The cooling effect of green spaces as a contribution to t case study in Lisbon

Building and Environment 46, 2186-2194

DOI: 10.1016/j.buildenv.2011.04.034

Citation Report

\#	Article	IF	Citations
1	A new heat sensitivity index for settlement areas. Urban Climate, 2013, 6, 63-81.	2.4	19
2	Evaluating the cooling effects of greening for improving the outdoor thermal environment at an institutional campus in the summer. Building and Environment, 2013, 66, 158-172.	3.0	205
3	Carbon dioxide balance assessment of the city of Florence (Italy), and implications for urban planning. Landscape and Urban Planning, 2013, 120, 138-146.	3.4	58
4	Landscape perception and recreation needs in urban green space in Fuyang, Hangzhou, China. Urban Forestry and Urban Greening, 2013, 12, 44-52.	2.3	161
5	Social strategy games in communicating trade-offs between mitigation and adaptation in cities. Urban Climate, 2013, 4, 102-116.	2.4	30
6	Wind comfort in a public urban spaceâ€"Case study within Dublin Docklands. Frontiers of Architectural Research, 2013, 2, 50-66.	1.3	35
7	Social vulnerability assessment of the Cologne urban area (Germany) to heat waves: links to ecosystem services. International Journal of Disaster Risk Reduction, 2013, 6, 98-117.	1.8	97
8	Integrated assessment of the cool island intensity of green spaces in the mega city of Beijing. International Journal of Remote Sensing, 2013, 34, 3028-3043.	1.3	35
9	Modification of Human-Biometeorologically Significant Radiant Flux Densities by Shading as Local Method to Mitigate Heat Stress in Summer within Urban Street Canyons. Advances in Meteorology, 2013, 2013, 1-13.	0.6	97
10	Estimation of the Relationship between Urban Park Characteristics and Park Cool Island Intensity by Remote Sensing Data and Field Measurement. Forests, 2013, 4, 868-886.	0.9	117

11 EFEITOS DA VEGETAÃ \ddagger ÃfO NA VARIAÃ $\ddagger A ̃ f O$ TÃ\%oRMICA DA CIDADE DE CURITIBA, PR. Floresta, 2014, 44, 451. 0.1 2
12 Quantifying the Impact of Land Cover Composition on Intra-Urban Air Temperature Variations at a Mid-Latitude City. PLoS ONE, 2014, 9, e102124.1.138Urban forests and the conservation of threatened plant species: the case of the Tijuca National Park,Brazil. Natureza A Conservacao, 2014, 12, 170-173.13Counteracting urban climate change: adaptation measures and their effect on thermal comfort.1.3184
Theoretical and Applied Climatology, 2014, 115, 243-257. 14Efficiency of parks in mitigating urban heat island effect: An example from Addis Ababa. Landscape and3.4439Urban Planning, 2014, 123, 87-95.

[^0]| \# | Article | IF | Citations |
| :---: | :---: | :---: | :---: |
| 19 | Effect of urban green patterns on surface urban cool islands and its seasonal variations. Urban Forestry and Urban Greening, 2014, 13, 646-654. | 2.3 | 167 |
| 20 | Relationship between land cover patterns and surface temperature in urban areas. GIScience and Remote Sensing, 2014, 51, 521-536. | 2.4 | 80 |
| 21 | A review of energy characteristic of vertical greenery systems. Renewable and Sustainable Energy Reviews, 2014, 40, 450-462. | 8.2 | 136 |
| 22 | Heat mitigation strategies in winter and summer: Field measurements in temperate climates. Building and Environment, 2014, 81, 309-319. | 3.0 | 62 |
| 23 | Thermal and comfort conditions in a semi-closed rear wooded garden and its adjacent semi-open spaces in a Mediterranean climate (Athens) during summer. Architectural Science Review, 2014, 57, 63-82. | 1.1 | 21 |
| 24 | Impact of mid-high rise buildings on summer air temperatures in the coastal city of Takamatsu in southwestern Japan. Urban Climate, 2014, 9, 75-88. | 2.4 | 3 |
| 25 | The cooling effect of urban green spaces as a contribution to energy-saving and emission-reduction: A case study in Beijing, China. Building and Environment, 2014, 76, 37-43. | 3.0 | 152 |
| 26 | Assessing the effects of landscape design parameters on intra-urban air temperature variability: The case of Beijing, China. Building and Environment, 2014, 76, 44-53. | 3.0 | 115 |
| 27 | Lichens as ecological indicators in urban areas: beyond the effects of pollutants. Journal of Applied Ecology, 2014, 51, 1750-1757. | 1.9 | 50 |
| 28 | Effects of spatial pattern of greenspace on urban cooling in a large metropolitan area of eastern China. Landscape and Urban Planning, 2014, 128, 35-47. | 3.4 | 326 |

29 Urban Areas. , 0, , 535-612. 14
30 The mitigation effect of configuration and context optimization of urban holdings on heat island. IOP 0.2 0
Conference Series: Earth and Environmental Science, 2014, 17, 012161.From Experience-Oriented to Quantity-Based: A Method for Landscape Plant Selection and

\#	Article	IF	Citations
37	Quantifying the effects of settlement size on urban heat islands in fairly uniform geographic areas. Habitat International, 2015, 49, 100-106.	2.3	69
38	The impacts of land cover types on urban outdoor thermal environment: the case of Beijing, China. Journal of Environmental Health Science \& Engineering, 2015, 13, 43.	1.4	24
39	Comparative analysis of green actions to improve outdoor thermal comfort inside typical urban street canyons. Urban Climate, 2015, 14, 251-267.	2.4	131
40	Crown size and growing space requirement of common tree species in urban centres, parks, and forests. Urban Forestry and Urban Greening, 2015, 14, 466-479.	2.3	187
41	An integrated approach for ventilation's assessment on outdoor thermal comfort. Building and Environment, 2015, 87, 59-71.	3.0	40
42	Economic Evaluation of Climate Change Impacts. Springer Climate, 2015,	0.3	15
43	A comparison of thermal comfort conditions in four urban spaces by means of measurements and modelling techniques. Building and Environment, 2015, 93, 245-257.	3.0	138
44	Residentsâ $€^{\mathrm{TM}}$ understanding of the role of green infrastructure for climate change adaptation in Hangzhou, China. Landscape and Urban Planning, 2015, 138, 132-143.	3.4	95
45	Impact of plant evapotranspiration rate and shrub albedo on temperature reduction in the tropical outdoor environment. Building and Environment, 2015, 94, 206-217.	3.0	64
46	The role of local land-use on the urban heat island effect of Tel Aviv as assessed from satellite remote sensing. Applied Geography, 2015, 56, 145-153.	1.7	111
47	The effect of urban geometry on mean radiant temperature under future climate change: a study of three European cities. International Journal of Biometeorology, 2015, 59, 799-814.	1.3	62
48	Calculating cooling extents of green parks using remote sensing: Method and test. Landscape and Urban Planning, 2015, 134, 66-75.	3.4	171

Urban Form and Microclimatic Conditions in Urban Open Spaces at the Densely Built Centre of a Greek
City. Journal of Sustainable Development, 2016, 9, 132.
Street Orientation and Side of the Street Greatly Influence the Microclimatic Benefits Street Trees
Can Provide in Summer. Journal of Environmental Quality, 2016, 45, 167-174.

