The cooling effect of green spaces as a contribution to the case study in Lisbon

Building and Environment 46, 2186-2194 DOI: 10.1016/j.buildenv.2011.04.034

Citation Report

#	Article	IF	CITATIONS
1	A new heat sensitivity index for settlement areas. Urban Climate, 2013, 6, 63-81.	2.4	19
2	Evaluating the cooling effects of greening for improving the outdoor thermal environment at an institutional campus in the summer. Building and Environment, 2013, 66, 158-172.	3.0	205
3	Carbon dioxide balance assessment of the city of Florence (Italy), and implications for urban planning. Landscape and Urban Planning, 2013, 120, 138-146.	3.4	58
4	Landscape perception and recreation needs in urban green space in Fuyang, Hangzhou, China. Urban Forestry and Urban Greening, 2013, 12, 44-52.	2.3	161
5	Social strategy games in communicating trade-offs between mitigation and adaptation in cities. Urban Climate, 2013, 4, 102-116.	2.4	30
6	Wind comfort in a public urban space—Case study within Dublin Docklands. Frontiers of Architectural Research, 2013, 2, 50-66.	1.3	35
7	Social vulnerability assessment of the Cologne urban area (Germany) to heat waves: links to ecosystem services. International Journal of Disaster Risk Reduction, 2013, 6, 98-117.	1.8	97
8	Integrated assessment of the cool island intensity of green spaces in the mega city of Beijing. International Journal of Remote Sensing, 2013, 34, 3028-3043.	1.3	35
9	Modification of Human-Biometeorologically Significant Radiant Flux Densities by Shading as Local Method to Mitigate Heat Stress in Summer within Urban Street Canyons. Advances in Meteorology, 2013, 2013, 1-13.	0.6	97
10	Estimation of the Relationship between Urban Park Characteristics and Park Cool Island Intensity by Remote Sensing Data and Field Measurement. Forests, 2013, 4, 868-886.	0.9	117
11	EFEITOS DA VEGETAÇÃO NA VARIAÇÃO TÉRMICA DA CIDADE DE CURITIBA, PR. Floresta, 2014, 44, 451.	0.1	2
12	Quantifying the Impact of Land Cover Composition on Intra-Urban Air Temperature Variations at a Mid-Latitude City. PLoS ONE, 2014, 9, e102124.	1.1	38
13	Urban forests and the conservation of threatened plant species: the case of the Tijuca National Park, Brazil. Natureza A Conservacao, 2014, 12, 170-173.	2.5	8
14	Counteracting urban climate change: adaptation measures and their effect on thermal comfort. Theoretical and Applied Climatology, 2014, 115, 243-257.	1.3	184
15	Efficiency of parks in mitigating urban heat island effect: An example from Addis Ababa. Landscape and Urban Planning, 2014, 123, 87-95.	3.4	439
16	On the thermal characteristics and the mitigation potential of a medium size urban park in Athens, Greece. Landscape and Urban Planning, 2014, 123, 73-86.	3.4	118
17	Urban planning indicators: useful tools to measure the effect of urbanization and vegetation on summer air temperatures. International Journal of Climatology, 2014, 34, 1236-1244.	1.5	74
18	Thermal assessment of heat mitigation strategies: The case of Portland State University, Oregon, USA. Building and Environment, 2014, 73, 138-150.	3.0	129

TION RE

#	Article	IF	CITATIONS
19	Effect of urban green patterns on surface urban cool islands and its seasonal variations. Urban Forestry and Urban Greening, 2014, 13, 646-654.	2.3	167
20	Relationship between land cover patterns and surface temperature in urban areas. GIScience and Remote Sensing, 2014, 51, 521-536.	2.4	80
21	A review of energy characteristic of vertical greenery systems. Renewable and Sustainable Energy Reviews, 2014, 40, 450-462.	8.2	136
22	Heat mitigation strategies in winter and summer: Field measurements in temperate climates. Building and Environment, 2014, 81, 309-319.	3.0	62
23	Thermal and comfort conditions in a semi-closed rear wooded garden and its adjacent semi-open spaces in a Mediterranean climate (Athens) during summer. Architectural Science Review, 2014, 57, 63-82.	1.1	21
24	Impact of mid-high rise buildings on summer air temperatures in the coastal city of Takamatsu in southwestern Japan. Urban Climate, 2014, 9, 75-88.	2.4	3
25	The cooling effect of urban green spaces as a contribution to energy-saving and emission-reduction: A case study in Beijing, China. Building and Environment, 2014, 76, 37-43.	3.0	152
26	Assessing the effects of landscape design parameters on intra-urban air temperature variability: The case of Beijing, China. Building and Environment, 2014, 76, 44-53.	3.0	115
27	Lichens as ecological indicators in urban areas: beyond the effects of pollutants. Journal of Applied Ecology, 2014, 51, 1750-1757.	1.9	50
28	Effects of spatial pattern of greenspace on urban cooling in a large metropolitan area of eastern China. Landscape and Urban Planning, 2014, 128, 35-47.	3.4	326
29	Urban Areas. , 0, , 535-612.		14
30	The mitigation effect of configuration and context optimization of urban holdings on heat island. IOP Conference Series: Earth and Environmental Science, 2014, 17, 012161.	0.2	0
31	From Experience-Oriented to Quantity-Based: A Method for Landscape Plant Selection and Configuration in Urban Built-Up Areas. Journal of Sustainable Forestry, 2015, 34, 698-719.	0.6	5
32	Avaliação em emergia como ferramenta de gestão nos parques urbanos de São Paulo. Gestão & Produção, 2015, 22, 443-458.	0.5	3
33	Configuration of Green Spaces for Urban Heat Island Mitigation and Future Building Energy Conservation in Hanoi Master Plan 2030. Buildings, 2015, 5, 933-947.	1.4	19
34	Rooftop Surface Temperature Analysis in an Urban Residential Environment. Remote Sensing, 2015, 7, 12135-12159.	1.8	54
35	Water Bodies an Urban Microclimate: A Review. Modern Applied Science, 2015, 9, .	0.4	101
36	Contribution of Greening and High-Albedo Coatings to Improvements in the Thermal Environment in Complex Urban Areas. Advances in Meteorology, 2015, 2015, 1-14.	0.6	28

#	Article	IF	CITATIONS
37	Quantifying the effects of settlement size on urban heat islands in fairly uniform geographic areas. Habitat International, 2015, 49, 100-106.	2.3	69
38	The impacts of land cover types on urban outdoor thermal environment: the case of Beijing, China. Journal of Environmental Health Science & Engineering, 2015, 13, 43.	1.4	24
39	Comparative analysis of green actions to improve outdoor thermal comfort inside typical urban street canyons. Urban Climate, 2015, 14, 251-267.	2.4	131
40	Crown size and growing space requirement of common tree species in urban centres, parks, and forests. Urban Forestry and Urban Greening, 2015, 14, 466-479.	2.3	187
41	An integrated approach for ventilation's assessment on outdoor thermal comfort. Building and Environment, 2015, 87, 59-71.	3.0	40
42	Economic Evaluation of Climate Change Impacts. Springer Climate, 2015, , .	0.3	15
43	A comparison of thermal comfort conditions in four urban spaces by means of measurements and modelling techniques. Building and Environment, 2015, 93, 245-257.	3.0	138
44	Residents' understanding of the role of green infrastructure for climate change adaptation in Hangzhou, China. Landscape and Urban Planning, 2015, 138, 132-143.	3.4	95
45	Impact of plant evapotranspiration rate and shrub albedo on temperature reduction in the tropical outdoor environment. Building and Environment, 2015, 94, 206-217.	3.0	64
46	The role of local land-use on the urban heat island effect of Tel Aviv as assessed from satellite remote sensing. Applied Geography, 2015, 56, 145-153.	1.7	111
47	The effect of urban geometry on mean radiant temperature under future climate change: a study of three European cities. International Journal of Biometeorology, 2015, 59, 799-814.	1.3	62
48	Calculating cooling extents of green parks using remote sensing: Method and test. Landscape and Urban Planning, 2015, 134, 66-75.	3.4	171
49	Urban Form and Microclimatic Conditions in Urban Open Spaces at the Densely Built Centre of a Greek City. Journal of Sustainable Development, 2016, 9, 132.	0.1	1
50	Street Orientation and Side of the Street Greatly Influence the Microclimatic Benefits Street Trees Can Provide in Summer. Journal of Environmental Quality, 2016, 45, 167-174.	1.0	77
51	TRANSFORMACIÓN DE LA SUPERFICIE TERRESTRE POR LA ACTIVIDAD HUMANA Y SU RELACIÓN CON EL CAMBIO CLIMÃ∓ICO. Sociedade & Natureza, 2016, 28, 185-198.	0.0	2
52	Modification of Heat-Related Mortality in an Elderly Urban Population by Vegetation (Urban Green) and Proximity to Water (Urban Blue): Evidence from Lisbon, Portugal. Environmental Health Perspectives, 2016, 124, 927-934.	2.8	134
53	Diurnal changes in urban boundary layer environment induced by urban greening. Environmental Research Letters, 2016, 11, 114018.	2.2	31
54	Metrópoles, cobertura vegetal, áreas verdes e saúde. Estudos Avancados, 2016, 30, 113-130.	0.2	36

