CITATION REPORT List of articles citing

Modulated synthesis of Zr-based metal-organic frameworks: from nano to single crystals

DOI: 10.1002/chem.201003211 Chemistry - A European Journal, 2011, 17, 6643-51.

Source: https://exaly.com/paper-pdf/51526894/citation-report.pdf

Version: 2024-04-23

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
1186	Metal © rganic Framework Regioisomers Based on Bifunctional Ligands. 2011 , 123, 12401-12404		6
1185	Metal-organic framework regioisomers based on bifunctional ligands. 2011 , 50, 12193-6		52
1184	Porous interpenetrated zirconium-organic frameworks (PIZOFs): a chemically versatile family of metal-organic frameworks. <i>Chemistry - A European Journal</i> , 2011 , 17, 9320-5	4.8	155
1183	Highly oriented surface-growth and covalent dye labeling of mesoporous metal-organic frameworks. 2012 , 41, 3899-901		26
1182	Surfactant-directed assembly of mesoporous metal-organic framework nanoplates in ionic liquids. 2012 , 48, 8688-90		104
1181	CAU-3: a new family of porous MOFs with a novel Al-based brick: [Al2(OCH3)4(O2C-X-CO2)] (X = aryl). 2012 , 41, 4164-71		64
1180	Pore surface engineering with controlled loadings of functional groups via click chemistry in highly stable metal-organic frameworks. 2012 , 134, 14690-3		312
1179	Facile synthesis of metal-organic framework films via in situ seeding of nanoparticles. 2012 , 48, 4965-7		25
1178	Zr- and Hf-based nanoscale metal-organic frameworks as contrast agents for computed tomography. 2012 , 22, 18139-18144		135
1177	CH4 storage and CO2 capture in highly porous zirconium oxide based metal-organic frameworks. 2012 , 48, 9831-3		150
1176	Discovery, development, and functionalization of Zr(IV)-based metalorganic frameworks. 2012 , 14, 4090	6-4104	1 1 253
1175	Effects of ammonium hydroxide on the structure and gas adsorption of nanosized Zr-MOFs (UiO-66). 2012 , 4, 3089-94		66
1174	Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation. 2012 , 413-414, 48-61		271
1173	H2 storage in isostructural UiO-67 and UiO-66 MOFs. 2012 , 14, 1614-26		339
1172	Zirconium-Metalloporphyrin PCN-222: Mesoporous Metal©rganic Frameworks with Ultrahigh Stability as Biomimetic Catalysts. 2012 , 124, 10453-10456		231
1171	Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. 2012 , 51, 10307-10		1236
1170	Postsynthetic ligand and cation exchange in robust metal-organic frameworks. 2012 , 134, 18082-8		606

(2012-2012)

1169	Ligand-based solid solution approach to stabilisation of sulphonic acid groups in porous coordination polymer Zr6O4(OH)4(BDC)6 (UiO-66). 2012 , 41, 13791-4		141
1168	Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy. 2012 , 14, 492-498		240
1167	Oxygen sensing via phosphorescence quenching of doped metal®rganic frameworks. 2012 , 22, 10329		79
1166	Enhanced stability and CO2 affinity of a UiO-66 type metal-organic framework decorated with dimethyl groups. 2012 , 41, 9283-5		149
1165	Exploring reverse shape selectivity and molecular sieving effect of metal-organic framework UIO-66 coated capillary column for gas chromatographic separation. 2012 , 1257, 116-24		114
1164	Structural determination of a highly stable metal-organic framework with possible application to interim radioactive waste scavenging: Hf-UiO-66. 2012 , 86,		165
1163	Combining Coordination Modulation with AcidBase Adjustment for the Control over Size of MetalDrganic Frameworks. 2012 , 24, 444-450		177
1162	Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. 2012 , 112, 933-69		3128
1161	Zr(IV) and Hf(IV) based metal-organic frameworks with reo-topology. 2012, 48, 8407-9		156
1160	Titration of Zr3(EDH) Hydroxy Groups at the Cornerstones of Bulk MOF UiO-67, [Zr6O4(OH)4(biphenyldicarboxylate)6], and Their Reaction with [AuMe(PMe3)]. 2012 , 2012, 3014-3022		54
1159	Postsynthetic ligand exchange as a route to functionalization of therttmetalorganic frameworks. 2012 , 3, 126-130		357
1158	Electronic Effects of Linker Substitution on Lewis Acid Catalysis with Metal © rganic Frameworks. 2012 , 124, 4971-4974		41
1157	Electronic effects of linker substitution on Lewis acid catalysis with metal-organic frameworks. 2012 , 51, 4887-90		324
1156	Post-synthetic modification of Zr-metal-organic frameworks through cycloaddition reactions. Chemistry - A European Journal, 2012 , 18, 6979-85	8	47
1155	Microwave-assisted modular fabrication of nanoscale luminescent metal-organic framework for molecular sensing. 2012 , 13, 2734-8		55
1154	Solvethermal synthesis of mono- and bi-metallic flower-like infinite coordination polymer and formation mechanism. 2012 , 18, 21-24		10
1153	Modulated synthesis of Zr-fumarate MOF. 2012 , 152, 64-70		255
1152	A Novel Zr-Based Porous Coordination Polymer Containing Azobenzenedicarboxylate as a Linker. 2012 , 2012, 790-796		75