TRANSFORMACIÃ"N DE LA SUPERFICIE TERRESTRE POR LA ACTIVIDAD HUMANA Y SU RELACIÃ"N CON EL
 51 CAMBIO CLIMẪJICO. Sociedade \& Natureza, 2016, 28, 185-198.

$0.0 \quad 2$

Modification of Heat-Related Mortality in an Elderly Urban Population by Vegetation (Urban Green)
52 and Proximity to Water (Urban Blue): Evidence from Lisbon, Portugal. Environmental Health
2.8

134
Perspectives, 2016, 124, 927-934.
Diurnal changes in urban boundary layer environment induced by urban greening. Environmental
Research Letters, 2016, 11, 114018.

\#	Article	IF	Citations
55	Neighborhood Landscape Spatial Patterns and Land Surface Temperature: An Empirical Study on Single-Family Residential Areas in Austin, Texas. International Journal of Environmental Research and Public Health, 2016, 13, 880.	1.2	49
56	Examining the Association between Physical Characteristics of Green Space and Land Surface Temperature: A Case Study of Ulsan, Korea. Sustainability, 2016, 8, 777.	1.6	27
57	Linear Parks along Urban Rivers: Perceptions of Thermal Comfort and Climate Change Adaptation in Cyprus. Sustainability, 2016, 8, 1023.	1.6	31
58	Assessing the Distribution of Urban Green Spaces and its Anisotropic Cooling Distance on Urban Heat Island Pattern in Baotou, China. ISPRS International Journal of Geo-Information, 2016, 5, 12.	1.4	78
59	Analysis of Thermal Environment over a Small-Scale Landscape in a Densely Built-Up Asian Megacity. Sustainability, 2016, 8, 358.	1.6	18
60	Urban exemplars of climate-sensitive design. , 2016, , 305-334.		1
61	Urban Forest Governance: FUTUREâ€"The 100,000 Trees Project in the Porto Metropolitan Area. World Sustainability Series, 2016, , 187-202.	0.3	3
62	Achieving sustainability through the management of microclimate parameters in Mediterranean urban environments during summer. Sustainable Cities and Society, 2016, 26, 48-64.	5.1	34
63	The extent of shifts in vegetation phenology between rural and urban areas within a humanâ€dominated region. Ecology and Evolution, 2016, 6, 1942-1953.	0.8	37
64	Modelling the potential of green and blue infrastructure to reduce urban heat load in the city of Vienna. Climatic Change, 2016, 135, 425-438.	1.7	83
65	Modelling building proximity to greenery in a three-dimensional perspective using multi-source remotely sensed data. Journal of Spatial Science, 2016, 61, 389-403.	1.0	8
66	Research on the cooling island effects of water body: A case study of Shanghai, China. Ecological Indicators, 2016, 67, 31-38.	2.6	186
67	Historical Allotment Gardens in WrocÅ,aw - The Need to Protection. Civil and Environmental Engineering Reports, 2016, 21, 43-52.	0.2	3
68	Prediction of the root anchorage of native young plants using Bayesian inference. Urban Forestry and Urban Greening, 2016, 19, 237-252.	2.3	5

69 The influence of increasing tree cover on mean radiant temperature across a mixed development suburb in Adelaide, Australia. Urban Forestry and Urban Greening, 2016, 20, 233-242.

Transpiration and stomatal conductance as potential mechanisms to mitigate the heat load in Mexico
City. Urban Forestry and Urban Greening, 2016, 20, 152-159.
2.3

34

Temporal variations in microclimate cooling induced by urban trees in Mainz, Germany. Urban
Forestry and Urban Greening, 2016, 20, 198-209.

Preliminary study of the influence of the spatial arrangement of urban parks on local temperature
2.3

74 Small-scale human-biometeorological impacts of shading by a large tree. Open Geosciences, 2
75 Cooling effect of urban parks and their relationship with urban heat islands. Atmospheric and
Oceanic Science Letters, 2016, 9, 298-305.
$0.6 \quad 31$

Oceanic Science Letters, 2016, 9, 298-305.
0.5

15

Influence of vegetation and building geometry on the spatial variations of air temperature and
cooling rates in a highâ€łatitude city. International Journal of Climatology, 2016, 36, 2379-2395.
1.5

The role of urban green infrastructure in mitigating land surface temperature in Bobo-Dioulasso,
Burkina Faso. Environment, Development and Sustainability, 2016, 18, 373-392.
2.7

55

78 Evaluating green infrastructure in urban environments using a multi-taxa and functional diversity
approach. Environmental Research, 2016, 147, 601-610.
3.1

63

80 The application of air layers in building envelopes: A review. Applied Energy, 2016, 165, 707-734.
5.1

131
Renaturing cities using a regionally-focused biodiversity-led multifunctional benefits approach to
urban green infrastructure. Environmental Science and Policy, 2016, 62, 99-111.

$82 \quad$| Urban green spaces activities: A preparatory groundwork for a safety management system. Journal of |
| :--- |
| Safety Research, 2016, 56, 75-82. |

Retrieval of three-dimensional tree canopy and shade using terrestrial laser scanning (TLS) data to analyze the cooling effect of vegetation. Agricultural and Forest Meteorology, 2016, 217, 22-34.
1.9

95
8.2

340
8.2

Daytime and nighttime urban heat islands statistical models for Atlanta. Environment and Planning B:
1.0

26 Urban Analytics and City Science, 2017, 44, 308-327.
$\square \quad 26$
85

Greenspace patterns and the mitigation of land surface temperature in Taipei metropolis. Habitat
International, 2017, 60, 69-80.

2.3

77
86 International, 2017, 60, 69-80. 77

Characterizing the relationship between land use land cover change and land surface temperature. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 124, 119-132.