#	Article	IF	CITATIONS
55	Neighborhood Landscape Spatial Patterns and Land Surface Temperature: An Empirical Study on Single-Family Residential Areas in Austin, Texas. International Journal of Environmental Research and Public Health, 2016, 13, 880.	1.2	49
56	Examining the Association between Physical Characteristics of Green Space and Land Surface Temperature: A Case Study of Ulsan, Korea. Sustainability, 2016, 8, 777.	1.6	27
57	Linear Parks along Urban Rivers: Perceptions of Thermal Comfort and Climate Change Adaptation in Cyprus. Sustainability, 2016, 8, 1023.	1.6	31
58	Assessing the Distribution of Urban Green Spaces and its Anisotropic Cooling Distance on Urban Heat Island Pattern in Baotou, China. ISPRS International Journal of Geo-Information, 2016, 5, 12.	1.4	78
59	Analysis of Thermal Environment over a Small-Scale Landscape in a Densely Built-Up Asian Megacity. Sustainability, 2016, 8, 358.	1.6	18
60	Urban exemplars of climate-sensitive design. , 2016, , 305-334.		1
61	Urban Forest Governance: FUTURE—The 100,000 Trees Project in the Porto Metropolitan Area. World Sustainability Series, 2016, , 187-202.	0.3	3
62	Achieving sustainability through the management of microclimate parameters in Mediterranean urban environments during summer. Sustainable Cities and Society, 2016, 26, 48-64.	5.1	34
63	The extent of shifts in vegetation phenology between rural and urban areas within a humanâ€dominated region. Ecology and Evolution, 2016, 6, 1942-1953.	0.8	37
64	Modelling the potential of green and blue infrastructure to reduce urban heat load in the city of Vienna. Climatic Change, 2016, 135, 425-438.	1.7	83
65	Modelling building proximity to greenery in a three-dimensional perspective using multi-source remotely sensed data. Journal of Spatial Science, 2016, 61, 389-403.	1.0	8
66	Research on the cooling island effects of water body: A case study of Shanghai, China. Ecological Indicators, 2016, 67, 31-38.	2.6	186
67	Historical Allotment Gardens in WrocÅ,aw - The Need to Protection. Civil and Environmental Engineering Reports, 2016, 21, 43-52.	0.2	3
68	Prediction of the root anchorage of native young plants using Bayesian inference. Urban Forestry and Urban Greening, 2016, 19, 237-252.	2.3	5
69	The influence of increasing tree cover on mean radiant temperature across a mixed development suburb in Adelaide, Australia. Urban Forestry and Urban Greening, 2016, 20, 233-242.	2.3	65
70	Transpiration and stomatal conductance as potential mechanisms to mitigate the heat load in Mexico City. Urban Forestry and Urban Greening, 2016, 20, 152-159.	2.3	34
71	Temporal variations in microclimate cooling induced by urban trees in Mainz, Germany. Urban Forestry and Urban Greening, 2016, 20, 198-209.	2.3	44
72	Two faces to the greenery on housing estates–mitigating climate but aggravating allergy. A Warsaw case study. Urban Forestry and Urban Greening, 2016, 16, 170-181.	2.3	18

#	Article	IF	CITATIONS
73	Preliminary study of the influence of the spatial arrangement of urban parks on local temperature reduction. Urban Forestry and Urban Greening, 2016, 20, 348-357.	2.3	69
74	Small-scale human-biometeorological impacts of shading by a large tree. Open Geosciences, 2016, 8, .	0.6	31
75	Cooling effect of urban parks and their relationship with urban heat islands. Atmospheric and Oceanic Science Letters, 2016, 9, 298-305.	0.5	15
76	Influence of vegetation and building geometry on the spatial variations of air temperature and cooling rates in a highâ€latitude city. International Journal of Climatology, 2016, 36, 2379-2395.	1.5	67
77	The role of urban green infrastructure in mitigating land surface temperature in Bobo-Dioulasso, Burkina Faso. Environment, Development and Sustainability, 2016, 18, 373-392.	2.7	55
78	Evaluating green infrastructure in urban environments using a multi-taxa and functional diversity approach. Environmental Research, 2016, 147, 601-610.	3.7	54
79	Numerical optimisation through dynamic simulation of the position of trees around a stand-alone building to reduce cooling energy consumption. Energy and Buildings, 2016, 112, 234-243.	3.1	63
80	The application of air layers in building envelopes: A review. Applied Energy, 2016, 165, 707-734.	5.1	131
81	Renaturing cities using a regionally-focused biodiversity-led multifunctional benefits approach to urban green infrastructure. Environmental Science and Policy, 2016, 62, 99-111.	2.4	202
82	Urban green spaces activities: A preparatory groundwork for a safety management system. Journal of Safety Research, 2016, 56, 75-82.	1.7	19
83	Retrieval of three-dimensional tree canopy and shade using terrestrial laser scanning (TLS) data to analyze the cooling effect of vegetation. Agricultural and Forest Meteorology, 2016, 217, 22-34.	1.9	95
84	Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. Renewable and Sustainable Energy Reviews, 2016, 54, 1002-1017.	8.2	340
85	Daytime and nighttime urban heat islands statistical models for Atlanta. Environment and Planning B: Urban Analytics and City Science, 2017, 44, 308-327.	1.0	26
86	Greenspace patterns and the mitigation of land surface temperature in Taipei metropolis. Habitat International, 2017, 60, 69-80.	2.3	77
87	Characterizing the relationship between land use land cover change and land surface temperature. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 124, 119-132.	4.9	401
88	Numerical simulation of cooling effect of vegetation enhancement in a subtropical urban park. Applied Energy, 2017, 192, 178-200.	5.1	65
89	Urban parks: Visitors' perceptions versus spatial indicators. Land Use Policy, 2017, 64, 233-244.	2.5	85
90	The Urban Heat Island: Thermal Comfort and the Role of Urban Greening. Future City, 2017, , 7-19.	0.2	19

		CITATION REPORT		
#	Article		IF	CITATIONS
91	Urban development and pedestrian thermal comfort in Melbourne. Solar Energy, 2017,	144, 681-698.	2.9	96
92	Impacts of land use changes from the Hanoi Master Plan 2030 on urban heat islands: P effects of proposed green strategies. Sustainable Cities and Society, 2017, 32, 295-31	art 1. Cooling 7.	5.1	26
93	Current trends in urban heat island mitigation research: Observations based on a compresearch repository. Urban Climate, 2017, 21, 1-26.	rehensive	2.4	92
94	An urban heat island study in Nanchang City, China based on land surface temperature social-ecological variables. Sustainable Cities and Society, 2017, 32, 557-568.	and	5.1	163
95	A micro-climatic study on cooling effect of an urban park in a hot and humid climate. S Cities and Society, 2017, 32, 513-522.	ustainable	5.1	67
96	Assessing remotely sensed temperature humidity index as human comfort indicator rel landuse landcover change in Abuja, Nigeria. Spatial Information Research, 2017, 25, 52	ative to 3-533.	1.3	22
97	The cooling and energy saving effect of landscape design parameters of urban park in s of Beijing, China. Energy and Buildings, 2017, 149, 91-100.	ummer: A case	3.1	80
98	The impact of urban development patterns on thermal distribution in Taipei. , 2017, , .			4
99	EFFECTS OF URBAN GREEN BELTS ON THE AIR TEMPERATURE, HUMIDITY AND AIR QU/ Environmental Engineering and Landscape Management, 2017, 25, 39-55.	ALITY. Journal of	0.4	24
100	Addressing thermophysiological thresholds and psychological aspects during hot and c mediterranean summers through public space design: The case of Rossio. Building and 2017, 118, 67-90.	ry Environment,	3.0	46
101	The impact of municipal budgets and land-use management on the hazardous waste p Malaga municipalities. Environmental Impact Assessment Review, 2017, 65, 21-28.	oduction of	4.4	9
102	Smart cooling systems for the urban environment. Using renewable technologies to fac climate change. Solar Energy, 2017, 154, 101-111.	ce the urban	2.9	19
103	The influence of small green space type and structure at the street level on urban heat mitigation. Urban Forestry and Urban Greening, 2017, 21, 203-212.	island	2.3	159
104	A review of nursery production systems and their influence on urban tree survival. Urba and Urban Greening, 2017, 21, 183-191.	n Forestry	2.3	27
105	Effects of urban planning indicators on urban heat island: a case study of pocket parks high-density environment. Landscape and Urban Planning, 2017, 168, 48-60.	in high-rise	3.4	146
106	Urban space's morphology and microclimatic analysis: A study for a typical urban d Mediterranean city of Thessaloniki, Greece. Energy and Buildings, 2017, 156, 96-108.	istrict in the	3.1	59
107	Cultivating climate justice: Green infrastructure and suburban disadvantage in Australia Geography, 2017, 89, 52-60.	a. Applied	1.7	41
108	Effect of urban micro-climatic regulation ability on public building energy usage carbon Energy and Buildings, 2017, 154, 553-559.	emission.	3.1	28

# 109	ARTICLE Patch size of trees affects its cooling effectiveness: A perspective from shading and transpiration processes. Agricultural and Forest Meteorology, 2017, 247, 293-299.	IF 1.9	Citations 81
110	Quantifying the sustainability of urban growth and form through time: An algorithmic analysis of a city's development. Applied Geography, 2017, 88, 1-14.	1.7	20
111	Urban green effects on land surface temperature caused by surface characteristics: A case study of summer Beijing metropolitan region. Infrared Physics and Technology, 2017, 86, 35-43.	1.3	38
112	Impacts of Climate Change on Urban Areas and Nature-Based Solutions for Adaptation. Theory and Practice of Urban Sustainability Transitions, 2017, , 15-27.	1.9	39
113	The Urban Heat Island: Implications for Health in a Changing Environment. Current Environmental Health Reports, 2017, 4, 296-305.	3.2	353
114	Quantifying the cool island effects of urban green spaces using remote sensing Data. Urban Forestry and Urban Greening, 2017, 27, 24-31.	2.3	172
115	Evaluating the impact of urban green space and landscape design parameters on thermal comfort in hot summer by numerical simulation. Building and Environment, 2017, 123, 277-288.	3.0	138
116	How can urban green spaces be planned for climate adaptation in subtropical cities?. Ecological Indicators, 2017, 82, 152-162.	2.6	177
117	Lots for greening: Identification of metropolitan vacant land and its potential use for cooling and agriculture in Phoenix, AZ, USA. Applied Geography, 2017, 85, 139-151.	1.7	39
118	The cooling effect of green infrastructure on surrounding built environments in a sub-tropical climate: a case study in Taipei metropolis. Landscape Research, 2017, 42, 558-573.	0.7	12
119	Microclimatic differences and their influence on transpirational cooling of Tilia cordata in two contrasting street canyons in Munich, Germany. Agricultural and Forest Meteorology, 2017, 232, 443-456.	1.9	98
120	Examining default urban-aspect-ratios and sky-view-factors to identify priorities for thermal-sensitive public space design in hot-summer Mediterranean climates: The Lisbon case. Building and Environment, 2017, 126, 442-456.	3.0	32
121	Quantifying the effect of waterways and green areas on the surface temperature. Acta Scientiarum - Technology, 2017, 39, 89.	0.4	3
122	Urban Heat Island and Park Cool Island Intensities in the Coastal City of Aracaju, North-Eastern Brazil. Sustainability, 2017, 9, 1379.	1.6	40
123	The city as nature and the nature of the city - climate adaptation using living infrastructure: governance and integration challenges. Australian Journal of Water Resources, 2017, 21, 63-76.	1.6	9
124	Urban Green Infrastructure as a tool for urban heat mitigation: Survey of research methodologies and findings across different climatic regions. Urban Climate, 2018, 24, 94-110.	2.4	146
125	Urban park area and age determine the richness of native and exotic plants in parks of a Latin American city: Santiago as a case study. Urban Ecosystems, 2018, 21, 645-655.	1.1	28
126	Photosynthetic and morphological responses of oak species to temperature and [CO2] increased to levels predicted for 2050. Urban Forestry and Urban Greening, 2018, 31, 26-37.	2.3	16