1151	One-Pot Multifunctional Catalysis with NNN-Pincer Zr-MOF: Zr Base Catalyzed Condensation with Rh-Catalyzed Hydrogenation. 2013 , 5, 3092-3100	50
1150	Programming MOFs for water sorption: amino-functionalized MIL-125 and UiO-66 for heat transformation and heat storage applications. 2013 , 42, 15967-73	202
1149	Optical metal-organic framework sensor for selective discrimination of some toxic metal ions in water. 2013 , 793, 90-8	79
1148	Aul Catalysis on a Coordination Polymer: A Solid Porous Ligand with Free Phosphine Sites. 2013 , 5, 692-696	35
1147	Adsorption/catalytic properties of MIL-125 and NH2-MIL-125. 2013 , 204, 85-93	301
1146	Ruthenium-catalyzed regioselective C-H alkenylation directed by a free amino group. 2013 , 15, 3990-3	77
1145	Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: the unique case of UiO-66(Zr). 2013 , 135, 11465-8	692
1144	Theoretical Limits of Hydrogen Storage in Metal © rganic Frameworks: Opportunities and Trade-Offs. 2013 , 25, 3373-3382	177
1143	The effect of water adsorption on the structure of the carboxylate containing metal@rganic frameworks Cu-BTC, Mg-MOF-74, and UiO-66. 2013 , 1, 11922	369
1142	Fabrication of hierarchical architectures of Tb-MOF by a green coordination modulation method for the sensing of heavy metal ions. 2013 , 15, 6702	45
1141	In Situ Infrared Spectroscopic and Gravimetric Characterisation of the Solvent Removal and Dehydroxylation of the Metal Organic Frameworks UiO-66 and UiO-67. 2013 , 56, 770-782	110
1140	An exceptionally stable, porphyrinic Zr metal-organic framework exhibiting pH-dependent fluorescence. 2013 , 135, 13934-8	550
1139	Metal-organic frameworks based on previously unknown Zr8/Hf8 cubic clusters. 2013 , 52, 12661-7	170
1138	Construction of ultrastable porphyrin Zr metal-organic frameworks through linker elimination. 2013 , 135, 17105-10	700
1137	Microwave-assisted solvothermal synthesis and optical properties of tagged MIL-140A metal-organic frameworks. 2013 , 52, 12878-80	53
1136	A facile synthesis of UiO-66, UiO-67 and their derivatives. 2013 , 49, 9449-51	1013
1135	Highly dispersed Au nanoparticles immobilized on Zr-based metal@rganic frameworks as heterostructured catalyst for CO oxidation. 2013 , 1, 14294	75
1134	A Water Stable Metal Drganic Framework with Optimal Features for CO2 Capture. 2013 , 125, 10506-10510	59

1133	A mixed dicarboxylate strut approach to enhancing catalytic activity of a de novo urea derivative of metal-organic framework UiO-67. 2013 , 49, 10920-2	81
1132	Tuning the aspect ratio of NH2-MIL-53(Al) microneedles and nanorods via coordination modulation. 2013 , 15, 654-657	62
1131	A Multiscale Study of MOFs as Adsorbents in H2 PSA Purification. 2013 , 52, 9946-9957	46
1130	Bifunctional iridium-(2-aminoterephthalate) Ir-MOF chemoselective catalyst for the synthesis of secondary amines by one-pot three-step cascade reaction. 2013 , 299, 137-145	136
1129	Synthesis and self-assembly of monodispersed metal-organic framework microcrystals. 2013 , 8, 69-72	98
1128	Mixed-linker MOFs with CAU-10 structure: synthesis and gas sorption characteristics. 2013 , 42, 4840-7	66
1127	Enhanced selectivity of CO(2) over CH(4) in sulphonate-, carboxylate- and iodo-functionalized UiO-66 frameworks. 2013 , 42, 4730-7	143
1126	Structures, Sorption Characteristics, and Nonlinear Optical Properties of a New Series of Highly Stable Aluminum MOFs. 2013 , 25, 17-26	227
1125	Three-dimensional MOF-type architectures with tetravalent uranium hexanuclear motifs (U6O8). Chemistry - A European Journal, 2013, 19, 5324-31	100
1124	The controlled regulation of morphology and size of HKUST-1 by Boordination modulation method 2013 , 173, 181-188	85
1123	Microwave-assisted solvothermal synthesis of zirconium oxide based metal-organic frameworks. 2013 , 49, 3706-8	91
1122	Highly porous and stable metal®rganic frameworks for uranium extraction. 2013, 4, 2396	413
1121	A General Strategy for the Synthesis of Functionalised UiO-66 Frameworks: Characterisation, Stability and CO2 Adsorption Properties. 2013 , 2013, 2154-2160	161
1120	Stability and degradation mechanisms of metalBrganic frameworks containing the Zr6O4(OH)4 secondary building unit. 2013 , 1, 5642	469
1119	A route to drastic increase of CO2 uptake in Zr metal organic framework UiO-66. 2013 , 49, 3634-6	162
1118	Tunable rare-earth fcu-MOFs: a platform for systematic enhancement of CO2 adsorption energetics and uptake. 2013 , 135, 7660-7	406
1117	The molecular pathway to ZIF-7 microrods revealed by in situ time-resolved small- and wide-angle X-ray scattering, quick-scanning extended X-ray absorption spectroscopy, and DFT calculations. 4.8 Chemistry - A European Journal, 2013, 19, 7809-16	44
1116	Effective mercury sorption by thiol-laced metal-organic frameworks: in strong acid and the vapor phase. 2013 , 135, 7795-8	387