Numerical simulation of cooling effect of vegetation enhancement in a subtropical urban park.
5.1

65

\#	Article	IF	Citations
91	Urban development and pedestrian thermal comfort in Melbourne. Solar Energy, 2017, 144, 681-698.	2.9	96
92	Impacts of land use changes from the Hanoi Master Plan 2030 on urban heat islands: Part 1. Cooling effects of proposed green strategies. Sustainable Cities and Society, 2017, 32, 295-317.	5.1	26
93	Current trends in urban heat island mitigation research: Observations based on a comprehensive research repository. Urban Climate, 2017, 21, 1-26.	2.4	92
94	An urban heat island study in Nanchang City, China based on land surface temperature and social-ecological variables. Sustainable Cities and Society, 2017, 32, 557-568.	5.1	163
95	A micro-climatic study on cooling effect of an urban park in a hot and humid climate. Sustainable Cities and Society, 2017, 32, 513-522.	5.1	67
96	Assessing remotely sensed temperature humidity index as human comfort indicator relative to landuse landcover change in Abuja, Nigeria. Spatial Information Research, 2017, 25, 523-533.	1.3	22
97	The cooling and energy saving effect of landscape design parameters of urban park in summer: A case of Beijing, China. Energy and Buildings, 2017, 149, 91-100.	3.1	80
98	The impact of urban development patterns on thermal distribution in Taipei. , 2017, , .		4

The influence of small green space type and structure at the street level on urban heat island

Patch size of trees affects its cooling effectiveness: A perspective from shading and transpiration

112	Impacts of Climate Change on Urban Areas and Nature-Based Solutions for Adaptation. Theory and Practice of Urban Sustainability Transitions, 2017, , 15-27.	1.9	39
113	The Urban Heat Island: Implications for Health in a Changing Environment. Current Environmental Health Reports, 2017, 4, 296-305.	3.2	353
114	Quantifying the cool island effects of urban green spaces using remote sensing Data. Urban Forestry and Urban Greening, 2017, 27, 24-31.	2.3	172
115	Evaluating the impact of urban green space and landscape design parameters on thermal comfort in hot summer by numerical simulation. Building and Environment, 2017, 123, 277-288.	3.0	138
116	How can urban green spaces be planned for climate adaptation in subtropical cities?. Ecological Indicators, 2017, 82, 152-162.	2.6	177
117	Lots for greening: Identification of metropolitan vacant land and its potential use for cooling and agriculture in Phoenix, AZ, USA. Applied Geography, 2017, 85, 139-151.	1.7	39
118	The cooling effect of green infrastructure on surrounding built environments in a sub-tropical climate: a case study in Taipei metropolis. Landscape Research, 2017, 42, 558-573.	0.7	12
119	Microclimatic differences and their influence on transpirational cooling of Tilia cordata in two contrasting street canyons in Munich, Germany. Agricultural and Forest Meteorology, 2017, 232, 443-456.	1.9	98
120	Examining default urban-aspect-ratios and sky-view-factors to identify priorities for thermal-sensitive public space design in hot-summer Mediterranean climates: The Lisbon case. Building and Environment, 2017, 126, 442-456.	3.0	32

Sustainability 2017,1379Sustainability, 2017, 9, 1379.

The city as nature and the nature of the city - climate adaptation using living infrastructure:
governance and integration challenges. Australian Journal of Water Resources, 2017, 21, 63-76.
1.6

9

Urban Green Infrastructure as a tool for urban heat mitigation: Survey of research methodologies
and findings across different climatic regions. Urban Climate, 2018, 24, 94-110.

Urban park area and age determine the richness of native and exotic plants in parks of a Latin American city: Santiago as a case study. Urban Ecosystems, 2018, 21, 645-655.

\#	Article	IF	Citations
145	Thermal comfort in urban open spaces: Objective assessment and subjective perception study in tropical city of Bhopal, India. Urban Climate, 2018, 24, 954-967.	2.4	97
146	Effects of tree shading and transpiration on building cooling energy use. Energy and Buildings, 2018, 159, 382-397.	3.1	81
147	Assessing the effects of landscape characteristics on the thermal environment of open spaces in residential areas of Beijing, China. Landscape and Ecological Engineering, 2018, 14, 79-90.	0.7	6
148	The Use of Tree Barks to Monitor Traffic Related Air Pollution: A Case Study in SÃ£o Pauloâ€"Brazil. Frontiers in Environmental Science, 2018, 6, .	1.5	16
149	Leftover Spaces for the Mitigation of Urban Overheating in Municipal Beirut. Climate, 2018, 6, 68.	1.2	15
150	A Proposal to Integrate System Dynamics and Carbon Metabolism for Urban Planning. Procedia CIRP, 2018, 69, 78-82.	1.0	15
151	Beyond Singular Climatic Variablesâ€"Identifying the Dynamics of Wholesome Thermo-Physiological Factors for Existing/Future Human Thermal Comfort during Hot Dry Mediterranean Summers. International Journal of Environmental Research and Public Health, 2018, 15, 2362.	1.2	19
152	Optimal Thermal Characteristics of the Courtyard in the Hot and Arid Climate of Isfahan. Buildings, 2018, 8, 166.	1.4	10
153	Evaluating the Impact of the Morphological Transformation of Urban Sites on the Urban Thermal Microenvironment. Buildings, 2018, 8, 182.	1.4	7
154	Relation between Urban Volume and Land Surface Temperature: A Comparative Study of Planned and Traditional Cities in Japan. Sustainability, 2018, 10, 2366.	1.6	49
155	Diversifying Mediterranean Tourism as a Strategy for Regional Resilience Enhancement. Advances in Spatial Science, 2018, , 105-127.	0.3	5
156	Resilience and Regional Dynamics. Advances in Spatial Science, 2018, ,	0.3	7
157	A multilayer mean radiant temperature model for pedestrians in a street canyon with trees. Building and Environment, 2018, 141, 298-309.	3.0	34
158	The Science of Adaptation to Extreme Heat. , 2018, , 89-103.		9
159	Index for evaluation of public parks and gardens proximity based on the mobility network: A case study of Braga, Braganza and Viana do Castelo (Portugal) and Lugo and Pontevedra (Spain). Urban Forestry and Urban Greening, 2018, 34, 134-140.	2.3	12
160	Studying the Association between Green Space Characteristics and Land Surface Temperature for Sustainable Urban Environments: An Analysis of Beijing and Islamabad. ISPRS International Journal of Geo-Information, 2018, 7, 38.	1.4	41
161	Using â€œLocal Climate Zonesâ€॰to Detect Urban Heat Island on Two Small Cities in Alabama. Earth Interactions, 2018, 22, 1-22.	0.7	72
162	The Impact of Tipuana tipu Species on Local Human Thermal Comfort Thresholds in Different Urban Canyon Cases in Mediterranean Climates: Lisbon, Portugal. Atmosphere, 2018, 9, 12.	1.0	22

\#	Article	IF	Citations
163	Approaches to Outdoor Thermal Comfort Thresholds through Public Space Design: A Review. Atmosphere, 2018, 9, 108.	1.0	68
164	The Heterogeneity of Air Temperature in Urban Residential Neighborhoods and Its Relationship with the Surrounding Greenspace. Remote Sensing, 2018, 10, 965.	1.8	18
165	Effects of Building Design Elements on Residential Thermal Environment. Sustainability, 2018, 10, 57.	1.6	22
166	Analyzing Thermal Characteristics of Urban Streets Using a Thermal Imaging Camera: A Case Study on Commercial Streets in Seoul, Korea. Sustainability, 2018, 10, 519.	1.6	30
167	Relationship between Park Composition, Vegetation Characteristics and Cool Island Effect. Sustainability, 2018, 10, 587.	1.6	32
168	Study of the Cooling Effects of Urban Green Space in Harbin in Terms of Reducing the Heat Island Effect. Sustainability, 2018, 10, 1101.	1.6	41
169	The impact of urban forest structure and its spatial location on urban cool island intensity. Urban Ecosystems, 2018, 21, 863-874.	1.1	38
170	Urban green area provides refuge for native small mammal biodiversity in a rapidly expanding city in Ghana. Environmental Monitoring and Assessment, 2018, 190, 480.	1.3	23
171	Strong contributions of local background climate to the cooling effect of urban green vegetation. Scientific Reports, 2018, 8, 6798.	1.6	101
172	Thermal environment effects and interactions of reservoirs and forests as urban blue-green infrastructures. Ecological Indicators, 2018, 91, 657-663.	2.6	46