#	Article	IF	CITATIONS
127	The impact of urban expansion on the regional environment in Myanmar: a case study of two capital cities. Landscape Ecology, 2018, 33, 765-782.	1.9	19
128	Mapping sky, tree, and building view factors of street canyons in a high-density urban environment. Building and Environment, 2018, 134, 155-167.	3.0	193
129	The effect of an urban park on the microclimate in its vicinity: a case study for Antwerp, Belgium. International Journal of Climatology, 2018, 38, e303.	1.5	48
130	Assessment of green parks cooling effect on Abuja urban microclimate using geospatial techniques. Remote Sensing Applications: Society and Environment, 2018, 11, 11-21.	0.8	26
131	Maximum extent of human heat stress reduction on building areas due to urban greening. Urban Forestry and Urban Greening, 2018, 32, 154-167.	2.3	46
132	Urban Green Spaces as a Component of an Ecosystem. , 2018, , 1-32.		4
133	Green infrastructure and urban sustainability. AIP Conference Proceedings, 2018, , .	0.3	3
134	Vertical Greenery System in urban tropical climate and its carbon sequestration potential: A review. Ecological Indicators, 2018, 91, 57-70.	2.6	45
135	Exploring links between greenspace and sudden unexpected death: A spatial analysis. Environment International, 2018, 113, 114-121.	4.8	27
136	Urban Green Space Layouts and Urban Heat Island: Case Study on Apartment Complexes in South Korea. Journal of the Urban Planning and Development Division, ASCE, 2018, 144, .	0.8	9
136 137	Urban Green Space Layouts and Urban Heat Island: Case Study on Apartment Complexes in South Korea. Journal of the Urban Planning and Development Division, ASCE, 2018, 144, . Influence of a large urban park on the local urban thermal environment. Science of the Total Environment, 2018, 622-623, 882-891.	0.8 3.9	9 162
136 137 138	Urban Green Space Layouts and Urban Heat Island: Case Study on Apartment Complexes in South Korea. Journal of the Urban Planning and Development Division, ASCE, 2018, 144, . Influence of a large urban park on the local urban thermal environment. Science of the Total Environment, 2018, 622-623, 882-891. Variations in land surface temperature and cooling efficiency of green space in rapid urbanization: The case of Fuzhou city, China. Urban Forestry and Urban Greening, 2018, 29, 113-121.	0.8 3.9 2.3	9 162 124
136 137 138 139	Urban Green Space Layouts and Urban Heat Island: Case Study on Apartment Complexes in South Korea.Journal of the Urban Planning and Development Division, ASCE, 2018, 144, .Influence of a large urban park on the local urban thermal environment. Science of the Total Environment, 2018, 622-623, 882-891.Variations in land surface temperature and cooling efficiency of green space in rapid urbanization: The case of Fuzhou city, China. Urban Forestry and Urban Greening, 2018, 29, 113-121.An evaluation of the cooling effect efficiency of the oasis structure in a Saharan town through remotely sensed data. International Journal of Environmental Studies, 2018, 75, 309-320.	0.8 3.9 2.3 0.7	9 162 124 10
136 137 138 139 140	Urban Green Space Layouts and Urban Heat Island: Case Study on Apartment Complexes in South Korea.Journal of the Urban Planning and Development Division, ASCE, 2018, 144, .Influence of a large urban park on the local urban thermal environment. Science of the Total Environment, 2018, 622-623, 882-891.Variations in land surface temperature and cooling efficiency of green space in rapid urbanization: The case of Fuzhou city, China. Urban Forestry and Urban Greening, 2018, 29, 113-121.An evaluation of the cooling effect efficiency of the oasis structure in a Saharan town through remotely sensed data. International Journal of Environmental Studies, 2018, 75, 309-320.Development of the VTUF-3D v1.0 urban micro-climate model to support assessment of urban vegetation influences on human thermal comfort. Urban Climate, 2018, 24, 1052-1076.	0.8 3.9 2.3 0.7 2.4	9 162 124 10 50
 136 137 138 139 140 141 	Urban Green Space Layouts and Urban Heat Island: Case Study on Apartment Complexes in South Korea. Journal of the Urban Planning and Development Division, ASCE, 2018, 144, . Influence of a large urban park on the local urban thermal environment. Science of the Total Environment, 2018, 622-623, 882-891. Variations in land surface temperature and cooling efficiency of green space in rapid urbanization: The case of Fuzhou city, China. Urban Forestry and Urban Greening, 2018, 29, 113-121. An evaluation of the cooling effect efficiency of the oasis structure in a Saharan town through remotely sensed data. International Journal of Environmental Studies, 2018, 75, 309-320. Development of the VTUF-3D v1.0 urban micro-climate model to support assessment of urban vegetation influences on human thermal comfort. Urban Climate, 2018, 24, 1052-1076. Visitors' perception of thermal comfort during extreme heat events at the Royal Botanic Garden Melbourne. International Journal of Biometeorology, 2018, 62, 97-112.	0.8 3.9 2.3 0.7 2.4 1.3	 9 162 124 10 50 70
 136 137 138 139 140 141 142 	Urban Green Space Layouts and Urban Heat Island: Case Study on Apartment Complexes in South Korea. Journal of the Urban Planning and Development Division, ASCE, 2018, 144, . Influence of a large urban park on the local urban thermal environment. Science of the Total Environment, 2018, 622-623, 882-891. Variations in land surface temperature and cooling efficiency of green space in rapid urbanization: The case of Fuzhou city, China. Urban Forestry and Urban Greening, 2018, 29, 113-121. An evaluation of the cooling effect efficiency of the oasis structure in a Saharan town through remotely sensed data. International Journal of Environmental Studies, 2018, 75, 309-320. Development of the VTUF-3D v1.0 urban micro-climate model to support assessment of urban vegetation influences on human thermal comfort. Urban Climate, 2018, 24, 1052-1076. Visitors' perception of thermal comfort during extreme heat events at the Royal Botanic Garden Melbourne. International Journal of Biometeorology, 2018, 62, 97-112. Evaluating the performance of ENVI-met model in diurnal cycles for different meteorological conditions. Theoretical and Applied Climatology, 2018, 131, 455-469.	0.8 3.9 2.3 0.7 2.4 1.3	 9 162 124 10 50 70 82
 136 137 138 139 140 141 142 143 	Urban Green Space Layouts and Urban Heat Island: Case Study on Apartment Complexes in South Korea. Journal of the Urban Planning and Development Division, ASCE, 2018, 144, . Influence of a large urban park on the local urban thermal environment. Science of the Total Environment, 2018, 622-623, 882-891. Variations in land surface temperature and cooling efficiency of green space in rapid urbanization: The case of Fuzhou city, China. Urban Forestry and Urban Greening, 2018, 29, 113-121. An evaluation of the cooling effect efficiency of the oasis structure in a Saharan town through remotely sensed data. International Journal of Environmental Studies, 2018, 75, 309-320. Development of the VTUF-3D v1.0 urban micro-climate model to support assessment of urban vegetation influences on human thermal comfort. Urban Climate, 2018, 24, 1052-1076. Visitors' perception of thermal comfort during extreme heat events at the Royal Botanic Garden Melbourne. International Journal of Biometeorology, 2018, 62, 97-112. Evaluating the performance of ENVI-met model in diurnal cycles for different meteorological conditions. Theoretical and Applied Climatology, 2018, 131, 455-469. Confronting potential future augmentations of the physiologically equivalent temperature through public space design: The case of Rossio, Lisbon. Sustainable Cities and Society, 2018, 37, 7-25.	0.8 3.9 2.3 0.7 2.4 1.3 1.3 5.1	 9 162 124 10 50 70 82 30

#	Article	IF	CITATIONS
145	Thermal comfort in urban open spaces: Objective assessment and subjective perception study in tropical city of Bhopal, India. Urban Climate, 2018, 24, 954-967.	2.4	97
146	Effects of tree shading and transpiration on building cooling energy use. Energy and Buildings, 2018, 159, 382-397.	3.1	81
147	Assessing the effects of landscape characteristics on the thermal environment of open spaces in residential areas of Beijing, China. Landscape and Ecological Engineering, 2018, 14, 79-90.	0.7	6
148	The Use of Tree Barks to Monitor Traffic Related Air Pollution: A Case Study in São Paulo–Brazil. Frontiers in Environmental Science, 2018, 6, .	1.5	16
149	Leftover Spaces for the Mitigation of Urban Overheating in Municipal Beirut. Climate, 2018, 6, 68.	1.2	15
150	A Proposal to Integrate System Dynamics and Carbon Metabolism for Urban Planning. Procedia CIRP, 2018, 69, 78-82.	1.0	15
151	Beyond Singular Climatic Variables—Identifying the Dynamics of Wholesome Thermo-Physiological Factors for Existing/Future Human Thermal Comfort during Hot Dry Mediterranean Summers. International Journal of Environmental Research and Public Health, 2018, 15, 2362.	1.2	19
152	Optimal Thermal Characteristics of the Courtyard in the Hot and Arid Climate of Isfahan. Buildings, 2018, 8, 166.	1.4	10
153	Evaluating the Impact of the Morphological Transformation of Urban Sites on the Urban Thermal Microenvironment. Buildings, 2018, 8, 182.	1.4	7
154	Relation between Urban Volume and Land Surface Temperature: A Comparative Study of Planned and Traditional Cities in Japan. Sustainability, 2018, 10, 2366.	1.6	49
155	Diversifying Mediterranean Tourism as a Strategy for Regional Resilience Enhancement. Advances in Spatial Science, 2018, , 105-127.	0.3	5
156	Resilience and Regional Dynamics. Advances in Spatial Science, 2018, , .	0.3	7
157	A multilayer mean radiant temperature model for pedestrians in a street canyon with trees. Building and Environment, 2018, 141, 298-309.	3.0	34
158	The Science of Adaptation to Extreme Heat. , 2018, , 89-103.		9
159	Index for evaluation of public parks and gardens proximity based on the mobility network: A case study of Braga, Braganza and Viana do Castelo (Portugal) and Lugo and Pontevedra (Spain). Urban Forestry and Urban Greening, 2018, 34, 134-140.	2.3	12
160	Studying the Association between Green Space Characteristics and Land Surface Temperature for Sustainable Urban Environments: An Analysis of Beijing and Islamabad. ISPRS International Journal of Geo-Information, 2018, 7, 38.	1.4	41
161	Using "Local Climate Zones―to Detect Urban Heat Island on Two Small Cities in Alabama. Earth Interactions, 2018, 22, 1-22.	0.7	72
162	The Impact of Tipuana tipu Species on Local Human Thermal Comfort Thresholds in Different Urban Canyon Cases in Mediterranean Climates: Lisbon, Portugal. Atmosphere, 2018, 9, 12.	1.0	22