1115	Effect of pore sizes on catalytic activities of arenetricarbonyl metal complexes constructed within Zr-based MOFs. 2013 , 42, 9444-7	35
1114	Synthesis and hydrogen storage studies of metal b rganic framework UiO-66. 2013 , 38, 13104-13109	72
1113	Porous nanosized particles: preparation, properties, and applications. 2013 , 113, 6734-60	448
1112	A water stable metal-organic framework with optimal features for CO2 capture. 2013 , 52, 10316-20	265
1111	Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. 2013 , 135, 10525-32	902
1110	CHAPTER 2:Synthesis of MOFs. 9-30	6
1109	Understanding Hydrocarbon Adsorption in the UiO-66 Metal Organic Framework: Separation of (Un)saturated Linear, Branched, Cyclic Adsorbates, Including Stereoisomers. 2013 , 117, 12567-12578	56
1108	Increasing the Stability of Metal-Organic Frameworks. 2014 , 2014, 1-8	172
1107	Simple and compelling biomimetic metal-organic framework catalyst for the degradation of nerve agent simulants. 2014 , 53, 497-501	306
1106	Crystallography of metal-organic frameworks. 2014 , 1, 563-70	46
1105	Symmetry-Guided Synthesis of Highly Porous Metal Organic Frameworks with Fluorite Topology. 2014 , 126, 834-837	33
1104	Metal-Organic Frameworks: Coordination Polymer Nanoparticles and Macrostructures. 2014, 1-16	
1103	ZrIV Coordination Polymers Based on a Naturally Occurring Phenolic Derivative. 2014 , 2014, 6281-6289	31
1102	Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal-organic frameworks. 2014 , 5, 5723	258
1101	Highly Selective H2O2-Based Oxidation of Alkylphenols to p-Benzoquinones Over MIL-125 Metal D rganic Frameworks. 2014 , 2014, 132-139	37
1100	Zirconium Materials from Mixed Dicarboxylate Linkers: Enhancing the Stability for Catalytic Applications. 2014 , 6, 3426-3433	17
1099	Simple and Compelling Biomimetic Metal (Drganic Framework Catalyst for the Degradation of Nerve Agent Simulants. 2014 , 126, 507-511	70
1098	Symmetry-guided synthesis of highly porous metal-organic frameworks with fluorite topology. 2014 , 53, 815-8	169

(2014-2014)

1097	mediated phase transformations, phase selection via coordination modulation and a density functional theory derived energy landscape. 2014 , 43, 3528-36	43
1096	Unusual chain length dependent adsorption of linear and branched alkanes on UiO-66. 2014 , 20, 251-259	11
1095	Adsorption and separation of n-hexane and cyclohexane on the UiO-66 metal®rganic framework. 2014 , 183, 143-149	42
1094	Amino-functionalized Zr(IV) metalBrganic framework as bifunctional acidBase catalyst for Knoevenagel condensation. 2014 , 390, 198-205	125
1093	Design of a Bifunctional Ir I Ir Based Metal D rganic Framework Heterogeneous Catalyst for the N-Alkylation of Amines with Alcohols. 2014 , 6, 1794-1800	46
1092	Rational design of metalörganic frameworks with anticipated porosities and functionalities. 2014 , 16, 4069-4083	102
1091	Drastic enhancement of the CO2 adsorption properties in sulfone-functionalized Zr- and Hf-UiO-67 MOFs with hierarchical mesopores. 2014 , 53, 679-81	72
1090	Functional Hybrid Porous Coordination Polymers. 2014 , 26, 310-322	323
1089	Modulated synthesis of zirconium-metal organic framework (Zr-MOF) for hydrogen storage applications. 2014 , 39, 890-895	98
1088	Detailed Structure Analysis of Atomic Positions and Defects in Zirconium Metal © rganic Frameworks. 2014 , 14, 5370-5372	219
1087	Metastable metal imidazolates: development of targeted syntheses by combining experimental and theoretical investigations of the formation mechanisms. 2014 , 229,	6
1086	Bismuth tungstate incorporated zirconium metal b rganic framework composite with enhanced visible-light photocatalytic performance. 2014 , 4, 64977-64984	63
1085	Reprogramming Kinetic Phase Control and Tailoring Pore Environments in Coll and ZnII Metal (Drganic Frameworks. 2014 , 14, 5710-5718	10
1084	Development of a novel one-pot reaction system utilizing a bifunctional Zr-based metal B rganic framework. 2014 , 4, 625	49
1083	Post-functionalized iridium@r-MOF as a promising recyclable catalyst for the hydrogenation of aromatics. 2014 , 16, 3522-3527	52
1082	An alternative UiO-66 synthesis for HCl-sensitive nanoparticle encapsulation. 2014 , 4, 51080-51083	30
1081	Integration of accessible secondary metal sites into MOFs for H2S removal. 2014 , 1, 325-330	66
1080	The design and synthesis of a hydrophilic core-shell-shell structured magnetic metal-organic framework as a novel immobilized metal ion affinity platform for phosphoproteome research. 2014 , 50, 6228-31	141