173 Investigation of the effects of wetlands on micro-climate. Applied Geography, 2018, 97, 48-60.

```
174 Cities and Energy Consumption: Strategies for an Energy Saving Planning. Green Energy and
174 Technology, 2018, , 49-70.
```

$0.4 \quad 1$
Discriminating Urban Forest Types from Sentinel-2A Image Data through Linear Spectral Mixture 0.9 17
Analysis: A Case Study of Xuzhou, East China. Forests, 2019, 10, 478.
$1.3 \quad 8$
176 Spatial patterns of greenspace cool islands and their relationship to cooling effectiveness in the

Rewilding in the Garden: are garden hybrid plants (cultivars) less resilient to the effects of
177 hydrological extremes than their parent species? A case study with Primula. Urban Ecosystems, 2019,
1.1

9 22, 841-854.

> Does urban vegetation reduce temperature and air pollution concentrations? Findings from an
> environmental monitoring study of the Central Experimental Farm in Ottawa, Canada. Atmospheric
> Environment, 2019, 218, 116886.
1.9

30

Spatio-temporal planning of urban neighborhoods in the context of global climate change: Lessons for urban form design in Tehran, Iran. Sustainable Cities and Society, 2019, 51, 101554.

\#	Article	IF	Citations
181	Determining Favourable and Unfavourable Thermal Areas in Seoul Using In-Situ Measurements: A Preliminary Step towards Developing a Smart City. Energies, 2019, 12, 2320.	1.6	9
182	Urbanization Effects on Human-Perceived Temperature Changes in the North China Plain. Sustainability, 2019, 11, 3413.	1.6	9
183	Association between the First Occurrence of Asthma and Residential Greenness in Children and Teenagers in Taiwan. International Journal of Environmental Research and Public Health, 2019, 16, 2076.	1.2	27
184	Na<sub> $3<\mid$ sub> $\operatorname{Sm}(\mathrm{PO}<$ sub $>4<\mid$ sub $\rangle)<$ sub $>2<\mid$ sub $>:(3+1)$-dimensional commensurately modulated structure model and photoluminescence properties. Zeitschrift Fur Kristallographie - Crystalline Materials, 2019, 234, 281-289.	0.4	3
185	Impact of urban greenspace spatial pattern on land surface temperature: a case study in Beijing metropolitan area, China. Landscape Ecology, 2019, 34, 2949-2961.	1.9	30
186	An integrated overview of physiological and biochemical responses of Celtis australis to drought stress. Urban Forestry and Urban Greening, 2019, 46, 126480.	2.3	8
187	The Cooling Effect of Large-Scale Urban Parks on Surrounding Area Thermal Comfort. Energies, 2019, 12, 3904.	1.6	45
188	How Do Tilia Cordata Greenspire Trees Cope with Drought Stress Regarding Their Biomass Allocation and Ecosystem Services?. Forests, 2019, 10, 676.	0.9	20
189	Polycyclic aromatic hydrocarbons in tree barks, gaseous and particulate phase samples collected near an industrial complex in SÃ£o Paulo (Brazil). Chemosphere, 2019, 237, 124499.	4.2	16
190	Understanding the relationship between urban blue infrastructure and land surface temperature. Science of the Total Environment, 2019, 694, 133742.	3.9	109

191 The impact of urban greening and urban geometry on the microclimate at the neighborhood level in 0
hot arid climates. , 2019, , .
192 Effects of Area and Shape of Greenspace on Urban Cooling in Nanjing, China. Journal of the Urban 0.8 20
Planning and Development Division, ASCE, 2019, 145,.4.819Quantifying the biophysical effects of forests on local air temperature using a novel three-layeredland surface energy balance model. Environment International, 2019, 132, 105080.
Influence of Green Spaces on Outdoors Thermal Comfortâ $€$ "Structured Experiment in a Mediterranean 1.2 14
194 Climate. Climate, 2019, 7, 20.A review of mitigating strategies to improve the thermal environment and thermal comfort in urban

\# Article			
199	A Study of the Pedestrianized Zone for Tourists: Urban Design Effects on Humansấ Tm Thermal Comfort in Fo Shan City, Southern China. Sustainability, 2019, 11, 2774.		Combined Effects of the Surface Urban Heat Island with Landscape Composition and Configuration
:---			
Based on Remote Sensing: A Case Study of Shanghai, China. Sustainability, 2019, 11, 2890.			

209 Bioenergy and Climate Change: Greenhouse Gas Mitigation. Biofuel and Biorefinery Technologies, 2019, , 269-289.

$0.1 \quad 3$
210 Urban green space cooling effect in cities. Heliyon, 2019, 5, e01339.
1.4

292

The role of sky view factor and urban street greenery in human thermal comfort and heat stress in a desert climate. Journal of Arid Environments, 2019, 166, 68-76.
1.2

66
0.1

39
Prospects of Renewable Bioprocessing in Future Energy Systems. Biofuel and Biorefinery Technologies, 2019, , .
212

Quantitative analysis of urban cold island effects on the evolution of green spaces in a coastal city: a
1.3

6
case study of Fuzhou, China. Environmental Monitoring and Assessment, 2019, 191, 121.

Optimization of Vegetation Arrangement to Improve Microclimate and Thermal Comfort in an Urban
Park. International Review for Spatial Planning and Sustainable Development, 2019, 7, 18-30.
0.6

19

Estimating the daily peak and annual total electricity demand for cooling in Vienna, Austria by 2050.
Urban Climate, 2019, 28, 100452.
2.4 11

[^1]0.6

12
Planning and design for sustainable cities in the MENA region. Smart and Sustainable Built
Environment, 2019, 8, 98-102.

Assessing the vulnerability of Australiaâ $€^{T M} S$ urban forests to climate extremes. Plants People Planet,

Promoting Citizensâ€ ${ }^{\text {TM }}$ Quality of Life Through Green Urban Planning. Communications in Computer and

Multi-city comparison of the relationships between spatial pattern and cooling effect of urban green spaces in four major Asian cities. Ecological Indicators, 2019, 98, 200-213.
$2.6 \quad 78$
222

An improved method for assessing vegetation cooling service in regulating thermal environment: A case study in Xiamen, China. Ecological Indicators, 2019, 98, 531-542.
2.6

11

224 Mitigating the Local Climatic Change and Fighting Urban Vulnerability. , 2019, , 223-307.

Multi-year comparison of the effects of spatial pattern of urban green spaces on urban land surface temperature. Landscape and Urban Planning, 2019, 184, 44-58.
3.4

172
Households' willingness to pay for green roof for mitigating heat island effects in Bejing (China).
Building and Environment, 2019, 150, 13-20.