#	Article	IF	CITATIONS
163	Approaches to Outdoor Thermal Comfort Thresholds through Public Space Design: A Review. Atmosphere, 2018, 9, 108.	1.0	68
164	The Heterogeneity of Air Temperature in Urban Residential Neighborhoods and Its Relationship with the Surrounding Greenspace. Remote Sensing, 2018, 10, 965.	1.8	18
165	Effects of Building Design Elements on Residential Thermal Environment. Sustainability, 2018, 10, 57.	1.6	22
166	Analyzing Thermal Characteristics of Urban Streets Using a Thermal Imaging Camera: A Case Study on Commercial Streets in Seoul, Korea. Sustainability, 2018, 10, 519.	1.6	30
167	Relationship between Park Composition, Vegetation Characteristics and Cool Island Effect. Sustainability, 2018, 10, 587.	1.6	32
168	Study of the Cooling Effects of Urban Green Space in Harbin in Terms of Reducing the Heat Island Effect. Sustainability, 2018, 10, 1101.	1.6	41
169	The impact of urban forest structure and its spatial location on urban cool island intensity. Urban Ecosystems, 2018, 21, 863-874.	1.1	38
170	Urban green area provides refuge for native small mammal biodiversity in a rapidly expanding city in Ghana. Environmental Monitoring and Assessment, 2018, 190, 480.	1.3	23
171	Strong contributions of local background climate to the cooling effect of urban green vegetation. Scientific Reports, 2018, 8, 6798.	1.6	101
172	Thermal environment effects and interactions of reservoirs and forests as urban blue-green infrastructures. Ecological Indicators, 2018, 91, 657-663.	2.6	46
173	Investigation of the effects of wetlands on micro-climate. Applied Geography, 2018, 97, 48-60.	1.7	15
174	Cities and Energy Consumption: Strategies for an Energy Saving Planning. Green Energy and Technology, 2018, , 49-70.	0.4	1
175	Discriminating Urban Forest Types from Sentinel-2A Image Data through Linear Spectral Mixture Analysis: A Case Study of Xuzhou, East China. Forests, 2019, 10, 478.	0.9	17
176	Spatial patterns of greenspace cool islands and their relationship to cooling effectiveness in the tropical city of Chiang Mai, Thailand. Environmental Monitoring and Assessment, 2019, 191, 580.	1.3	8
177	Rewilding in the Garden: are garden hybrid plants (cultivars) less resilient to the effects of hydrological extremes than their parent species? A case study with Primula. Urban Ecosystems, 2019, 22, 841-854.	1.1	9
178	Does urban vegetation reduce temperature and air pollution concentrations? Findings from an environmental monitoring study of the Central Experimental Farm in Ottawa, Canada. Atmospheric Environment, 2019, 218, 116886.	1.9	30
179	Spatio-temporal planning of urban neighborhoods in the context of global climate change: Lessons for urban form design in Tehran, Iran. Sustainable Cities and Society, 2019, 51, 101554.	5.1	30
180	Effectiveness of vegetated patches as Green Infrastructure in mitigating Urban Heat Island effects during a heatwave event in the city of Melbourne. Weather and Climate Extremes, 2019, 25, 100217.	1.6	51

#	Article	IF	CITATIONS
181	Determining Favourable and Unfavourable Thermal Areas in Seoul Using In-Situ Measurements: A Preliminary Step towards Developing a Smart City. Energies, 2019, 12, 2320.	1.6	9
182	Urbanization Effects on Human-Perceived Temperature Changes in the North China Plain. Sustainability, 2019, 11, 3413.	1.6	9
183	Association between the First Occurrence of Asthma and Residential Greenness in Children and Teenagers in Taiwan. International Journal of Environmental Research and Public Health, 2019, 16, 2076.	1.2	27
184	Na ₃ Sm(PO ₄) ₂ : (3+1)-dimensional commensurately modulated structure model and photoluminescence properties. Zeitschrift Fur Kristallographie - Crystalline Materials, 2019, 234, 281-289.	0.4	3
185	Impact of urban greenspace spatial pattern on land surface temperature: a case study in Beijing metropolitan area, China. Landscape Ecology, 2019, 34, 2949-2961.	1.9	30
186	An integrated overview of physiological and biochemical responses of Celtis australis to drought stress. Urban Forestry and Urban Greening, 2019, 46, 126480.	2.3	8
187	The Cooling Effect of Large-Scale Urban Parks on Surrounding Area Thermal Comfort. Energies, 2019, 12, 3904.	1.6	45
188	How Do Tilia Cordata Greenspire Trees Cope with Drought Stress Regarding Their Biomass Allocation and Ecosystem Services?. Forests, 2019, 10, 676.	0.9	20
189	Polycyclic aromatic hydrocarbons in tree barks, gaseous and particulate phase samples collected near an industrial complex in São Paulo (Brazil). Chemosphere, 2019, 237, 124499.	4.2	16
190	Understanding the relationship between urban blue infrastructure and land surface temperature. Science of the Total Environment, 2019, 694, 133742.	3.9	109
191	The impact of urban greening and urban geometry on the microclimate at the neighborhood level in hot arid climates. , 2019, , .		0
192	Effects of Area and Shape of Greenspace on Urban Cooling in Nanjing, China. Journal of the Urban Planning and Development Division, ASCE, 2019, 145, .	0.8	20
193	Quantifying the biophysical effects of forests on local air temperature using a novel three-layered land surface energy balance model. Environment International, 2019, 132, 105080.	4.8	19
194	Influence of Green Spaces on Outdoors Thermal Comfort—Structured Experiment in a Mediterranean Climate. Climate, 2019, 7, 20.	1.2	14
195	A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Science of the Total Environment, 2019, 661, 337-353.	3.9	405
196	Mitigating the urban heat island in a residential area in Tehran: Investigating the role of vegetation, materials, and orientation of buildings. Sustainable Cities and Society, 2019, 46, 101448.	5.1	113
197	Nature-Based Designs to Mitigate Urban Heat: The Efficacy of Green Infrastructure Treatments in Portland, Oregon. Atmosphere, 2019, 10, 282.	1.0	38
198	Inversion and Effect Research on Dust Distribution of Urban Forests in Beijing. Forests, 2019, 10, 418.	0.9	6

#	Article	IF	CITATIONS
199	A Study of the Pedestrianized Zone for Tourists: Urban Design Effects on Humans' Thermal Comfort in Fo Shan City, Southern China. Sustainability, 2019, 11, 2774.	1.6	12
200	Combined Effects of the Surface Urban Heat Island with Landscape Composition and Configuration Based on Remote Sensing: A Case Study of Shanghai, China. Sustainability, 2019, 11, 2890.	1.6	18
201	Mitigating Urban Heating in Dryland Cities: A Literature Review. Journal of Planning Literature, 2019, 34, 434-446.	2.2	18
202	A Comparison of Neighborhood-Scale Interventions to Alleviate Urban Heat in Doha, Qatar. Sustainability, 2019, 11, 730.	1.6	7
203	Microclimatic resilience of subtropical woodlands and urban-forest benefits. Urban Forestry and Urban Greening, 2019, 42, 100-112.	2.3	35
204	How much has urbanisation affected United Kingdom temperatures?. Atmospheric Science Letters, 2019, 20, e896.	0.8	12
205	Urban tree planting to maintain outdoor thermal comfort under climate change: The case of Vancouver's local climate zones. Building and Environment, 2019, 158, 226-236.	3.0	48
206	Urban Trees and Their Impact on Local Ozone Concentration—A Microclimate Modeling Study. Atmosphere, 2019, 10, 154.	1.0	23
207	Effects of Spatial Pattern of Forest Vegetation on Urban Cooling in a Compact Megacity. Forests, 2019, 10, 282.	0.9	39
208	Microclimate regulation efficiency of the rural homegarden agroforestry system in the Western Sichuan Plain, China. Journal of Mountain Science, 2019, 16, 516-528.	0.8	9
209	Bioenergy and Climate Change: Greenhouse Gas Mitigation. Biofuel and Biorefinery Technologies, 2019, , 269-289.	0.1	3
210	Urban green space cooling effect in cities. Heliyon, 2019, 5, e01339.	1.4	292
211	The role of sky view factor and urban street greenery in human thermal comfort and heat stress in a desert climate. Journal of Arid Environments, 2019, 166, 68-76.	1.2	66
212	Prospects of Renewable Bioprocessing in Future Energy Systems. Biofuel and Biorefinery Technologies, 2019, , .	0.1	39
213	Quantitative analysis of urban cold island effects on the evolution of green spaces in a coastal city: a case study of Fuzhou, China. Environmental Monitoring and Assessment, 2019, 191, 121.	1.3	6
214	Optimization of Vegetation Arrangement to Improve Microclimate and Thermal Comfort in an Urban Park. International Review for Spatial Planning and Sustainable Development, 2019, 7, 18-30.	0.6	19
215	Estimating the daily peak and annual total electricity demand for cooling in Vienna, Austria by 2050. Urban Climate, 2019, 28, 100452.	2.4	11
216	Green Infrastructure in the Space of Flows: An Urban Metabolism Approach to Bridge Environmental Performance and User's Wellbeing. Cities and Nature, 2019, , 265-277.	0.6	12

#	Article	IF	CITATIONS
217	Planning and design for sustainable cities in the MENA region. Smart and Sustainable Built Environment, 2019, 8, 98-102.	2.2	1
218	The Maturing Interdisciplinary Relationship between Human Biometeorological Aspects and Local Adaptation Processes: An Encompassing Overview. Climate, 2019, 7, 134.	1.2	14
219	Assessing the vulnerability of Australia's urban forests to climate extremes. Plants People Planet, 2019, 1, 387-397.	1.6	17
220	Geographical Information Systems Theory, Applications and Management. Communications in Computer and Information Science, 2019, , .	0.4	1
221	Promoting Citizens' Quality of Life Through Green Urban Planning. Communications in Computer and Information Science, 2019, , 153-175.	0.4	3
222	Multi-city comparison of the relationships between spatial pattern and cooling effect of urban green spaces in four major Asian cities. Ecological Indicators, 2019, 98, 200-213.	2.6	78
223	An improved method for assessing vegetation cooling service in regulating thermal environment: A case study in Xiamen, China. Ecological Indicators, 2019, 98, 531-542.	2.6	11
224	Mitigating the Local Climatic Change and Fighting Urban Vulnerability. , 2019, , 223-307.		1
225	Multi-year comparison of the effects of spatial pattern of urban green spaces on urban land surface temperature. Landscape and Urban Planning, 2019, 184, 44-58.	3.4	172
226	Households' willingness to pay for green roof for mitigating heat island effects in Beijing (China). Building and Environment, 2019, 150, 13-20.	3.0	56
227	Field measurement study on the impacts of urban spatial indicators on urban climate in a Chinese basin and static-wind city. Building and Environment, 2019, 147, 482-494.	3.0	62
228	Quantifying the seasonal contribution of coupling urban land use types on Urban Heat Island using Land Contribution Index: A case study in Wuhan, China. Sustainable Cities and Society, 2019, 44, 666-675.	5.1	80
229	How to cool hot-humid (Asian) cities with urban trees? An optimal landscape size perspective. Agricultural and Forest Meteorology, 2019, 265, 338-348.	1.9	123
230	Regulating Ecosystem Services and Green Infrastructure: assessment of Urban Heat Island effect mitigation in the municipality of Rome, Italy. Ecological Modelling, 2019, 392, 92-102.	1.2	128
231	Integrating four radiant heat load mitigation strategies is an efficient intervention to improve human health in urban environments. Science of the Total Environment, 2020, 698, 134259.	3.9	21
232	Phenology acts as a primary control of urban vegetation cooling and warming: A synthetic analysis of global site observations. Agricultural and Forest Meteorology, 2020, 280, 107765.	1.9	18
233	Urban Health and Wellbeing. Advances in Geographical and Environmental Sciences, 2020, , .	0.4	7
234	Effects of changing spatial extent on the relationship between urban forest patterns and land surface temperature. Ecological Indicators, 2020, 109, 105778.	2.6	40

