	Biomaterials combined with ADSCs for bone tissue engineering: current advances and applications. Regenerative Biomaterials, 2023, 10, .	5.6	1
2048	The effect of Si species released from bioactive glasses on cell behaviour: A quantitative review. Acta Biomaterialia, 2023, 170, 39-52.	8.3	0
2049	Crystallization mechanism of B12.5 bioactive borosilicate glasses and its impact on in vitro degradation. Journal of the European Ceramic Society, 2023, , .	5.7	2
2050	A pH-neutral bioactive glass empowered gelatin–chitosan–sodium phytate composite scaffold for skull defect repair. Journal of Materials Chemistry B, 2023, 11, 9742-9756.	5.8	1
2051	An application of decellularized membrane as guided tissue regeneration. IP International Journal of Periodontology and Implantology, 2023, 8, 129-135.	0.1	0
2052	Hydrogel-inorganic filler composites for 3D bioprinting. , 2024, , 525-554.		0
2053	Quaternary ZrCuCa-based thin films metallic glasses deposited by cathodic arc deposition. Arabian Journal of Chemistry, 2023, 16, 105312.	4.9	0
2054	A comprehensive investigation of the effect of Ag on the structure and antibacterial efficacy of Li-substituted 58S and 68S bioactive glasses. Journal of Non-Crystalline Solids, 2023, 622, 122622.	3.1	1
2055	Microstructural investigation of hydroxyapatite formation in bioactive borosilicate glass. Journal of the Ceramic Society of Japan, 2023, 131, 843-849.	1.1	0

#	Article	IF	CITATIONS
2056	Reduced Sodium Portions Favor Osteogenic Properties and Cytocompatibility of 45S5-Based Bioactive Glass Particles. Biomimetics, 2023, 8, 472.	3.3	0
2057	Ionâ \in "modified optimization of smart scaffolds in bone tissue regeneration. , 0, 2, .		Ο
2058	Mesoporous Bioactive Glass-Incorporated Injectable Strontium-Containing Calcium Phosphate Cement Enhanced Osteoconductivity in a Critical-Sized Metaphyseal Defect in Osteoporotic Rats. Bioengineering, 2023, 10, 1203.	3.5	0
2059	Review: Tailored microstructures in the system tricalcium phosphate-wollastonite-diopside for bone regeneration scaffolds. Open Ceramics, 2023, 16, 100483.	2.0	1
2060	Threeâ€dimensional printed Zn ₂ SiO ₄ /sodium alginate composite scaffold with multiple biological functions for tendonâ€ŧoâ€bone repair. , 2023, 2, .		0
2062	β-Tricalcium Phosphate-Loaded Chitosan-Based Thermosensitive Hydrogel for Periodontal Regeneration. Polymers, 2023, 15, 4146.	4.5	0
2063	Effect of Silicon Dioxide and Magnesium Oxide on the Printability, Degradability, Mechanical Strength and Bioactivity of 3D Printed Poly (Lactic Acid)-Tricalcium Phosphate Composite Scaffolds. Tissue Engineering and Regenerative Medicine, 0, , .	3.7	0
2064	Injectable smart stimuli-responsive hydrogels: pioneering advancements in biomedical applications. Biomaterials Science, 2023, 12, 8-56.	5.4	1
2065	Emerging factors affecting periâ€implant bone metabolism. Periodontology 2000, 0, , .	13.4	0
2066	Effect of silica-based mesoporous nanomaterials on human blood cells. Chemico-Biological Interactions, 2024, 387, 110784.	4.0	2
2067	Perspectives on the impact of crystallization in bioactive glasses and glass eramics. International Journal of Ceramic Engineering & Science, 2024, 6, .	1.2	0
2068	Tailored biomedical materials for wound healing. Burns and Trauma, 2023, 11, .	4.9	0
2069	Advances in Bone Grafting Technology. , 2023, , 423-438.		0
2070	Extracellular and intracellular effects of bioactive glass nanoparticles on osteogenic differentiation of bone marrow mesenchymal stem cells and bone regeneration in zebrafish osteoporosis model. Acta Biomaterialia, 2024, 174, 412-427.	8.3	0