227 Field measurement study on the impacts of urban spatial indicators on urban climate in a Chinese basin and static-wind city. Building and Environment, 2019, 147, 482-494.
3.0

62
\square

Quantifying the seasonal contribution of coupling urban land use types on Urban Heat Island using
Land Contribution Index: A case study in Wuhan, China. Sustainable Cities and Society, 2019, 44, 666-675.
$5.1 \quad 80$

How to cool hot-humid (Asian) cities with urban trees? An optimal landscape size perspective.
229 Agricultural and Forest Meteorology, 2019, 265, 338-348.
1.9

123
1.2

128
230 Regulating Ecosystem Services and Green Infrastructure: assessment of Urban Heat Island effect
mitigation in the municipality of Rome, Italy. Ecological Modelling, 2019, 392, 92-102.

Integrating four radiant heat load mitigation strategies is an efficient intervention to improve human
health in urban environments. Science of the Total Environment, 2020, 698, 134259.
3.9

21

Phenology acts as a primary control of urban vegetation cooling and warming: A synthetic analysis of global site observations. Agricultural and Forest Meteorology, 2020, 280, 107765.
1.9

18

233 Urban Health and Wellbeing. Advances in Geographical and Environmental Sciences, 2020, , .

Effects of changing spatial extent on the relationship between urban forest patterns and land surface temperature. Ecological Indicators, 2020, 109, 105778.

238 How can urban blue-green space be planned for climate adaption in high-latitude cities? A seasonal perspective. Sustainable Cities and Society, 2020, 53, 101932.
244 Summer thermal comfort in Czech cities: measured effects of blue and green features in city centres.
International Journal of Biometeorology, 2021, 65, 1277-1289.
$1.3 \quad 36$

Statistical Review of Quality Parameters of Blue-Green Infrastructure Elements Important in
245 Mitigating the Effect of the Urban Heat Island in the Temperate Climate (C) Zone. International Journal1.2of Environmental Research and Public Health, 2020, 17, 7093.
$246 \quad$ Surf1.110
Comparative Study on the Cooling Effects of Green Space Patterns in Waterfront Build-Up Blocks: An
247 Experience from Shanghai. International Journal of Environmental Research and Public Health, 2020, 1.2 27
17, 8684.
248 Seasonal and Diurnal Variations in1.69Environmental impact assessment of introducing compact city models by downscaling simulations.

\#	Article	IF	Citations
253	Land Cover Influences on LST in Two Proposed Smart Cities of India: Comparative Analysis Using Spectral Indices. Land, 2020, 9, 292.	1.2	29
254	Analysis of Cooling and Humidification Effects of Different Coverage Types in Small Green Spaces (SCS) in the Context of Urban Homogenization: A Case of HAU Campus Green Spaces in Summer in Zhengzhou, China. Atmosphere, 2020, 11, 862.	1.0	16
255	Effects of Green Space Patterns on Urban Thermal Environment at Multiple Spatialâ€"Temporal Scales. Sustainability, 2020, 12, 6850.	1.6	21
256	Heat-Mitigation Strategies to Improve Pedestrian Thermal Comfort in Urban Environments: A Review. Sustainability, 2020, 12, 10000.	1.6	28
257	Green Infrastructure as an Urban Heat Island Mitigation Strategyâ€"A Review. Water (Switzerland), 2020, 12, 3577.	1.2	51
258	Influence of Urban Scale and Urban Expansion on the Urban Heat Island Effect in Metropolitan Areas: Case Study of Beijingâ€"Tianjinâ€"Hebei Urban Agglomeration. Remote Sensing, 2020, 12, 3491.	1.8	42
259	The microclimatic interaction of a small urban park in central Melbourne with its surrounding urban environment during heat events. Urban Forestry and Urban Greening, 2020, 52, 126688.	2.3	37
260	Solar reflective pavementsâ $€$ "A policy panacea to heat mitigation?. Environmental Research Letters, 2020, 15, 064016.	2.2	60
261	The Contribution of NBS to Urban Resilience in Stormwater Management and Control: A Framework with Stakeholder Validation. Sustainability, 2020, 12, 2537.	1.6	12
262	Green roof effects on daytime heat in a prefabricated residential neighbourhood in Berlin, Germany. Urban Forestry and Urban Greening, 2020, 53, 126738.	2.3	53
263	Associations between urban thermal environment and physical indicators based on meteorological data in Foshan City. Sustainable Cities and Society, 2020, 60, 102288.	5.1	12
264	Seasonal microclimate effect of Linpan settlements on the surrounding area in Chengdu Plain. Theoretical and Applied Climatology, 2020, 141, 1559-1572.	1.3	5
265	Regional Intelligence., 2020, , .		3
266	Effects of Roadside Trees and Road Orientation on Thermal Environment in a Tropical City. Sustainability, 2020, 12, 1053.	1.6	29
267	Modeling the spatial variation of urban land surface temperature in relation to environmental and anthropogenic factors: a case study of Tehran, Iran. GIScience and Remote Sensing, 2020, 57, 483-496.	2.4	40
268	Evaluation of the thermal indices and thermal comfort improvement by different vegetation species and materials in a medium-sized urban park. Energy Reports, 2020, 6, 1670-1684.	2.5	76
269	Utilizing Remotely Sensed Observations to Estimate the Urban Heat Island Effect at a Local Scale: Case Study of a University Campus. Land, 2020, 9, 191.	1.2	14
270	Study of Urban Greenery Models to Prevent Overheating of Parked Vehicles in P + R Facilities in Ljubljana, Slovenia. Sustainability, 2020, 12, 5160.	1.6	4

Quantifying seasonal and diurnal contributions of urban landscapes to heat energy dynamics. Applied

274	Critical review on the cooling effect of urban blue-green space: A threshold-size perspective. Urban Forestry and Urban Greening, 2020, 49, 126630.	2.3	274
275	Cross-cultural differences in thermal comfort in campus open spaces: A longitudinal field survey in China's cold region. Building and Environment, 2020, 172, 106739.	3.0	56
276	Mapping and Analyzing the Park Cooling Effect on Urban Heat Island in an Expanding City: A Case Study in Zhengzhou City, China. Land, 2020, 9, 57.	1.2	

281 Using green to cool the grey: Modelling the cooling effect of green spaces with a high spatial resolution. Science of the Total Environment, 2020, 724, 138182.