#	Article	IF	CITATIONS
235	Mapping and Spatial Analysis of Socio-economic and Environmental Indicators for Sustainable Development. Advances in Science, Technology and Innovation, 2020, , .	0.2	3
236	The relationship between urban form and heat island intensity along the urban development gradients. Science of the Total Environment, 2020, 708, 135011.	3.9	83
237	The impact of green space structure on physiological equivalent temperature index in open space. Urban Climate, 2020, 31, 100574.	2.4	40
238	How can urban blue-green space be planned for climate adaption in high-latitude cities? A seasonal perspective. Sustainable Cities and Society, 2020, 53, 101932.	5.1	149
239	Cooling effects of block-scale facade greening and their relationship with urban form. Building and Environment, 2020, 169, 106552.	3.0	55
240	The degree, extent and value of air temperature amelioration by urban green spaces in Bulawayo, Zimbabwe. Southern African Geographical Journal, 2020, 102, 344-355.	0.9	13
241	Quantifying the cooling effect of urban vegetation by mobile traverse method: A local-scale urban heat island study in a subtropical megacity. Building and Environment, 2020, 169, 106541.	3.0	59
242	Spatial Econometric Analysis of the Impact of Socioeconomic Factors on PM2.5 Concentration in China's Inland Cities: A Case Study from Chengdu Plain Economic Zone. International Journal of Environmental Research and Public Health, 2020, 17, 74.	1.2	18
243	A tale of two cities: different urban heat mitigation efficacy with the same strategies. Theoretical and Applied Climatology, 2020, 142, 1625-1640.	1.3	6
244	Summer thermal comfort in Czech cities: measured effects of blue and green features in city centres. International Journal of Biometeorology, 2021, 65, 1277-1289.	1.3	36
245	Statistical Review of Quality Parameters of Blue-Green Infrastructure Elements Important in Mitigating the Effect of the Urban Heat Island in the Temperate Climate (C) Zone. International Journal of Environmental Research and Public Health, 2020, 17, 7093.	1.2	29
246	Surface Urban Heat Island in Middle City: Spatial and Temporal Characteristics. Urban Science, 2020, 4, 54.	1.1	10
247	Comparative Study on the Cooling Effects of Green Space Patterns in Waterfront Build-Up Blocks: An Experience from Shanghai. International Journal of Environmental Research and Public Health, 2020, 17, 8684.	1.2	27
248	Seasonal and Diurnal Variations in the Relationships between Urban Form and the Urban Heat Island Effect. Energies, 2020, 13, 5909.	1.6	9
249	Environmental impact assessment of introducing compact city models by downscaling simulations. Sustainable Cities and Society, 2020, 63, 102424.	5.1	13
250	A systematic approach for urban heat island mitigation strategies in critical local climate zones of an Indian city. Urban Climate, 2020, 34, 100701.	2.4	34
251	Introduction of Fractal-Based Tree Digitalization and Accurate In-Canopy Radiation Transfer Modelling to the Microclimate Model ENVI-met. Forests, 2020, 11, 869.	0.9	19
252	A New Approach for Understanding Urban Microclimate by Integrating Complementary Predictors at Different Scales in Regression and Machine Learning Models. Remote Sensing, 2020, 12, 2434.	1.8	24

#	Article	IF	CITATIONS
253	Land Cover Influences on LST in Two Proposed Smart Cities of India: Comparative Analysis Using Spectral Indices. Land, 2020, 9, 292.	1.2	29
254	Analysis of Cooling and Humidification Effects of Different Coverage Types in Small Green Spaces (SGS) in the Context of Urban Homogenization: A Case of HAU Campus Green Spaces in Summer in Zhengzhou, China. Atmosphere, 2020, 11, 862.	1.0	16
255	Effects of Green Space Patterns on Urban Thermal Environment at Multiple Spatial–Temporal Scales. Sustainability, 2020, 12, 6850.	1.6	21
256	Heat-Mitigation Strategies to Improve Pedestrian Thermal Comfort in Urban Environments: A Review. Sustainability, 2020, 12, 10000.	1.6	28
257	Green Infrastructure as an Urban Heat Island Mitigation Strategy—A Review. Water (Switzerland), 2020, 12, 3577.	1.2	51
258	Influence of Urban Scale and Urban Expansion on the Urban Heat Island Effect in Metropolitan Areas: Case Study of Beijing–Tianjin–Hebei Urban Agglomeration. Remote Sensing, 2020, 12, 3491.	1.8	42
259	The microclimatic interaction of a small urban park in central Melbourne with its surrounding urban environment during heat events. Urban Forestry and Urban Greening, 2020, 52, 126688.	2.3	37
260	Solar reflective pavements—A policy panacea to heat mitigation?. Environmental Research Letters, 2020, 15, 064016.	2.2	60
261	The Contribution of NBS to Urban Resilience in Stormwater Management and Control: A Framework with Stakeholder Validation. Sustainability, 2020, 12, 2537.	1.6	12
262	Green roof effects on daytime heat in a prefabricated residential neighbourhood in Berlin, Germany. Urban Forestry and Urban Greening, 2020, 53, 126738.	2.3	53
263	Associations between urban thermal environment and physical indicators based on meteorological data in Foshan City. Sustainable Cities and Society, 2020, 60, 102288.	5.1	12
264	Seasonal microclimate effect of Linpan settlements on the surrounding area in Chengdu Plain. Theoretical and Applied Climatology, 2020, 141, 1559-1572.	1.3	5
265	Regional Intelligence. , 2020, , .		3
266	Effects of Roadside Trees and Road Orientation on Thermal Environment in a Tropical City. Sustainability, 2020, 12, 1053.	1.6	29
267	Modeling the spatial variation of urban land surface temperature in relation to environmental and anthropogenic factors: a case study of Tehran, Iran. GIScience and Remote Sensing, 2020, 57, 483-496.	2.4	40
268	Evaluation of the thermal indices and thermal comfort improvement by different vegetation species and materials in a medium-sized urban park. Energy Reports, 2020, 6, 1670-1684.	2.5	76
269	Utilizing Remotely Sensed Observations to Estimate the Urban Heat Island Effect at a Local Scale: Case Study of a University Campus. Land, 2020, 9, 191.	1.2	14
270	Study of Urban Greenery Models to Prevent Overheating of Parked Vehicles in P + R Facilities in Ljubljana, Slovenia. Sustainability, 2020, 12, 5160.	1.6	4

ARTICLE IF CITATIONS An integrated strategy to improve the microclimate regulation of green-blue-grey infrastructures in 271 4.6 33 specific urban forms. Journal of Cleaner Production, 2020, 271, 122555. Effects of landscape composition on mosquito population in urban green spaces. Urban Forestry and 2.3 Urban Greening, 2020, 49, 126626. Quantifying seasonal and diurnal contributions of urban landscapes to heat energy dynamics. Applied 273 5.1 33 Energy, 2020, 264, 114724. Critical review on the cooling effect of urban blue-green space: A threshold-size perspective. Urban 274 274 Forestry and Urban Greening, 2020, 49, 126630. Cross-cultural differences in thermal comfort in campus open spaces: A longitudinal field survey in 275 3.0 56 China's cold region. Building and Environment, 2020, 172, 106739. Mapping and Analyzing the Park Cooling Effect on Urban Heat Island in an Expanding City: A Case Study in Zhengzhou City, China. Land, 2020, 9, 57. 1.2 Seasonal Variation in Air Temperature and Relative Humidity on Building Areas and in Green Spaces in 277 1.2 25 Beijing, China. Chinese Geographical Science, 2020, 30, 75-88. Green Spaces, Land Cover, Street Trees and Hypertension in the Megacity of SÃŁo Paulo. International 1.2 278 34 Journal of Environmental Research and Public Health, 2020, 17, 725. Effect of pavement and water deficit on biomass allocation and whole-tree transpiration in two 279 1.1 14 contrasting urban tree species. Urban Ecosystems, 2020, 23, 893-904. Hyperlocal mapping of urban air temperature using remote sensing and crowdsourced weather data. 4.6 Remote Sensing of Environment, 2020, 242, 111791. Using green to cool the grey: Modelling the cooling effect of green spaces with a high spatial 281 70 3.9 resolution. Science of the Total Environment, 2020, 724, 138182. Effects of Urban Morphology on Microclimate Parameters in an Urban University Campus. 1.6 Sustainability, 2020, 12, 2962. Seasonal and meteorological effects on the cooling magnitude of trees in subtropical climate. 283 3.0 15 Building and Environment, 2020, 177, 106911. Water as an urban heat sink: Blue infrastructure alleviates urban heat island effect in mega-city 284 4.6 agglomeration. Journal of Cleaner Production, 2020, 262, 121411. Knowledge Atlas on the Relationship between Urban Street Space and Residents' Healthâ€"A 285 1.6 51 Bibliometric Analysis Based on VOSviewer and CiteSpace. Sustainability, 2020, 12, 2384. Spatio-temporal changes of green spaces and their impact on urban environment of Mumbai, India. Environment, Development and Sustainability, 2021, 23, 6481-6501. Estimating CO2 balance through the Life Cycle Assessment prism: A case $\hat{a} \in \mathcal{C}$ Study in an urban park. 287 2.316 Urban Forestry and Urban Greening, 2021, 57, 126869. On the study of the effects of microclimate and park and surrounding building configuration on 288 5.1 thermal comfort in urban parks. Sustainable Cities and Society, 2021, 64, 102512.