1079	Synthesis and structural characterization of group 4 metal carboxylates for nanowire production. 2014 , 53, 12449-58	6
1078	Microwave-assisted synthesis of UIO-66 and its adsorption performance towards dyes. 2014 , 16, 7037-7042	56
1077	Organic linker geometry controlled synthesis of coordination polymer spheres and their thermal transformation to yolk hell metal oxides. 2014 , 2, 15480-15487	9
1076	Impact of crystal orientation on the adsorption kinetics of a porous coordination polymerquartz crystal microbalance hybrid sensor. 2014 , 2, 3336	32
1075	Insight into the mechanism of modulated syntheses: in situ synchrotron diffraction studies on the formation of Zr-fumarate MOF. 2014 , 16, 9198-9207	92
1074	MetalBrganic frameworks with improved moisture stability based on a phosphonate monoester: effect of auxiliary N-donor ligands on framework dimensionality. 2014 , 16, 6635-6644	35
1073	Vanadium-Node-Functionalized UiO-66: A Thermally Stable MOF-Supported Catalyst for the Gas-Phase Oxidative Dehydrogenation of Cyclohexene. 2014 , 4, 2496-2500	174
1072	Tuned to Perfection: Ironing Out the Defects in Metal®rganic Framework UiO-66. 2014 , 26, 4068-4071	472
1071	In situ X-ray absorption spectroscopy studies of kinetic interaction between platinum(II) ions and UiO-66 series metal-organic frameworks. 2014 , 118, 14168-76	19
1070	Nanoscale metal-organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. 2014 , 136, 5181-4	640
1069	In situ energy-dispersive X-ray diffraction for the synthesis optimization and scale-up of the porous zirconium terephthalate UiO-66. 2014 , 53, 2491-500	130
1068	Synthesis of an amino-functionalized metalorganic framework at a nanoscale level for gold nanoparticle deposition and catalysis. 2014 , 2, 20588-20596	110
1067	Tuning COßelective adsorption over Nband CHlin UiO-67 analogues through ligand functionalization. 2014 , 53, 9254-9	179
1066	Modulated synthesis of chromium-based metal-organic framework (MIL-101) with enhanced hydrogen uptake. 2014 , 39, 12018-12023	33
1065	A combinatorial approach towards water-stable metal-organic frameworks for highly efficient carbon dioxide separation. 2014 , 7, 2791-5	68
1064	Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated release. 2014 , 50, 8779-82	200
1063	Computational exploration of newly synthesized zirconium metal®rganic frameworks UiO-66, -67, -68 and analogues. 2014 , 2, 7111-7125	72
1062	High valence 3p and transition metal based MOFs. 2014 , 43, 6097-115	339

1061	Topotactic Transformations of Metal Drganic Frameworks to Highly Porous and Stable Inorganic Sorbents for Efficient Radionuclide Sequestration. 2014 , 26, 5231-5243	90
1060	A systematic study on the stability of porous coordination polymers against ammonia. <i>Chemistry - A European Journal</i> , 2014 , 20, 15611-7	53
1059	Transferable Force Field for Metal-Organic Frameworks from First-Principles: BTW-FF. 2014 , 10, 4644-4652	69
1058	A metal-organic framework containing unusual eight-connected Zr-oxo secondary building units and orthogonal carboxylic acids for ultra-sensitive metal detection. <i>Chemistry - A European Journal</i> , 4.8 2014 , 20, 14965-70	53
1057	Specific oriented metal-organic framework membranes and their facet-tuned separation performance. 2014 , 6, 15676-85	37
1056	Synergistic assembly of heavy metal clusters and luminescent organic bridging ligands in metal-organic frameworks for highly efficient X-ray scintillation. 2014 , 136, 6171-4	149
1055	Correlated defect nanoregions in a metal-organic framework. 2014 , 5, 4176	420
1054	A zirconium squarate metal-organic framework with modulator-dependent molecular sieving properties. 2014 , 50, 10055-8	58
1053	Nucleic acid-metal organic framework (MOF) nanoparticle conjugates. 2014 , 136, 7261-4	336
1052	Two Metal®rganic Frameworks with a Tetratopic Linker: Solvent-Dependent Polymorphism and Postsynthetic Bromination. 2014 , 14, 1719-1725	45
1051	Recent advances in the design strategies for porphyrin-based coordination polymers. 2014 , 16, 7371-7384	44
1050	Photophysical Characterization of a Ruthenium(II) Tris(2,2?-bipyridine)-Doped Zirconium UiO-67 Metal © rganic Framework. 2014 , 118, 8803-8817	81
1049	Tuning pore size in a zirconium E ricarboxylate metal B rganic framework. 2014 , 16, 6530-6533	61
1048	Tuning the structure and function of metal-organic frameworks via linker design. 2014 , 43, 5561-93	1441
1047	Acid-assisted hydrothermal synthesis and adsorption properties of high-specific-surface metalBrganic frameworks. 2014 , 132, 90-93	9
1046	Pt Nanoclusters Confined within Metal®rganic Framework Cavities for Chemoselective Cinnamaldehyde Hydrogenation. 2014 , 4, 1340-1348	306
1045	Linker conformation effects on the band gap in metal-organic frameworks. 2014 , 53, 2569-72	26
1044	Defektmanipulierte Metall-organische Ger\textster (127, 7340-7362)	85