$282 \quad$| Effects of Urban Morphology on Microclimate Parameters in an Urban University Campus. |
| :--- |
| Sustainability, 2020, 12, 2962 . |

$1.6 \quad 21$
Seasonal and meteorological effects on the cooling magnitude of trees in subtropical climate. 3.0 15
283 Building and Environment, 2020, 177, 106911.Water as an urban heat sink: Blue infrastructure alleviates urban heat island effect in mega-city284 Water as an urban heat sink: Blue infrastructure alleveration. Journal of Cleaner Production, 2020, 262, 121411.$4.6 \quad 71$Knowledge Atlas on the Relationship between Urban Street Space and Residentsâ€ T Healthâ€"A

292	Interrelationships between Land Use Land Cover (LULC) and Human Thermal Comfort (HTC): A Comparative Analysis of Different Spatial Settings. Sustainability, 2021, 13, 382.	1.6
293	How Cool Pavements and Green Roof Affect Building Energy Performances. Heat Transfer Engineering, 2022, 43, 326-336.	1.2
294	Effect of the surface temperature of surface materials on thermal comfort: a case study of Iskenderun (Hatay, Turkey). Theoretical and Applied Climatology, 2021, 144, 103-113.	1.3
295	Creenery as a mitigation and adaptation strategy to urban heat. Nature Reviews Earth \& Environment, 2021, 2, 166-181.	12.2

297 Platform Dedicated to Nature-Based Solutions for Risk Reduction and Environmental Issues in Hilly and Mountainous Lands. Sustainability, 2021, 13, 1094.
Nature-Based Solutions Applied to the Built Environment to Alleviate Climate Change: Benefits,
Co-benefits, and Trade-offs in a Geographical Multi-scale Perspective., 2021, , 1-52. Co-benefits, and Trade-offs in a Ceographical Multi-scale Perspective., 2021, , 1-52.
Walking and Sustainable Tourism: â€œStreetsadvisor.â€•A Stated Preference GIS-Based Methodology for0.2
300 A CFD-Based Optimization of Building Configuration for Urban Ventilation Potential. Energies, 2021,14, 1447.

The effect of various urban design parameter in alleviating urban heat island and improving thermal
$\left.\begin{array}{llll}\text { \# } & \text { ARTICLE } & \text { IF } & \text { CITATIONS } \\ 307 & \begin{array}{l}\text { Comparison of cooling effect between green space and water body. Sustainable Cities and Society, } \\ \text { 2021, 67, 102711. }\end{array} & 5.1 & 69 \\ 308 & \begin{array}{l}\text { SIMULATION-BASED ANALYSIS OF THE EFFCT OF GREEN ROOFS ON THERMAL PERFORMANCE OF BUILDINGS } \\ \text { IN A TROPICAL LANDSCAPE. Journal on Innovation and Sustainability, 2021, 12, 45-56. }\end{array} & 0.2\end{array}\right\}$
Assessing the cooling efficiency of urban parks using data envelopment analysis and remote sensing1.3data. Theoretical and Applied Climatology, 2021, 145, 903-916.
An overview of monitoring methods for assessing the performance of nature-based solutions against natural hazards. Earth-Science Reviews, 2021, 217, 103603.
Assessing the impact of urban environment and green infrastructure on mental health: results from the SÃ£o Paulo Megacity Mental Health Survey. Journal of Exposure Science and Environmental

\#	Article	IF	
325	Cooling effect of urban small green spaces in Qujiang Campus, Xiấ ${ }^{\mathrm{TM}}$ an Jiaotong University, China. Environment, Development and Sustainability, 2022, 24, 4278-4298.	2.7	11
326	Developing an optimized method for the â€ stop-and-goâ $€^{T M}$ strategy in mobile measurements for characterizing outdoor thermal environments. Sustainable Cities and Society, 2021, 69, 102837.	5.1	17
327	Perceived urban green and residentsấ ${ }^{\text {TM }}$ health in Beijing. SSM - Population Health, 2021, 14, 100790.	1.3	9
328	Impact of Land Cover Composition and Structure on Air Temperature Based on the Local Climate Zone Scheme in Hangzhou, China. Atmosphere, 2021, 12, 936.	1.0	4
329	Exploring Options for Public Green Space Development: Research by Design and GIS-Based Scenario Modelling. Sustainability, 2021, 13, 8213.	1.6	6
330	Variance of the impact of urban green space on the urban heat island effect among different urban functional zones: A case study in Wuhan. Urban Forestry and Urban Greening, 2021, 62, 127159.	2.3	51
331	Impact of parking and greening design strategies on summertime outdoor thermal condition in old mid-rise residential estates. Urban Forestry and Urban Greening, 2021, 63, 127200.	2.3	14
332	The effect of spatial heterogeneity in urban morphology on surface urban heat islands. Energy and Buildings, 2021, 244, 111027.	3.1	37
333	Assessing the Cooling Effect of Four Urban Parks of Different Sizes in a Temperate Continental Climate Zone: Wroclaw (Poland). Forests, 2021, 12, 1136.	0.9	21
334	The simulation of the impact of the spatial distribution of vegetation on the urban microclimate: A case study in Mostaganem. Urban Climate, 2021, 39, 100976.	2.4	5

Cooling ranges for urban heat mitigation: continuous cooling effects along the edges of small

$0.7 \quad 5$ greenspaces. Landscape and Ecological Engineering, 0, , 1.
$1.8 \quad 7$
$336 \begin{aligned} & \text { Response of Vegetation Photosyn } \\ & \text { Remote Sensing, 2021, 13, } 3722 .\end{aligned}$
4.6 16Designing smart and sustainable irrigation: A case study. Journal of Cleaner Production, 2021, 315,
128048.
2.3 14Urban cooling factors: Do small greenspaces outperform building shade in mitigating urban heat
island intensity?. Urban Forestry and Urban Greening, 2021, 64, 127256.Knowledge Map of Urban Morphology and Thermal Comfort: A Bibliometric Analysis Based on1.418
CiteSpace. Buildings, 2021, 11, 427.
4.8 12
DTEx: A dynamic urban thermal exposure index based on human mobility patterns. Environment
340 International, 2021, 155, 106573.Effects of landscape patterns on the summer microclimate and human comfort in urban squares in

\#	Article	IF	Citations
343	Aerodynamic resistance and Bowen ratio explain the biophysical effects of forest cover on understory air and soil temperatures at the global scale. Agricultural and Forest Meteorology, 2021, 308-309, 108615.	1.9	9
344	Urban tree growth and ecosystem services under extreme drought. Agricultural and Forest Meteorology, 2021, 308-309, 108532.	1.9	18
345	Characteristics of daytime land surface temperature in wind corridor: A case study of a hot summer and warm winter city. Journal of Building Engineering, 2021, 44, 103370.	1.6	11
346	Outdoor thermal comfort enhancement using various vegetation species and materials (case study:) Tj		${ }_{24}{ }_{2}$ /Ovei
347	Effect of heatwaves and greenness on mortality among Chinese older adults. Environmental Pollution, 2021, 290, 118009.	3.7	19
348	Are Biocrusts and Xerophytic Vegetation a Viable Green Roof Typology in a Mediterranean Climate? A Comparison between Differently Vegetated Green Roofs in Water Runoff and Water Quality. Water (Switzerland), 2021, 13, 94.	1.2	12
349	Mapping and Spatial Analysis of Sustainable Development Indicators to Optimize the Quality of Life Using AHP Methods: A Case Study Tataouine, Tunisia. Advances in Science, Technology and Innovation, 2020, , 3-12.	0.2	1
350	Ecohydrology of Urban Ecosystems. , 2019, , 533-571.		3