2071	Bioactive glasses promote rapid pre-osteoblastic cell migration in contrast to hydroxyapatite, while carbonated apatite shows migration inhibiting properties. Scientific Reports, 2023, 13, .	3.3	0
2072	Synergistic effect of ion release and micromorphology on biomineralization, cytocompatibility and osteogenesis of Li+/Na+ exchanged LD glass-ceramic in vitro. Ceramics International, 2023, , .	4.8	0
2073	Antibacterial and In Vitro Bioactivity Studies of Silver-Doped, Cerium-Doped, and Silver–Cerium Co-Doped 80S Mesoporous Bioactive Glass Particles via Spray Pyrolysis. Applied Sciences (Switzerland), 2023, 13, 12637.	2.5	2
2074	Sol-gel derived mesoporous 45S5 bioactive glass containing Mg and Zr ions: Synthesis, characterization, and in vitro biological investigation. Arabian Journal of Chemistry, 2024, 17, 105374.	4.9	0

#	Article	IF	CITATIONS
2075	Effect of Different Contents of 63s Bioglass on the Performance of Bioglass-PCL Composite Bone Scaffolds. Inventions, 2023, 8, 138.	2.5	0
2076	Isothermal crystallization behavior of poly-ether-ether-ketone/bioactive glass composites and its correlation with scaffold warpage in laser powder bed fusion process. Additive Manufacturing, 2023, 78, 103852.	3.0	0
2077	Opportunities for Bioactive Glass in Gastrointestinal Conditions: A Review of Production Methodologies, Morphology, Composition, and Performance. Molecular Pharmaceutics, 2023, 20, 5954-5980.	4.6	0
2078	Modification of titanium orthopedic implants with bioactive glass: a systematic review of in vivo and in vitro studies. Frontiers in Bioengineering and Biotechnology, 0, 11, .	4.1	0
2079	Calcium silicate biocomposites: effects of selenium oxide on the physico-mechanical features and their in-vitro biological assessments. Biomedical Materials (Bristol), 2024, 19, 015003.	3.3	0
2080	Sol-gel derived B2O3-CaO borate bioactive glasses with hemostatic, antibacterial and pro-angiogenic activities. International Journal of Energy Production and Management, 0, , .	3.7	0
2081	Intrafibrillar mineralization of type I collagen with calcium carbonate and strontium carbonate induced by the polyelectrolyte-cation complexes. Nanoscale Advances, 0, , .	4.6	0
2082	Influence of surface pre-reacted glass-ionomer (S-PRC) filler eluate on collagen morphology, remineralization, and ultimate tensile strength of demineralized dentin. Journal of the Mechanical Behavior of Biomedical Materials, 2024, 150, 106295.	3.1	0
2083	An injectable gel based on photo-cross-linkable hyaluronic acid and mesoporous bioactive glass nanoparticles for periodontitis treatment. International Journal of Biological Macromolecules, 2024, 257, 128596.	7.5	0
2084	A pedagogical approach for the development and optimization of a novel mix of biowastes-derived hydroxyapatite using the Box-Behnken experimental design. Heliyon, 2024, 10, e23092.	3.2	0
2086	Cobalt-doped layered hydroxide coating on titanium implants promotes vascularization and osteogenesis for accelerated fracture healing. Materials Today Bio, 2024, 24, 100912.	5.5	0
2087	The Preparation and Effects of Organic–Inorganic Antioxidative Biomaterials for Bone Repair. Biomedicines, 2024, 12, 70.	3.2	1
2088	Effect of magnesium and iron incorporation on the physicochemical properties of a new sol-gel derived glass-ceramic. Journal of Sol-Gel Science and Technology, 2024, 109, 502-522.	2.4	0
2089	Stem Cell Differentiation Mediated by Biomaterials/Surfaces. , 2023, , 307-375.		0