1043	Pd@UiO-66-Type MOFs Prepared by Chemical Vapor Infiltration as Shape-Selective Hydrogenation Catalysts. 2015 , 2015, 3904-3912	51
1042	Surfactant-Mediated Conformal Overgrowth of Core-Shell Metal-Organic Framework Materials with Mismatched Topologies. 2015 , 11, 5551-5	73
1041	Surface-Specific Functionalization of Nanoscale Metal (Drganic Frameworks. 2015, 127, 14951-14955	21
1040	Combination of Optimization and Metalated-Ligand Exchange: An Effective Approach to Functionalize UiO-66(Zr) MOFs for CO2 Separation. <i>Chemistry - A European Journal</i> , 2015 , 21, 17246-55	64
1039	Tailoring the Optical Absorption of Water-Stable Zr(IV)- and Hf(IV)-Based Metal-Organic Framework Photocatalysts. 2015 , 10, 2660-8	55
1038	Surface-Specific Functionalization of Nanoscale Metal-Organic Frameworks. 2015 , 54, 14738-42	113
1037	Synthesis, Characterization, Stability, and Gas Adsorption Characteristics of a Highly Stable Zirconium Mesaconate Framework Material. 2015 , 2015, 3317-3322	18
1036	Synthesis and photocatalytic activity of N-K2Ti4O9/UiO-66 composites. 2015 , 5, 53198-53206	2
1035	Synthesis of nanocrystals of Zr-based metal-organic frameworks with csq-net: significant enhancement in the degradation of a nerve agent simulant. 2015 , 51, 10925-8	155
1034	Selective liquid phase hydrogenation of furfural to furfuryl alcohol by Ru/Zr-MOFs. 2015 , 406, 58-64	124
1033	Electrosynthesis of Metal©rganic Frameworks: Challenges and Opportunities. 2015, 2, 462-474	142
1032	New Zr (IV) based metal-organic framework comprising a sulfur-containing ligand: Enhancement of CO2 and H2 storage capacity. 2015 , 215, 116-122	44
1031	Synthesis of zirconium oxycarbide powders using metal®rganic framework (MOF) compounds as precursors. 2015 , 5, 51650-51661	7
1030	Recent progress in the synthesis of metal-organic frameworks. 2015 , 16, 054202	142
1029	Probing Reactive Platinum Sites in UiO-67 Zirconium Metal Drganic Frameworks. 2015, 27, 1042-1056	95
1028	Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles. 2015 , 3, 5014-5022	228
1027	Promotion of phosphoester hydrolysis by the ZrIV-based metal-organic framework UiO-67. 2015 , 208, 21-29	31
1026	New heterometallic zirconium metalloporphyrin frameworks and their heteroatom-activated high-surface-area carbon derivatives. 2015 , 137, 2235-8	226

(2015-2015)

1025	Polar group and defect engineering in a metal-organic framework: synergistic promotion of carbon dioxide sorption and conversion. 2015 , 8, 878-85	162
1024	Pore surface engineering in a zirconium metal®rganic framework via thiol-ene reaction. 2015 , 223, 79-83	19
1023	Zirconium(IV) and hafnium(IV) coordination polymers with a tetra-acetyl-ethane (Bisacac) ligand: Synthesis, structure elucidation and gas sorption behavior. 2015 , 89, 297-303	6
1022	Electrochemical Film Deposition of the Zirconium Metal©rganic Framework UiO-66 and Application in a Miniaturized Sorbent Trap. 2015 , 27, 1801-1807	128
1021	Submicrometer-Sized ZIF-71 Filled Organophilic Membranes for Improved Bioethanol Recovery: Mechanistic Insights by Monte Carlo Simulation and FTIR Spectroscopy. 2015 , 25, 516-525	78
1020	Bipyridine- and phenanthroline-based metal-organic frameworks for highly efficient and tandem catalytic organic transformations via directed C-H activation. 2015 , 137, 2665-73	236
1019	Encapsulation of Mono- or Bimetal Nanoparticles Inside Metal-Organic Frameworks via In situ Incorporation of Metal Precursors. 2015 , 11, 2642-8	73
1018	Extraction of palladium from nuclear waste-like acidic solutions by a metalorganic framework with sulfur and alkene functions. 2015 , 3, 3928-3934	58
1017	Immobilization of polyoxometalates in the Zr-based metal organic framework UiO-67. 2015 , 51, 2972-5	76
1016	Photosensitizing metal-organic framework enabling visible-light-driven proton reduction by a Wells-Dawson-type polyoxometalate. 2015 , 137, 3197-200	301
1015	Exploiting parameter space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH. 2015 , 6, 2286-2291	212
1014	Zero-periodic metal®rganic material, organic polymer composites: tuning properties of methacrylate polymers via dispersion of dodecyloxy-decorated Cu-BDC nanoballs. 2015 , 3, 13215-13225	7
1013	Single-crystal-to-single-crystal metalation of a metal-organic framework: a route toward structurally well-defined catalysts. 2015 , 54, 2995-3005	130
1012	Aqueous phase selective detection of 2,4,6-trinitrophenol using a fluorescent metal-organic framework with a pendant recognition site. 2015 , 44, 15175-80	134
1011	Post-synthetic Ti exchanged UiO-66 metal-organic frameworks that deliver exceptional gas permeability in mixed matrix membranes. 2015 , 5, 7823	140
1010	Phosphotungstic acid encapsulated in metal-organic framework UiO-66: An effective catalyst for the selective oxidation of cyclopentene to glutaral dehyde. 2015 , 211, 73-81	52
1009	Ag2CO3/UiO-66(Zr) composite with enhanced visible-light promoted photocatalytic activity for dye degradation. 2015 , 299, 132-40	107
1008	Mesoscopic superstructures of flexible porous coordination polymers synthesized coordination replication. 2015 , 6, 5938-5946	38

1007	Immobilisation of a molecular epoxidation catalyst on UiO-66 and -67: the effect of pore size on catalyst activity and recycling. 2015 , 44, 15976-83		30
1006	Efficient microwave assisted synthesis of metal-organic framework UiO-66: optimization and scale up. 2015 , 44, 14019-26		74
1005	Single-Crystal to Single-Crystal Mechanical Contraction of Metal-Organic Frameworks through Stereoselective Postsynthetic Bromination. 2015 , 137, 9527-30		98
1004	Facile synthesis of morphology and size-controlled zirconium metalorganic framework UiO-66: the role of hydrofluoric acid in crystallization. 2015 , 17, 6434-6440		128
1003	Light-induced nitric oxide release from physiologically stable porous coordination polymers. 2015 , 44, 15324-33		23
1002	Concentration Dependent Dimensionality of Resonance Energy Transfer in a Postsynthetically Doped Morphologically Homologous Analogue of UiO-67 MOF with a Ruthenium(II) Polypyridyl Complex. 2015 , 137, 8161-8		108
1001	Zirconium-based metal organic frameworks: Highly selective adsorbents for removal of phosphate from water and urine. 2015 , 160, 168-176		121
1000	The Role of Modulators in Controlling Layer Spacings in a Tritopic Linker Based Zirconium 2D Microporous Coordination Polymer. 2015 , 54, 4591-3		44
999	Shape Control of Zn(II) Metal Drganic Frameworks by Modulation Synthesis and Their Morphology-Dependent Catalytic Performance. 2015 , 15, 2533-2538		73
998	Enhanced photodegradation of Rhodamine B under visible light by N-K2Ti4O9/MIL-101 composite. 2015 , 36, 115-123		11
997	Quantum-Chemical Characterization of the Properties and Reactivities of Metal-Organic Frameworks. 2015 , 115, 6051-111		197
996	In situ solvothermal growth of highly oriented Zr-based metal organic framework UiO-66 film with monocrystalline layer. 2015 , 17, 3422-3425		38
995	Improved Synthesis of a Zirconium(IV) Muconate Metal®rganic Framework: Characterization, Stability and Gas Sorption Properties. 2015 , 2015, 2463-2468		9
994	Towards multifunctional MOFstransforming a side reaction into a post-synthetic protection/deprotection method. 2015 , 51, 10030-3		16
993	MetalBrganic frameworks with inherent recognition sites for selective phosphate sensing through their coordination-induced fluorescence enhancement effect. 2015 , 3, 7445-7452		225
992	Impact of the Nature of the Organic Spacer on the Crystallization Kinetics of UiO-66(Zr)-Type MOFs. <i>Chemistry - A European Journal</i> , 2015 , 21, 7135-43	4.8	32
991	Defect Control To Enhance Proton Conductivity in a Metal Drganic Framework. 2015, 27, 2286-2289		173
990	Green synthesis of zirconium-MOFs. 2015 , 17, 4070-4074		62

(2015-2015)