351 Cities and Urban Green. Springer Climate, 2015, , 323-347.
0.3

2
352 Analysis of Heat Island Characteristics Considering Urban Space at Nighttime. Journal of the Korean
352 Association of Geographic Information Studies, 2012, 15, 133-143.
$0.1 \quad 14$

353 Validation of ENVI-met Model with In Situ Measurements Considering Spatial Characteristics of Land
Use Types. Journal of the Korean Association of Geographic Information Studies, 2014, 17, 156-172.
0.1

13

354 Green areas and urban heat island: combining remote sensed data with ground observations. , 2018, , .
2

The Relationship between Natural Park Usage and Happiness Does Not Hold in a Tropical City-State.
PLoS ONE, 2015, 10, e0133781.
1.1

62
$1.1 \quad 62$

357 Perception of thermal comfort by users of urban green areas in Lisbon. Finisterra, 2015, 49,. 7
$\tilde{A}_{\text {reas }}$ verdes y arbolado en MÃ@rida, YucatÃ ${ }_{j} n$. Hacia una sostenibilidad urbana. EconomÃa, Sociedad Y
$0.1 \quad 17$
Territorio, 0, , 1 .

360 Heat mitigation by greening the cities, a review study. Environment Earth and Ecology, 2017, 1, 5-32. 0.819

Thermal Comfort Characteristic of 5 Patterns of a Persian Garden in a Hot-Arid Climate of Shiraz, Iran. Journal of Landscape Ecology(Czech Republic), 2019, 12, 1-33.

\#	Article	IF	Citations
363	Simulating the Impact of Urban Surface Evapotranspiration on the Urban Heat Island Effect Using the Modified RS-PM Model: A Case Study of Xuzhou, China. Remote Sensing, 2020, 12, 578.	1.8	20
364	PROGRESS IN URBAN GREENERY MITIGATION SCIENCE âE" ASSESSMENT METHODOLOGIES ADVANCED TECHNOLOGIES AND IMPACT ON CITIES. Journal of Civil Engineering and Management, 2018, 24, 638-671.	1.9	109
365	SPATIOTEMPORAL ANALYSIS OF THE URBAN COOLING ISLAND (UCI) EFFECT OF WATER SPACES IN A HIGHLY URBANIZED CITY: A CASE STUDY OF ILOILO RIVER AND ADJACENT WETLANDS. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-4/W19, 149-156.	0.2	2
366	THE COOLING INTENSITY DEPENDENT ON LANDSCAPE COMPLEXITY OF GREEN INFRASTRUCTURE IN THE METROPOLITAN AREA. Journal of Environmental Engineering and Landscape Management, 2021, 29, 318-336.	0.4	8
367	Reclamation of urban brownfields through phytoremediation: Implications for building sustainable and resilient towns. Urban Forestry and Urban Greening, 2021, 65, 127364.	2.3	18
368	Evaluating the role of the albedo of material and vegetation scenarios along the urban street canyon for improving pedestrian thermal comfort outdoors. Urban Climate, 2021, 40, 100993.	2.4	47
369	An Analysis of Rational Green Area Ratio by Land Use Types for Mitigating Heat-Island Effects. Journal of the Korean Association of Geographic Information Studies, 2015, 18, 59-74.	0.1	3
370	Urban Heat Mitigation Effect of Tree on Microscopic Scale. Journal of People Plants and Environment, 2016, 19, 305-315.	0.1	0
371	Influence of park size on the park cooling effect - Focused on Ilsan new town in Korea. Journal of Korea Planning Association, 2016, 51, 247.	0.2	4
372	Evaporation from water surfaces in urban environments, using Prague and Pilsen (Czech Republic) as examples. Environmental and Socio-Economic Studies, 2016, 4, 13-23.	0.3	0

374 Urban Green Spaces as a Component of an Ecosystem. , 2018, , 885-916.
5

$$
\begin{aligned}
& 375 \text { Une trame } \hat{A} \text { «Âfra } \tilde{A} @ \text { che } \hat{A} \hat{A} » \text { comme outil dâ } €^{T M} \text { att } \hat{A} \text { ©nuation potentielle des } \tilde{A} \text { ®lots de chaleur urbainsÂ: rã1es de la } \\
& \text { vÃ@gÃ ©tation. , 2019, , 51-70. }
\end{aligned}
$$

The Role of Urban Green Spaces in the Transformation of Community Ecosystem in Developing
376 Countries. Advances in Electronic Government, Digital Divide, and Regional Development Book Series,
0.2 2019, , 204-224.

377 Natural Processes of Plants to Maintain a Cool Environment and Aerobic Conditions. Current World
0.2

0 Environment Journal, 2019, 14, 03-06.

Analysis of the Relationship between Three-Dimensional Built Environment and Urban Surface Temperature. Journal of Korea Planning Association, 2019, 54, 93-108.
0.2

3385 Kentsel Planlamada Äoklim Direnci TemasÄ \pm; Ankara Ã-rneÄŸi. Resilience, 0, , 221-238.

```
387 FrÃ@quence et intensitÃ@ des \tilde{A}@lots de chaleur Ã rennes : bilan de 16 annÃ@es dâ€ 'MMobservations (2004-2019).0.2
Climatologie, 2020, 17, }6
```


389 Tourists, Residents and Experts Rethink the Future of Mediterranean Regions: A Question of RegionalCharacteristics of Winter Urban Heat Island in Budapest at Local and Micro Scale. Journal ofEnvironmental Geography, 2020, 13, 34-43.
393 Environmental control on transpiration and its cooling effect of Ficus concinna in a subtropical cityShenzhen, southern China. Agricultural and Forest Meteorology, 2022, 312, 108715.
Impacts of the Microclimate of a Large Urban Park on Its Surrounding Built Environment in the
1.8
The Cooling Effect of Urban Green Spaces in Metacities: A Case Study of Beijing, Chinaâ $€^{\text {TM }}$ S Capital. Remote Sensing, 2021, 13, 4601. 395
1.828Machine Learning Simulation of Land Cover Impact on Surface Urban Heat Island Surrounding Park
1.67
Areas. Sustainability, 2021, 13, 12678. 396Donâ $€^{T M} t$ blame it on the sunshine! An exploration of the spatial distribution of heat injustice acrossdistricts in Antwerp, Belgium. Local Environment, 2022, 27, 160-176.