2090	Le verre comme biomateÌriau : strateÌgies d'optimisation des verres bioactifs pour les applications cliniques. Comptes Rendus - Geoscience, 0, , .	1.2	0
2091	Silicon-containing nanomedicine and biomaterials: materials chemistry, multi-dimensional design, and biomedical application. Chemical Society Reviews, 2024, 53, 1167-1315.	38.1	1
2092	Augmented physical, mechanical, and cellular responsiveness of gelatin-aldehyde modified xanthan hydrogel through incorporation of silicon nanoparticles for bone tissue engineering. International Journal of Biological Macromolecules, 2024, 259, 129231.	7.5	0
2093	Ferrimagnetic devitrified glass doped with copper by ion exchange: Microstructure, bioactivity and antibacterial properties. Ceramics International, 2024, 50, 12737-12745.	4.8	0

#	Article	IF	CITATIONS
2094	Novel synthesis and crystallographic results of zinc substituted hydroxyapatite with high thermal stability. Physica B: Condensed Matter, 2024, 676, 415676.	2.7	0
2095	The Addition of Zinc to the ICIE16-Bioactive Glass Composition Enhances Osteogenic Differentiation and Matrix Formation of Human Bone Marrow-Derived Mesenchymal Stromal Cells. Biomimetics, 2024, 9, 53.	3.3	0
2097	Multi-crosslinked hydrogel built with hyaluronic acid-tyramine, thiolated glycol chitosan and copper-doped bioglass nanoparticles for expediting wound healing. Carbohydrate Polymers, 2024, 327, 121635.	10.2	0
2098	New 3D Printed Scaffolds Based on Walstromite Synthesized by Sol–Gel Method. Journal of Functional Biomaterials, 2024, 15, 19.	4.4	0
2099	Novel nanocomposite made of calcium zinc silicate/ NiO2 for biomedical applications. Ceramics International, 2024, 50, 12459-12471.	4.8	0
2100	Diversely phased glass-ceramics in Bi2O3–SiO2 system for heterostructure formation: A demonstration via visible-light-sensitive photocatalytic reaction. Ceramics International, 2024, 50, 13988-13992.	4.8	0
2101	Ligand‣elective Targeting of Macrophage Hydrogel Elicits Bone Immune‣tem Cell Endogenous Selfâ€Healing Program to Promote Bone Regeneration. Advanced Healthcare Materials, 2024, 13, .	7.6	0
2102	Influence of P2O5 addition on glass structure and luminescent properties of Eu3+ ions in SiO2–CaO particles of bioactive glass. European Physical Journal Plus, 2024, 139, .	2.6	0
2103	Additive Manufacturing of Iron Carbide Incorporated Bioactive Glass Scaffolds for Bone Tissue Engineering and Drug Delivery Applications. ACS Applied Bio Materials, 2024, 7, 892-908.	4.6	0
2104	A novel injectable hydrogel prepared from phenylboronic acid modified gelatin and oxidized-dextran for bone tissue engineering. International Journal of Biological Macromolecules, 2024, 261, 129666.	7.5	1
2105	Cobalt containing antimicrobial bioactive glass coated urinary catheter towards management of catheter associated urinary tract infection (CAUTI): Significant in vitro characterizations. Ceramics International, 2024, 50, 11625-11638.	4.8	0
2106	A comparative analysis of the cytocompatibility, protein adsorption, osteogenic and angiogenic properties of the 45S5- and S53P4-bioactive glass compositions. Biomedical Materials (Bristol), 2024, 19, 025027.	3.3	0
2107	POSS hybrid bioactive glass dental composite resin materials: Synthesis and analysis. Journal of Dentistry, 2024, 142, 104860.	4.1	0
2108	Zirconia/bioactive glass composites development through a particle nanocoating. Ceramics International, 2024, 50, 14347-14359.	4.8	0
2109	Bio-response of copper–magnesium co-substituted mesoporous bioactive glass for bone tissue regeneration. Journal of Materials Chemistry B, 2024, 12, 1875-1891.	5.8	0
2110	Boric acid and Molybdenum trioxide synergistically stimulate osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Journal of Trace Elements in Medicine and Biology, 2024, 83, 127405.	3.0	0
2111	Industrial applications of nanoceramics: from lab to real-time utilization in the biomedical industry. , 2024, , 143-158.		0
2112	Can glass polyalkenoate (glass-ionomer) dental cements be considered bioactive? A review. Heliyon, 2024, 10, e25239.	3.2	Ο

# 2113	ARTICLE Bioresorbable nanoceramics: novel and efficient drug delivery vehicles. , 2024, , 99-125.	IF	Citations
2114	Applications of nanoceramics in the biomedical industry. , 2024, , 127-141.		0
2115	Exploring the advancements in surface-modified bioactive glass: enhancing antibacterial activity, promoting angiogenesis, and modulating bioactivity. Journal of Nanoparticle Research, 2024, 26, .	1.9	0
2116	Antimicrobial characteristics of the Li ₂ O–ZrO ₂ –Si ₂ O bioactive glass and glassâ€ceramic for bone regeneration and wound healing. International Journal of Applied Ceramic Technology, 2024, 21, 2567-2577.	2.1	0
2117	Effect of titanium addition on physicochemical and biological properties of apatite-wollastonite glass ceramic. Materials Letters, 2024, 361, 136059.	2.6	0
2118	Bioactive Glasses for Bone Repair Application: A Review of Osteointegration and Controlled Ion Release Capabilities. Minerals, Metals and Materials Series, 2024, , 311-326.	0.4	0
2119	BMSCs-laden mechanically reinforced bioactive sodium alginate composite hydrogel microspheres for minimally invasive bone repair. Carbohydrate Polymers, 2024, 332, 121933.	10.2	0
2120	Bioactive lons-Loaded Bioinks Primed for 3D Printing of Artificial Tissues. , 0, , .		0
2121	A 3D printed magnesium ammonium phosphate/polycaprolactone composite membrane for Guided bone regeneration. Materials and Design, 2024, 239, 112733.	7.0	0
2122	Evaluating the bioactivity of endodontic sealers with respect to their thermo-nanomechanical properties. Materials Science-Poland, 2023, 41, 126-139.	1.0	0
2123	Biomaterials and biopolymers in circular economy: Latest trends and applications. AIP Conference Proceedings, 2024, , .	0.4	0
2124	Influence of bioactive glass addition on the machinability, mechanical and biological response of Mg-PSZ-based biocomposites. Ceramics International, 2024, 50, 18238-18257.	4.8	0
2125	Limitations and modifications in the clinical application of calcium sulfate. Frontiers in Surgery, 0, 11,	1.4	0
2126	Advancements in incorporating metal ions onto the surface of biomedical titanium and its alloys via micro-arc oxidation: a research review. Frontiers in Chemistry, 0, 12, .	3.6	0
2127	Ecofriendly and scalable production of bioglass using an organic calcium source enhanced bioactivity for tissue repair. Biomedical Materials (Bristol), 2024, 19, 035001.	3.3	0
2128	State of the Art Review for Titanium Fluorine Glasses and Glass Ceramics. Materials, 2024, 17, 1403.	2.9	0
2129	Influence of glass composition on the network structure and mineralization of europium containing mesoporous bioactive glass nanoparticles. Materials Chemistry and Physics, 2024, 317, 129179.	4.0	0
2130	Zincâ€doped bioactive glassâ€functionalized polyetheretherketone to enhance the biological response in bone regeneration. Journal of Biomedical Materials Research - Part A, O, ,	4.0	0

#	Article	IF	CITATIONS
2131	Bioglass/ceria nanoparticle hybrids for the treatment of seroma: a comparative long-term study in rats. Frontiers in Bioengineering and Biotechnology, 0, 12, .	4.1	0