#	Article	IF	Citations
289	The effect of kharkhona on outdoor thermal comfort in Hot and dry climate: A case study of Sistan Region in Iran. Sustainable Cities and Society, 2021, 65, 102607.	5.1	6
290	The effects of land use on spatial pattern of urban green spaces and their cooling ability. Urban Climate, 2021, 35, 100743.	2.4	49
291	Nature-Based-Solutions Applied to the Built Environment to Alleviate Climate Change: Benefits, Co-Benefits, and Trade-offs in a Geographical Multi-Scale Perspective. , 2021, , 1-52.		0
292	Interrelationships between Land Use Land Cover (LULC) and Human Thermal Comfort (HTC): A Comparative Analysis of Different Spatial Settings. Sustainability, 2021, 13, 382.	1.6	10
293	How Cool Pavements and Green Roof Affect Building Energy Performances. Heat Transfer Engineering, 2022, 43, 326-336.	1.2	14
294	Effect of the surface temperature of surface materials on thermal comfort: a case study of Iskenderun (Hatay, Turkey). Theoretical and Applied Climatology, 2021, 144, 103-113.	1.3	56
295	Greenery as a mitigation and adaptation strategy to urban heat. Nature Reviews Earth & Environment, 2021, 2, 166-181.	12.2	183
296	Green Infrastructure as a Planning Response to Urban Warming: A Case Study of Taipei Metropolis. , 2021, , 335-352.		0
297	Platform Dedicated to Nature-Based Solutions for Risk Reduction and Environmental Issues in Hilly and Mountainous Lands. Sustainability, 2021, 13, 1094.	1.6	7
298	Nature-Based Solutions Applied to the Built Environment to Alleviate Climate Change: Benefits, Co-benefits, and Trade-offs in a Geographical Multi-scale Perspective. , 2021, , 1-52.		0
299	Walking and Sustainable Tourism: "Streetsadvisor.―A Stated Preference GIS-Based Methodology for Estimating Tourist Walking Satisfaction in Rome. Transport and Sustainability, 2021, , 45-58.	0.2	1
300	A CFD-Based Optimization of Building Configuration for Urban Ventilation Potential. Energies, 2021, 14, 1447.	1.6	5
301	How do paving and planting strategies affect microclimate conditions and thermal comfort in apartment complexes?. International Journal of Climate Change Strategies and Management, 2021, 13, 97-119.	1.5	5
302	Spatial and temporal analysis of urban heat island using Landsat satellite images. Environmental Science and Pollution Research, 2021, 28, 41439-41450.	2.7	21
303	Climate-Responsive Green-Space Design Inspired by Traditional Gardens: Microclimate and Human Thermal Comfort of Japanese Gardens. Sustainability, 2021, 13, 2736.	1.6	5
304	Evaluating the 3D cooling performances of different vegetation combinations in the urban area. Journal of Asian Architecture and Building Engineering, 2022, 21, 1124-1136.	1.2	9
305	The effect of various urban design parameter in alleviating urban heat island and improving thermal health—a case study in a built pedestrianized block of China. Environmental Science and Pollution Research, 2021, 28, 38406-38425.	2.7	8
306	The role of blue and green infrastructure in thermal sensation in public urban areas: A case study of summer days in four Czech cities. Sustainable Cities and Society, 2021, 66, 102683.	5.1	31

#	Article	IF	CITATIONS
307	Comparison of cooling effect between green space and water body. Sustainable Cities and Society, 2021, 67, 102711.	5.1	69
308	SIMULATION-BASED ANALYSIS OF THE EFFECT OF GREEN ROOFS ON THERMAL PERFORMANCE OF BUILDINGS IN A TROPICAL LANDSCAPE. Journal on Innovation and Sustainability, 2021, 12, 45-56.	0.2	3
309	Prediction models of urban heat island based on landscape patterns and anthropogenic heat dynamics. Landscape Ecology, 2021, 36, 1801-1815.	1.9	23
310	Impacts of Composition and Canopy Characteristics of Plant Communities on Microclimate and Airborne Particles in Beijing, China. Sustainability, 2021, 13, 4791.	1.6	9
311	Evaluation of Green Walls and Suggestions in Terms of Green Space Problems of Istanbul. Bartın Orman Fakültesi Dergisi, 2021, 23, 337-345.	0.2	1
312	Improved methods for estimating mean radiant temperature in hot and sunny outdoor settings. International Journal of Biometeorology, 2021, 65, 967-983.	1.3	31
313	Quantifying the local cooling effects of urban green spaces: Evidence from Bengaluru, India. Landscape and Urban Planning, 2021, 209, 104043.	3.4	51
314	Impacts of Thermal Environments on Health Risk: A Case Study of Harris County, Texas. International Journal of Environmental Research and Public Health, 2021, 18, 5531.	1.2	6
315	Estimating the Cooling Effect of Pocket Green Space in High Density Urban Areas in Shanghai, China. Frontiers in Environmental Science, 2021, 9, .	1.5	34
316	Remote Sensing–Based Urban Green Space Detection Using Marine Predators Algorithm Optimized Machine Learning Approach. Mathematical Problems in Engineering, 2021, 2021, 1-22.	0.6	14
317	Tree-configuration and species effects on the indoor and outdoor thermal condition and energy performance of courtyard buildings. Urban Climate, 2021, 37, 100861.	2.4	20
318	Exploring Pattern of Green Spaces (GSs) and Their Impact on Climatic Change Mitigation and Adaptation Strategies: Evidence from a Saudi Arabian City. Forests, 2021, 12, 629.	0.9	10
319	Greener neighbourhoods, healthier birth outcomes? Evidence from Australia. Environmental Pollution, 2021, 278, 116814.	3.7	4
320	Assessing the cooling efficiency of urban parks using data envelopment analysis and remote sensing data. Theoretical and Applied Climatology, 2021, 145, 903-916.	1.3	12
321	An overview of monitoring methods for assessing the performance of nature-based solutions against natural hazards. Earth-Science Reviews, 2021, 217, 103603.	4.0	72
322	How do green areas influence the temperature of cities? Web map to help local decision making about cities and the climate emergency. AGILE: GIScience Series, 0, 2, 1-6.	0.0	0
323	Assessing the impact of urban environment and green infrastructure on mental health: results from the São Paulo Megacity Mental Health Survey. Journal of Exposure Science and Environmental Epidemiology, 2022, 32, 205-212.	1.8	11
324	Effects of urban street trees on human thermal comfort and physiological indices: a case study in Changchun city, China. Journal of Forestry Research, 2022, 33, 911-922.	1.7	38

#	Article	IF	CITATIONS
325	Cooling effect of urban small green spaces in Qujiang Campus, Xi'an Jiaotong University, China. Environment, Development and Sustainability, 2022, 24, 4278-4298.	2.7	11
326	Developing an optimized method for the â€~stop-and-go' strategy in mobile measurements for characterizing outdoor thermal environments. Sustainable Cities and Society, 2021, 69, 102837.	5.1	17
327	Perceived urban green and residents' health in Beijing. SSM - Population Health, 2021, 14, 100790.	1.3	9
328	Impact of Land Cover Composition and Structure on Air Temperature Based on the Local Climate Zone Scheme in Hangzhou, China. Atmosphere, 2021, 12, 936.	1.0	4
329	Exploring Options for Public Green Space Development: Research by Design and GIS-Based Scenario Modelling. Sustainability, 2021, 13, 8213.	1.6	6
330	Variance of the impact of urban green space on the urban heat island effect among different urban functional zones: A case study in Wuhan. Urban Forestry and Urban Greening, 2021, 62, 127159.	2.3	51
331	Impact of parking and greening design strategies on summertime outdoor thermal condition in old mid-rise residential estates. Urban Forestry and Urban Greening, 2021, 63, 127200.	2.3	14
332	The effect of spatial heterogeneity in urban morphology on surface urban heat islands. Energy and Buildings, 2021, 244, 111027.	3.1	37
333	Assessing the Cooling Effect of Four Urban Parks of Different Sizes in a Temperate Continental Climate Zone: Wroclaw (Poland). Forests, 2021, 12, 1136.	0.9	21
334	The simulation of the impact of the spatial distribution of vegetation on the urban microclimate: A case study in Mostaganem. Urban Climate, 2021, 39, 100976.	2.4	5
335	Cooling ranges for urban heat mitigation: continuous cooling effects along the edges of small greenspaces. Landscape and Ecological Engineering, 0, , 1.	0.7	5
336	Response of Vegetation Photosynthetic Phenology to Urbanization in Dongting Lake Basin, China. Remote Sensing, 2021, 13, 3722.	1.8	7
337	Designing smart and sustainable irrigation: A case study. Journal of Cleaner Production, 2021, 315, 128048.	4.6	16
338	Urban cooling factors: Do small greenspaces outperform building shade in mitigating urban heat island intensity?. Urban Forestry and Urban Greening, 2021, 64, 127256.	2.3	14
339	Knowledge Map of Urban Morphology and Thermal Comfort: A Bibliometric Analysis Based on CiteSpace. Buildings, 2021, 11, 427.	1.4	18
340	DTEx: A dynamic urban thermal exposure index based on human mobility patterns. Environment International, 2021, 155, 106573.	4.8	12
341	Effects of landscape patterns on the summer microclimate and human comfort in urban squares in China. Sustainable Cities and Society, 2021, 73, 103099.	5.1	13
342	Separate and combined effects of 3D building features and urban green space on land surface temperature. Journal of Environmental Management, 2021, 295, 113116.	3.8	59

#	ARTICLE Aerodynamic resistance and Bowen ratio explain the biophysical effects of forest cover on	IF	Citations
343	understory air and soil temperatures at the global scale. Agricultural and Forest Meteorology, 2021, 308-309, 108615.	1.9	9
344	Urban tree growth and ecosystem services under extreme drought. Agricultural and Forest Meteorology, 2021, 308-309, 108532.	1.9	18
345	Characteristics of daytime land surface temperature in wind corridor: A case study of a hot summer and warm winter city. Journal of Building Engineering, 2021, 44, 103370.	1.6	11
346	Outdoor thermal comfort enhancement using various vegetation species and materials (case study:) Tj ETQq1	1 0.784314 5.1	rgBT /Overlo
347	Effect of heatwaves and greenness on mortality among Chinese older adults. Environmental Pollution, 2021, 290, 118009.	3.7	19
348	Are Biocrusts and Xerophytic Vegetation a Viable Green Roof Typology in a Mediterranean Climate? A Comparison between Differently Vegetated Green Roofs in Water Runoff and Water Quality. Water (Switzerland), 2021, 13, 94.	1.2	12
349	Mapping and Spatial Analysis of Sustainable Development Indicators to Optimize the Quality of Life Using AHP Methods: A Case Study Tataouine, Tunisia. Advances in Science, Technology and Innovation, 2020, , 3-12.	0.2	1
350	Ecohydrology of Urban Ecosystems. , 2019, , 533-571.		3
351	Cities and Urban Green. Springer Climate, 2015, , 323-347.	0.3	2
352	Analysis of Heat Island Characteristics Considering Urban Space at Nighttime. Journal of the Korean Association of Geographic Information Studies, 2012, 15, 133-143.	0.1	14
353	Validation of ENVI-met Model with In Situ Measurements Considering Spatial Characteristics of Land Use Types. Journal of the Korean Association of Geographic Information Studies, 2014, 17, 156-172.	0.1	13
354	Green areas and urban heat island: combining remote sensed data with ground observations. , 2018, , .		2
356	The Relationship between Natural Park Usage and Happiness Does Not Hold in a Tropical City-State. PLoS ONE, 2015, 10, e0133781.	1.1	62
357	Perception of thermal comfort by users of urban green areas in Lisbon. Finisterra, 2015, 49, .	0.3	7
359	Ãreas verdes y arbolado en Mérida, Yucatán. Hacia una sostenibilidad urbana. EconomÃa, Sociedad Y Territorio, 0, , 1.	0.1	17
360	Heat mitigation by greening the cities, a review study. Environment Earth and Ecology, 2017, 1, 5-32.	0.8	19
361	Thermal Comfort Characteristic of 5 Patterns of a Persian Garden in a Hot-Arid Climate of Shiraz, Iran. Journal of Landscape Ecology(Czech Republic), 2019, 12, 1-33.	0.2	2
362	Evidence for the temperature-mitigating capacity of urban blue space – a health geographic perspective. Erdkunde, 2013, 67, 355-371.	0.4	100

#	Article	IF	CITATIONS
363	Simulating the Impact of Urban Surface Evapotranspiration on the Urban Heat Island Effect Using the Modified RS-PM Model: A Case Study of Xuzhou, China. Remote Sensing, 2020, 12, 578.	1.8	20
364	PROGRESS IN URBAN GREENERY MITIGATION SCIENCE – ASSESSMENT METHODOLOGIES ADVANCED TECHNOLOGIES AND IMPACT ON CITIES. Journal of Civil Engineering and Management, 2018, 24, 638-671.	1.9	109
365	SPATIOTEMPORAL ANALYSIS OF THE URBAN COOLING ISLAND (UCI) EFFECT OF WATER SPACES IN A HIGHLY URBANIZED CITY: A CASE STUDY OF ILOILO RIVER AND ADJACENT WETLANDS. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-4/W19, 149-156.	0.2	2
366	THE COOLING INTENSITY DEPENDENT ON LANDSCAPE COMPLEXITY OF GREEN INFRASTRUCTURE IN THE METROPOLITAN AREA. Journal of Environmental Engineering and Landscape Management, 2021, 29, 318-336.	0.4	8
367	Reclamation of urban brownfields through phytoremediation: Implications for building sustainable and resilient towns. Urban Forestry and Urban Greening, 2021, 65, 127364.	2.3	18
368	Evaluating the role of the albedo of material and vegetation scenarios along the urban street canyon for improving pedestrian thermal comfort outdoors. Urban Climate, 2021, 40, 100993.	2.4	47
369	An Analysis of Rational Green Area Ratio by Land Use Types for Mitigating Heat-Island Effects. Journal of the Korean Association of Geographic Information Studies, 2015, 18, 59-74.	0.1	3
370	Urban Heat Mitigation Effect of Tree on Microscopic Scale. Journal of People Plants and Environment, 2016, 19, 305-315.	0.1	0
371	Influence of park size on the park cooling effect - Focused on Ilsan new town in Korea. Journal of Korea Planning Association, 2016, 51, 247.	0.2	4
372	Evaporation from water surfaces in urban environments, using Prague and Pilsen (Czech Republic) as examples. Environmental and Socio-Economic Studies, 2016, 4, 13-23.	0.3	0
374	Urban Green Spaces as a Component of an Ecosystem. , 2018, , 885-916.		5
375	Une trame «Âfraîche» comme outil d'atténuation potentielle des îlots de chaleur urbainsÂ: rÃ1es d végétation. , 2019, , 51-70.	e la	2
376	The Role of Urban Green Spaces in the Transformation of Community Ecosystem in Developing Countries. Advances in Electronic Government, Digital Divide, and Regional Development Book Series, 2019, , 204-224.	0.2	0
377	Natural Processes of Plants to Maintain a Cool Environment and Aerobic Conditions. Current World Environment Journal, 2019, 14, 03-06.	0.2	0
378	Analysis of the Relationship between Three-Dimensional Built Environment and Urban Surface Temperature. Journal of Korea Planning Association, 2019, 54, 93-108.	0.2	3
380	Strategic Plan for Urban Health and Wellbeing for the Indian Megacities. Advances in Geographical and Environmental Sciences, 2020, , 219-249.	0.4	0
381	Yenilenen Park Alanlarında İklim Odaklı Tasarımlar: Erzurum Kentsel Dönüşüm Alanı Örneği. N Ve Teknoloji Dergisi, 0, , 79-88.	levÅŸehir 0.1	Bilim
383	infraestrutura verde nos espaços públicos como elemento de resiliência socioambiental pós-pandemia. Labor & Engenho, 0, 14, e020011.	0.0	3

	CITATION R	CITATION REPORT	
# 384	ARTICLE Revisiting Urban Heat Island Effects in Coastal Regions: Mitigation Strategies for the Megacity of Istanbul, Advances in 21st Century Human Settlements, 2021., 277-307.	IF 0.3	CITATIONS 2
385	Kentsel Planlamada İklim Direnci Teması; Ankara Örneği. Resilience, 0, , 221-238.	0.7	0
386	The Role of Urban Green Spaces in the Transformation of Community Ecosystem in Developing Countries. , 2020, , 284-311.		0
387	Fréquence et intensité des îlots de chaleur à rennes : bilan de 16 années d'observations (2004-201 Climatologie, 2020, 17, 6.	9). _{0.2}	5
388	Soğuk İklim Bölgeleri İçin Yeni Bir Açık-Yeşil Alan Anlayışı; Yıl Boyu Peyzaj/Peyzaj 12. Nevşe Teknoloji Dergisi, 0, , 64-78.	hir Bilim Ve 0.1	² 1
389	Tourists, Residents and Experts Rethink the Future of Mediterranean Regions: A Question of Regional Intelligence. , 2020, , 145-173.		0
390	Bioclimatic conditions of Lublin based on the Universal Thermal Climate Index (UTCI). , 2020, 24, 118-127.		5
391	Conversion of Abandoned Property to Green Space as a Strategy to Mitigate the Urban Heat Island Investigated with Numerical Simulations. Journal of Applied Meteorology and Climatology, 2020, 59, 1827-1843.	0.6	3
392	Characteristics of Winter Urban Heat Island in Budapest at Local and Micro Scale. Journal of Environmental Geography, 2020, 13, 34-43.	1.2	1
393	Environmental control on transpiration and its cooling effect of Ficus concinna in a subtropical city Shenzhen, southern China. Agricultural and Forest Meteorology, 2022, 312, 108715.	1.9	14
394	Impacts of the Microclimate of a Large Urban Park on Its Surrounding Built Environment in the Summertime. Remote Sensing, 2021, 13, 4703.	1.8	19
395	The Cooling Effect of Urban Green Spaces in Metacities: A Case Study of Beijing, China's Capital. Remote Sensing, 2021, 13, 4601.	1.8	28
396	Machine Learning Simulation of Land Cover Impact on Surface Urban Heat Island Surrounding Park Areas. Sustainability, 2021, 13, 12678.	1.6	7
397	Don't blame it on the sunshine! An exploration of the spatial distribution of heat injustice across districts in Antwerp, Belgium. Local Environment, 2022, 27, 160-176.	1.1	4
398	Measuring thermal comfort in a built environment: A case study in a Central Business District, Jakarta. IOP Conference Series: Earth and Environmental Science, 2021, 918, 012024.	0.2	0
399	Spatial-temporal pattern in the cooling effect of a large urban forest and the factors driving it. Building and Environment, 2022, 209, 108676.	3.0	16
400	Influences of wind direction on the cooling effects of mountain vegetation in urban area. Building and Environment, 2022, 209, 108663.	3.0	9
401	Applicability of mobile-measurement strategies to different periods: A field campaign in a precinct with a block park. Building and Environment, 2022, 211, 108762.	3.0	7

#	Article	IF	CITATIONS
403	Identifying city-scale potential and priority areas for retrofitting green roofs and assessing their runoff reduction effectiveness in urban functional zones. Journal of Cleaner Production, 2022, 332, 130064.	4.6	18
404	Reporting evidence of greenness co-benefits on health, climate change mitigation, and adaptation: a systematic review of the literature. , 0, , .		2
405	A review of multi-scale modelling, assessment, and improvement methods of the urban thermal and wind environment. Building and Environment, 2022, 213, 108860.	3.0	33
406	Impacts of land use/land cover dynamics on land surface temperature using geospatial techniques in Anger River Sub-basin, Western Ethiopia. Environmental Earth Sciences, 2022, 81, 1.	1.3	21
407	Climate-adaptive landscape design: Microclimate and thermal comfort regulation of station square in the Hokuriku Region, Japan. Building and Environment, 2022, 212, 108813.	3.0	18
408	Effect of the roadside tree canopy structure and the surrounding on the daytime urban air temperature in summer. Agricultural and Forest Meteorology, 2022, 316, 108850.	1.9	13
409	The influence of local background climate on the dominant factors and threshold-size of the cooling effect of urban parks. Science of the Total Environment, 2022, 823, 153806.	3.9	46
410	The effect of increasing surface cover vegetation on urban microclimate and energy demand for building heating and cooling. Building and Environment, 2022, 213, 108867.	3.0	19
411	How Can Urban Parks Be Planned to Maximize Cooling Effect in Hot Extremes? Linking Maximum and Accumulative Perspectives. SSRN Electronic Journal, 0, , .	0.4	0
412	Architectural Simulations on Spatio-Temporal Changes of Settlement Outdoor Thermal Environment in Guanzhong Area, China. Buildings, 2022, 12, 345.	1.4	4
413	Kentsel alanda kullanılan zemin malzemelerinden kaynaklanan yüzey sıcaklığı artışının önlen ağaçların etkisinin belirlenmesi. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 2022, 27, 18-26.	imesinde 0.1	1
414	Estimating the cooling effect magnitude of urban vegetation in different climate zones using multi-source remote sensing. Urban Climate, 2022, 43, 101155.	2.4	18
415	Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review. Renewable and Sustainable Energy Reviews, 2022, 159, 112100.	8.2	50
416	Landscape and vegetation traits of urban green space can predict local surface temperature. Science of the Total Environment, 2022, 825, 154006.	3.9	21
417	Residents' Living Environments, Self-Rated Health Status and Perceptions of Urban Green Space Benefits. Forests, 2022, 13, 9.	0.9	7
418	The Influence of Green Space Patterns on Land Surface Temperature in Different Seasons: A Case Study of Fuzhou City, China. Remote Sensing, 2021, 13, 5114.	1.8	14
420	Effects of Greening Areas and Water Bodies on Urban Microclimate in Wuhan—A Simulation Study Considering Prospective Planning. Atmosphere, 2022, 13, 725.	1.0	4
421	How can urban parks be planned to maximize cooling effect in hot extremes? Linking maximum and accumulative perspectives. Journal of Environmental Management, 2022, 317, 115346.	3.8	30

#	Article	IF	CITATIONS
422	Effect modifications of green space and blue space on heat–mortality association in Hong Kong, 2008–2017. Science of the Total Environment, 2022, 838, 156127.	3.9	15
423	Nature-Based Solutions Applied to the Built Environment to Alleviate Climate Change: Benefits, Co-benefits, and Trade-offs in a Geographical Multi-scale Perspective. , 2022, , 2117-2167.		0
424	Blue-Green Infrastructure for Heat Exposure Mitigation. Advances in Civil and Industrial Engineering Book Series, 2022, , 80-108.	0.2	0
425	How Do Trees Affect the Microclimate of Urban Streets? Observations and Numerical Evaluation in a Highly Compact City. SSRN Electronic Journal, 0, , .	0.4	0
426	Urban green space and cooling services: Opposing changes of integrated accessibility and social equity along with urbanization. Sustainable Cities and Society, 2022, 84, 104005.	5.1	19
427	Towards Ecological Management and Sustainable Urban Planning in Seoul, South Korea: Mapping Wild Pollinator Habitat Preferences and Corridors Using Citizen Science Data. Animals, 2022, 12, 1469.	1.0	2
428	Optimizing the co-benefits of food desert and urban heat mitigation through community garden planning. Landscape and Urban Planning, 2022, 226, 104488.	3.4	11
429	Can improving the spatial equity of urban green space mitigate the effect of urban heat islands? An empirical study. Science of the Total Environment, 2022, 841, 156687.	3.9	46
430	Avaliação dos impactos da forma urbana no microclima de bairros da cidade do Rio de Janeiro, Brasil. PARC: Pesquisa Em Arquitetura E Construção, 0, 13, e022017.	0.3	1
431	Land-use/land cover change and land surface temperature in Metropolitan Manila, Philippines using landsat imagery. Geo Journal, 2023, 88, 1415-1426.	1.7	2
432	New developments and future challenges in reducing and controlling heat island effect in urban areas. Environment, Development and Sustainability, 2023, 25, 10485-10531.	2.7	12
433	Quantifying the cooling effect of urban green space: A case from urban parks in a tropical mega metropolitan area (India). Sustainable Cities and Society, 2022, 87, 104062.	5.1	30
434	A comparative review on the mitigation strategies of urban heat island (UHI): a pathway for sustainable urban development. Climate and Development, 2023, 15, 379-403.	2.2	8
436	Revealing Impacts of Trees on Modeling Microclimate Behavior in Spaces between Buildings through Simulation Monitoring. Buildings, 2022, 12, 1168.	1.4	3
437	Urban Cemeteries as Shared Habitats for People and Nature: Reasons for Visit, Comforting Experiences of Nature, and Preferences for Cultural and Natural Features. Land, 2022, 11, 1237.	1.2	4
438	High-fidelity simulation of the effects of street trees, green roofs and green walls on the distribution of thermal exposure in Prague-Dejvice. Building and Environment, 2022, 223, 109484.	3.0	12
439	Woody invaders from contrasted climatic origins distribute differently across the urban-to-rural gradient in oceanic Europe – Is it trait-related?. Urban Forestry and Urban Greening, 2022, 75, 127694.	2.3	1
440	How do street trees affect urban temperatures and radiation exchange? Observations and numerical evaluation in a highly compact city. Urban Climate, 2022, 46, 101288.	2.4	10

#	Article	IF	CITATIONS
441	Impactos climáticos no complexo de favelas da maré. PARC: Pesquisa Em Arquitetura E Construção, 0, 13, e022024.	0.3	1
442	Integrating Copernicus land cover data into the i-Tree Cool Air model to evaluate and map urban heat mitigation by tree cover. European Journal of Remote Sensing, 2023, 56, .	1.7	3
443	Cooling Effects of Urban Vegetation: The Role of Golf Courses. Remote Sensing, 2022, 14, 4351.	1.8	3
444	The extreme heat wave of July–August 2021 in the Athens urban area (Greece): Atmospheric and human-biometeorological analysis exploiting ultra-high resolution numerical modeling and the local climate zone framework. Science of the Total Environment, 2023, 857, 159300.	3.9	11
445	Cooling effect of the pocket park in the built-up block of a city: a case study in Xi'an, China. Environmental Science and Pollution Research, 2023, 30, 23135-23154.	2.7	5
446	Assessing the Cooling and Air Pollution Tolerance among Urban Tree Species in a Tropical Climate. Plants, 2022, 11, 3074.	1.6	1
447	Built environment influences on urban climate resilience: Evidence from extreme heat events in Macau. Science of the Total Environment, 2023, 859, 160270.	3.9	9
448	High resolution wind-tunnel investigation about the effect of street trees on pollutant concentration and street canyon ventilation. Building and Environment, 2022, 226, 109763.	3.0	7
449	Fighting urban climate changeâ \in "state of the art of mitigation technologies. , 2023, , 227-296.		4
450	Space-time estimation of the urban heat island in Rome (Italy): Overall assessment and effects on the energy performance of buildings. Building and Environment, 2023, 228, 109878.	3.0	12
451	The influence of outdoor thermal comfort on acoustic comfort of urban parks based on plant communities. Building and Environment, 2023, 228, 109884.	3.0	13
452	Modeling the spatial variation of urban park ecological properties using remote sensing data. Biosystems Diversity, 2022, 30, 213-225.	0.2	0
453	Diverse cooling effects of green space on urban heat island in tropical megacities. Frontiers in Environmental Science, 0, 10, .	1.5	6
454	Blue Green Systems for urban heat mitigation: mechanisms, effectiveness and research directions. Blue-Green Systems, 2022, 4, 348-376.	0.6	10
455	Effects of Road Components and Roadside Vegetation on Temperature Reduction in Seoul Considering Air, Wet-Bulb Globe, and Surface Temperatures. Sustainability, 2022, 14, 16663.	1.6	2
456	Analysis of the Cooling and Humidification Effect of Multi-Layered Vegetation Communities in Urban Parks and Its Impact. Atmosphere, 2022, 13, 2045.	1.0	1
457	DEĞİŞEN İKLİMDE AŞIRI HAVA OLAYLARININ İNSAN SAĞLIĞI ÜZERİNDE ÇOK BOYUTLU ETKİLER VEKTÖREL HASTALIKLAR ÖZELİNDE DEĞERLENDİRİLMESİ. Resilience, 0, , .	İ VE İKI 0.7	-İMSEL Rđ

458	Statistically Validated Urban Heat Island Risk Indicators for UHI Susceptibility Assessment. International Journal of Environmental Research and Public Health, 2023, 20, 1172.	1.2	4	
-----	--	-----	---	--

#	ARTICLE	IF	CITATIONS
459	Effects of local background climate on urban vegetation cooling and humidification: Variations and thresholds. Urban Forestry and Urban Greening, 2023, 80, 127840.	2.3	3
460	Effects of Urban Park on Thermal Comfort in Summer – An Analysis of Microclimate Data of Seoul Forest Park –. Journal of the Korean Institute of Landscape Architecture, 2022, 50, 30-41.	0.1	0
461	Effects of urban lakes and neighbouring green spaces on air temperature and humidity and seasonal variabilities. Sustainable Cities and Society, 2023, 91, 104438.	5.1	8
462	Bat bio-assisted sampling (BAS) for monitoring urban heat island. Applied Geography, 2023, 155, 102952.	1.7	0
463	Discover the Desirable Landscape Structure of Urban Parks for Mitigating Urban Heat: A High Spatial Resolution Study Using a Forest City, Luoyang, China as a Lens. International Journal of Environmental Research and Public Health, 2023, 20, 3155.	1.2	1
464	Can Potted Plants Catch Mosquitoes? Applying Rare-Earth Luminescent Materials and Plant Energy to the Development of Innovative Mosquito-Trapping Potted Plants. International Journal of Environmental Research and Public Health, 2023, 20, 3368.	1.2	0
465	Quantification of the Cooling Effect and Cooling Distance of Urban Green Spaces Based on Their Vegetation Structure and Size as a Basis for Management Tools for Mitigating Urban Climate. Sustainability, 2023, 15, 3705.	1.6	3
466	Understanding the long-term effects of public open space on older adults' functional ability and mental health. Building and Environment, 2023, 234, 110126.	3.0	5
467	Evaluating thermal comfort in the detached house area adjacent to the old industrial complex using ENVI-met v4.0. Journal of Digital Contents Society, 2023, 24, 153-166.	0.1	0
468	Quantifying the Impact of Canopy Structural Characteristics on Soil Temperature Variations in Different Bamboo Communities. Atmosphere, 2023, 14, 445.	1.0	3
469	Beyond Cleansing: Ecosystem Services Related to Phytoremediation. Plants, 2023, 12, 1031.	1.6	7
470	Spatio-temporal urban land surface temperature variations and heat stress vulnerability index in Thiruvananthapuram city of Kerala, India. , 0, , 1-17.		1
471	Analysis of the spillover characteristics of cooling effect in an urban park: A case study in Zhengzhou city. Frontiers in Earth Science, 0, 11, .	0.8	2
472	Practices of Care and Relationship-Building: A Qualitative Analysis of Urban Agriculture's Impacts on Black People's Agency and Wellbeing in Philadelphia. International Journal of Environmental Research and Public Health, 2023, 20, 4831.	1.2	1
473	Investigating the Role of Tree Species in Urban Green Space in Modulating Temperature and Relative Humidity of the Environment (Case Study: Abidar Forest Park in Sanandaj). Bul"m/shinal"sil"-i Jangal/hal"-yi Il"ral"n, 2020, 8, 48-59.	0.2	0
474	Evaluation Technology of Urban Green Space with Remote Sensing. , 2023, , 207-237.		0
475	Exploring the relationship between seasonal variations of land surface temperature and urban morphological factors in complex urban areas. Environmental Science and Pollution Research, 2023, 30, 59861-59876.	2.7	5
476	Urban Surface Thermal Runoff Generation Mechanism and Scenario Simulation. Water Resources Research, 2023, 59, .	1.7	6

IF

ARTICLE

483 Urban Green Spaces as a Component of an Ecosystem. , 2023, , 165-198.

CITATIONS