Measuring thermal comfort in a built environment: A case study in a Central Business District, Jakarta. IOP Conference Series: Earth and Environmental Science, 2021, 918, 012024.Spatial-temporal pattern in the cooling effect of a large urban forest and the factors driving it.Building and Environment, 2022, 209, 108676.
1.1
\# Article
Identifying city-scale potential and priority areas for retrofitting green roofs and assessing their
runoff reduction effectiveness in urban functional zones. Journal of Cleaner Production, 2022, 332,

130064. | Reporting evidence of greenness co-benefits on health, climate change mitigation, and adaptation: a |
| :--- |
| systematic review of the literature., 0, , |
[^2]| 414 | Estimating the cooling effect magnitude of urban vegetation in different climate zones using multi-source remote sensing. Urban Climate, 2022, 43, 101155. | 2.4 | 18 |
| :---: | :---: | :---: | :---: |
| 415 | Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review. Renewable and Sustainable Energy Reviews, 2022, 159, 112100. | 8.2 | 50 |
| 416 | Landscape and vegetation traits of urban green space can predict local surface temperature. Science of the Total Environment, 2022, 825, 154006. | 3.9 | 21 |
| 417 | Residentsâ $€^{\text {TM }}$ Living Environments, Self-Rated Health Status and Perceptions of Urban Green Space Benefits. Forests, 2022, 13, 9. | 0.9 | 7 |
| 418 | The Influence of Green Space Patterns on Land Surface Temperature in Different Seasons: A Case Study of Fuzhou City, China. Remote Sensing, 2021, 13, 5114. | 1.8 | 14 |
| 420 | Effects of Greening Areas and Water Bodies on Urban Microclimate in Wuhanâ€"A Simulation Study Considering Prospective Planning. Atmosphere, 2022, 13, 725. | 1.0 | 4 |
| 421 | How can urban parks be planned to maximize cooling effect in hot extremes? Linking maximum and accumulative perspectives. Journal of Environmental Management, 2022, 317, 115346. | 3.8 | 30 |

423 Nature-Based Solutions Applied to the Built Environment to Alleviate Climate Change: Benefits,
Blue-Green Infrastructure for Heat Exposure Mitigation. Advances in Civil and Industrial Engineering
Revealing Impacts of Trees on Modeling Microclimate Behavior in Spaces between Buildings through Simulation Monitoring. Buildings, 2022, 12, 1168.

Urban Cemeteries as Shared Habitats for People and Nature: Reasons for Visit, Comforting Experiences of Nature, and Preferences for Cultural and Natural Features. Land, 2022, 11, 1237.

Woody invaders from contrasted climatic origins distribute differently across the urban-to-rural gradient in oceanic Europe â€" Is it trait-related?. Urban Forestry and Urban Greening, 2022, 75, 127694.

Impactos climÃãticos no complexo de favelas da marÃ®. PARC: Pesquisa Em Arquitetura E ConstruÃ§Ã£o, 0,

442 Integrating Copernicus land cover data into the i-Tree Cool Air model to evaluate and map urban heat
The extreme heat wave of Julyâ€"August 2021 in the Athens urban area (Greece): Atmospheric and
444 human-biometeorological analysis exploiting ultra-high resolution numerical modeling and the localclimate zone framework. Science of the Total Environment, 2023, 857, 159300.
445 Cooling effect of the pocket park in the built-up block of a city: a case study in Xiấ ${ }^{\mathrm{TM}}$ an, China.
Environmental Science and Pollution Research, 2023, 30, 23135-23154.
2.7

5

```
446 Assessing the Cooling and Air Pollution Tolerance among Urban Tree Species in a Tropical Climate.
Plants, 2022, 11, 3074.
```

Built environment influences on urban climate resilience: Evidence from extreme heat events in
Macau. Science of the Total Environment, 2023, 859, 160270.

High resolution wind-tunnel investigation about the effect of street trees on pollutant
concentration and street canyon ventilation. Building and Environment, 2022, 226, 109763.
3.0

Fighting urban climate changeâ€"state of the art of mitigation technologies. , 2023, , 227-296.
4

$$
450 \text { Space-time estimation of the urban heat island in Rome (Italy): Overall assessment and effects on the }
$$ energy performance of buildings. Building and Environment, 2023, 228, 109878.

The influence of outdoor thermal comfort on acoustic comfort of urban parks based on plant
451 communities. Building and Environment, 2023, 228, 109884.
3.0

13

Modeling the spatial variation of urban park ecological properties using remote sensing data.
0.2

0
Modeling the spatial variation of urban pa
Biosystems Diversity, 2022, 30, 213-225.

Diverse cooling effects of green space on urban heat island in tropical megacities. Frontiers in
1.5

6

462	Bat bio-assisted sampling (BAS) for monitoring urban heat island. Applied Geography, 2023, 155, 102952.	1.7	0
463	Discover the Desirable Landscape Structure of Urban Parks for Mitigating Urban Heat: A High Spatial Resolution Study Using a Forest City, Luoyang, China as a Lens. International Journal of Environmental Research and Public Health, 2023, 20, 3155.	1.2	1
464	Can Potted Plants Catch Mosquitoes? Applying Rare-Earth Luminescent Materials and Plant Energy to the Development of Innovative Mosquito-Trapping Potted Plants. International Journal of Environmental Research and Public Health, 2023, 20, 3368.	1.2	0
465	Quantification of the Cooling Effect and Cooling Distance of Urban Green Spaces Based on Their Vegetation Structure and Size as a Basis for Management Tools for Mitigating Urban Climate. Sustainability, 2023, 15, 3705.	1.6	3
466	Understanding the long-term effects of public open space on older adultsấ $€^{T M}$ functional ability and mental health. Building and Environment, 2023, 234, 110126.	3.0	5
467	Evaluating thermal comfort in the detached house area adjacent to the old industrial complex using ENVI-met v4.0. Journal of Digital Contents Society, 2023, 24, 153-166.	0.1	0
468	Quantifying the Impact of Canopy Structural Characteristics on Soil Temperature Variations in Different Bamboo Communities. Atmosphere, 2023, 14, 445.	1.0	3

469 Beyond Cleansing: Ecosystem Services Related to Phytoremediation. Plants, 2023, 12, 1031.
470 Spatio-temporal urban land surface temperature variations and heat stress vulnerability index inThiruvananthapuram city of Kerala, India. , 0, , 1-17.1

Analysis of the spillover characteristics of cooling effect in an urban park: A case study in Zhengzhou
2

Exploring the relationship between seasonal variations of land surface temperature and urban

[^0]: Thermal assessment of heat mitigation strategies: The case of Portland State University, Oregon, USA.
 Building and Environment, 2014, 73, 138-150.

[^1]: 216
 Green Infrastructure in the Space of Flows: An Urban Metabolism Approach to Bridge Environmental
 Performance and Userâ $€^{\mathrm{TM}}$ s Wellbeing. Cities and Nature, 2019, , 265-277.

[^2]:

