Fluoride removal from water by adsorptionâ€"A review

Chemical Engineering Journal 171, 811-840 DOI: 10.1016/j.cej.2011.05.028

Citation Report

#	Article	IF	CITATIONS
1	Superb fluoride and arsenic removal performance of highly ordered mesoporous aluminas. Journal of Hazardous Materials, 2011, 198, 143-150.	12.4	137
2	Removal of Fluoride from Aqueous Solution by Using Ca-Bentonite and H-Bentonite. Advanced Materials Research, 2011, 391-392, 1417-1422.	0.3	0
3	Effect of Oxalic Acid on the Adsorption of Fluoride by Phosphate Rock from Aqueous Solution. Advanced Materials Research, 0, 610-613, 390-393.	0.3	0
4	Fluoride removal performance of phosphoric acid treated lime: Breakthrough analysis and point-of-use system performance. Water S A, 2012, 38, .	0.4	18
5	A low-cost and high efficient zirconium-modified-Na-attapulgite adsorbent for fluoride removal from aqueous solutions. Chemical Engineering Journal, 2012, 183, 315-324.	12.7	151
6	Effect factors and adsorption behavior of granular iron-oxide-zeolite in the removal of fluoride from aqueous solution. , 2012, , .		0
7	Column-mode fluoride removal from aqueous solution by magnesia-loaded fly ash cenospheres. Environmental Technology (United Kingdom), 2012, 33, 1409-1415.	2.2	12
8	CTAB mediated Mg-doped nano Fe ₂ O ₃ : synthesis, characterization, and fluoride adsorption behavior. Desalination and Water Treatment, 2012, 50, 376-386.	1.0	21
9	Removal of fluoride from aqueous solution by adsorption on Apatitic tricalcium phosphate using Box–Behnken design and desirability function. Applied Surface Science, 2012, 258, 4402-4410.	6.1	177
10	Tamarind (Tamarindus indica) fruit shell carbon: A calcium-rich promising adsorbent for fluoride removal from groundwater. Journal of Hazardous Materials, 2012, 225-226, 164-172.	12.4	66
11	Removal of uranium(VI) from aqueous solutions by magnetic Schiff base: Kinetic and thermodynamic investigation. Chemical Engineering Journal, 2012, 198-199, 412-419.	12.7	161
12	A facile method for the highly efficient hydrodechlorination of 2-chlorophenol using Al–Ni alloy in the presence of fluorine ion. Chemical Engineering Journal, 2012, 209, 79-85.	12.7	16
13	Synthesis of Li–Al Layered Double Hydroxides (LDHs) for Efficient Fluoride Removal. Industrial & Engineering Chemistry Research, 2012, 51, 11490-11498.	3.7	116
14	Removal of uranium(VI) from aqueous solutions by magnetic Mg–Al layered double hydroxide intercalated with citrate: Kinetic and thermodynamic investigation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 414, 220-227.	4.7	76
15	Chemical regeneration of magnesium oxide used as a sorbent for fluoride. Separation and Purification Technology, 2012, 98, 24-30.	7.9	22
16	Fluoride Removal from Water using Bio-Char, a Green Waste, Low-Cost Adsorbent: Equilibrium Uptake and Sorption Dynamics Modeling. Industrial & Engineering Chemistry Research, 2012, 51, 900-914.	3.7	201
17	Aggregation Control of Quantum Dots through Ion-Mediated Hydrogen Bonding Shielding. ACS Nano, 2012, 6, 4973-4983.	14.6	38
18	Modified coconut shell fibers: A green and economical sorbent for the removal of anions from aqueous solutions. Chemical Engineering Journal, 2012, 185-186, 274-284.	12.7	91

#	ARTICLE	IF	CITATIONS
19	Adsorption of fluoride onto different types of aluminas. Chemical Engineering Journal, 2012, 189-190, 126-133.	12.7	105
20	In situ grown of nano-hydroxyapatite on magnetic CaAl-layered double hydroxides and its application in uranium removal. Chemical Engineering Journal, 2012, 193-194, 372-380.	12.7	99
21	Simultaneous removal of arsenate and fluoride by iron and aluminum binary oxide: Competitive adsorption effects. Separation and Purification Technology, 2012, 92, 100-105.	7.9	59
22	Recovery of fluorine from bastnasite as synthetic cryolite by-product. Journal of Hazardous Materials, 2012, 209-210, 77-83.	12.4	64
23	Competitive adsorption characteristics of fluoride and phosphate on calcined Mg–Al–CO3 layered double hydroxides. Journal of Hazardous Materials, 2012, 213-214, 100-108.	12.4	125
24	Heat regeneration of hydroxyapatite/attapulgite composite beads for defluoridation of drinking water. Journal of Hazardous Materials, 2012, 221-222, 228-235.	12.4	22
25	Preparation of Fe ₃ O ₄ @C@Layered Double Hydroxide Composite for Magnetic Separation of Uranium. Industrial & Engineering Chemistry Research, 2013, 52, 10152-10159.	3.7	140
26	Studies on fluoride adsorption by apatitic tricalcium phosphate (ATCP) from aqueous solution. Desalination and Water Treatment, 2013, 51, 6743-6754.	1.0	10
27	Low temperature hydrolysis of carbonyl sulfide using Zn–Al hydrotalcite-derived catalysts. Chemical Engineering Journal, 2013, 226, 161-165.	12.7	40
29	Effect of co-existing ions during the preparation of alumina by electrolysis with aluminum soluble electrodes: Structure and defluoridation activity of electro-synthesized adsorbents. Journal of Hazardous Materials, 2013, 254-255, 125-133.	12.4	17
30	Use of pyrophyllite clay for fluoride removal from aqueous solution. Desalination and Water Treatment, 2013, 51, 3408-3416.	1.0	24
31	Drinking Water Quality Change from Catchment to Consumer in the Rural Community of Patar (Senegal). Water Quality, Exposure, and Health, 2013, 5, 75-83.	1.5	4
32	Defluoridation of Groundwater Using Termite Mound. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	19
33	Aqueous fluoride removal using ZnCr layered double hydroxides and their polymeric composites: Batch and column studies. Chemical Engineering Journal, 2013, 234, 406-415.	12.7	84
34	CN and heavy metal removal through formation of layered double hydroxides from mixed CN-containing electroplating wastewaters and pickle acid liquor. Chemical Engineering Journal, 2013, 215-216, 411-417.	12.7	17
35	Modification of chitosan with carboxyl-functionalized ionic liquid for anion adsorption. International Journal of Biological Macromolecules, 2013, 62, 365-369.	7.5	33
36	Adsorption of fluoride onto crystalline titanium dioxide: Effect of pH, ionic strength, and co-existing ions. Journal of Colloid and Interface Science, 2013, 394, 419-427.	9.4	99
37	Effect of Doped Iron on Fluoride Sorption by Calcined MgAlFe-CO ₃ Layered Double Hydroxides. Advanced Materials Research, 0, 681, 21-25.	0.3	0

_

#	Article	IF	Citations
38	Enhanced Removal of Fluoride by Polystyrene Anion Exchanger Supported Hydrous Zirconium Oxide Nanoparticles. Environmental Science & Samp; Technology, 2013, 47, 9347-9354.	10.0	198
39	Defluoridation of Drinking Water Using PURAL® MG-20 Mixed Hydroxide Adsorbent. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	9
40	Kinetics of leaching fluoride from mixed rare earth concentrate with hydrochloric acid and aluminum chloride. Hydrometallurgy, 2013, 140, 71-76.	4.3	55
41	Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Advances in Colloid and Interface Science, 2013, 201-202, 68-93.	14.7	543
42	Characterization and Adsorption Study using Cocus nucifera midribs for Fluoride Removal. Journal of the Institution of Engineers (India): Series A, 2013, 94, 209-217.	1.2	6
43	Synthesis, characterization, thermodynamic and kinetic investigations on uranium (VI) adsorption using organic-inorganic composites: Zirconyl-molybdopyrophosphate-tributyl phosphate. Science China Chemistry, 2013, 56, 1516-1524.	8.2	12
44	Basic aluminum sulfate@graphene hydrogel composites: preparation and application for removal of fluoride. Journal of Materials Chemistry A, 2013, 1, 13101.	10.3	73
45	Sorption of fluoride on partially calcined dolomite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 435, 56-62.	4.7	20
46	Aluminum and lanthanum effects in natural materials on the adsorption of fluoride ions. Journal of Fluorine Chemistry, 2013, 148, 6-13.	1.7	47
47	One-Step Synthesis of Calcium Hydroxyapatite from Calcium Carbonate and Orthophosphoric Acid under Moderate Conditions. Industrial & Engineering Chemistry Research, 2013, 52, 1439-1447.	3.7	35
48	One pot green synthetic route for the preparation of cetyl trimethyl ammonium bromide grafted multiwalled carbon nanotubes and their application towards defluoridation. RSC Advances, 2013, 3, 22421.	3.6	11
49	Removal of fluoride and total dissolved solids from coalbed methane produced water with a movable ultra-low pressure reverse osmosis system. Desalination and Water Treatment, 2013, 51, 4359-4367.	1.0	5
50	Development of new alginate entrapped Fe(III)–Zr(IV) binary mixed oxide for removal of fluoride from water bodies. Chemical Engineering Journal, 2013, 215-216, 763-771.	12.7	115
51	Defluoridation of drinking water using adsorption processes. Journal of Hazardous Materials, 2013, 248-249, 1-19.	12.4	263
52	Highlights on contemporary recognition and sensing of fluoride anion in solution and in the solid state. Chemical Society Reviews, 2013, 42, 2016-2038.	38.1	261
53	Modeling of fixed-bed adsorption of fluoride on bone char using a hybrid neural network approach. Chemical Engineering Journal, 2013, 228, 1098-1109.	12.7	107
54	Fluoride adsorption on modified natural siderite: Optimization and performance. Chemical Engineering Journal, 2013, 223, 183-191.	12.7	52
55	Immobilization of fluoride in artificially contaminated kaolinite by the addition of commercial-grade magnesium oxide. Chemical Engineering Journal, 2013, 233, 176-184.	12.7	19

#	Article	IF	CITATIONS
56	A colorimetric chemosensor for Fâ^' based on Alizarin complexone and layered double hydroxide ultrafilms. Sensors and Actuators B: Chemical, 2013, 188, 576-583.	7.8	14
57	Effects of fluoride on coagulation performance of aluminum chloride towards Kaolin suspension. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 421, 84-90.	4.7	28
58	Optimization of pyrolysis conditions and adsorption properties of bone char for fluoride removal from water. Journal of Analytical and Applied Pyrolysis, 2013, 104, 10-18.	5.5	127
59	Pb(II) removal of Fe3O4@SiO2–NH2 core–shell nanomaterials prepared via a controllable sol–gel process. Chemical Engineering Journal, 2013, 215-216, 461-471.	12.7	240
60	Removal of fluoride from drinking water by cellulose@hydroxyapatite nanocomposites. Carbohydrate Polymers, 2013, 92, 269-275.	10.2	166
61	Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water. Water Research, 2013, 47, 4040-4049.	11.3	278
62	Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: Genesis, mobility and remediation. Journal of Hazardous Materials, 2013, 262, 960-969.	12.4	206
63	Efficient removal of fluoride using new composite material of biopolymer alginate entrapped mixed metal oxide nanomaterials. Desalination and Water Treatment, 2013, 51, 4368-4378.	1.0	28
64	Sources and toxicity of fluoride in the environment. Research on Chemical Intermediates, 2013, 39, 2881-2915.	2.7	157
65	Application of a new adsorbent for fluoride removal from aqueous solutions. Journal of Hazardous Materials, 2013, 263, 342-352.	12.4	99
66	Absorption Behavior of a Modified Cellulose Hydrogel for both Fluoride and Arsenic. Advanced Materials Research, 0, 726-731, 733-738.	0.3	4
67	Removal of Fluoride from Drinking Water by Gel Composite of Metal Ion and Humic Acid Adsorbent. Advanced Materials Research, 2013, 726-731, 695-699.	0.3	1
68	Granulation of Fe-Al-Ce nano-adsorbent for fluoride removal from drinking water using inorganic binder. Water Science and Technology: Water Supply, 2013, 13, 1309-1316.	2.1	5
69	Characteristic Sorption of H ₃ BO ₃ /B(OH) ₄ ^{−< on Magnesium Oxide. Materials Transactions, 2013, 54, 1809-1817.}	; /su p>	32
70	Infrared Spectroscopic Study on the Modified Mechanism of Aluminum-Impregnated Bone Charcoal. Journal of Spectroscopy, 2014, 2014, 1-7.	1.3	5
71	Defluoridation with Locally Produced Thai Bone Char. Advances in Environmental Chemistry, 2014, 2014, 1-9.	1.8	6
72	Removal of aqueous uranyl ions by magnetic functionalized carboxymethylcellulose and adsorption property investigation. Journal of Nuclear Materials, 2014, 453, 82-90.	2.7	36
73	A Review on Adsorption of Fluoride from Aqueous Solution. Materials, 2014, 7, 6317-6366.	2.9	213

#	Article	IF	CITATIONS
74	Effect of pH on Four Defluoridation Adsorbents under Natural High Fluoride Groundwater. Applied Mechanics and Materials, 2014, 643, 335-341.	0.2	0
75	Synthesis and characterization of cotton-like Ca–Al–La composite as an adsorbent for fluoride removal. Chemical Engineering Journal, 2014, 250, 423-430.	12.7	135
76	A sorbent of carboxymethyl cellulose loaded with zirconium for the removal of fluoride from aqueous solution. Chemical Engineering Journal, 2014, 252, 415-422.	12.7	106
77	Agglomerated nanoparticles of hydrous Ce(IV)+Zr(IV) mixed oxide: Preparation, characterization and physicochemical aspects on fluoride adsorption. Applied Surface Science, 2014, 307, 665-676.	6.1	77
78	Preparation and evaluation of magnetic nanoparticles impregnated chitosan beads for arsenic removal from water. Chemical Engineering Journal, 2014, 251, 25-34.	12.7	170
79	The role of Mn oxide doping in phosphate removal by Al-based bimetal oxides: adsorption behaviors and mechanisms. Environmental Science and Pollution Research, 2014, 21, 620-630.	5.3	32
80	Batch and column adsorption and desorption of fluoride using hydrous ferric oxide: Solution chemistry and modeling. Chemical Engineering Journal, 2014, 247, 93-102.	12.7	128
81	Relevance of isotherm models in biosorption of pollutants by agricultural byproducts. Journal of Environmental Chemical Engineering, 2014, 2, 398-414.	6.7	356
82	A novel ultrasonication method in the preparation of zirconium impregnated cellulose for effective fluoride adsorption. Ultrasonics Sonochemistry, 2014, 21, 1090-1099.	8.2	74
83	A zirconium-based nanoparticle: Essential factors for sustainable application in treatment of fluoride containing water. Journal of Colloid and Interface Science, 2014, 416, 227-234.	9.4	54
84	Synthesis of strontium hydroxyapatite embedding ferroferric oxide nano-composite and its application in Pb2+ adsorption. Journal of Molecular Liquids, 2014, 197, 40-47.	4.9	48
85	Al-1,3,5-benzenetricarboxylic metal–organic frameworks: A promising adsorbent for defluoridation of water with pH insensitivity and low aluminum residual. Chemical Engineering Journal, 2014, 252, 220-229.	12.7	103
86	Adsorption of fluoride ions onto non-thermal plasma-modified CeO ₂ /Al ₂ O ₃ composites. Desalination and Water Treatment, 2014, 52, 3367-3376.	1.0	16
87	Practical considerations, column studies and natural organic material competition for fluoride removal with bone char and aluminum amended materials in the Main Ethiopian Rift Valley. Science of the Total Environment, 2014, 488-489, 580-587.	8.0	38
88	Fluoride removal from ground water using magnetic and nonmagnetic corn stover biochars. Ecological Engineering, 2014, 73, 798-808.	3.6	117
89	Removal of fluoride and uranium by nanofiltration and reverse osmosis: A review. Chemosphere, 2014, 117, 679-691.	8.2	247
90	A fluoride ion selective Zr(iv)-poly(acrylamide) magnetic composite. RSC Advances, 2014, 4, 10350.	3.6	21
91	Batch defluoridation appraisal of aluminium oxide infused diatomaceous earth. Chemical Engineering Journal, 2014, 258, 51-61.	12.7	28

#	Article	IF	CITATIONS
92	Innovative impregnation process for production of γ-Fe2O3–activated carbon nanocomposite. Materials Science in Semiconductor Processing, 2014, 27, 56-62.	4.0	13
93	Novel Apatite-Based Sorbent for Defluoridation: Synthesis and Sorption Characteristics of Nano-micro-crystalline Hydroxyapatite-Coated-Limestone. Environmental Science & Technology, 2014, 48, 5798-5807.	10.0	77
94	Synthesis of surface coated hydroxyapatite powders for fluoride removal from aqueous solution. Powder Technology, 2014, 268, 306-315.	4.2	55
95	Synthesis and properties of a magnetic core–shell composite nano-adsorbent for fluoride removal from drinking water. Applied Surface Science, 2014, 317, 552-559.	6.1	53
96	Surface complexation of fluoride at the activated nano-gibbsite water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 462, 124-130.	4.7	28
97	Excellent fluoride removal properties of porous hollow MgO microspheres. New Journal of Chemistry, 2014, 38, 5445-5452.	2.8	162
98	Kinetic, isotherm and thermodynamic investigations of Cu2+ adsorption onto magnesium hydroxyapatite/ferroferric oxide nano-composites with easy magnetic separation assistance. Journal of Molecular Liquids, 2014, 198, 157-163.	4.9	37
99	Performance of an optimized Zr-based nanoparticle-embedded PSF blend hollow fiber membrane in treatment of fluoride contaminated water. Water Research, 2014, 56, 88-97.	11.3	99
100	Simultaneous adsorption of phenol and Cu2+ from aqueous solution by activated carbon/chitosan composite. Korean Journal of Chemical Engineering, 2014, 31, 1608-1615.	2.7	11
101	Fluoride contamination of groundwater in parts of eastern India and a preliminary experimental study of fluoride adsorption by natural haematite iron ore and synthetic magnetite. Environmental Earth Sciences, 2014, 72, 2033-2049.	2.7	35
102	Fluoride sorption and desorption on soils located in the surroundings of an aluminium smelter in Galicia (NW Spain). Environmental Earth Sciences, 2014, 72, 4105-4114.	2.7	28
103	Millimeter-sized Mg–Al-LDH nanoflake impregnated magnetic alginate beads (LDH-n-MABs): a novel bio-based sorbent for the removal of fluoride in water. Journal of Materials Chemistry A, 2014, 2, 2119-2128.	10.3	102
104	Adsorption of fluoride from aqueous solution using different phases of microbially synthesized TiO2 nanoparticles. Journal of Environmental Chemical Engineering, 2014, 2, 444-454.	6.7	44
105	Defluoridation of water via Light Weight Expanded Clay Aggregate (LECA): Adsorbent characterization, competing ions, chemical regeneration, equilibrium and kinetic modeling. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 1821-1834.	5.3	41
106	Interaction of anionic pollutants with Al-based adsorbents in aqueous media – A review. Chemical Engineering Journal, 2014, 241, 443-456.	12.7	99
107	Adsorptive removal of fluoride ions from aqueous solution by using sonochemically synthesized nanomagnesia/alumina adsorbents: An experimental and modeling study. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 2518-2525.	5.3	47
108	Preparation of CaO loaded mesoporous Al2O3: Efficient adsorbent for fluoride removal from water. Chemical Engineering Journal, 2014, 248, 430-439.	12.7	96
109	Chemical Reactions of Fluoride Removal by Chicken Bone Char. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2014, 70, III_527-III_534.	0.1	Ο

#	Article	IF	Citations
113	Kinetics and equilibrium studies for removal of fluoride from underground water using cryptocrystalline magnesite. Journal of Water Reuse and Desalination, 2015, 5, 282-292.	2.3	22
114	Triarylboronâ€Linked Conjugated Microporous Polymers: Sensing and Removal of Fluoride Ions. Chemistry - A European Journal, 2015, 21, 17355-17362.	3.3	107
115	Ultrathin Surface Chemistry to Delay Anion Fouling. ChemPlusChem, 2015, 80, 911-914.	2.8	0
116	A comparative study of the defluoridation efficiency of synthetic dicalcium phosphate dihydrate (DCPD) and lacunar hydroxyapatite (L-HAp): An application of synthetic solution and Koundoumawa field water. African Journal of Environmental Science and Technology, 2015, 9, 111-125.	0.6	5
117	Technologies for Decentralized Fluoride Removal: Testing Metallic Iron-based Filters. Water (Switzerland), 2015, 7, 6750-6774.	2.7	44
118	Removal of ferrous and manganous from water by activated carbon obtained from sugarcane bagasse. Desalination and Water Treatment, 2015, 55, 471-483.	1.0	47
119	Factors affecting fluoride and natural organic matter (NOM) removal from natural waters in Tanzania by nanofiltration/reverse osmosis. Science of the Total Environment, 2015, 527-528, 520-529.	8.0	113
120	Defluoridation by Al-based coagulation and adsorption: Species transformation of aluminum and fluoride. Separation and Purification Technology, 2015, 148, 68-75.	7.9	34
121	Renewable energy powered membrane technology: Fluoride removal in a rural community in northern Tanzania. Separation and Purification Technology, 2015, 149, 349-361.	7.9	51
122	Enhanced fluoride removal by loading Al/Zr onto carboxymethyl starch sodium: synergistic interactions between Al and Zr. RSC Advances, 2015, 5, 101819-101825.	3.6	26
123	An insight into thermodynamics of adsorptive removal of fluoride by calcined Ca–Al–(NO ₃) layered double hydroxide. RSC Advances, 2015, 5, 105889-105900.	3.6	91
124	Adsorption of Fluoride from Aqueous Solution on Calcined and Uncalcined Layered Double Hydroxide. Adsorption Science and Technology, 2015, 33, 393-410.	3.2	22
125	MgAl layered double hydroxides with chloride and carbonate ions as interlayer anions for removal of arsenic and fluoride ions in water. RSC Advances, 2015, 5, 10412-10417.	3.6	97
126	Aluminum Alginate–Montmorillonite Composite Beads for Defluoridation of Water. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	24
127	Significance of calcium containing materials for defluoridation of water: a review. Desalination and Water Treatment, 2015, 53, 2070-2085.	1.0	23
128	Uptake fluoride from water by caclined Mg-Al-CO3 hydrotalcite: Mg/Al ratio effect on its structure, electrical affinity and adsorptive property. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 469, 307-314.	4.7	40
129	Development of a novel nano-biosorbent for the removal of fluoride from water. Chinese Journal of Chemical Engineering, 2015, 23, 924-933.	3.5	21
130	Comparing activated alumina with indigenous laterite and bauxite as potential sorbents for removing fluoride from drinking water in Ghana. Applied Geochemistry, 2015, 56, 50-66.	3.0	36

#	Article	IF	CITATIONS
131	Column performances on fluoride removal by agglomerated Ce(IV)–Zr(IV) mixed oxide nanoparticles packed fixed-beds. Journal of Environmental Chemical Engineering, 2015, 3, 653-661.	6.7	31
132	A new ion exchange adsorption mechanism between carbonate groups and fluoride ions of basic aluminum carbonate nanospheres. RSC Advances, 2015, 5, 13256-13260.	3.6	36
133	Wide pH range for fluoride removal from water by MHS-MgO/MgCO3 adsorbent: Kinetic, thermodynamic and mechanism studies. Journal of Colloid and Interface Science, 2015, 446, 194-202.	9.4	62
134	Porous 2-line ferrihydrite/bayerite composites (LFBC): Fluoride removal performance and mechanism. Chemical Engineering Journal, 2015, 268, 325-336.	12.7	62
135	Rutin potentially attenuates fluoride-induced oxidative stress-mediated cardiotoxicity, blood toxicity and dyslipidemia in rats. Toxicology Mechanisms and Methods, 2015, 25, 143-149.	2.7	55
136	Hybrid Al ₂ O ₃ /bio-TiO ₂ nanocomposite impregnated thermoplastic polyurethane (TPU) nanofibrous membrane for fluoride removal from aqueous solutions. RSC Advances, 2015, 5, 26905-26912.	3.6	25
137	Development of a nanoporous adsorbent for the removal of health-hazardous fluoride ions from aqueous systems. Journal of Materials Chemistry A, 2015, 3, 4215-4228.	10.3	78
138	Simultaneous adsorption of aniline and Cu ²⁺ from aqueous solution using activated carbon/chitosan composite. Desalination and Water Treatment, 2015, 55, 410-419.	1.0	11
139	Physico-chemical characterization of metal-doped bone chars and their adsorption behavior for water defluoridation. Applied Surface Science, 2015, 355, 748-760.	6.1	62
140	Recyclable Mg–Al layered double hydroxides for fluoride removal: Kinetic and equilibrium studies. Journal of Hazardous Materials, 2015, 300, 475-482.	12.4	62
141	Magnetic adsorbents for the treatment of water/wastewater—A review. Journal of Water Process Engineering, 2015, 7, 244-265.	5.6	324
142	Fluoride adsorption by doped and un-doped magnetic ferrites CuCe Fe2-O4: Preparation, characterization, optimization and modeling for effectual remediation technologies. Journal of Hazardous Materials, 2015, 299, 316-324.	12.4	43
143	Water defluoridation with special emphasis on adsorbents-containing metal oxides and/or hydroxides: A review. Separation and Purification Technology, 2015, 150, 292-307.	7.9	71
144	Preparation and characterization of the linked lanthanum carboxymethylcellulose microsphere adsorbent for removal of fluoride from aqueous solutions. RSC Advances, 2015, 5, 59273-59285.	3.6	22
145	Polymeric anion exchanger supported hydrated Zr(IV) oxide nanoparticles: A reusable hybrid sorbent for selective trace arsenic removal. Reactive and Functional Polymers, 2015, 93, 84-94.	4.1	76
146	Clay and clay minerals for fluoride removal from water: A state-of-the-art review. Applied Clay Science, 2015, 114, 340-348.	5.2	129
147	Controlled synthesis of natroalunite microtubes and spheres with excellent fluoride removal performance. Chemical Engineering Journal, 2015, 271, 240-251.	12.7	42
148	Defluoridation by a Mg–Al–La triple-metal hydrous oxide: synthesis, sorption, characterization and emphasis on the neutral pH of treated water. RSC Advances, 2015, 5, 43906-43916.	3.6	27

#	Article	IF	CITATIONS
149	A highly selective SBA-15 supported fluorescent "turn-on―sensor for the fluoride anion. New Journal of Chemistry, 2015, 39, 5570-5579.	2.8	24
150	Enhanced removal of fluoride by tea waste supported hydrous aluminium oxide nanoparticles: anionic polyacrylamide mediated aluminium assembly and adsorption mechanism. RSC Advances, 2015, 5, 29266-29275.	3.6	48
151	Chemically modified ground tire rubber as fluoride ions adsorbents. Chemical Engineering Journal, 2015, 282, 161-169.	12.7	23
152	Adsorptive Capacity and Evolution of the Pore Structure of Alumina on Reaction with Gaseous Hydrogen Fluoride. Langmuir, 2015, 31, 5387-5397.	3.5	20
153	Effects of fluoride on the removal of cadmium and phosphate by aluminum coagulation. Journal of Environmental Sciences, 2015, 32, 118-125.	6.1	13
154	Cyclic tetra[(indolyl)-tetra methyl]-diethane-1,2-diamine (CTet) impregnated hydrous zirconium oxide as a novel hybrid material for enhanced removal of fluoride from water samples. RSC Advances, 2015, 5, 39062-39074.	3.6	24
155	Fluoride Removal from Aluminium Finishing Wastewater by Hydroxyapatite. Environmental Processes, 2015, 2, 205-213.	3.5	28
156	Kinetics and equilibrium studies on Mg–Al oxide for removal of fluoride in aqueous solution and its use in recycling. Journal of Environmental Management, 2015, 156, 252-256.	7.8	21
157	Dip in colorimetric fluoride sensing by a chemically engineered polymeric cellulose/bPEI conjugate in the solid state. RSC Advances, 2015, 5, 83197-83205.	3.6	21
158	Iron–silver oxide nanoadsorbent synthesized by co-precipitation process for fluoride removal from aqueous solution and its adsorption mechanism. RSC Advances, 2015, 5, 87377-87391.	3.6	61
159	Efficient removal of fluoride by hierarchical MgO microspheres: Performance and mechanism study. Applied Surface Science, 2015, 357, 1080-1088.	6.1	60
160	Fluoride and nitrate removal from brackish groundwaters by batch-mode capacitive deionization. Water Research, 2015, 84, 342-349.	11.3	185
161	Chitosan-praseodymium complex for adsorption of fluoride ions from water. Journal of Rare Earths, 2015, 33, 1104-1113.	4.8	51
162	Fluoride removal from water using high-activity aluminum hydroxide prepared by the ultrasonic method. RSC Advances, 2015, 5, 84223-84231.	3.6	33
163	A facile precipitation synthesis of mesoporous 2-line ferrihydrite with good fluoride removal properties. RSC Advances, 2015, 5, 84389-84397.	3.6	36
164	Effect of formation pH, molar ratio and calcination temperature on the synthesis of an anionic clay based adsorbent targeting defluoridation. Applied Clay Science, 2015, 116-117, 120-128.	5.2	24
165	Excellent fluoride decontamination and antibacterial efficacy of Fe–Ca–Zr hybrid metal oxide nanomaterial. Journal of Colloid and Interface Science, 2015, 457, 289-297.	9.4	62
166	Co-occurrence of arsenic and fluoride in the groundwater of Punjab, Pakistan: source discrimination and health risk assessment. Environmental Science and Pollution Research, 2015, 22, 19729-19746.	5.3	66

#	Article	IF	CITATIONS
167	Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal. Journal of Environmental Management, 2015, 162, 306-325.	7.8	427
168	Nanocomposite for the detoxification of drinking water: effective and efficient removal of fluoride and bactericidal activity. New Journal of Chemistry, 2015, 39, 9143-9154.	2.8	19
169	Rapid removal of fluoride from aqueous media using activated dolomite. Analytical Methods, 2015, 7, 8304-8314.	2.7	28
170	A Simple Aqueous Solution Based Chemical Methodology for Preparation of Mesoporous Alumina: Efficient Adsorbent for Defluoridation of Water. Particulate Science and Technology, 2015, 33, 8-16.	2.1	13
171	Synthesis of MgO nanoparticle loaded mesoporous Al2O3 and its defluoridation study. Applied Surface Science, 2015, 329, 1-10.	6.1	40
172	Synthesis and characterization of a chitosan/montmorillonite/ZrO ₂ nanocomposite and its application as an adsorbent for removal of fluoride. RSC Advances, 2015, 5, 6771-6781.	3.6	57
173	Adsorption of F on Bio-Filter sorbent: kinetics, equilibrium, and thermodynamic study. Desalination and Water Treatment, 2015, 56, 463-474.	1.0	3
174	Removal of fluoride from drinking water using tea waste loaded with Al/Fe oxides: A novel, safe and efficient biosorbent. Applied Surface Science, 2015, 328, 34-44.	6.1	138
175	Assessing nitrogen transformation processes in a trickling filter under hydraulic loading rate constraints using nitrogen functional gene abundances. Bioresource Technology, 2015, 177, 217-223.	9.6	55
176	Synthesis and characterization of Mg–Fe–La trimetal composite as an adsorbent for fluoride removal. Chemical Engineering Journal, 2015, 264, 506-513.	12.7	127
177	Removal of fluoride from aqueous solution by adsorption on hydroxyapatite (HAp) using response surface methodology. Journal of Saudi Chemical Society, 2015, 19, 603-615.	5.2	124
178	Fluoride removal study using pyrolyzed Delonix regia pod, an unconventional adsorbent. International Journal of Environmental Science and Technology, 2015, 12, 223-236.	3.5	30
179	Adsorption behavior of fluoride ion on trimetal-oxide adsorbent. Desalination and Water Treatment, 2015, 56, 1669-1680.	1.0	6
180	Fluoride removal mechanism of bayerite/boehmite nanocomposites: Roles of the surface hydroxyl groups and the nitrate anions. Journal of Colloid and Interface Science, 2015, 440, 60-67.	9.4	46
181	Enhancement of Saharan groundwater quality by reducing its fluoride concentration using different materials. Desalination and Water Treatment, 2015, 54, 3444-3453.	1.0	7
182	Removal of fluoride from aluminum fluoride manufacturing wastewater by precipitation and adsorption processes. Desalination and Water Treatment, 2015, 54, 2280-2292.	1.0	27
183	Defluoridation of wastewater using powdered activated carbon developed from <i>Eichhornia crassipes</i> stem: optimization by response surface methodology. Desalination and Water Treatment, 2015, 56, 953-966.	1.0	29
184	Synthesis of a novel adsorbent, hydrous bismuth oxide (HBO ₂) for the removal of fluoride from aqueous solutions. Desalination and Water Treatment, 2015, 55, 604-614.	1.0	13

#	Article	IF	CITATIONS
185	Removal of fluoride from aqueous media by magnesium oxide-coated nanoparticles. Desalination and Water Treatment, 2015, 53, 2905-2914.	1.0	34
186	Chemistry of defluoridation by one-pot synthesized dicarboxylic acids mediated polyacrylamide–zirconium complex. Chemical Engineering Journal, 2015, 262, 224-234.	12.7	34
187	Removal of Fluoride from Aqueous Solution Using Aluminum Alginate Beads. Clean - Soil, Air, Water, 2015, 43, 724-730.	1.1	29
188	Removal of Fluoride using Quaternized Palm Kernel Shell as Adsorbents: Equilibrium Isotherms and Kinetics Studies. BioResources, 2016, 11, .	1.0	10
189	Removal of Fluoride from Aqueous Solutions Using Chitosan Cryogels. Journal of Chemistry, 2016, 2016, 1-13.	1.9	6
190	Amine-functionalized macroporous microspheres for HF removal from aqueous solution. AIP Conference Proceedings, 2016, , .	0.4	0
191	Controllable synthesis of mesoporous alumina with large surface area for high and fast fluoride removal. Ceramics International, 2016, 42, 15253-15260.	4.8	28
192	Assessment of fluoride uptake performance of raw biomass and activated biochar of <i>Colocasia esculenta</i> stem: Optimization through response surface methodology. Environmental Progress and Sustainable Energy, 2016, 35, 1305-1316.	2.3	32
193	Performance evaluation of magnetic anion exchange resin removing fluoride. Journal of Chemical Technology and Biotechnology, 2016, 91, 1747-1754.	3.2	12
194	Anionic Pollutant Removal by Biomass-Based Adsorbents. , 2016, , 455-490.		0
195	Preparation and Characterization of La(III)-Al(III) Co-loaded Hydrothermal Palygorskite Adsorbent for Fluoride Removal from Groundwater. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	5
196	Defluoridation of water by chemical impregnated Artocarpus hirsutus sawdust. Water Science and Technology: Water Supply, 2016, 16, 1297-1312.	2.1	2
197	Hydrous TiO ₂ @polypyrrole hybrid nanocomposite as an efficient selective scavenger for the defluoridation of drinking water. RSC Advances, 2016, 6, 99482-99495.	3.6	18
198	Removal of fluoride from water using a novel sorbent lanthanum-impregnated bauxite. SpringerPlus, 2016, 5, 1426.	1.2	28
199	Defluoridation of groundwater by calcined Mg/Al layered double hydroxide. Emerging Contaminants, 2016, 2, 42-48.	4.9	58
200	Rapid and efficient removal of fluoride ions from aqueous solution using a polypyrrole coated hydrous tin oxide nanocomposite. Journal of Colloid and Interface Science, 2016, 476, 103-118.	9.4	55
201	Modified natural magnetite with Al and La ions for the adsorption of fluoride ions from aqueous solutions. Journal of Fluorine Chemistry, 2016, 186, 115-124.	1.7	33
202	Review of fluoride removal from water by adsorption using soil adsorbents $\hat{a} \in \hat{a}$ an evaluation of the status. Journal of Water Reuse and Desalination, 2016, 6, 1-29.	2.3	29

#	Article	IF	CITATIONS
203	Investigation of fluoride removal from low-salinity groundwater by single-pass constant-voltage capacitive deionization. Water Research, 2016, 99, 112-121.	11.3	94
204	Enhanced adsorption of fluoride from aqueous solutions by hierarchically structured Mg-Al LDHs/Al2O3 composites. Korean Journal of Chemical Engineering, 2016, 33, 720-725.	2.7	14
205	Preparation of MnO2–Al2O3 adsorbent with large specific surface area for fluoride removal. Particuology, 2016, 27, 66-71.	3.6	13
206	A sorbent of expanded rice husk powder for removal of uranyl ion from aqueous solution. Rare Metals, 2016, 35, 425-432.	7.1	5
207	Fluoride Removal from Brackish Groundwaters by Constant Current Capacitive Deionization (CDI). Environmental Science & Technology, 2016, 50, 10570-10579.	10.0	80
208	Treatment of fluoride in well-water in Khanhhoa, Vietnam by aluminum hydroxide coated rice husk ash. Green Processing and Synthesis, 2016, 5, 479-489.	3.4	2
209	Development of new zirconium loaded shellac for defluoridation of drinking water: Investigations of kinetics, thermodynamics and mechanistic aspects. Journal of Environmental Chemical Engineering, 2016, 4, 4263-4274.	6.7	11
210	F sorption/desorption on two soils and on different by-products and waste materials. Environmental Science and Pollution Research, 2016, 23, 14676-14685.	5.3	10
211	Preparation of porous alumina hollow spheres as an adsorbent for fluoride removal from water with low aluminum residual. Ceramics International, 2016, 42, 17472-17481.	4.8	30
212	A One-Step and Scalable Continuous-Flow Nanoprecipitation for Catalytic Reduction of Organic Pollutants in Water. Industrial & Engineering Chemistry Research, 2016, 55, 9851-9856.	3.7	11
213	Surface Modified Carbons as Scavengers for Fluoride from Water. , 2016, , .		9
214	Methods of Defluoridation: Adsorption and Regeneration of Adsorbents. , 2016, , 63-92.		2
215	Fluoride adsorption onto amorphous aluminum hydroxide: Roles of the surface acetate anions. Journal of Colloid and Interface Science, 2016, 483, 295-306.	9.4	64
216	Performance and mass transfer of aqueous fluoride removal by a magnetic alumina aerogel. RSC Advances, 2016, 6, 112988-112999.	3.6	29
217	A review of fluoride in african groundwater and local remediation methods. Groundwater for Sustainable Development, 2016, 2-3, 190-212.	4.6	117
218	Adsorption behavior of carboxymethyl konjac glucomannan microspheres for fluoride fromÂaqueous solution. RSC Advances, 2016, 6, 89417-89429.	3.6	13
219	The potential for the use of waste products from a variety of sectors in water treatment processes. Journal of Cleaner Production, 2016, 137, 788-802.	9.3	65
220	Enhanced efficiency of ANN using non-linear regression for modeling adsorptive removal of fluoride by calcined Ca-Al-(NO3)-LDH. Journal of Molecular Liquids, 2016, 222, 564-570.	4.9	31

#	Article	IF	Citations
221	Adsorptive removal of fluoride from aqueous solutions using Al-humic acid-La aerogel composites. Chemical Engineering Journal, 2016, 306, 174-185.	12.7	71
222	Optical Sensing of Fluoride Through a Self-Organized Fluorescent Ensemble of Quinizarin-Al(III) Complex. Journal of AOAC INTERNATIONAL, 2016, 99, 1636-1641.	1.5	2
223	Role of Eco-Friendly Adsorbents in Defluoridation of Water. , 2016, , 57-98.		0
224	Effect of Ga2O3 on structure and properties of calcium aluminate glasses. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 961-964.	1.0	1
225	CuYbO·5Fe1.5O4 nanoferrite adsorbent structural, morphological and functionalization characteristics for multiple pollutant removal by response surface methodology. Journal of Molecular Liquids, 2016, 224, 1256-1265.	4.9	6
226	Layered Double Hydroxide and Its Calcined Product for Fluoride Removal from Groundwater of Ethiopian Rift Valley. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	28
227	Preparation of activated aluminum-coated basalt fiber mat for defluoridation from drinking water. Journal of Sol-Gel Science and Technology, 2016, 78, 331-338.	2.4	7
228	Performance and surface clogging in intermittently loaded and slow sand filters containing novel media. Journal of Environmental Management, 2016, 180, 102-110.	7.8	31
229	Entrapment of powdered drinking water treatment residues in calcium-alginate beads for fluoride removal from actual industrial wastewater. Journal of Industrial and Engineering Chemistry, 2016, 39, 101-111.	5.8	20
230	Efficient defluoridation of water using reusable nanocrystalline layered double hydroxides impregnated polystyrene anion exchanger. Water Research, 2016, 102, 109-116.	11.3	87
231	Novel magnetic core–shell Ce–Ti@Fe ₃ O ₄ nanoparticles as an adsorbent for water contaminants removal. RSC Advances, 2016, 6, 56913-56917.	3.6	14
232	An electrokinetic/activated alumina permeable reactive barrier-system for the treatment of fluorine-contaminated soil. Clean Technologies and Environmental Policy, 2016, 18, 2691-2699.	4.1	13
233	Defluoridation of water by Tea - bag model using La 3+ modified synthetic resin@chitosan biocomposite. International Journal of Biological Macromolecules, 2016, 91, 1002-1009.	7.5	26
234	Impact of laterite characteristics on fluoride removal from water. Journal of Chemical Technology and Biotechnology, 2016, 91, 911-920.	3.2	21
235	Adsorption of fluoride from aqueous solution by Bio-F sorbent: a fixed-bed column study. Desalination and Water Treatment, 2016, 57, 6624-6631.	1.0	8
236	Biosorption of fluoride from drinking water using spent mushroom compost biochar coated with aluminum hydroxide. Desalination and Water Treatment, 2016, 57, 12385-12395.	1.0	37
237	A novel high efficient Mg–Ce–La adsorbent for fluoride removal: kinetics, thermodynamics and reusability. Desalination and Water Treatment, 2016, 57, 23844-23855.	1.0	18
238	Hybrid sorbent-ultrafiltration systems for fluoride removal from water. Separation Science and Technology, 2016, 51, 348-358.	2.5	1

#	Article	IF	CITATIONS
239	Advances in nanomaterial based approaches for enhanced fluoride and nitrate removal from contaminated water. RSC Advances, 2016, 6, 10565-10583.	3.6	54
240	Selective removal of U(VI) from low concentration wastewater by functionalized HKUST-1@H3PW12O40. Journal of Radioanalytical and Nuclear Chemistry, 2016, 308, 865-875.	1.5	23
241	Multivariate optimization of process parameters in the synthesis of calcined Ca‒Al (NO ₃) LDH for defluoridation using 3 ³ factorial, central composite and Box–Behnken design. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2016, 51, 86-96.	1.7	13
242	Water defluoridation using Al2O3 nanoparticles synthesized by flame spray pyrolysis (FSP) method. Chemical Engineering Journal, 2016, 288, 198-206.	12.7	70
243	Characterization and adsorption properties of a lanthanum-loaded magnetic cationic hydrogel composite for fluoride removal. Water Research, 2016, 88, 852-860.	11.3	157
244	Effective removal of fluoride by porous MgO nanoplates and its adsorption mechanism. Journal of Alloys and Compounds, 2016, 675, 292-300.	5.5	103
245	Investigation of fluorine adsorption on nitrogen doped MgAl 2 O 4 surface by first-principles. Applied Surface Science, 2016, 376, 97-104.	6.1	33
246	Supercritical carbon dioxide fluid assisted synthesis of hierarchical AlOOH@reduced graphene oxide hybrids for efficient removal of fluoride ions. Chemical Engineering Journal, 2016, 292, 174-182.	12.7	36
247	Strategies for the management and treatment of coal seam gas associated water. Renewable and Sustainable Energy Reviews, 2016, 57, 669-691.	16.4	74
248	Competitive adsorption of fluoride and natural organic matter onto activated alumina. Environmental Technology (United Kingdom), 2016, 37, 2326-2336.	2.2	14
249	Fluoride removal by hydrothermally modified limestone powder using phosphoric acid. Journal of Environmental Chemical Engineering, 2016, 4, 1040-1049.	6.7	40
250	Defluoridation by rice spike-like akaganeite anchored graphene oxide. RSC Advances, 2016, 6, 11240-11249.	3.6	26
251	In vivo detection of fluoride at trace levels and its removal from raw water at neutral pH utilizing a cyanobacterium pigment as a luminescent probe. RSC Advances, 2016, 6, 4410-4421.	3.6	4
252	Highly selective and efficient removal of lead with magnetic nano-adsorbent: Multivariate optimization, isotherm and thermodynamic studies. Journal of Colloid and Interface Science, 2016, 466, 198-205.	9.4	62
253	Adsorption of drinking water fluoride on a micron-sized magnetic Fe3O4@Fe-Ti composite adsorbent. Applied Surface Science, 2016, 363, 507-515.	6.1	47
254	Influence of Mg components in hydroxylated calcined dolomite to (co-)precipitation of fluoride with apatites. Chemical Engineering Journal, 2016, 285, 487-496.	12.7	9
255	High efficient removal of fluoride from aqueous solution by a novel hydroxyl aluminum oxalate adsorbent. Journal of Colloid and Interface Science, 2016, 464, 238-245.	9.4	41
256	Fluoride removal by induced crystallization using fluorapatite/calcite seed crystals. Chemical Engineering Journal, 2016, 287, 83-91.	12.7	60

ARTICLE IF CITATIONS Comparison of Fe–Al-modified natural materials by an electrochemical method and chemical precipitation for the adsorption of F^{â^'}and As(V). Environmental Technology (United) Tj ETQq0 0 0 rgBT₂/Overloαk 10 Tf 50

258	Adsorption of fluoride to UiO-66-NH 2 in water: Stability, kinetic, isotherm and thermodynamic studies. Journal of Colloid and Interface Science, 2016, 461, 79-87.	9.4	272
259	Efficient removal of fluoride by hierarchical Ce–Fe bimetal oxides adsorbent: Thermodynamics, kinetics and mechanism. Chemical Engineering Journal, 2016, 283, 721-729.	12.7	202
260	Mechanism of fluoride removal by phosphoric acid-enhanced limestone: equilibrium and kinetics of fluoride sorption. Desalination and Water Treatment, 2016, 57, 6838-6851.	1.0	7
261	Coupled precipitation-ultrafiltration for treatment of high fluoride-content wastewater. Journal of the Taiwan Institute of Chemical Engineers, 2016, 58, 259-263.	5.3	59
262	A simple one-pot in-situ method for the synthesis of aluminum and lanthanum binary oxyhydroxides in chitosan template towards defluoridation of water. Chemical Engineering Journal, 2016, 283, 1081-1089.	12.7	39
263	Optimization studies for water defluoridation by adsorption: application of a design of experiments. Desalination and Water Treatment, 2016, 57, 9889-9899.	1.0	13
264	The stability of formed CaF2 and its influence on the thermal behavior of C–S–H in CaO–silica gel waste-H2O system. Journal of Thermal Analysis and Calorimetry, 2017, 127, 221-228.	3.6	20
265	Aluminum–cerium double-metal impregnated activated carbon: a novel composite for fluoride removal from aqueous solution. Water Science and Technology: Water Supply, 2017, 17, 115-124.	2.1	15
266	Enhanced adsorption of fluoride by cerium immobilized cross-linked chitosan composite. Journal of Fluorine Chemistry, 2017, 194, 80-88.	1.7	70
267	Size-Dependent Fluoride Removal Performance of a Magnetic Fe ₃ O ₄ @Fe–Ti Adsorbent and Its Defluoridation in a Fluidized Bed. Industrial & Engineering Chemistry Research, 2017, 56, 2425-2432.	3.7	18
268	Efficient removal of fluoride from water using a paramagnetic adsorbent: FeAlO _x H _y combined with superconducting magnetic separation. Separation Science and Technology, 2017, 52, 634-643.	2.5	7
269	Fe3O4@polydopamine and derived Fe3O4@carbon core–shell nanoparticles: Comparison in adsorption for cationic and anionic dyes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 522, 260-265.	4.7	52
270	Fluoride removal from groundwater using direct contact membrane distillation (DCMD) and vacuum enhanced DCMD (VEDCMD). Separation and Purification Technology, 2017, 180, 125-132.	7.9	31
271	Elucidation of the sorptive uptake of fluoride by Ca 2+ -treated and untreated algal biomass of Nostoc sp. (BTA394): Isotherm, kinetics, thermodynamics and safe disposal. Chemical Engineering Research and Design, 2017, 107, 334-345.	5.6	34
272	Influence of retardation and acceleration of setting time on the efficiency of water defluoridation by calcined gypsum. International Journal of Environmental Science and Technology, 2017, 14, 1551-1558.	3.5	2
273	Stannic chloride impregnated chitosan for defluoridation of water. International Journal of Biological Macromolecules, 2017, 104, 1528-1538.	7.5	13
274	Macroporous alginate/ferrihydrite hybrid beads used to remove anionic dye in batch and fixed-bed reactors. Journal of the Taiwan Institute of Chemical Engineers, 2017, 74, 129-135.	5.3	9

#

#	ARTICLE	IF	CITATIONS
275	Preparation of hollow Fe-Al binary metal oxyhydroxide for efficient aqueous fluoride removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520, 580-589.	4.7	18
276	Fungus hyphae-supported alumina: An efficient and reclaimable adsorbent for fluoride removal from water. Journal of Colloid and Interface Science, 2017, 496, 496-504.	9.4	53
277	Value adding red mud waste: High performance iron oxide adsorbent for removal of fluoride. Journal of Environmental Chemical Engineering, 2017, 5, 2200-2206.	6.7	20
278	Application of cryptocrystalline magnesite-bentonite clay hybrid for defluoridation of underground water resources: implication for point of use treatment. Journal of Water Reuse and Desalination, 2017, 7, 338-352.	2.3	11
279	Development of a generalized adsorption isotherm model at solid-liquid interface: A novel approach. Journal of Molecular Liquids, 2017, 240, 21-24.	4.9	34
280	Adsorption of fluoride from aqueous solution by using hybrid adsorbent fabricated with Mg/Fe composite oxide and alginate via a facile method. Journal of Fluorine Chemistry, 2017, 200, 8-17.	1.7	49
281	Selective and Reversible Fluoride Complexation from Water by a Cyclic Tri(phosphonio)methanide Dication. Angewandte Chemie - International Edition, 2017, 56, 7907-7911.	13.8	12
282	Selective and Reversible Fluoride Complexation from Water by a Cyclic Tri(phosphonio)methanide Dication. Angewandte Chemie, 2017, 129, 8015-8019.	2.0	2
283	Adsorption process of fluoride from drinking water with magnetic core-shell Ce-Ti@Fe 3 O 4 and Ce-Ti oxide nanoparticles. Science of the Total Environment, 2017, 598, 949-958.	8.0	62
284	Optimization of fluoride removal from aqueous solution by Al 2 O 3 nanoparticles. Journal of Molecular Liquids, 2017, 238, 254-262.	4.9	49
285	Removal of toxic fluoride ion from water using low cost ceramic nodules prepared from some locally available raw materials of Assam, India. Journal of Environmental Chemical Engineering, 2017, 5, 2488-2497.	6.7	11
286	Data mining assisted materials design of layered double hydroxide with desired specific surface area. Computational Materials Science, 2017, 136, 29-35.	3.0	18
287	Effect of Organic Acid-Modified Mesoporous Alumina toward Fluoride Ions Removal from Water. Journal of Chemical & Engineering Data, 2017, 62, 2067-2074.	1.9	29
289	Synthesis and properties of a high-capacity iron oxide adsorbent for fluoride removal from drinking water. Applied Surface Science, 2017, 425, 272-281.	6.1	72
290	Activated alumina for the removal of fluoride ions from high alkalinity groundwater: New insights from equilibrium and column studies with multicomponent solutions. Separation and Purification Technology, 2017, 187, 14-24.	7.9	53
291	Competitive adsorption behaviors of arsenite and fluoride onto manganese-aluminum binary adsorbents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 185-194.	4.7	19
292	Highly efficient and rapid fluoride scavenger using an acid/base tolerant zirconium phosphate nanoflake: Behavior and mechanism. Journal of Cleaner Production, 2017, 161, 317-326.	9.3	65
293	Adsorption of fluoride at the interface of water with calcined magnesium–ferri–lanthanum hydrotalcite-like compound. RSC Advances, 2017, 7, 26104-26112.	3.6	26

#	Article	IF	CITATIONS
294	Fluoride removal by Al, Ti, and Fe hydroxides and coexisting ion effect. Journal of Environmental Sciences, 2017, 57, 190-195.	6.1	45
295	Exploratory factor analysis of fluoride removal efficiency associated with the chemical properties of geomaterials. Journal of Hazardous Materials, 2017, 334, 178-184.	12.4	6
296	Removal of fluoride from aqueous solution by TiO2-based composites. Journal of the Taiwan Institute of Chemical Engineers, 2017, 74, 205-210.	5.3	11
297	Calcium impregnated activated charcoal: Optimization and efficiency for the treatment of fluoride containing solution in batch and fixed bed reactor. Chemical Engineering Research and Design, 2017, 109, 18-29.	5.6	34
298	Fluoride removal in waters using ionic liquid-functionalized alumina as a novel adsorbent. Journal of Cleaner Production, 2017, 151, 303-318.	9.3	67
299	Leaching of fluorine and rare earths from bastnaesite calcined with aluminum hydroxide and the recovery of fluorine as cryolite. RSC Advances, 2017, 7, 14053-14059.	3.6	10
300	Integral approach of adsorption and chemical treatment of fluoride containing wastewater: Batch and optimization using RSM. Journal of Environmental Chemical Engineering, 2017, 5, 274-282.	6.7	14
301	Uptake of arsenate by aluminum (hydr)oxide coated red scoria and pumice. Applied Geochemistry, 2017, 78, 83-95.	3.0	12
302	Biopolymer-induced morphology control of brushite for enhanced defluorination of drinking water. Journal of Colloid and Interface Science, 2017, 491, 207-215.	9.4	15
303	Assessing changes in the physico-chemical properties and fluoride adsorption capacity of activated alumina under varied conditions. Applied Geochemistry, 2017, 76, 112-123.	3.0	13
304	Macroporous hydroxyapatite ceramic beads for fluoride removal from drinking water. Journal of Chemical Technology and Biotechnology, 2017, 92, 1868-1875.	3.2	14
305	Uranium(VI) recovery from acidic leach liquor by Ambersep 920U SO4 resin: Kinetic, equilibrium and thermodynamic studies. Journal of Radiation Research and Applied Sciences, 2017, 10, 307-319.	1.2	49
306	Application of response surface methodology for optimization of biosorption of fluoride from groundwater using Shorea robusta flower petal. Applied Water Science, 2017, 7, 4673-4690.	5.6	24
307	Fluoride adsorption from aqueous solution using activated carbon obtained from KOH-treated jamun (Syzygium cumini) seed. Journal of Environmental Chemical Engineering, 2017, 5, 5608-5616.	6.7	77
308	An Electroactive and Regenerable Fe3O4@Polypyrrole Nanocomposite: Fabrication and Its Defluorination in an Electromagnetic Coupling System. Industrial & Engineering Chemistry Research, 2017, 56, 12738-12744.	3.7	13
309	Investigation of lanthanum impregnated cellulose, derived from biomass, as an adsorbent for the removal of fluoride from drinking water. Carbohydrate Polymers, 2017, 176, 402-410.	10.2	52
310	Removal of fluoride from water by nanocomposites of POPOA/Fe3O4, POPOA/TiO2, POPOT/Fe3O4 and POPOT/TiO2: Modelling and optimization via RSM. Chemical Engineering Research and Design, 2017, 126, 1-18.	5.6	13
311	Hydrous ZrO2 decorated polyaniline nanofibres: Synthesis, characterization and application as an efficient adsorbent for water defluoridation. Journal of Colloid and Interface Science, 2017, 508, 342-358.	9.4	30

#	Article	IF	CITATIONS
312	Comparative assessment on defluoridation of waste water using chemical and bio-reduced graphene oxide: Batch, thermodynamic, kinetics and optimization using response surface methodology and artificial neural network. Chemical Engineering Research and Design, 2017, 111, 221-231.	5.6	21
313	Experiment and simulation study of a dual-reflux pressure swing adsorption process for separating N2/O2. Separation and Purification Technology, 2017, 189, 54-65.	7.9	46
314	Abatement of organic pollutants using fly ash based adsorbents. Water Science and Technology, 2017, 76, 2580-2592.	2.5	53
315	The Forms of Fluoride in Antarctic Krill (<i>Euphausia superba</i>) Oil Extracted with Hexane and its Removal with Different Absorbents. Journal of Aquatic Food Product Technology, 2017, 26, 835-842.	1.4	5
316	Modelling of fluoride sorption from aqueous solution using green algae impregnated with zirconium by response surface methodology. Adsorption Science and Technology, 2017, 35, 194-217.	3.2	11
317	Synthesis of pillar and microsphere-like magnesium oxide particles and their fluoride adsorption performance in aqueous solutions. Korean Journal of Chemical Engineering, 2017, 34, 2738-2747.	2.7	14
318	Isotherm investigation for the sorption of fluoride onto Bio-F: comparison of linear and non-linear regression method. Applied Water Science, 2017, 7, 4793-4800.	5.6	22
319	Insight into mechanisms of fluoride removal from contaminated groundwater using lanthanum-modified bone waste. RSC Advances, 2017, 7, 54291-54305.	3.6	50
320	Removal of phosphate ions from aqueous solutions Zn/Al- and Mg/Fe- by layered doubled hydroxides. Journal of Water Chemistry and Technology, 2017, 39, 268-274.	0.6	5
321	Removal of refractory organics from saline concentrate produced by electrodialysis in petroleum industry using bone char. Adsorption, 2017, 23, 983-997.	3.0	16
322	Fabrication of sustainable organometallic polymeric adsorbents for remediation of fluoride from water: A novel approach. Journal of Water Process Engineering, 2017, 20, 149-159.	5.6	2
323	Fluoride adsorption from aqueous solution using a protonated clinoptilolite and its modeling with artificial neural network-based equations. Journal of Fluorine Chemistry, 2017, 204, 98-106.	1.7	28
324	Performance and mechanism of Mg-Ca-Fe hydrotalcite-like compounds for fluoride removal from aqueous solution. Journal of Fluorine Chemistry, 2017, 200, 153-161.	1.7	26
326	Bone char with antibacterial properties for fluoride removal: Preparation, characterization and water treatment. Journal of Environmental Management, 2017, 201, 277-285.	7.8	46
327	Cow bones char as a green sorbent for fluorides removal from aqueous solutions: batch and fixed-bed studies. Environmental Science and Pollution Research, 2017, 24, 2364-2380.	5.3	43
328	Enhancement of fluoride immobilization in apatite by Al 3+ additives. Chemical Engineering Journal, 2017, 311, 284-292.	12.7	7
329	Modeling and Optimization of Defluoridation by Calcined Ca-Al-(NO3)-LDH Using Response Surface Methodology and Artificial Neural Network Combined with Experimental Design. Journal of Hazardous, Toxic, and Radioactive Waste, 2017, 21, 04016024.	2.0	9
330	Thermodynamics and kinetics study of defluoridation using Ca-SiO2-TiO2 as adsorbent: Column studies and statistical approach. Korean Journal of Chemical Engineering, 2017, 34, 179-188.	2.7	4

#	Article	IF	CITATIONS
331	FeOOH-graphene oxide nanocomposites for fluoride removal from water: Acetate mediated nano FeOOH growth and adsorption mechanism. Journal of Colloid and Interface Science, 2017, 490, 259-269.	9.4	110
332	Performance of fluoride electrosorption using micropore-dominant activated carbon as an electrode. Separation and Purification Technology, 2017, 172, 415-421.	7.9	46
333	Graphene Oxide/Chitosan/Polyvinylâ€Alcohol Composite Sponge as Effective Adsorbent for Dyes. Water Environment Research, 2017, 89, 555-563.	2.7	9
334	Kinetic and thermodynamic studies for fluoride removal using a novel bio-adsorbent from possotia (Vitex negundo) leaf. Journal of Analytical Science and Technology, 2017, 8, .	2.1	20
335	The effect of Amaranthus hybridus on fluoride removal by iron (III) salts as fluoride coagulants. African Journal of Environmental Science and Technology, 2017, 11, 207-212.	0.6	6
336	Calcined Chitosan-Supported Layered Double Hydroxides: An Efficient and Recyclable Adsorbent for the Removal of Fluoride from an Aqueous Solution. Materials, 2017, 10, 1320.	2.9	12
337	Synthesis of a Novel Ce-bpdc for the Effective Removal of Fluoride from Aqueous Solution. Advances in Condensed Matter Physics, 2017, 2017, 1-8.	1.1	6
338	Removal of Fluoride from Water by Adsorption onto Fired Clay Pots: Kinetics and Equilibrium Studies. Hindawi Journal of Chemistry, 2017, 2017, 1-7.	1.6	36
339	Pediastrum boryanum Immobilized on Rice Husk Ash Silica as Biosorbent for Fluoride Removal from Drinking Water. Indian Journal of Science and Technology, 2017, 9, .	0.7	6
340	Electrically enhanced adsorption and green regeneration for fluoride removal using Ti(OH)4-loaded activated carbon electrodes. Chemosphere, 2018, 200, 554-560.	8.2	48
341	Fabrication of metal oxide - biopolymer nanocomposite for water defluoridation. MRS Advances, 2018, 3, 2109-2118.	0.9	0
342	Template-free synthesis of MgO mesoporous nanofibers with superior adsorption for fluoride and Congo red. Ceramics International, 2018, 44, 9454-9462.	4.8	42
343	Fluoride uptake by zeolite NaA synthesized from rice husk: Isotherm, kinetics, thermodynamics and cost estimation. Groundwater for Sustainable Development, 2018, 7, 39-47.	4.6	38
344	Acoustic cavitation induced synthesis of zirconium impregnated activated carbon for effective fluoride scavenging from water by adsorption. Ultrasonics Sonochemistry, 2018, 45, 65-77.	8.2	70
345	Chemically reduced tea waste biochar and its application in treatment of fluoride containing wastewater: Batch and optimization using response surface methodology. Chemical Engineering Research and Design, 2018, 116, 553-563.	5.6	60
346	Simultaneous and efficient removal of fluoride and phosphate by Fe-La composite: Adsorption kinetics and mechanism. Journal of Alloys and Compounds, 2018, 753, 422-432.	5.5	117
347	Fluoride contamination in groundwater sources in Southwestern Nigeria: Assessment using multivariate statistical approach and human health risk. Ecotoxicology and Environmental Safety, 2018, 156, 391-402.	6.0	105
348	Preparation of core/shell nanocomposite adsorbents based on amine polymer-modified magnetic materials for the efficient adsorption of anionic dyes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 549, 174-183.	4.7	46

#	Article	IF	CITATIONS
349	A comparative study on defluoridation capabilities of biosorbents: isotherm, kinetics, thermodynamics, cost estimation, and eco-toxicological study. Environmental Science and Pollution Research, 2018, 25, 17473-17489.	5.3	26
350	Water defluoridation with avocado-based adsorbents: Synthesis, physicochemical characterization and thermodynamic studies. Journal of Molecular Liquids, 2018, 254, 188-197.	4.9	31
351	A review on the sorptive elimination of fluoride from contaminated wastewater. Journal of Environmental Chemical Engineering, 2018, 6, 1257-1270.	6.7	59
352	Principles of a multistack electrochemical wastewater treatment design. Journal Physics D: Applied Physics, 2018, 51, 065502.	2.8	4
353	Removal of fluoride from wastewater using HCl-treated activated alumina in a ribbed hydrocyclone separator. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2018, 53, 601-608.	1.7	20
354	Mitigation of Fluoride from Brackish Water via Electrodialysis: An Environmentally Friendly Process. ChemistrySelect, 2018, 3, 779-784.	1.5	16
355	Biosorption of fluoride using Anogeissus dhofarica – effect of process variables and kinetic studies. Water Science and Technology: Water Supply, 2018, 18, 1803-1809.	2.1	3
356	Defluoridation of reject water from a reverse osmosis unit and synthetic water using adsorption. Journal of Water Process Engineering, 2018, 23, 327-337.	5.6	19
357	Effect of cation doping on the structure of hydroxyapatite and the mechanism of defluoridation. Ceramics International, 2018, 44, 6002-6009.	4.8	43
358	Modeling Adsorption Isotherm for Defluoridation by Calcined Ca-Al-(NO3)-LDH: State-of-the-Art Technique. Journal of Environmental Engineering, ASCE, 2018, 144, .	1.4	8
359	Improving the properties of dicalcium phosphate dihydrate (DCPD) powder by changing the morphology. Journal of the Ceramic Society of Japan, 2018, 126, 202-207.	1.1	2
360	Insights into adsorption mechanism for fluoride on cactus-like amorphous alumina oxide microspheres. Chemical Engineering Journal, 2018, 345, 252-259.	12.7	70
361	Adsorptive removal of fluoride from water by activated carbon derived from CaCl ₂ -modified <i>Crocus sativus</i> leaves: Equilibrium adsorption isotherms, optimization, and influence of anions. Chemical Engineering Communications, 2018, 205, 955-965.	2.6	95
362	Effective Remediation of Groundwater Fluoride with Inexpensively Processed Indian Bauxite. Environmental Science & Technology, 2018, 52, 4711-4718.	10.0	30
363	Arsenic and fluoride removal from contaminated drinking water with Haix-Fe-Zr and Haix-Zr resin beads. Journal of Environmental Management, 2018, 215, 132-142.	7.8	19
364	Adsorptive removal of fluoride from water by granular zirconium–aluminum hybrid adsorbent: performance and mechanisms. Environmental Science and Pollution Research, 2018, 25, 15390-15403. 	5.3	13
365	Ca2+ metabolic disorder and abnormal expression of cardiac troponin involved in fluoride-induced cardiomyocyte damage. Chemosphere, 2018, 201, 564-570.	8.2	11
366	Value adding red mud waste: Impact of red mud composition upon fluoride removal performance of synthesised akaganeite sorbents. Journal of Environmental Chemical Engineering, 2018, 6, 2063-2074.	6.7	24

#	Article	IF	CITATIONS
367	Application of response surface methodology and semi-mechanistic model to optimize fluoride removal using crushed concrete in a fixed-bed column. Environmental Technology (United Kingdom), 2018, 39, 616-627.	2.2	8
368	Defluoridation of synthetic and natural waters by polyaluminum chloride-chitosan (PACI-Ch) composite coagulant. Water Science and Technology: Water Supply, 2018, 18, 259-269.	2.1	14
369	Water defluoridation by alumina modified Turkey clinoptilolite: equilibrium, kinetic models and experimental design approaches. Water Science and Technology: Water Supply, 2018, 18, 14-22.	2.1	3
370	Fixed-bed study for bone char adsorptive removal of refractory organics from electrodialysis concentrate produced by petroleum refinery. Environmental Technology (United Kingdom), 2018, 39, 1544-1556.	2.2	19
371	Fluoride adsorption on manganese carbonate: Ion-exchange based on the surface carbonate-like groups and hydroxyl groups. Journal of Colloid and Interface Science, 2018, 510, 407-417.	9.4	54
372	The sequestral capture of fluoride, nitrate and phosphate by metal-doped and surfactant-modified hybrid clay materials. Chemical Papers, 2018, 72, 409-417.	2.2	25
373	Metal-organic framework-801 for efficient removal of fluoride from water. Microporous and Mesoporous Materials, 2018, 259, 163-170.	4.4	105
374	Onsite defluoridation system for drinking water treatment using calcium carbonate. Journal of Environmental Management, 2018, 216, 270-274.	7.8	15
375	Iron-oxide nanoparticles by the green synthesis method using <i>Moringa oleifera</i> leaf extract for fluoride removal. Environmental Technology (United Kingdom), 2018, 39, 2926-2936.	2.2	38
376	Fluoride and nitrate adsorption from water by Fe(III)-doped scoria: optimizing using response surface modeling, kinetic and equilibrium study. Water Science and Technology: Water Supply, 2018, 18, 1117-1132.	2.1	13
377	Recovery of fluorine utilizing complex properties of cerium(IV) to obtain high purity CeF3 by solvent extraction. Separation and Purification Technology, 2018, 191, 153-160.	7.9	17
378	Dual-function cellulose composites for fluorescence detection and removal of fluoride. Dyes and Pigments, 2018, 149, 669-675.	3.7	37
379	The removal of fluoride from aqueous solution by a lateritic soil adsorption: Kinetic and equilibrium studies. Ecotoxicology and Environmental Safety, 2018, 149, 166-172.	6.0	70
380	Development of biomorphic alumina using egg shell membrane as bio-template. Ceramics International, 2018, 44, 4615-4621.	4.8	21
381	Removal of fluoride from water through bacterial-surfactin mediated novel hydroxyapatite nanoparticle and its efficiency assessment: Adsorption isotherm, adsorption kinetic and adsorption Thermodynamics. Environmental Nanotechnology, Monitoring and Management, 2018, 9, 18-28.	2.9	58
382	Characterization and adsorption mechanism of ZrO2 mesoporous fibers for health-hazardous fluoride removal. Journal of Hazardous Materials, 2018, 346, 82-92.	12.4	126
383	Efficient defluoridation of water by Monetite nanorods. Adsorption, 2018, 24, 135-145.	3.0	16
384	Identification of F- species after adsorption at the surface of milled and unmilled Î ³ -Al 2 O 3. Surfaces and Interfaces, 2018, 10, 117-122.	3.0	6

#		IF	CITATIONS
[™] 385	A review of emerging adsorbents and current demand for defluoridation of water: Bright future in	"	180
303	water sustainability. Environment International, 2018, 111, 80-108.	10.0	100
386	A novel Fe-La-Ce tri-metallic composite for the removal of fluoride ions from aqueous media. Journal of Environmental Management, 2018, 207, 387-395.	7.8	30
387	Exfoliated Mg–Al–Fe layered double hydroxides/polyether sulfone mixed matrix membranes for adsorption of phosphate and fluoride from aqueous solutions. Journal of Environmental Sciences, 2018, 70, 63-73.	6.1	51
388	Insight into Optimization, isotherm, kinetics, and thermodynamics of fluoride adsorption onto activated alumina. Environmental Progress and Sustainable Energy, 2018, 37, 766-776.	2.3	29
389	Optimization of fluoride removal from aqueous solution using Jamun (Syzygium cumini) leaf ash. Chemical Engineering Research and Design, 2018, 115, 125-138.	5.6	48
390	Preparation of carbon coated Fe3O4 nanoparticles for magnetic separation of uranium. Solid State Sciences, 2018, 75, 14-20.	3.2	21
391	Probing hydrogen bonding interactions and impurity intercalation in gibbsite using experimental and theoretical XANES spectroscopy. Physical Chemistry Chemical Physics, 2018, 20, 24033-24044.	2.8	5
392	Fluorides decontamination by means of Aluminum polychloride based commercial coagulant. Journal of Water Process Engineering, 2018, 26, 182-186.	5.6	20
393	Thermodynamics of Fluoride Adsorption on Aluminum/Olivine Composite (AOC): Influence of Temperature on Isotherm, Kinetics, and Adsorption Mechanism. Water, Air, and Soil Pollution, 2018, 229, 1.	2.4	5
394	Defeating Fluorosis in the East African Rift Valley: Transforming the Kilimanjaro into a Rainwater Harvesting Park. Sustainability, 2018, 10, 4194.	3.2	22
395	Simulation of Trinitrogen Migration and Transformation in the Unsaturated Zone at a Desert Contaminant Site (NW China) Using HYDRUS-2D. Water (Switzerland), 2018, 10, 1363.	2.7	9
396	The Extremely High Adsorption Capacity of Fluoride by Chicken Bone Char (CBC) in Defluoridation of Drinking Water in Relation to Its Finer Particle Size for Better Human Health. Healthcare (Switzerland), 2018, 6, 123.	2.0	18
397	A Review of Fluoride Removal from Groundwater. Periodica Polytechnica: Chemical Engineering, 2019, 63, 425-437.	1.1	10
398	Nanobioremediation: An Innovative Approach to Fluoride (F) Contamination. Nanotechnology in the Life Sciences, 2018, , 343-353.	0.6	2
399	Hydroxyapatite Ceramic Adsorbents: Effect of Pore Size, Regeneration, and Selectivity for Fluoride. Journal of Environmental Engineering, ASCE, 2018, 144, .	1.4	10
400	Synthesis and Characterization of nZVI Grafted Alumina and Its Application for Fluoride Removal from Drinking Water: Equilibrium and Kinetics Study. Periodica Polytechnica: Chemical Engineering, 2018, 63, 73-84.	1.1	6
401	Bi-Objective Optimization through Pareto Frontier Analysis and Artificial Neural Network for Adsorptive Removal of Fluoride by a Novel Al/Olivine Composite. Journal of Environmental Engineering, ASCE, 2018, 144, 04018126.	1.4	7
402	Insights into phosphate adsorption behavior on structurally modified ZnAl layered double hydroxides. Applied Clay Science, 2018, 165, 234-246.	5.2	82

#	Article	IF	CITATIONS
403	Alkali Metals Removal from Radioactive Wastewater by Combined CO2 Capture and Adsorption onto Bone Char. Minerals, Metals and Materials Series, 2018, , 1213-1223.	0.4	0
404	Green synthesis of Ag/MgO nanoparticle modified nanohydroxyapatite and its potential for defluoridation and pathogen removal in groundwater. Physics and Chemistry of the Earth, 2018, 107, 25-37.	2.9	28
405	Chromium and fluoride sorption/desorption on un-amended and waste-amended forest and vineyard soils and pyritic material. Journal of Environmental Management, 2018, 222, 3-11.	7.8	22
406	Novel dual ligands capped perovskite quantum dots for fluoride detection. Sensors and Actuators B: Chemical, 2018, 270, 291-297.	7.8	38
407	Preparation, Kinetics, Thermodynamics, and Mechanism Evaluation of Thiosemicarbazide Modified Green Carboxymethyl Cellulose as an Efficient Cu(II) Adsorbent. Journal of Chemical & Engineering Data, 2018, 63, 1905-1916.	1.9	31
408	Adsorption of fluoride by the calcium alginate embedded with Mg-Al-Ce trimetal oxides. Korean Journal of Chemical Engineering, 2018, 35, 1636-1641.	2.7	8
409	Water purification by using Adsorbents: A Review. Environmental Technology and Innovation, 2018, 11, 187-240.	6.1	651
410	Analytical solution of the Langmuir-based linear driving force model and its application to the adsorption kinetics of boscalid onto granular activated carbon. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125, 1-13.	1.7	12
411	A Comparative Study on Removal of Hazardous Anions from Water by Adsorption: A Review. International Journal of Chemical Engineering, 2018, 2018, 1-21.	2.4	70
412	Hydrous CeO2-Fe3O4 decorated polyaniline fibers nanocomposite for effective defluoridation of drinking water. Journal of Colloid and Interface Science, 2018, 532, 500-516.	9.4	52
413	A novel 3D yttrium based-graphene oxide-sodium alginate hydrogel for remarkable adsorption of fluoride from water. Journal of Colloid and Interface Science, 2018, 531, 37-46.	9.4	71
414	Effective fluoride adsorption by aluminum oxide modified clays: Ethiopian bentonite vs commercial montmorillonite. Bulletin of the Chemical Society of Ethiopia, 2018, 32, 199.	1.1	7
415	Modification of organic matter-rich clay by a solution of cationic surfactant/H2O2: A new product for fluoride adsorption from solutions. Journal of Cleaner Production, 2018, 192, 712-721.	9.3	50
416	On the mechanism of sodium migration in transition aluminas with calcination. Acta Materialia, 2018, 153, 226-234.	7.9	7
417	GIS-based evaluation of groundwater geochemistry and statistical determination of the fate of contaminants in shallow aquifers from different functional areas of Agra city, India: levels and spatial distributions. RSC Advances, 2018, 8, 15876-15889.	3.6	89
418	Mesoporous La/Mg/Si-incorporated palm shell activated carbon for the highly efficient removal of aluminum and fluoride from water. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 306-314.	5.3	28
419	Sorptive equilibrium profile of fluoride onto aluminum olivine [(Fe <i>_x</i> Mg _{1â^'} <i>_x</i>) ₂ SiO ₄] composite (AOC): Physicochemical insights and isotherm modeling by non-linear least squares regression and a novel neural-network-based method. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2018, 52, 1102, 1114	1.7	6
420	A novel flake-ball-like magnetic Fe3O4/γ-MnO2 meso-porous nano-composite: Adsorption of fluorinion and effect of water chemistry. Chemosphere, 2018, 209, 173-181.	8.2	33

#	Article	IF	CITATIONS
421	Effect of Halide Anions on the Structure and Dynamics of Water Next to an Alumina (0001) Surface. Journal of Physical Chemistry C, 2018, 122, 12819-12830.	3.1	28
422	Solar powered nanofiltration for drinking water production from fluoride-containing groundwater – A pilot study towards developing a sustainable and low-cost treatment plant. Journal of Environmental Management, 2019, 231, 1263-1269.	7.8	32
423	Enhanced fluoride removal behaviour and mechanism by dicalcium phosphate from aqueous solution. Environmental Technology (United Kingdom), 2019, 40, 3668-3677.	2.2	9
424	Investigation of fluorapatite crystallization in a fluidized bed reactor for the removal of fluoride from groundwater. Journal of Chemical Technology and Biotechnology, 2019, 94, 569-581.	3.2	14
425	Application of response surface methodology for optimization of cadmium adsorption from aqueous solutions by Fe3O4@SiO2@APTMS coreâ€"shell magnetic nanohybrid. Surfaces and Interfaces, 2019, 17, 100374.	3.0	32
426	Ceramic Water Filters for the Removal of Bacterial, Chemical, and Viral Contaminants. Journal of Environmental Engineering, ASCE, 2019, 145, .	1.4	7
427	Defluoridation of water through the transformation of octacalcium phosphate into fluorapatite. Heliyon, 2019, 5, e02288.	3.2	5
428	Presence and Distribution of Fluoride Ions in Groundwater for Human in a Semiconfined Volcanic Aquifer. Resources, 2019, 8, 116.	3.5	12
429	Membrane-based technologies for zero liquid discharge and fluoride removal from industrial wastewater. Chemosphere, 2019, 236, 124288.	8.2	36
430	Enhanced capacity of fluoride scavenging from contaminated water by nano-architectural reorientation of cerium-incorporated hydrous iron oxide with graphene oxide. Environmental Science and Pollution Research, 2019, 26, 26112-26133.	5.3	14
431	Application of synthesized Fe/Al/Ca based adsorbent for defluoridation of drinking Water and its significant parameters optimization using response surface methodology. Journal of Environmental Chemical Engineering, 2019, 7, 103465.	6.7	23
432	Super-resolution Geometry Processing Technology for Ill-sampled Astronomical Images. Journal of Physics: Conference Series, 2019, 1229, 012017.	0.4	0
433	Cache-Aided Interference Management using Hypercube Combinatorial Cache Designs. , 2019, , .		1
434	Layered double hydroxide functionalized biomass carbon fiber for highly efficient and recyclable fluoride adsorption. Applied Biological Chemistry, 2019, 62, .	1.9	16
435	Simplified Batch and Fixed-Bed Design System for Efficient and Sustainable Fluoride Removal from Water Using Slow Pyrolyzed Okra Stem and Black Gram Straw Biochars. ACS Omega, 2019, 4, 19513-19525.	3.5	37
436	Defluoridation of calcium-rich groundwater using iron oxide nanoparticles. Water Practice and Technology, 2019, 14, 665-681.	2.0	1
437	Palygorskite Nanomaterials: Structure, Properties, and Functional Applications. , 2019, , 21-133.		10
438	The adsorption characteristics of fluoride on commercial activated carbon treated with quaternary ammonium salts (Quats). Science of the Total Environment, 2019, 693, 133605.	8.0	30

#	Article	IF	CITATIONS
439	Synthesis and Study of an Efficient Metal-Organic Framework Adsorbent (MIL-96(Al)) for Fluoride Removal from Water. Journal of Nanomaterials, 2019, 2019, 1-13.	2.7	23
440	Preparation and Properties of an Aluminum Hydroxide-Modified Diatomite Sorbent for Removal of Fluorides from Waters. Surface Engineering and Applied Electrochemistry, 2019, 55, 455-462.	0.8	1
441	Removal of fluoride in membrane-based water and wastewater treatment technologies: Performance review. Journal of Environmental Management, 2019, 251, 109524.	7.8	76
442	White Teeth and Healthy Skeletons for All: The Path to Universal Fluoride-Free Drinking Water in Tanzania. Water (Switzerland), 2019, 11, 131.	2.7	21
443	Studies on novel nano-bimetal doped cellulose nanofibers derived from agrowaste towards deflouridation. International Journal of Biological Macromolecules, 2019, 128, 556-565.	7.5	15
444	Enhanced fluoride removal from water by rare earth (La and Ce) modified alumina: Adsorption isotherms, kinetics, thermodynamics and mechanism. Science of the Total Environment, 2019, 688, 184-198.	8.0	144
445	Fluoride removal from natural volcanic underground water by an electrocoagulation process: Parametric and cost evaluations. Journal of Environmental Management, 2019, 246, 472-483.	7.8	48
446	Fluoride contamination, health problems and remediation methods in Asian groundwater: A comprehensive review. Ecotoxicology and Environmental Safety, 2019, 182, 109362.	6.0	250
447	In-situ capturing of fluorine with CaO for accelerated defluorination roasting of lepidolite in a fluidized bed reactor. Powder Technology, 2019, 353, 498-504.	4.2	8
448	Enhanced Fluoride Removal from Water by Nanoporous Biochar-Supported Magnesium Oxide. Industrial & Engineering Chemistry Research, 2019, 58, 9988-9996.	3.7	46
449	Preliminary investigation of aluminium fluoride complexes in aqueous solutions with capillary electrophoresis coupled with electrospray ionization mass spectrometry and with inductively coupled plasma mass spectrometry. Rapid Communications in Mass Spectrometry, 2019, 33, 1527-1536.	1.5	4
450	Design and optimization of an electrocoagulation reactor for fluoride remediation in underground water sources for human consumption. Journal of Water Process Engineering, 2019, 31, 100865.	5.6	28
451	Experimental evaluation of sorptive removal of fluoride from drinking water using natural and brewery waste diatomite. Chemical Engineering Research and Design, 2019, 128, 95-106.	5.6	22
452	Click Prediction for P2P Loan Ads Based on Support Vector Machine. Journal of Physics: Conference Series, 2019, 1168, 032042.	0.4	3
453	Fabrication of aluminium and iron impregnated pectin biopolymeric material for effective utilization of fluoride adsorption studies. Groundwater for Sustainable Development, 2019, 9, 100233.	4.6	6
454	An imperative approach for fluorosis mitigation: Amending aqueous calcium to suppress hydroxyapatite dissolution in defluoridation. Journal of Environmental Management, 2019, 245, 230-237.	7.8	14
455	Modified hydrous zirconium oxide/PAN nanofibers for efficient defluoridation from groundwater. Science of the Total Environment, 2019, 685, 401-409.	8.0	49
456	Use of CaO Loaded Mesoporous Alumina for Defluoridation of Potable Groundwater Containing Elevated Calcium Levels. Environments - MDPI, 2019, 6, 66.	3.3	0

#	Articie	IF	CITATIONS
457	Adsorptive removal studies of fluoride in aqueous system by bimetallic oxide incorporated in cellulose. Chemical Engineering Research and Design, 2019, 127, 211-225.	5.6	20
458	Fluoride occurrence in groundwater systems at global scale and status of defluoridation – State of the art. Groundwater for Sustainable Development, 2019, 9, 100223.	4.6	160
459	Enhanced fluoride uptake by bimetallic hydroxides anchored in cotton cellulose/graphene oxide composites. Journal of Hazardous Materials, 2019, 376, 91-101.	12.4	33
460	Fluoride removal from secondary effluent of the graphite industry using electrodialysis: Optimization with response surface methodology. Frontiers of Environmental Science and Engineering, 2019, 13, 1.	6.0	24
461	Fast Capture of Fluoride by Anion-Exchange Zirconium–Graphene Hybrid Adsorbent. Langmuir, 2019, 35, 6861-6869.	3.5	24
462	Adsorption of Fluoride lons from Water by SF/PP Nonwoven Fabrics. Fibers and Polymers, 2019, 20, 863-867.	2.1	4
463	External mass transport process during the adsorption of fluoride from aqueous solution by activated clay. Comptes Rendus Chimie, 2019, 22, 161-168.	0.5	19
464	Volcanic rockâ€based ceramsite adsorbent for highly selective fluoride removal: function optimization and mechanism. Journal of Chemical Technology and Biotechnology, 2019, 94, 2263-2273.	3.2	6
465	Monitoring of fluoride content in bottled mineral and spring waters by ion chromatography. Journal of Geochemical Exploration, 2019, 202, 27-34.	3.2	11
466	Electrolysis removal of fluoride by magnesium ion-assisted sacrificial iron electrode and the effect of coexisting ions. Journal of Environmental Chemical Engineering, 2019, 7, 103084.	6.7	9
467	Activated carbon synthesized from biomass material using single-step KOH activation for adsorption of fluoride: Experimental and theoretical investigation. Korean Journal of Chemical Engineering, 2019, 36, 551-562.	2.7	35
468	Water Pollution Remediation Techniques with Special Focus on Adsorption. Nanotechnology in the Life Sciences, 2019, , 39-68.	0.6	2
469	Development of Synthetic Hydroxyapatite-Based Household Defluoridation Unit. , 2019, , 271-290.		1
470	Addressing Groundwater Fluoride Contamination Using Inexpensively Processed Bauxite. , 2019, , 291-325.		1
472	New Technologies to Remove Halides from Water: An Overview. Nanotechnology in the Life Sciences, 2019, , 147-180.	0.6	5
473	Adsorptive Removal of Fluoride from Water Using Nanomaterials of Ferrihydrite, Apatite, and Brucite: Batch and Column Studies. Environmental Engineering Science, 2019, 36, 634-642.	1.6	11
474	Amine Functionalized Electrospun Cellulose Nanofibers for Fluoride Adsorption from Drinking Water. Journal of Polymers and the Environment, 2019, 27, 816-826.	5.0	34
475	Fluoride Toxicity and Recent Advances in Water Defluoridation with Specific Emphasis on Nanotechnology. Environmental Chemistry for A Sustainable World, 2019, , 395-442.	0.5	2

#	Article	IF	Citations
476	Enhanced fluoride removal by hierarchically porous carbon foam monolith with high loading of UiO-66. Journal of Colloid and Interface Science, 2019, 542, 269-280.	9.4	50
477	Synthesis and evaluation of activated carbon/nanoclay/ thiolated graphene oxide nanocomposite for lead(II) removal from aqueous solution. Water Science and Technology, 2019, 79, 466-479.	2.5	28
478	Adsorption in Water Treatment. , 2019, , .		16
479	Distribution, origin and key influencing factors of fluoride groundwater in the coastal area, NE China. Human and Ecological Risk Assessment (HERA), 2019, 25, 104-119.	3.4	16
480	Impact of fluoride in potable water – An outlook on the existing defluoridation strategies and the road ahead. Coordination Chemistry Reviews, 2019, 387, 121-128.	18.8	50
481	Adsorption of fluoride from aqueous solution using biochar prepared from waste peanut hull. Materials Research Express, 2019, 6, 125553.	1.6	21
482	Fluoride contamination in groundwater and associated health risks in Karbi Anglong District, Assam, Northeast India. Environmental Monitoring and Assessment, 2019, 191, 782.	2.7	24
483	Efficient utilisation of flue gas desulfurization gypsum as a potential material for fluoride removal. Science of the Total Environment, 2019, 649, 344-352.	8.0	48
484	Ultrasound assisted synthesis of Mg-Mn-Zr impregnated activated carbon for effective fluoride adsorption from water. Ultrasonics Sonochemistry, 2019, 50, 126-137.	8.2	60
485	Water defluoridation by Fe(III)-loaded sisal fibre: Understanding the influence of the preparation pathways on biosorbents' defluoridation properties. Journal of Hazardous Materials, 2019, 362, 99-106.	12.4	18
486	Experimental and kinetic study of fluoride adsorption by Ni and Zn modified LD slag based geopolymer. Chemical Engineering Research and Design, 2019, 142, 165-175.	5.6	25
487	Synthesis of bone char from cattle bones and its application for fluoride removal from the contaminated water. Groundwater for Sustainable Development, 2019, 8, 324-331.	4.6	58
488	Application of Taguchi method for optimizing the process parameters for the removal of fluoride by Al-impregnated Eucalyptus bark ash. Environmental Nanotechnology, Monitoring and Management, 2019, 11, 100206.	2.9	20
489	Defluoridation of wastewaters using HAP-coated-limestone. Separation Science and Technology, 2019, 54, 2304-2313.	2.5	6
490	Defluoridation of synthetic and industrial wastewater by using acidic activated alumina adsorbent: characterization and optimization by response surface methodology. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2019, 54, 79-88.	1.7	18
491	A novel acid modified alumina adsorbent with enhanced defluoridation property: Kinetics, isotherm study and applicability on industrial wastewater. Journal of Hazardous Materials, 2019, 365, 868-882.	12.4	106
492	Nanoengineered Materials for Water and Wastewater Treatments. , 2019, , 303-335.		3
493	Adsorption and desorption of acetylsalicylic acid onto activated carbon of babassu coconut mesocarp. Journal of Environmental Chemical Engineering, 2019, 7, 102862.	6.7	44

#	Article	IF	CITATIONS
494	Effective Parameters, Equilibrium, and Kinetics of Fluoride Adsorption on <i>Prosopis cineraria</i> and <i>Syzygium cumini</i> Leaves. Environmental Progress and Sustainable Energy, 2019, 38, S429.	2.3	18
495	Facile Fabrication of Biochar/Al ₂ O ₃ Adsorbent and Its Application for Fluoride Removal from Aqueous Solution. Journal of Chemical & Engineering Data, 2019, 64, 83-89.	1.9	23
496	High-Gradient Magnetic Separator (HGMS) combined with adsorption for nitrate removal from aqueous solution. Separation and Purification Technology, 2019, 212, 650-659.	7.9	27
497	ZnO tetrapods and activated carbon based hybrid composite: Adsorbents for enhanced decontamination of hexavalent chromium from aqueous solution. Chemical Engineering Journal, 2019, 358, 540-551.	12.7	170
498	Defluoridization of drinking water by electrocoagulation (EC): process optimization and kinetic study. Journal of Dispersion Science and Technology, 2019, 40, 1136-1146.	2.4	19
499	Development of α- and γ-Fe ₂ O ₃ decorated graphene oxides for glyphosate removal from water. Environmental Technology (United Kingdom), 2019, 40, 1118-1137.	2.2	51
500	Recent advances about metal–organic frameworks in the removal of pollutants from wastewater. Coordination Chemistry Reviews, 2019, 378, 17-31.	18.8	479
501	Synergistic effect of zeolite/chitosan in the removal of fluoride from aqueous solution. Environmental Technology (United Kingdom), 2020, 41, 1554-1567.	2.2	26
502	Facile synthesis of Al/Fe bimetallic (oxyhydr)oxide-coated magnetite for efficient removal of fluoride from water. Environmental Technology (United Kingdom), 2020, 41, 2625-2636.	2.2	13
503	Lanthanum- and cerium-based functionalization of chars and activated carbons for the adsorption of fluoride and arsenic ions. International Journal of Environmental Science and Technology, 2020, 17, 115-128.	3.5	26
504	Activated red mud as a permeable reactive barrier material for fluoride removal from groundwater: parameter optimisation and physico-chemical characterisation. Environmental Technology (United) Tj ETQq0 0 0	rg ₽ ₽/Ove	rlade 10 Tf 5
505	A practical approach on reuse of drinking water treatment plant residuals for fluoride removal. Environmental Technology (United Kingdom), 2020, 41, 2907-2919.	2.2	9
506	Enhanced fluoride adsorption of aluminum humate and its resistance on fluoride accumulation in tea leaves. Environmental Technology (United Kingdom), 2020, 41, 329-338.	2.2	15
507	One-pot synthesis of β-cyclodextrin amended mesoporous cerium(IV) incorporated ferric oxide surface towards the evaluation of fluoride removal efficiency from contaminated water for point of use. Journal of Hazardous Materials, 2020, 384, 121235.	12.4	16
508	Synthesis of alumina-based cross-linked chitosan–HPMC biocomposite film: an efficient and user-friendly adsorbent for multipurpose water purification. New Journal of Chemistry, 2020, 44, 322-337.	2.8	14
509	Needle-like Mg-La bimetal oxide nanocomposites derived from periclase and lanthanum for cost-effective phosphate and fluoride removal: Characterization, performance and mechanism. Chemical Engineering Journal, 2020, 382, 122963.	12.7	84
510	Fluoride and human health: Systematic appraisal of sources, exposures, metabolism, and toxicity. Critical Reviews in Environmental Science and Technology, 2020, 50, 1116-1193.	12.8	94
511	Synthesis of (ZrO2-Al2O3)/GO nanocomposite by sonochemical method and the mechanism analysis of its high defluoridation. Journal of Hazardous Materials, 2020, 381, 120954.	12.4	36

#	ARTICLE	IF	CITATIONS
512	defluoridation, kinetics, isotherm studies and implementation on industrial wastewater treatment. Journal of Hazardous Materials, 2020, 381, 120917.	12.4	64
513	Using big data computing framework and parallelized PSO algorithm to construct the reservoir dispatching rule optimization. Soft Computing, 2020, 24, 8113-8124.	3.6	11
514	Fluoride removal by Ca-Al-CO3 layered double hydroxides at environmentally-relevant concentrations. Chemosphere, 2020, 243, 125307.	8.2	35
515	Experimental and model study for fluoride removal by thermally activated sepiolite. Chemosphere, 2020, 241, 125094.	8.2	46
516	Groundwater defluoridation and disinfection using carbonized bone meal impregnated polysulfone mixed matrix hollow-fiber membranes. Journal of Water Process Engineering, 2020, 33, 101002.	5.6	9
517	Synergistically Boosted Degradation of Organic Dyes by CeO ₂ Nanoparticles with Fluoride at Low pH. ACS Applied Nano Materials, 2020, 3, 842-849.	5.0	26
518	Development of a novel groundwater iron removal system using adsorptive Fe(II) process. Groundwater for Sustainable Development, 2020, 10, 100318.	4.6	7
519	Nanocellulose-Reinforced Organo-Inorganic Nanocomposite for Synergistic and Affordable Defluoridation of Water and an Evaluation of Its Sustainability Metrics. ACS Sustainable Chemistry and Engineering, 2020, 8, 139-147.	6.7	27
520	Removal and recovery of phosphate and fluoride from water with reusable mesoporous Fe3O4@mSiO2@mLDH composites as sorbents. Journal of Hazardous Materials, 2020, 388, 121734.	12.4	57
521	Osteogenic potential of human mesenchymal stem cells on eggshellsâ€derived hydroxyapatite nanoparticles for tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1953-1960.	3.4	18
522	Density Functional Theory and Molecular Dynamics insights into the site-dependent adsorption of hydrogen fluoride on kaolinite. Journal of Molecular Liquids, 2020, 299, 112265.	4.9	16
523	Rapid defluoridation of drinking water by calcium carbonate nanoadsorbent: characterization, adsorption studies and application to real samples' treatment. Water Science and Technology: Water Supply, 2020, 20, 667-678.	2.1	5
524	Defluoridation in aqueous solution by a composite of reduced graphene oxide decorated with cuprous oxide via sonochemical. Arabian Journal of Chemistry, 2020, 13, 7970-7977.	4.9	11
525	A study on bioremediation of fluoride-contaminated water via a novel bacterium Acinetobacter sp. (CU566361) isolated from potable water. Results in Chemistry, 2020, 2, 100070.	2.0	18
526	A study of suitability of limestone for fluoride removal by phosphoric acid-crushed limestone treatment. Journal of Environmental Chemical Engineering, 2020, 8, 104410.	6.7	11
527	A review on fluoride adsorption using modified bauxite: Surface modification and sorption mechanisms perspectives. Journal of Environmental Chemical Engineering, 2020, 8, 104532.	6.7	34
528	Defluoridation by fluorapatite crystallization in a fluidized bed reactor under alkaline groundwater condition. Journal of Cleaner Production, 2020, 272, 122805.	9.3	12
529	Fluoride sorption from aqueous solution using Al(OH)3-modified hydroxyapatite nanosheet. Fuel, 2020, 279, 118486.	6.4	20

#	Article	IF	CITATIONS
530	Effect of pyrolysis conditions on characteristics and fluoride adsorptive performance of bone char derived from bone residue. Journal of Water Process Engineering, 2020, 37, 101499.	5.6	25
531	Application of Cell Immobilization Technology in Microbial Cocultivation Systems for Biochemicals Production. Industrial & Engineering Chemistry Research, 2020, 59, 17026-17034.	3.7	32
532	Assessment of pine cone derived activated carbon as an adsorbent in defluoridation. SN Applied Sciences, 2020, 2, 1.	2.9	9
533	Synthesis of a Matériaux Institut Lavoisier metal-organic framework 96 (MIL-96(RM)) using red mud and its application to defluorination of water. Materials Today Communications, 2020, 25, 101401.	1.9	6
534	Novel mesoporous chitosan-zirconia-ferrosoferric oxide as magnetic composite for defluoridation of water. Journal of Environmental Chemical Engineering, 2020, 8, 104360.	6.7	38
535	NiFe Layered Double Hydroxides with Unsaturated Metal Sites via Precovered Surface Strategy for Oxygen Evolution Reaction. ACS Catalysis, 2020, 10, 11127-11135.	11.2	101
536	Effect of Pyrolysis of Rice Husk–Derived Biochar on the Fuel Characteristics and Adsorption of Fluoride from Aqueous Solution. Bioenergy Research, 2021, 14, 964-977.	3.9	18
537	Removal of Fluoride from Water Using a Calcium-Modified Dairy Manure–Derived Biochar. Journal of Environmental Engineering, ASCE, 2020, 146, 1-10.	1.4	12
538	Tolerance of Hancornia speciosa Gomes (Apocynaceae) to potassium fluoride: physiological and anatomical traits. Acta Physiologiae Plantarum, 2020, 42, 1.	2.1	2
539	Sustainable Environmental Geotechnics. Lecture Notes in Civil Engineering, 2020, , .	0.4	1
541	Geomaterials as Cost Effective Sorbent to Remove Fluoride from Water. Key Engineering Materials, 0, 870, 107-121.	0.4	5
542	Assessment of Ceramic Water Filters for the Removal of Bacterial, Chemical, and Viral Contaminants. Journal of Environmental Engineering, ASCE, 2020, 146, 04020066.	1.4	2
543	Calcium and zirconium modified acid activated alumina for adsorptive removal of fluoride: Performance evaluation, kinetics, isotherm, characterization and industrial wastewater treatment. Advanced Powder Technology, 2020, 31, 2045-2060.	4.1	41
544	Fluoride removal from aqueous solution by municipal solid waste compost ash: kinetics, and isotherms studies. International Journal of Environmental Analytical Chemistry, 2022, 102, 2937-2949.	3.3	8
545	A review of the emerging ceramic adsorbents for defluoridation of groundwater. Journal of Water Process Engineering, 2020, 36, 101365.	5.6	10
546	Fluoride removal efficiencies and mechanism of schwertmannite from KMnO4/MnO2–Fe(II) processes. Journal of Hazardous Materials, 2020, 397, 122789.	12.4	24
547	Principles and Design of an Integrated Magnetics Structure for Electrochemical Applications. IEEE Transactions on Industry Applications, 2020, 56, 5645-5655.	4.9	1
548	Geogenic fluoride and arsenic in groundwater of Sri Lanka and its implications to community health. Groundwater for Sustainable Development, 2020, 10, 100359.	4.6	64

#	Article	IF	CITATIONS
549	The adsorption enhancement of graphene for fluorine and chlorine from water. Applied Surface Science, 2020, 516, 146157.	6.1	31
550	Fluoride removal from groundwater using Zirconium Impregnated Anion Exchange Resin. Journal of Environmental Management, 2020, 263, 110415.	7.8	43
551	Facile synthesis of poly o-toluidine modified lanthanum phosphate nanocomposite as a superior adsorbent for selective fluoride removal: A mechanistic and kinetic study. Chemosphere, 2020, 252, 126551.	8.2	66
552	Effective adsorption of uranium(VI) from aqueous solution using ethylene-bridged mesoporous silica functionalized with ureido groups. Journal of Radioanalytical and Nuclear Chemistry, 2020, 324, 385-394.	1.5	5
553	MOFs for the treatment of arsenic, fluoride and iron contaminated drinking water: A review. Chemosphere, 2020, 251, 126388.	8.2	116
554	Removal of organic compounds, calcium and strontium from petroleum industry effluent by simultaneous electrocoagulation and adsorption. Journal of Water Process Engineering, 2020, 37, 101442.	5.6	39
555	Phytoremediation of fluoride from the environmental matrices: A review on its application strategies. Groundwater for Sustainable Development, 2020, 10, 100349.	4.6	19
556	One-pot synthesis of Cr(III)-incorporated Zr(IV) oxide for fluoride remediation: a lab to field performance evaluation study. Environmental Science and Pollution Research, 2020, 27, 15029-15044.	5.3	7
557	Synthesis and characterization of magnetized ETSâ€4 modified with lanthanum and iron for fluoride adsorption. Environmental Progress and Sustainable Energy, 2020, 39, e13420.	2.3	5
558	Preparation and Defluoridation Effectiveness of Composite Membrane Sorbent MFS-AA-PVDF. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	7
559	Enhanced fluoride removal over MgFe2O4–chitosan–CaAl nanohybrid: Response surface optimization, kinetic and isotherm study. International Journal of Biological Macromolecules, 2020, 148, 574-590.	7.5	45
560	Enhanced fluoride removal from drinking water using non-calcined synthetic hydroxyapatite. Journal of Environmental Chemical Engineering, 2020, 8, 103704.	6.7	36
561	Water defluorination using granular composite synthesized via hydrothermal treatment of polyaluminum chloride (PAC) sludge. Chemosphere, 2020, 247, 125899.	8.2	22
562	Freeze–dried synthesized bifunctional biopolymer nanocomposite for efficient fluoride removal and antibacterial activity. Journal of Environmental Sciences, 2020, 94, 52-63.	6.1	30
563	Defluoridation characteristics of a novel adsorbent developed from ferroalloy electric arc furnace slag: Batch, column study and treatment of industrial wastewater. Environmental Technology and Innovation, 2020, 18, 100782.	6.1	16
564	Continuous fixed-bed column assessment for defluoridation of water using HAp-coated-limestone. Journal of Environmental Chemical Engineering, 2020, 8, 103840.	6.7	13
565	Modified Crushed Oyster Shells for Fluoride Removal from Water. Scientific Reports, 2020, 10, 5759.	3.3	11
566	Citric acid modified granular activated carbon for enhanced defluoridation. Chemosphere, 2020, 252, 126639.	8.2	26

#	Article	IF	CITATIONS
567	Adsorption of Perfluorooctane sulfonate (PFOS) onto metal oxides modified biochar. Environmental Technology and Innovation, 2020, 19, 100816.	6.1	51
568	Hydroxyapatite derived from food industry bio-wastes: Syntheses, properties and its potential multifunctional applications. Ceramics International, 2020, 46, 17149-17175.	4.8	68
569	Investigation of Plausible Mechanism of the Synthesized Inorganic Polymeric Coagulant and Its Application toward Fluoride Removal from Drinking Water. Industrial & Engineering Chemistry Research, 2020, 59, 9679-9687.	3.7	14
570	Remediation of Arsenic by Metal/ Metal Oxide Based Nanocomposites/ Nanohybrids: Contamination Scenario in Groundwater, Practical Challenges, and Future Perspectives. Separation and Purification Reviews, 2021, 50, 283-314.	5.5	14
571	Fluoride removal from water using alumina and aluminum-based composites: A comprehensive review of progress. Critical Reviews in Environmental Science and Technology, 2021, 51, 2051-2085.	12.8	58
572	Removal of fluoride from water by using a coagulant (inorganic polymeric coagulant). Environmental Science and Pollution Research, 2021, 28, 3897-3905.	5.3	20
573	Removal of fluorides from ground waters of coastal Andhra Pradesh in a fixed bed column by using alumina loaded nanoporous Mn-Ce oxide powder adsorbent. Materials Today: Proceedings, 2021, 46, 198-201.	1.8	3
574	A review of adsorptive remediation of environmental pollutants from aqueous phase by ordered mesoporous carbon. Chemical Engineering Journal, 2021, 403, 126286.	12.7	93
575	Thermally treated Mytilus coruscus shells for fluoride removal and their adsorption mechanism. Chemosphere, 2021, 263, 128328.	8.2	43
576	Fluoride-containing water: A global perspective and a pursuit to sustainable water defluoridation management -An overview. Journal of Cleaner Production, 2021, 280, 124236.	9.3	88
577	Nano-Hydroxyapatite Encapsulated inside an Anion Exchanger for Efficient Defluoridation of Neutral and Weakly Alkaline Water. ACS ES&T Engineering, 2021, 1, 46-54.	7.6	22
578	Effective defluoridation of industrial wastewater by using acid modified alumina in fixed-bed adsorption column: Experimental and breakthrough curves analysis. Journal of Cleaner Production, 2021, 279, 123645.	9.3	86
579	Fluoride removal from aqueous solution by montmorillonite clay: Kinetics and equilibrium modeling using new generalized fractal equation. Environmental Technology and Innovation, 2021, 21, 101187.	6.1	35
580	A novel precipitant for the selective removal of fluoride ion from strongly acidic wastewater: Synthesis, efficiency, and mechanism. Journal of Hazardous Materials, 2021, 403, 124039.	12.4	20
581	Ternary NiFeMn layered metal oxide (LDO) compounds for capacitive deionization defluoridation: The unique role of Mn. Separation and Purification Technology, 2021, 254, 117667.	7.9	33
582	The adsorption of fluoride from aqueous solutions by Fe, Mn, and Fe/Mn modified natural clinoptilolite and optimization using response surface methodology. Water Environment Research, 2021, 93, 620-635.	2.7	12
583	Defluoridation of water using anatase titanium dioxide nano-powder loaded 3D printed model devise. Journal of Water Process Engineering, 2021, 40, 101785.	5.6	5
584	Microwave assisted accelerated fluoride adsorption by porous nanohydroxyapatite. Materials Chemistry and Physics, 2021, 257, 123712.	4.0	20

		IF	Cizizione
#		IF	CHATIONS
585	powder. Journal of Environmental Chemical Engineering, 2021, 9, 104655.	6.7	11
586	Thermodynamic and application study of complicated extraction system Ce(Ⅳ)–HF–H3BO3–H2SO4 using Cyanex 923. Journal of Rare Earths, 2021, 39, 1117-1125.	4.8	2
587	Characterization and physicochemical aspects of novel cellulose-based layered double hydroxide nanocomposite for removal of antimony and fluoride from aqueous solution. Journal of Environmental Sciences, 2021, 102, 301-315.	6.1	25
588	Engineering porous biochar for capacitive fluorine removal. Separation and Purification Technology, 2021, 257, 117932.	7.9	36
589	Electrocoagulation as an affordable technology for decontamination of drinking water containing fluoride: A critical review. Chemical Engineering Journal, 2021, 413, 127529.	12.7	32
590	Preparation of carbon/Al2O3/nZVI magnetic nanophase materials produced from drinking water sludge for the removal of As(V) from aqueous solutions. Environmental Science and Pollution Research, 2021, 28, 7261-7270.	5.3	3
591	Remediation of toxic fluoride from aqueous media by various techniques. International Journal of Environmental Analytical Chemistry, 2021, 101, 482-505.	3.3	12
592	Synthesis and characterization of hydrocalumite for removal of fluoride from aqueous solutions. Environmental Science and Pollution Research, 2021, 28, 22439-22457.	5.3	5
593	Advanced applications of green materials in nitrate, phosphate, and fluoride removal. , 2021, , 423-459.		2
594	Defluoridation studies using graphene oxidebased nanoadsorbents. , 2021, , 35-57.		4
595	Adsorbent. Interface Science and Technology, 2021, 33, 71-210.	3.3	24
596	Novel aluminium (hydr) oxide-functionalized activated carbon derived from Raffia palm (Raphia) Tj ETQq1 1 0.784 media. Environmental Chemistry and Ecotoxicology, 2021, 3, 142-154.	•314 rgBT 9.1	/Overlock 10 17
597	Metal-Organic Frameworks for Environmental Applications. Engineering Materials, 2021, , 1-39.	0.6	0
598	Scavenging fluoride from the aqueous system with porous organometallic three-dimensional architecture: An emerging adsorbent. Environmental Science and Pollution Research, 2021, 28, 19166-19178.	5.3	15
599	Defluoridationof drinking water by metal impregnated multi-layer green graphene fabricated from trees pruning waste. Environmental Science and Pollution Research, 2021, 28, 18201-18215.	5.3	8
600	Water-stable metal–organic framework for environmental remediation. , 2021, , 585-621.		3
601	Sustainable green approaches in sorption-based defluoridation: Recent progress. , 2021, , 141-174.		1
602	Fabrication of Metal Oxide-Biopolymer Nanocomposite for Water Defluoridation. , 2021, , 1264-1294.		0

#	Article	IF	CITATIONS
603	Synthesis and Application of Cellulose-Polyethyleneimine Composites and Nanocomposites: A Concise Review. Materials, 2021, 14, 473.	2.9	45
604	Development of a novel Artemia eggshell-zirconium nanocomposite for efficient fluoride removal. PLoS ONE, 2021, 16, e0244711.	2.5	2
605	Simultaneous adsorption of manganese and fluoride from aqueous solution via bimetal impregnated activated carbon derived from waste tire: Response surface method modeling approach. Environmental Progress and Sustainable Energy, 2021, 40, e13600.	2.3	7
606	Environmental aspects of fluoride contamination and treatment of wastewater using hybrid technology. , 2021, , 445-461.		0
607	Facile synthesis of polyethyleneimine@Fe3O4 loaded with zirconium for enhanced phosphate adsorption: Performance and adsorption mechanism. Korean Journal of Chemical Engineering, 2021, 38, 135-143.	2.7	12
608	Investigation of kinetics and adsorption isotherm for fluoride removal from aqueous solutions using mesoporous cerium–aluminum binary oxide nanomaterials. RSC Advances, 2021, 11, 28744-28760.	3.6	18
609	Template synthesis of ordered mesoporous MgO with superior adsorption for Pb(II) and Cd(II). Environmental Science and Pollution Research, 2021, 28, 31630-31639.	5.3	4
610	Internalization of Fluoride in Hydroxyapatite Nanoparticles. Environmental Science & Technology, 2021, 55, 2639-2651.	10.0	12
611	Adsorption Performance and Mechanism of Synthetic Schwertmannite to Remove Low-Concentration Fluorine in Water. Bulletin of Environmental Contamination and Toxicology, 2021, 107, 1191-1201.	2.7	8
612	The beneficial or detrimental fluoride to gut microbiota depends on its dosages. Ecotoxicology and Environmental Safety, 2021, 209, 111732.	6.0	7
613	Preparation and characterization of wheat straw biochar loaded with aluminium/lanthanum hydroxides: a novel adsorbent for removing fluoride from drinking water. Environmental Technology (United Kingdom), 2022, 43, 2771-2784.	2.2	8
614	Zeolite synthesis and its application in water defluorination. Materials Chemistry and Physics, 2021, 261, 124229.	4.0	9
615	Fluoride removal by thermally treated egg shells with high adsorption capacity, low cost, and easy acquisition. Environmental Science and Pollution Research, 2021, 28, 35887-35901.	5.3	29
616	Adsorption and Migration Characteristics of Fluorine in Ash-Sluicing Water in Soils. Science of Advanced Materials, 2021, 13, 705-717.	0.7	3
617	NH2-MIL-53(Al) for simultaneous removal and detection of fluoride anions. Chinese Journal of Chemical Physics, 2021, 34, 227-237.	1.3	14
618	Enhanced biosorption of fluoride by extracted nanocellulose/polyvinyl alcohol composite in batch and fixed-bed system: ANN analysis and numerical modeling. Environmental Science and Pollution Research, 2021, 28, 47107-47125.	5.3	11
619	Defluoridation of drinking water by magnesium and aluminum electrocoagulation in continuous flow-rate: a response surface design. Environmental Technology (United Kingdom), 2022, 43, 3646-3660.	2.2	2
620	Removal of Fluoride from Drinking Water Using Protonated Glycerol Diglycidyl Ether Cross-Linked Chitosan Beads. Chemistry and Chemical Technology, 2021, 15, 205-216.	1.1	3

#	Article	IF	CITATIONS
623	Separation of Excess Fluoride from Water Using Amorphous and Crystalline AlOOH Adsorbents. ACS Omega, 2021, 6, 16488-16497.	3.5	16
624	A novel carboxylated polyacrylonitrile nanofibrous membrane with high adsorption capacity for fluoride removal from water. Journal of Hazardous Materials, 2021, 411, 125113.	12.4	37
625	Facile Synthesis of Hollow MgO Spheres and Their Fluoride Adsorption Properties. Advances in Condensed Matter Physics, 2021, 2021, 1-10.	1.1	3
626	Evaluation of Fluoride Adsorption Mechanism and Capacity of Different Types of Bone Char. International Journal of Environmental Research and Public Health, 2021, 18, 6878.	2.6	16
627	Recently Developed Adsorbing Materials for Fluoride Removal from Water and Fluoride Analytical Determination Techniques: A Review. Sustainability, 2021, 13, 7061.	3.2	22
628	Comparative study of low-cost fluoride removal by layered double hydroxides, geopolymers, softening pellets and struvite. Environmental Technology (United Kingdom), 2022, 43, 4306-4314.	2.2	3
629	Fluoride removal by low-cost palm shell activated carbon modified with prawn shell chitosan adsorbents. International Journal of Environmental Science and Technology, 2022, 19, 3731-3740.	3.5	11
630	Biosorption of fluoride from aqueous solutions by <i>Rhizopus oryzae</i> : Isotherm and kinetic evaluation. Environmental Progress and Sustainable Energy, 2022, 41, e13725.	2.3	9
631	Assembly of cerium impregnated pectin/silica–gel biopolymeric material for effective utilization for fluoride adsorption studies. Materials Today: Proceedings, 2022, 50, 273-281.	1.8	7
632	Study on the Synthesis and Structural Properties of Zeolite A-MgO Composite for Defluoridation of Water. Transactions of the Indian Ceramic Society, 2021, 80, 199-207.	1.0	2
633	Evaluation of fluoride adsorption in solution by synthetic Al 2 O 3 /CeO 2 : a fixedâ€bed column study. Water Environment Research, 2021, 93, 2559-2575.	2.7	5
634	Insight into the ion exchange in the adsorptive removal of fluoride by doped polypyrrole from water. Environmental Science and Pollution Research, 2021, 28, 67267-67279.	5.3	11
635	Enhanced fluoride adsorption from aqueous solution by zirconium (IV)-impregnated magnetic chitosan graphene oxide. International Journal of Biological Macromolecules, 2021, 182, 1759-1768.	7.5	31
636	Formaldehyde and tripolyphosphate crosslinked chitosan hydrogels: Synthesis, characterization and modeling. International Journal of Biological Macromolecules, 2021, 183, 2293-2304.	7.5	21
637	Enhanced fluoride removal from drinking water in wide pH range using La/Fe/Al oxides loaded rice straw biochar. Water Science and Technology: Water Supply, 2022, 22, 779-794.	2.1	16
638	Bone Char from an Invasive Aquatic Specie as a Green Adsorbent for Fluoride Removal in Drinking Water. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	13
639	Zirconium-silver nano organo-bimetallic network for scavenging hazardous ions from water and its antibacterial potentiality: An environment-friendly approach. Journal of Environmental Chemical Engineering, 2021, 9, 105356.	6.7	10
640	Synthesis and evaluation of Ca-doped ferrihydrite as a novel adsorbent for the efficient removal of fluoride. Environmental Science and Pollution Research, 2022, 29, 6375-6388.	5.3	14

#	Article	IF	CITATIONS
641	Two notable porous polynuclear materials ER1.30@CMERI-2020 and ER1.65@CMERI-2020 for remedial solution of fluoride, PWEs and anionic dyes from contaminated water bodies: Fabrication of household water purification unit. Journal of Environmental Chemical Engineering, 2021, 9, 105518.	6.7	5
642	Graphene based advanced materials in the remediation of aquatic environment contaminated with fluoride: Newer insights and applicability. Chemical Engineering and Processing: Process Intensification, 2021, 165, 108428.	3.6	6
643	Removal of fluoride from coke wastewater by aluminum doped chelating ion-exchange resins: a tertiary treatment. Environmental Science and Pollution Research, 2022, 29, 8705-8715.	5.3	10
644	Chitosan hydrogel synthesis to remove arsenic and fluoride ions from groundwater. Journal of Hazardous Materials, 2021, 417, 126070.	12.4	26
645	A novel Fe-Al-La trioxide composite: Synthesis, characterization, and application for fluoride ions removal from the water supply. Journal of Environmental Chemical Engineering, 2021, 9, 106350.	6.7	12
646	Concrete Particles as Low-Cost Adsorbent for Fluoride Removal using Batch and Continued Systems. Journal of the Institution of Engineers (India): Series C, 2021, 102, 1419-1427.	1.2	2
647	Utilization of black mustard husk ash for adsorption of fluoride from water. Korean Journal of Chemical Engineering, 2021, 38, 2082-2090.	2.7	1
648	Polyhedral oligosilsesquioxane tethered tetraphenylethylene as turn-on fluorescent sensor for fluoride ions detection. Dyes and Pigments, 2021, 193, 109491.	3.7	12
649	Competitive adsorption of pollutants from anodizing wastewaters to promote water reuse. Journal of Environmental Management, 2021, 293, 112877.	7.8	15
650	Room-temperature synthesis of MIL-100(Fe) and its adsorption performance for fluoride removal from water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624, 126791.	4.7	39
651	Fluoride occurrences, health problems, detection, and remediation methods for drinking water: A comprehensive review. Science of the Total Environment, 2022, 807, 150601.	8.0	110
652	Novel Inorganic Integrated Membrane Electrodes for Membrane Capacitive Deionization. ACS Applied Materials & Interfaces, 2021, 13, 46537-46548.	8.0	15
653	A novel approach for lithium recovery from waste lithium-containing aluminum electrolyte by a roasting-leaching process. Waste Management, 2021, 134, 89-99.	7.4	12
654	A comparative adsorption kinetic modeling of fluoride adsorption by nanoparticles and its polymeric nanocomposite. Journal of Environmental Chemical Engineering, 2021, 9, 105595.	6.7	17
655	Comprehensive and critical appraisal of plant-based defluoridation from environmental matrices. Chemosphere, 2021, 281, 130892.	8.2	11
656	Simultaneous detection and removal of fluoride from water using smart metal-organic framework-based adsorbents. Coordination Chemistry Reviews, 2021, 445, 214037.	18.8	76
657	A comprehensive review on the synthesis and performance of different zirconium-based adsorbents for the removal of various water contaminants. Chemical Engineering Journal, 2021, 424, 130509.	12.7	52
658	GO-CeOâ,, nanohybrid for ultra-rapid fluoride removal from drinking water. Science of the Total Environment, 2021, 793, 148547.	8.0	29

#	Article	IF	CITATIONS
659	Fluoride sources, toxicity and fluorosis management techniques – A brief review. Journal of Hazardous Materials Letters, 2021, 2, 100033.	3.6	31
660	Removal of Fâ^' and organic matter from coking wastewater by coupling dosing FeCl3 and AlCl3. Journal of Environmental Sciences, 2021, 110, 2-11.	6.1	12
661	Preparation of MgO porous nanoplates modified pumice and its adsorption performance on fluoride removal. Journal of Alloys and Compounds, 2021, 884, 160953.	5.5	24
662	Enhanced fluoride removal from water by nanosized cerium oxides impregnated porous polystyrene anion exchanger. Chemosphere, 2022, 287, 131932.	8.2	9
663	Adsorptive removal of fluoride using biochar – A potential application in drinking water treatment. Separation and Purification Technology, 2021, 278, 119106.	7.9	47
664	Removal of fluoride from water using aluminum hydroxide-loaded zeolite synthesized from coal fly ash. Journal of Hazardous Materials, 2022, 421, 126817.	12.4	84
665	3D porous Ca-modified Mg-Zr mixed metal oxide for fluoride adsorption. Chemical Engineering Journal, 2022, 428, 131371.	12.7	52
666	Strategies to cope with the emerging waste water contaminants through adsorption regimes. , 2022, , 61-106.		7
667	Effective fluoride removal from brackish groundwaters by flow-electrode capacitive deionization (FCDI) under a continuous-flow mode. Science of the Total Environment, 2022, 804, 150166.	8.0	32
668	Entropy and MTOPSIS assisted central composite design for preparing activated carbon toward adsorptive defluoridation of wastewater. , 2021, , 119-140.		3
669	A comprehensive review of adsorbents for fluoride removal from water: performance, water quality assessment and mechanism. Environmental Science: Water Research and Technology, 2021, 7, 1362-1386.	2.4	33
670	Sustainable Waste Water Treatment Technologies. Textile Science and Clothing Technology, 2018, , 1-25.	0.5	2
671	Calcium-loaded hydrophilic hypercrosslinked polymers for extremely high defluoridation capacity <i>via</i> multiple uptake mechanisms. Journal of Materials Chemistry A, 2020, 8, 7130-7144.	10.3	16
672	Adsorptive defluoridation from aqueous solution using a novel blend of eggshell powder and chitosan nanofibers. Materials Research Express, 2020, 7, 125005.	1.6	9
673	The Influence of Stereochemistry of the Active Compounds on Fluoride Adsorption Efficiency of the Plant Biomass. American Journal of Chemical Engineering, 2014, 2, 42.	0.3	5
674	Fluoride in Groundwater: Mobilization, Trends, and Remediation. , 2016, , 339-349.		6
675	Fluorine Pollution and Pollution Sources of the Paddy Soils in a Lead-Zinc Mining Area. Advances in Environmental Protection, 2015, 05, 15-21.	0.1	1
676	Enhancement effect of phosphate and silicate on water defluoridation by calcined gypsum. Advances in Environmental Research, 2013, 2, 35-49.	0.3	3

	CITATION	i Report	
#	Article	IF	CITATIONS
677	CHEMICAL REGENERATION OF BONE CHAR ASSOCIATED WITH A CONTINUOUS SYSTEM FOR DEFLUORIDATION OF WATER. Brazilian Journal of Chemical Engineering, 2019, 36, 1631-1643.	1.3	17
678	Soil and Water Pollution with Fluoride, Geochemistry, Food Safety Issues and Reclamation-A Review. International Journal of Current Microbiology and Applied Sciences, 2018, 7, 1147-1162.	0.1	17
679	Use of The Electrodialysis Process For Fluoride Ion And Salt Removal From Multi-Constituent Aqueous Solutions. Architecture Civil Engineering Environment, 2016, 9, 107-113.	0.6	6
680	Comparative study of adsorption of fluoride ions on chitosan gel beads and cross-linked chitosan gel beads. Egyptian Journal of Chemistry, 2020, .	0.2	4
681	Investigation of Fluoride Adsorption from Aaqueous Solutions by Modified Eucalyptus Leaves: Isotherm and Kinetic and Thermodynamic Studies. UlÅ«m-i BihdÄshtÄ«-i ĪrÄn, 2017, 5, 65-77.	0.1	5
682	Removal of fluoride ions by batch electrodialysis. Environmental Protection Engineering, 2015, 41, .	0.1	7
683	Experimental Investigations on Fluoride Removal from Water Using Nanoalumina-Carbon Nanotubes Blend. Journal of Water Resource and Protection, 2017, 09, 760-769.	0.8	4
684	Characterization of Quintinite Particles in Fluoride Removal from Aqueous Solutions. Environmental Engineering Research, 2014, 19, 247-253.	2.5	9
685	A comparative study on defluoridation capabilities of biosorbents: Isotherm, kinetics, thermodynamics, cost estimation and regeneration study. Environmental Engineering Research, 2020, 25, 384-392.	2.5	20
686	Adsorption of fluoride by porous adsorbents: Estimating pore diffusion coefficients from batch kinetic data. Environmental Engineering Research, 2020, 25, 645-651.	2.5	3
687	Fluoride Removal from Aqueous Solution Using Thermally Treated Pyrophyllite as Adsorbent. Daehan Hwan'gyeong Gonghag Hoeji, 2013, 35, 131-136.	1.1	3
688	Adsorption Characteristics of Calcined Oyster Shell for the Removal of Fluoride. Daehan Hwan gyeong Gonghag Hoeji, 2019, 41, 695-702.	1.1	4
689	Modeling of fluoride rejection from aqueous solution by nanofiltration process: single and binary solution. , 0, 193, 224-234.		9
690	Defluoridation of groundwater using gypsiferous limestone. Journal of Environmental and Occupational Science, 2014, 3, 71.	0.2	6
691	Physiological Responses of Pistia stratiotes and Its Fluoride Removal Efficiency. Journal of Resources and Ecology, 2020, 11, 525.	0.4	3
692	Fluoride adsorption onto an acid treated lateritic mineral from Kenya: Equilibrium studies. African Journal of Environmental Science and Technology, 2012, 6, 160-169.	0.6	9
693	Comparative Study on Removal of Fluoride from Groundwater by Natural and Modified Bagasse Carbon of Sugarcane. International Research Journal of Pure and Applied Chemistry, 2015, 8, 147-156.	0.2	8
694	Concrete particles for fluoride removal using continued fixed-bed and fluidized-bed systems. IOP Conference Series: Materials Science and Engineering, 2021, 1184, 012005.	0.6	3

C		. D-	
		4 K F	POR L
	VII OI	V IVL	

#	Article	IF	CITATIONS
695	Removal of Fluoride in Water and Wastewater Using Electrodialysis/Electrodialysis Reverse Process: A Review. Lecture Notes in Civil Engineering, 2022, , 553-564.	0.4	3
696	Fluoride removal by hybrid cation exchanger impregnated with hydrated Al(III) oxide nanoparticles (HCIX-Al) with novel closed-loop recyclable regeneration system. Reactive and Functional Polymers, 2021, 169, 105067.	4.1	1
697	Effective remediation of fluoride from drinking water using cerium-silver oxide composite incorporated with reduced graphene oxide. Journal of Water Process Engineering, 2021, 44, 102369.	5.6	11
698	Thermodynamic Analysis of Lead-Fluoride Ion-Water System. , 2013, , 167-176.		0
699	Extraction of Cu(II) Ions in Wastewaters Using New Solid/Liquid Phase Microextraction Technique Based on Incorporating Functionalized Carbon Nanotubes into Polypropylene Hollow Fiber. Open Access Library Journal (oalib), 2014, 01, 1-15.	0.2	0
700	Preparation of PVC-Al(OH)3Beads Immobilized Al(OH)3with PVC and their Adsorption Characteristics for Fluoride Ions from Aqueous Solution. Journal of Environmental Science International, 2014, 23, 887-893.	0.2	3
701	Analysis and Treatment of Water Contaminated by Petroleum Products. International Journal of Engineering and Manufacturing, 2014, 4, 1-11.	0.7	0
702	Influence of Acid and Heat Treatment on the Removal of Fluoride by Red Mud. Daehan Hwan'gyeong Gonghag Hoeji, 2015, 37, 210-217.	1.1	2
703	AVALIAÇÃO DA CAPACIDADE DE ADSORÇÃO DE FLÚOR EM CARVÃO ATIVADO DE ORIGEM ANIMAL. , 0, , .		0
704	A Review on the Role of Chemical Nature of Fluoride on Human Health and Environment. International Journal of Advanced Research in Chemical Science, 2016, 3, .	0.1	0
705	Determination of fluoride concentration in drinking water and its relation with DMFT: A case study in Hormozgan, Iran. Journal of Basic Research in Medical Sciences, 2016, 3, 28-36.	0.1	2
706	The protective role of Pomegranate seed oil (Pometone) on serum protein in sodium fluoride treated female rats. The Iraqi Journal of Veterinary Medicine, 2016, 40, 61-68.	0.2	1
707	Assessment of iron oxide and local cement clay as potential fluoride adsorbents. Environmental Protection Engineering, 2017, 43, .	0.1	1
708	Role of Eco-Friendly Adsorbents in Defluoridation of Water. , 2017, , 57-97.		0
709	Removal of fluoride in water using amorphous nano metal oxides. , 2017, , 1-16.		0
710	Carbon Modified Pumice as a New Adsorbent for the Rapid Removal of Fluoride Ions From Aqueous Phase. Avicenna Journal of Environmental Health Engineering, 2018, 5, 56-66.	0.6	0
711	Research Status of Purification Technology for Fluoride Removal from Groundwater. Sustainable Development, 2019, 09, 17-24.	0.1	0
712	Application of spheroidal agglomerates of γ-Al2O3 in the fluoride removal from aqueous medium. Acta Universitaria, 0, 29, 1-16.	0.2	0

#	Article	IF	CITATIONS
713	Removing fluoride from hot spring wastewater by an electrolysis system with a perforated plate as a diaphragm. Cogent Engineering, 2020, 7, 1720061.	2.2	0
714	Bio-adsorption of Heavy Metal Ions from Aqueous Solution Using Uziza (Piper guineense) Stem: Characterization, Equilibrium and Thermodynamic Studies. Poly(amino Acid)-Catalyzed Epoxidation, 2020, 10, 282-292.	0.1	0
715	Choosing sorbent for fluoride ion removal from zinc sulfate solutions. Russian Journal of Non-Ferrous Metals, 2020, , 7-15.	0.1	0
716	Enhanced Fluoride Uptake by Layered Double Hydroxides under Alkaline Conditions: Solid-State NMR Evidence of the Role of Surface >MgOH Sites. Environmental Science & Technology, 2021, 55, 15082-15089.	10.0	22
717	Removal of high concentration of nitrate and phosphate from aqueous mixotrophic solution by Chlorella vulgaris. Aquatic Research, 0, , 13-23.	0.7	0
718	Fabrication of Metal Oxide-Biopolymer Nanocomposite for Water Defluoridation. Advances in Environmental Engineering and Green Technologies Book Series, 2020, , 242-271.	0.4	0
719	Synthesis of Hydrocalumite-like Compound from Blast Furnace Slag by Alkali Fusion using Waste Molten-Slag Heat, and Its Anion Removal Ability. Resources Processing, 2020, 67, 86-93.	0.4	1
720	Remarkable adsorption for hazardous organic and inorganic contaminants by multifunctional amorphous core–shell structures of metal–organic framework-alginate composites. Chemical Engineering Journal, 2022, 431, 133415.	12.7	33
721	Metal Oxyhydroxide Composites for Halogens and Metalloid Removal. Environmental Chemistry for A Sustainable World, 2021, , 57-91.	0.5	0
722	Choice of a Sorbent for Purification of Sulfate Zinc Solutions from Fluorine Ions. Russian Journal of Non-Ferrous Metals, 2020, 61, 475-481.	0.6	1
723	Adsorptive Removal of Fluoride from Water Using Non-conventional Adsorbents. Lecture Notes in Civil Engineering, 2021, , 447-455.	0.4	1
725	Bioaccumulation of Fluoride in Plants and Its Microbially Assisted Remediation: A Review of Biological Processes and Technological Performance. Processes, 2021, 9, 2154.	2.8	13
726	UiO-66 metal–organic frameworks in water treatment: A critical review. Progress in Materials Science, 2022, 125, 100904.	32.8	161
727	Sources of Heavy Metals Pollution. Environmental Chemistry for A Sustainable World, 2021, , 419-454.	0.5	3
728	Fluoride removal from natural waters by polymer inclusion membranes. Journal of Membrane Science, 2022, 644, 120161.	8.2	13
729	Experimental and computational investigation of divalent, trivalent, and tetravalent metal ion complexes of polyvinyl alcohol as adsorbents for fluoride remediation. Journal of Molecular Structure, 2022, 1252, 132139.	3.6	4
730	The simple synthesis of metal organic frameworks with high fluoride adsorption performance from water. Journal of Solid State Chemistry, 2022, 307, 122866.	2.9	17
731	Fluoride Excess Removal from Brackish Drinking Water in Senegal by Using KSF and K10 Montmorillonite Clays. Journal of Water Resource and Protection, 2022, 14, 21-34.	0.8	2

#	Article	IF	CITATIONS
732	New generation adsorbents for the removal of fluoride from water and wastewater: A review. Journal of Molecular Liquids, 2022, 346, 118257.	4.9	44
733	Review on adsorptive removal of metal ions and dyes from wastewater using tamarind-based bio-composites. Polymer Bulletin, 2022, 79, 9267-9302.	3.3	11
734	Fluoride ion removal using amine modified polymeric resin: Batch and column studies. Materials Today: Proceedings, 2022, , .	1.8	0
735	MXene-based materials for remediation of environmental pollutants. , 2022, , 553-594.		1
736	Insight into biosorptive uptake of fluoride by chemically activated biochar: experimental modeling and parametric optimization. Biomass Conversion and Biorefinery, 2023, 13, 16753-16764.	4.6	2
737	Mechanisms of fluoride uptake by surface-modified calcite: A 19F solid-state NMR and TEM study. Chemosphere, 2022, 294, 133729.	8.2	7
739	One Pot Synthesis of Copper Doped Mesoporous Bioactive Glass for Fine-Tuning the Cyclophosphamide Delivery to U2OS Cancer Cell Line: Evaluation of Osteogenic Potential. SSRN Electronic Journal, 0, , .	0.4	0
740	Fluoride removal performance of highly porous activated alumina. Journal of Sol-Gel Science and Technology, 0, , 1.	2.4	7
741	Investigating the role of dissolved inorganic and organic carbon in fluoride removal by membrane capacitive deionization. Desalination, 2022, 528, 115618.	8.2	12
742	A strategy to facilitate the sedimentation and bactericidal properties of polypyrrole for fluoride removal from water. Separation and Purification Technology, 2022, 287, 120619.	7.9	11
743	Fluoride remediation from on-site wastewater using optimized bauxite nanocomposite (Bx-Ce-La@500): Synthesis maximization, and mechanism of F─ removal. Journal of Hazardous Materials, 2022, 430, 128401.	12.4	23
745	Removal of FluorideÂFrom Waste AcidÂUsing Lanthanum Chloride: Defluoridation Behavior and Reaction Kinetics of Recovery Process. SSRN Electronic Journal, 0, , .	0.4	0
746	Performance and Mechanism of Lanthanum-Modified Zeolite as a Highly Efficient Adsorbent for Fluoride Removal from Water. SSRN Electronic Journal, 0, , .	0.4	0
747	Fluoride Adsorption Comparison from Aqueous Solutions Using Al- and La-Modified Adsorbent Prepared from Polygonum orientale Linn Water (Switzerland), 2022, 14, 592.	2.7	2
748	Defluoridation by Bare Nanoadsorbents, Nanocomposites, and Nanoadsorbent Loaded Mixed Matrix Membranes. Separation and Purification Reviews, 2023, 52, 135-153.	5.5	8
749	Cockle (Anadara granosa) shells-based hydroxyapatite and its potential for defluoridation of drinking water. Results in Engineering, 2022, 13, 100379.	5.1	12
750	Rice Industry By-Products as Adsorbent Materials for Removing Fluoride and Arsenic from Drinking Water—A Review. Applied Sciences (Switzerland), 2022, 12, 3166.	2.5	11
751	Groundwater fluoride removal by novel activated carbon/aluminium oxide composite derived from raffia palm shells: Optimization of batch operations and field-scale point of use system evaluation. Results in Engineering, 2022, 14, 100407.	5.1	7

#	Article	IF	CITATIONS
752	Evaluation of nanomaterials-grafted enzymes for application in contaminants degradation: Need of the hour with proposed IoT synchronized nanosensor fit sustainable clean water technology in en masse. Journal of the Indian Chemical Society, 2022, 99, 100429.	2.8	7
753	Enhanced stability of hydroxyapatite/sodium alginate nanocomposite for effective fluoride adsorption. Materials Today: Proceedings, 2021, , .	1.8	11
754	Removal of Fluorine from RECl3 in Solution by Adsorption, Ion Exchange and Precipitation. Minerals (Basel, Switzerland), 2022, 12, 31.	2.0	2
755	Studies on copper (II) removal from aqueous solutions by poly (3,4-ethylene dioxythiophene) polystyrene/sulphonate Sn (IV)tungstatophosphate (PEDOT: PSS/STP) nanocomposite. International Journal of Environmental Analytical Chemistry, 0, , 1-17.	3.3	8
756	Critical analysis of fluoride contaminated water in the Malwa belt of Punjab and its impact on health. AIP Conference Proceedings, 2022, , .	0.4	0
757	Hydrothermal Production of Nanoparticles, Thermostable Hydroxyapatite with Varying Ph and Temperatures. SSRN Electronic Journal, 0, , .	0.4	1
758	Comparison of Adsorptive Removal of Fluoride from Water by Different Adsorbents under Laboratory and Real Conditions. Water (Switzerland), 2022, 14, 1423.	2.7	8
759	Investigation on Efficient Removal of Fluoride from Ground Water Using Activated Carbon Adsorbents. Adsorption Science and Technology, 2022, 2022, .	3.2	3
760	Management of Solid Waste Containing Fluoride—A Review. Materials, 2022, 15, 3461.	2.9	9
761	Synergistic Fluoride Adsorption by Composite Adsorbents Synthesized From Different Types of Materials—A Review. Frontiers in Chemistry, 2022, 10, .	3.6	12
762	Rapid and enhanced adsorptive mitigation of groundwater fluoride by Mg(OH)2 nanoflakes. Environmental Science and Pollution Research, 2022, 29, 70056-70069.	5.3	5
763	Monitoring and prediction of high fluoride concentrations in groundwater in Pakistan. Science of the Total Environment, 2022, 839, 156058.	8.0	23
764	Green nanomaterials for removal of arsenic and fluoride contamination from wastewater. Materials Today: Proceedings, 2022, 62, 7318-7323.	1.8	3
765	Carbon nano-structures and functionalized associates: Adsorptive detoxification of organic and inorganic water pollutants. Inorganic Chemistry Communication, 2022, 141, 109579.	3.9	16
766	Fluoride enrichment mechanisms and related health risks of groundwater in the transition zone of geomorphic units, northern China. Environmental Research, 2022, 212, 113588.	7.5	21
767	Recent advances in metal–organic framework-based materials for removal of fluoride in water: Performance, mechanism, and potential practical application. Chemical Engineering Journal, 2022, 446, 137299.	12.7	48
768	Strategic optimization of phase-selective thermochemically amended terra-firma originating from excavation-squander for geogenic fluoride adsorption: a combined experimental and in silico approach. Environmental Science and Pollution Research, 0, , .	5.3	3
769	Outstanding performance of thiophene-based metal-organic frameworks for fluoride capture from wastewater. Separation and Purification Technology, 2022, 298, 121567.	7.9	15

ARTICLE IF CITATIONS # Chemical Stabilization Used to Reduce Geogenic Selenium, Molybdenum, Sulfates and Fluorides 770 3.3 0 Mobility in Rocks and Soils from the Parisian Basin. Environments - MDPI, 2022, 9, 78. Fluoride removal from aqueous solution via environmentally friendly adsorbent derived from 771 3.3 seashell. Scientific Reports, 2022, 12, . Effect of hydrogeological structure on geogenic fluoride contamination of groundwater in granitic 772 5.48 rock belt in Tanzania. Journal of Hydrology, 2022, 612, 128026. Industrially-prepared carbon aerogel for excellent fluoride removal by membrane capacitive 24 deionization from brackish groundwaters. Separation and Purification Technology, 2022, 297, 121510. Determination of fluoride content in teas and herbal products popular in Poland. Journal of 774 3.0 4 Environmental Health Science & Engineering, 2022, 20, 717-727. Assessing the environmental impact of bone char production by in-situ emission monitoring and life cycle assessment. Journal of Cleaner Production, 2022, 367, 132974. 9.3 Kanchan Arsenic Filters for Household Water Treatment: Unsuitable or Unsustainable?. Water 776 2.7 4 (Switzerland), 2022, 14, 2318. State-of-the-art of research progress on adsorptive removal of fluoride-contaminated water using biochar-based materials: Practical feasibility through reusability and column transport studies. Environmental Research, 2022, 214, 114043. Sources and migration characteristics of fluorine in the river water of a small karst watershed 778 3.3 3 influenced by coal mining. Frontiers in Environmental Science, 0, 10, . Removal of chloride from waste acid using Bi2O3: Thermodynamics and dechlorination behavior. 779 5.6 Journal of Water Process Engineering, 2022, 49, 103048. Performance and mechanism of lanthanum-modified zeolite as a highly efficient adsorbent for 780 19 8.2 fluoride removal from water. Chemosphere, 2022, 307, 136063. Impregnation of activated alumina with CeO2 for water defluoridation. Materials Chemistry and 4.0 Physics, 2022, 291, 126648. Groundwater Defluoridation with Composite Oxyhydroxide Mineral Oresâ€"The Case with Bauxite, a 782 2.7 2 Systematic Review. Water (Switzerland), 2022, 14, 2829. Improved remediation of fluoride contaminated water using titania-alumina sorbents. Journal of 5.6 Water Process Engineering, 2022, 49, 103091. Fluoride adsorption enhancement of Calcined-Kaolin/Hydroxyapatite composite. Arabian Journal of 784 4.9 13 Chemistry, 2022, 15, 104220. Novel hydroxyapatite-biomass nanocomposites for fluoride adsorption. Results in Engineering, 2022, 5.1 16, 100648. Efficient preparation of red mud-based geopolymer microspheres (RM@GMs) and adsorption of 786 12.4 26 fluoride ions in wastewater. Journal of Hazardous Materials, 2023, 442, 130027. Multi-Functional Oxidase-Like Activity of Praseodymia Nanorods and Nanoparticles. SSRN Electronic Journal, O, , .

#	Article	IF	CITATIONS
788	Efficient Preparation of Red Mud-Based Geopolymer Microspheres (Rm@Gms) and Adsorption of Fluoride Ions in Wastewater. SSRN Electronic Journal, 0, , .	0.4	0
789	Sol–gel synthesis of alumina gel@zeolite X nanocomposites for high performance water defluoridation: batch and column adsorption study. Materials Advances, 2022, 3, 8544-8556.	5.4	2
790	Fluoride contamination, consequences and removal techniques in water: a review. Environmental Science Advances, 2022, 1, 620-661.	2.7	32
791	Unexpected F- removal by Co2Al-LDHs: Performance and new insight. Chemical Engineering Journal, 2023, 452, 139400.	12.7	4
792	Preparation of La(III), Fe(III) Modified Zeolite Molecular Sieves for the Removal of Fluorine from Water. Water (Switzerland), 2022, 14, 2946.	2.7	0
793	Removal of Fâ^' from water by magnetic floriform magnesium zirconium hydrotalcite-like material doped with Fe2O3 and ZrO2. Desalination, 2022, 544, 116142.	8.2	6
794	A critical review on adsorption and recovery of fluoride from wastewater by metal-based adsorbents. Environmental Science and Pollution Research, 2022, 29, 82740-82761.	5.3	10
795	Thermal activation of palygorskite for enhanced fluoride removal under alkaline conditions. Applied Geochemistry, 2022, 147, 105484.	3.0	2
796	Feasibility of fluoride removal using calcined Mactra veneriformis shells: Adsorption mechanism and optimization study using RSM and ANN. Chemical Engineering Research and Design, 2022, 188, 1042-1053.	5.6	3
797	Multi-functional oxidase-like activity of praseodymia nanorods and nanoparticles. Applied Surface Science, 2023, 610, 155502.	6.1	4
798	Preparation of a Highly Selective Fluorine Adsorbent by Mechanochemical Treatment from Ilmenite. Journal of Ion Exchange, 2022, 33, 73-78.	0.3	0
799	Re-evaluating fluoride intake from food and drinking water: Effect of boiling and fluoride adsorption on food. Journal of Hazardous Materials, 2023, 443, 130162.	12.4	13
800	Synthesis of high purity calcium fluoride from fluoride-containing wastewater. Chemical Engineering Journal, 2023, 453, 139733.	12.7	10
801	Implementation of microplastics derived from waste plastic for uptake of MB dye: Performance and LCA study. Desalination, 2023, 546, 116214.	8.2	8
802	Comparative adsorptive performance of adsorbents developed from kaolin clay and limestone for de-fluoridation of groundwater. South African Journal of Chemical Engineering, 2023, 44, 1-13.	2.4	3
803	Al-Impregnated Granular Activated Carbon for Removal of Fluoride from Aqueous Solution: Batch and Fixed-Bed Column Study. Water (Switzerland), 2022, 14, 3554.	2.7	1
804	Enhanced Fluoride Stabilization by Modified Layered Double Hydroxides for the Remediation of Soil Pollution: Performance and Mechanism. Water, Air, and Soil Pollution, 2022, 233, .	2.4	2
805	Ultra-fast and robust capture of fluoride by an amino terephthalic acid-facilitated lanthanum-based organic framework: insight into performance and mechanisms. New Journal of Chemistry, 2023, 47, 2026-2039.	2.8	2

#	Article	IF	CITATIONS
806	Turn-on fluorescent capsule for selective fluoride detection and water purification. Chemical Science, 2023, 14, 291-297.	7.4	8
807	Preparation of MOF/polypyrrole and flower-like MnO2 electrodes by electrodeposition: High-performance materials for hybrid capacitive deionization defluorination. Water Research, 2023, 229, 119441.	11.3	37
808	Innovative calcium-doped layered yttrium hydroxides for rapid and efficient removal of fluoride from aqueous solutions: Insight into adsorption mechanism. Journal of Environmental Chemical Engineering, 2023, 11, 109156.	6.7	4
809	Magnesium modified activated carbons derived from coconut shells for the removal of fluoride from water. Sustainable Chemistry and Pharmacy, 2023, 31, 100898.	3.3	13
810	Application of fly ash for flouride adsorption. Materials Protection, 2022, 63, 395-403.	0.9	0
811	An evolving perspective on the fluoride mitigation techniques. International Journal of Environmental Science and Technology, 2023, 20, 11777-11808.	3.5	3
813	Optimization of different process parameters for the removal efficiency of fluoride from aqueous medium by a novel bio-composite using Box-Behnken design. Journal of Environmental Chemical Engineering, 2023, 11, 109232.	6.7	11
814	Treatment of Acidic Wastewater Effluents and Defluoridation by Lime Materials. Water Conservation Science and Engineering, 0, , .	1.7	0
815	Uranium and Fluoride Removal from Aqueous Solution Using Biochar: A Critical Review for Understanding the Role of Feedstock Types, Mechanisms, and Modification Methods. Water (Switzerland), 2022, 14, 4063.	2.7	5
816	chemisorption and photodegradation of azo/non-azo dyes. Journal of Environmental Chemical Engineering, 2023, 11, 109237.	6.7	7
817	Stepwise recovery of cerium and fluorine from bastnaesite: Utilizing complex properties of B-F to obtain high purity CeO2 and KBF4. Separation and Purification Technology, 2023, 310, 123152.	7.9	2
818	Adsorption of Fluoride from Water Using Aluminum Coated Sand: Kinetics, Equilibrium, Effect of pH, and Coexisting Ions. Journal of Geoscience and Environment Protection, 2022, 10, 224-241.	0.5	2
819	Electrochemistry behavior and corrosion resistance of Al-Mn alloy prepared by recovering 1070-Al and Al-Mn alloys in ZnSO4 solutions. International Journal of Electrochemical Science, 2023, 18, 45-52.	1.3	0
820	Thermal plasma processing of <i>Moringa oleifera</i> biochars: adsorbents for fluoride removal from water. RSC Advances, 2023, 13, 4340-4350.	3.6	9
821	Fundamentals and applications of layered double hydroxides for fluoride removal. , 2023, , 225-246.		0
822	Fluoride Toxicity in Rajasthan, India: Human Health Risk Assessment, Low-Cost Water Filter Preparation, and Contaminant Remediation. Water Conservation Science and Engineering, 2023, 8, .	1.7	4
823	Study on Fluorine Removal Performance of Gibbsite by Different Calcined Temperature. Asian Journal of Chemistry, 2023, 35, 513-521.	0.3	0
825	Optimization of fluoride removal using calcined bauxite: Adsorption isotherms and kinetics. Groundwater for Sustainable Development, 2023, 21, 100922.	4.6	8

#	Article	IF	CITATIONS
826	Building high-capacity mesoporous adsorbents for fluoride removal through increased surface oxygen anions using organogel-assisted synthesis. Journal of Cleaner Production, 2023, 401, 136784.	9.3	2
827	Ratiometric fluorescence probe for fluoride ion detection based on di-catechol substituted naphthalene scaffold. Dyes and Pigments, 2023, 213, 111156.	3.7	3
828	Separation of toxic contaminants from water by silica aerogel-based adsorbents: A comprehensive review. Journal of Water Process Engineering, 2023, 53, 103676.	5.6	7
829	Lanthanum cholate fibres: A novel adsorbent for fluoride removal. Inorganic Chemistry Communication, 2023, 149, 110429.	3.9	1
830	Removal of fluoride from water using aluminumâ€modified activated carbon prepared from khat (<i>Catha edulis</i>) stems. Remediation, 2023, 33, 119-133.	2.4	1
831	Application Progress of New Adsorption Materials for Removing Fluorine from Water. Water (Switzerland), 2023, 15, 646.	2.7	3
832	Fluoride in Groundwaters of Southeastern Algeria Region and Their Removal by Cattle Bone Particles. Water, Air, and Soil Pollution, 2023, 234, .	2.4	1
833	Efficient removal of fluoride on aluminum modified activated carbon: an adsorption behavioral study and application to remediation of ground water. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2023, 58, 69-80.	1.7	1
834	Application of Al-Fe Co-modified Rice-Straw Biochar to Fluoride Removal: Synthesis, Optimization, and Performance. Water, Air, and Soil Pollution, 2023, 234, .	2.4	0
835	Synthesis and Characterization of Porous MgO Nanosheet-Modified Activated Carbon Fiber Felt for Fluoride Adsorption. Nanomaterials, 2023, 13, 1082.	4.1	1
837	The removal efficiency of emerging organic contaminants, heavy metals and dyes: intrinsic limits at low concentrations. Environmental Science: Water Research and Technology, 2023, 9, 1558-1565.	2.4	2
839	Preparation of a Highly Selective Fluorine Adsorbent by Mechanochemical Treatment from Titanium Oxide. International Journal of the Society of Materials Engineering for Resources, 2022, 25, 96-101.	0.1	0
840	Surface Chemistry Interaction of Graphene Oxide/Eggshell Adsorbent towards Fluoride Removal. Advances in Science and Technology, 0, , .	0.2	0
841	Fluoride removal by calcite and hydroxyapatite. Environmental Science: Water Research and Technology, 2023, 9, 1683-1689.	2.4	1
842	High capacity aluminium substituted hydroxyapatite incorporated granular wood charcoal (Al-HApC) for fluoride removal from aqueous medium: Batch and column study. Chemical Engineering Journal, 2023, 466, 143264.	12.7	6
843	Reactive metal oxides in ceramic membrane formulation as a clue to effective point-of-use drinking water defluoridation. , 2023, , 173-196.		0
844	The synthesis of gmelinite microspheres and their post-synthetic modification for improved defluoridation. Separation Science and Technology, 2023, 58, 1851-1862.	2.5	0
845	A fluorescence test paper fabricated by in situ growth of zirconium based MOFs for effective detection of fluoride. Inorganic Chemistry Communication, 2023, 154, 110917.	3.9	1

ARTICLE IF CITATIONS Fluoride in drinking water: An in-depth analysis of its prevalence, health effects, advances in 846 1.8 4 detection and treatment. Materials Today: Proceedings, 2023, , . Performance of slurry contact adsorber operating under high gravity for removal of fluoride. Chemical Engineering and Processing: Process Intensification, 2023, 191, 109463. 847 3.6 Plant extract-mediated synthesis of aluminum oxide nanoparticles for water treatment and biomedical 848 16.24 applications: a review. Environmental Chemistry Letters, 2023, 21, 2417-2439. Composite Membrane Based on Melamine Sponge and Boehmite Manufactured by Simple and 849 Economical Dip-Coating Method for Fluoride Ion Removal. Polymers, 2023, 15, 2916. Effect of heat treatment on the synthesis of Mg/Al-NO₃ hydrotalcite-type compounds for 850 2.4 0 fluoride removal. Journal of Dispersion Science and Technology, 0, , 1-15. Production of activated carbon from exhausted coffee grounds chemically modified with natural eucalyptus ash lye and its use in the fluoride adsorption process. Environmental Science and 5.3 Pollution Research, 2023, 30, 91276-91291. Understanding fluoride adsorption from groundwater by alumina modified with alum using PHREEQC 852 3.3 0 surface complexation model. Scientific Reports, 2023, 13, . Fluoride removal from coal mining water using novel polymeric aluminum modified activated carbon 6.1 prepared through mechanochemical process. Journal of Énvironmental Sciences, 2023, , . Fluoride Removal and Recovery from Water Using Reverse Osmosis and Osmotic Membrane 854 4.2 0 Crystallization. Clean Technologies, 2023, 5, 973-996. Synergistic Adsorption by Biomass-based Fe-Al (Hydr)oxide Nanocomposite of Fluoride and Arsenic. 1 2019, 4, 20-31. Batch hydrothermal synthesis of nanocrystalline, thermostable hydroxyapatite at various pH and 857 3.9 1 temperature levels. Inorganic Chemistry Communication, 2023, 157, 111301. Perspectives on Dualâ€purpose Functional Nanomaterials for Detecting and Removing Fluoride Ion from 2.8 Environmental Water. ChemNanoMat, 2024, 10, . Investigation on Applying Biodegradable Material for Removal of Various Substances (Fluorides,) Tj ETQq0 0 0 rgBT/Qverlock 10 Tf 50 2 859 Adsorptive removal of fluoride ions from aqueous solution using activated carbon supported 860 5.6 tetrametallic oxide system. Chemical Engineering Research and Design, 2023, 197, 380-391. Preparation and characterization of a silicone RAFT-modified aqueous acrylic resin coating for wood 861 4.7 1 antifouling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 677, 132385. Stimuli-Responsive Ion Adsorbents for Sustainable Separation Applications. ACS Nano, 2023, 17, 14.6 17699-17720. Surface water quality, public health, and ecological risks in Bangladeshâ€"a systematic review and

CITATION REPORT

5.3

4

864Bone-char from various food-waste: Synthesis, characterization, and removal of fluoride in
groundwater. Environmental Technology and Innovation, 2023, 32, 103342.6.13

meta-analysis over the last two decades. Environmental Science and Pollution Research, 2023, 30,

91710-91728.

#	Article	IF	CITATIONS
865	Synthesis of copper oxide (CuO) nanoparticles for the efficient removal of fluoride from an aqueous solution. Journal of Radioanalytical and Nuclear Chemistry, 0, , .	1.5	0
866	Synthesis and characterization of zinc oxide nanocomposite for fluoride ion removal from aqueous solution. Environmental Monitoring and Assessment, 2023, 195, .	2.7	Ο
867	Fabrication of biocompatible graphene oxide layered zirconium-organic frameworks entrapped magnetic bio-hybrid beads for defluoridation of water. Diamond and Related Materials, 2023, 140, 110429.	3.9	0
868	Uranium extraction from sulphuric acid leach liquor by Cyanex®272 as intermediate in nuclear fuel cell. Journal of Radioanalytical and Nuclear Chemistry, 2023, 332, 4471-4476.	1.5	1
869	Are Showerhead Filters Retailed Online a Scam? Investigating Water Quality Claims Through a Course-Based Research Experience. Environmental Engineering Science, 2023, 40, 414-425.	1.6	1
870	Recent advances in adsorption techniques for fluoride removal – An overview. Groundwater for Sustainable Development, 2023, 23, 101017.	4.6	2
871	Nickel sulfate solution fluoride separation with hydrous zirconium oxide. Tungsten, 0, , .	4.8	0
872	Design and fast uptake of fluoride using hybrid biopolymers encapsulated magnetic hydroxyapatite beads. Environmental Progress and Sustainable Energy, 2024, 43, .	2.3	0
874	Adsorption of fluoride from water using Al–Mg–Ca ternary metal oxide-coated sand. Water Science and Technology: Water Supply, 2023, 23, 4699-4713.	2.1	2
875	Fluoride as a global groundwater contaminant. , 2024, , 319-350.		2
877	Fluoride contamination in groundwater: A global review of the status, processes, challenges, and remedial measures. Geoscience Frontiers, 2024, 15, 101734.	8.4	4
878	Removal of fluoride from ground water by electrocoagulation method: investigation of process parameters, kinetic analysis, and operating cost. Journal of Dispersion Science and Technology, 0, , 1-11.	2.4	0
879	Valorization of waste gypsum board as a green adsorbent for efficient fluoride removal in groundwater and wastewater treatment. Environmental Technology and Innovation, 2023, 32, 103444.	6.1	1
880	Mitigation of arsenic and fluoride from water via porous polymeric network knitted with zirconium moiety in three-dimensional shape: Experimental and mathematical modeling investigation. Separation and Purification Technology, 2024, 332, 125762.	7.9	Ο
881	One-pot synthesis of versatile sphere-like nano adsorbent MnAl2O4 (MAO): an optical and magnetic material for efficient fluoride removal and latent finger print detection. Environmental Science and Pollution Research, 0, , .	5.3	0
883	Facile preparation, characterization and application of novel sugarcane bagasse–derived nanoceria-biochar for defluoridationÂof drinking water: kinetics, thermodynamics, reusability and mechanism. Environmental Science and Pollution Research, 0, , .	5.3	0
884	Polyacrylonitrile and polyethersulfone based co-axial electrospun nanofibers for fluoride removal from contaminated stream. Chemosphere, 2024, 349, 140837.	8.2	0
885	Future Frameworks for Fluoride and Algorithms for Environmental System. Water Science and Technology Library, 2023, , 343-364.	0.3	0

#	Article	IF	CITATIONS
886	Fluoride Pollution in Subsurface Water: Challenges and Opportunities. Water Science and Technology Library, 2023, , 19-39.	0.3	0
887	Environmental and Health Effects of Fluoride Contamination and Treatment of Wastewater Using Various Technologies. Water Science and Technology Library, 2023, , 323-341.	0.3	0
888	Fluoride Removal from Water Using Filtration and Chemical Precipitation. Water Science and Technology Library, 2023, , 181-196.	0.3	0
889	Cerium-Based Nanoporous Metal–Organic Frameworks Incorporated with Different Metals for the Remediation of Fluoride Ions from Water. ACS Applied Nano Materials, 2024, 7, 866-880.	5.0	0
890	Operando formation of highly efficient electrocatalysts induced by heteroatom leaching. Nature Communications, 2024, 15, .	12.8	0
891	Novel carbohydrate derived nanocomposite materials for efficient arsenic and fluoride elimination. Journal of Industrial and Engineering Chemistry, 2024, , .	5.8	0
892	Adsorption and Kinetics Modelling for Chromium (Cr6+) Uptake from Contaminated Water by Quaternized Date Palm Waste. Water (Switzerland), 2024, 16, 294.	2.7	0
893	Mapping the research landscape of bauxite by-products (red mud): An evolutionary perspective from 1995 to 2022. Heliyon, 2024, 10, e24943.	3.2	0
894	Occurrence and Formation Mechanisms of High-Fluoride Groundwater in Xiong'an New Area, Northern China. Water (Switzerland), 2024, 16, 358.	2.7	0
895	Sulfate Doping Promotes Agglomeration of Calcium Fluoride Crystals. Environmental Science & Technology, 0, , .	10.0	0
896	Exploring Key Parameters in Adsorption for Effective Fluoride Removal: A Comprehensive Review and Engineering Implications. Applied Sciences (Switzerland), 2024, 14, 2161.	2.5	0
897	Enhanced defluoridation by nano-crystalline alum-doped hydroxyapatite and artificial intelligence (AI) modeling approach. Frontiers in Environmental Science, 0, 12, .	3.3	0
898	Removal of fluoride ions from water using MgO-based materials with special emphasis on MgO/PPy nanocomposites: A review. Journal of Molecular Liquids, 2024, 399, 124473.	4.9	0
899	Fluoride leaching from tuff breccia and its removal by natural and commercial adsorbents. Chemosphere, 2024, 354, 141735.	8.2	0
900	Three dimensional porous magnesium aluminum hydrotalcite material doped with TiO2 and Al2O3 for fluoride removal. Journal of Physics and Chemistry of Solids, 2024, 190, 111982.	4.0	0
901	Optimization of fluoride removal by activated clays using response surface methodology: Box–Behnken design, kinetic and isotherm studies. International Journal of Environmental Science and Technology, 0, , .	3.5	0