989	Enhanced visible-light photocatalytic performance of BiOBr/UiO-66(Zr) composite for dye degradation with the assistance of UiO-66. 2015 , 5, 39592-39600	86
988	An ultrastable Zr metalBrganic framework with a thiophene-type ligand containing methyl groups. 2015 , 17, 3586-3590	47
987	Enhanced Photocatalytic Activity of the AgI/UiO-66(Zr) Composite for Rhodamine B Degradation under Visible-Light Irradiation. 2015 , 80, 1321-1328	47
986	Immobilization of Cu Complex into Zr-Based MOF with Bipyridine Units for Heterogeneous Selective Oxidation. 2015 , 119, 8131-8137	76
985	A Zr metal-organic framework based on tetrakis(4-carboxyphenyl) silane and factors affecting the hydrothermal stability of Zr-MOFs. 2015 , 44, 8049-61	66
984	Quest for highly connected metal-organic framework platforms: rare-earth polynuclear clusters versatility meets net topology needs. 2015 , 137, 5421-30	135
983	Metal-organic framework tethering PNIPAM for ON-OFF controlled release in solution. 2015 , 51, 8614-7	127
982	Synthesis of CNT@MIL-68(Al) composites with improved adsorption capacity for phenol in aqueous solution. 2015 , 275, 134-141	84
981	An azobenzene-containing metal-organic framework as an efficient heterogeneous catalyst for direct amidation of benzoic acids: synthesis of bioactive compounds. 2015 , 51, 17132-5	44
980	Efficient multicolor and white light emission from Zr-based MOF composites: spectral and dynamic properties. 2015 , 3, 11300-11310	35
979	Growth modulation of bent micro crystals to single crystals in a one-dimensional coordination framework. 2015 , 5, 80501-80504	1
978	Layered metalBrganic framework/graphene nanoarchitectures for organic photosynthesis under visible light. 2015 , 3, 24261-24271	103
977	Preparation of magnetic graphene @polydopamine @Zr-MOF material for the extraction and analysis of bisphenols in water samples. 2015 , 144, 1329-35	82
976	Enhanced catalytic activity of a hierarchical porous metal®rganic framework CuBTC. 2015 , 17, 7124-7129	31
975	De facto methodologies toward the synthesis and scale-up production of UiO-66-type metal-organic frameworks and membrane materials. 2015 , 44, 19018-40	129
974	Defect-Engineered Metal-Organic Frameworks. 2015 , 54, 7234-54	703
973	Gas sorption and transition-metal cation separation with a thienothiophene based zirconium metalorganic framework. 2015 , 232, 221-227	11
972	Tuning Defects to Facilitate Hydrogen Storage in Core-shell MIL-101(Cr)@UiO-66(Zr) Nanocrystals. 2015 , 2, 3964-3972	16

971	Modulated UiO-66-Based Mixed-Matrix Membranes for CO2 Separation. 2015 , 7, 25193-201	174
970	Metal-Organic Framework (MOF) Defects under Control: Insights into the Missing Linker Sites and Their Implication in the Reactivity of Zirconium-Based Frameworks. 2015 , 54, 8396-400	173
969	MetalBrganic frameworks for applications in remediation of oxyanion/cation-contaminated water. 2015 , 17, 7245-7253	105
968	Different acidity and additive effects of zirconium metal®rganic frameworks as catalysts for cyanosilylation. 2015 , 5, 79216-79223	19
967	Synthesis of well dispersed polymer grafted metal-organic framework nanoparticles. 2015 , 51, 15566-9	62
966	Luminescent nanoscale metalBrganic frameworks for chemical sensing. 2015 , 26, 1439-1445	41
965	An in situ self-assembly template strategy for the preparation of hierarchical-pore metal-organic frameworks. 2015 , 6, 8847	225
964	Chemical and Structural Stability of Zirconium-based Metal©rganic Frameworks with Large Three-Dimensional Pores by Linker Engineering. 2015 , 127, 223-228	16
963	Effective adsorption and enhanced removal of organophosphorus pesticides from aqueous solution by Zr-based MOFs of UiO-67. 2015 , 7, 223-31	282
962	Chemical and structural stability of zirconium-based metal-organic frameworks with large three-dimensional pores by linker engineering. 2015 , 54, 221-6	121
961	Ionized Zr-MOFs for highly efficient post-combustion CO 2 capture. 2015 , 124, 61-69	91
960	A highly stable zeotype mesoporous zirconium metal-organic framework with ultralarge pores. 2015 , 54, 149-54	218
959	Crystals for sustainability lstructuring Al-based MOFs for the allocation of heat and cold. 2015 , 17, 281-285	30
958	A significant enhancement of water vapour uptake at low pressure by amine-functionalization of UiO-67. 2015 , 44, 2047-51	89
957	Pilot-scale synthesis of a zirconium-benzenedicarboxylate UiO-66 for CO2 adsorption and catalysis. 2015 , 245, 54-60	63
956	Synthesis and click modification of an azido-functionalized Zr(IV) metal®rganic framework and a catalytic study. 2015 , 5, 893-900	32
955	The first example of a zirconium-oxide based metal-organic framework constructed from monocarboxylate ligands. 2015 , 44, 1516-9	20
954	Acid-functionalized UiO-66(Zr) MOFs and their evolution after intra-framework cross-linking: structural features and sorption properties. 2015 , 3, 3294-3309	135

(2016-2015)

953	2015, 203, 186-194	75
952	First examples of aliphatic zirconium MOFs and the influence of inorganic anions on their crystal structures. 2015 , 17, 331-337	34
951	A Highly Stable Zeotype Mesoporous Zirconium Metal © rganic Framework with Ultralarge Pores. 2015 , 127, 151-156	29
950	Active site engineering in UiO-66 type metalBrganic frameworks by intentional creation of defects: a theoretical rationalization. 2015 , 17, 395-406	162
949	Incorporation of a dioxomolybdenum(VI) complex in a ZrIV-based Metal Drganic Framework and its application in catalytic olefin epoxidation. 2015 , 202, 106-114	31
948	Structural stability of metal organic frameworks in aqueous media ©ontrolling factors and methods to improve hydrostability and hydrothermal cyclic stability. 2015 , 201, 61-90	113
947	The surface chemistry of metal-organic frameworks. 2015 , 51, 5199-217	263
946	A Facile GreenIRoute for Scalable Batch Production and Continuous Synthesis of Zirconium MOFs. 2016 , 2016, 4490-4498	85
945	Iron and Groups V- and VI-based MOFs. 2016 , 171-202	2
944	An In Situ One-Pot Synthetic Approach towards Multivariate Zirconium MOFs. 2016 , 55, 6471-5	89
943	An In Situ One-Pot Synthetic Approach towards Multivariate Zirconium MOFs. 2016 , 128, 6581-6585	21
942	Extraordinary Separation of Acetylene-Containing Mixtures with Microporous Metal-Organic Frameworks with Open O Donor Sites and Tunable Robustness through Control of the Helical Chain 4.8 Secondary Building Units. <i>Chemistry - A European Journal</i> , 2016 , 22, 5676-83	85
941	Synthesis of Monodisperse Palladium Nanoclusters Using Metal@rganic Frameworks as Sacrificial Templates. 2016 , 2, 810-815	15
940	Nanoparticles. 2016 , 491-521	2
939	Controlled Generation of Singlet Oxygen in Living Cells with Tunable Ratios of the Photochromic Switch in Metal-Organic Frameworks. 2016 , 55, 7188-93	120
938	Controlled Generation of Singlet Oxygen in Living Cells with Tunable Ratios of the Photochromic Switch in Metal (Drganic Frameworks. 2016 , 128, 7304-7309	33
937	Computational Model and Characterization of Stacking Faults in ZIF-8 Polymorphs. 2016 , 120, 27380-27388	12
936	Flower-like Ni3(NO3)2(OH)4@Zr-metal organic framework (UiO-66) composites as electrode materials for high performance pseudocapacitors. 2016 , 22, 2545-2551	19

935	Carboxylic Acid Functionalized Clathrochelate Complexes: Large, Robust, and Easy-to-Access Metalloligands. 2016 , 55, 4006-15		32
934	SO3H-functionalized metal organic frameworks: an efficient heterogeneous catalyst for the synthesis of quinoxaline and derivatives. 2016 , 6, 35135-35143		24
933	A panchromatic modification of the light absorption spectra of metal-organic frameworks. 2016 , 52, 6665-8		34
932	Dynamic adsorption of n-heptane/methylhexane/2,2,4-trimethylpentane and refining of high purity n-heptane on UiO-66. 2016 , 23, 165-173		5
931	Adsorptive removal of acetic acid from water with metal-organic frameworks. 2016 , 111, 127-137		36
930	Probing the correlations between the defects in metal-organic frameworks and their catalytic activity by an epoxide ring-opening reaction. 2016 , 52, 7806-9		138
929	Stereoselective Halogenation of Integral Unsaturated C-C Bonds in Chemically and Mechanically Robust Zr and Hf MOFs. <i>Chemistry - A European Journal</i> , 2016 , 22, 4870-7	4.8	57
928	Aging of the reaction mixture as a tool to modulate the crystallite size of UiO-66 into the low nanometer range. 2016 , 52, 6411-4		29
927	Transparent Metal-Organic Framework/Polymer Mixed Matrix Membranes as Water Vapor Barriers. 2016 , 8, 10098-103		19
926	Highly Stable Zr(IV)-Based Metal-Organic Frameworks for the Detection and Removal of Antibiotics and Organic Explosives in Water. 2016 , 138, 6204-16		963
925	Utilisation of gold nanoparticles on amine-functionalised UiO-66 (NH2-UiO-66) nanocrystals for selective tandem catalytic reactions. 2016 , 52, 6557-60		46
924	An efficient combination of Zr-MOF and microwave irradiation in catalytic Lewis acid Friedel-Crafts benzoylation. 2016 , 45, 7875-80		36
923	Thermodynamically Guided Synthesis of Mixed-Linker Zr-MOFs with Enhanced Tunability. 2016 , 138, 6636-42		174
922	Defect Engineering: Tuning the Porosity and Composition of the Metal@rganic Framework UiO-66 via Modulated Synthesis. 2016 , 28, 3749-3761		596
921	Aldehyde-Tagged Zirconium Metal-Organic Frameworks: a Versatile Platform for Postsynthetic Modification. 2016 , 55, 4701-3		32
920	Toward Topology Prediction in Zr-Based Microporous Coordination Polymers: The Role of Linker Geometry and Flexibility. 2016 , 16, 4148-4153		53
919	Functionalizing the Defects: Postsynthetic Ligand Exchange in the Metal Organic Framework UiO-66. 2016 , 28, 7190-7193		125
918	Separation properties of the MIL-125(Ti) Metal-Organic Framework in high-performance liquid chromatography revealing cis/trans selectivity. 2016 , 1469, 68-76		19

917	Modulation by Amino Acids: Toward Superior Control in the Synthesis of Zirconium Metal-Organic Frameworks. <i>Chemistry - A European Journal</i> , 2016 , 22, 13582-7	4.8	60
916	Gated Channels and Selectivity Tuning of CO2 over N2 Sorption by Post-Synthetic Modification of a UiO-66-Type Metal-Organic Framework. <i>Chemistry - A European Journal</i> , 2016 , 22, 12800-7	4.8	30
915	Shaping of Metal-Organic Frameworks: From Fluid to Shaped Bodies and Robust Foams. 2016 , 138, 1081	10-3	129
914	Understanding The Fascinating Origins of CO2 Adsorption and Dynamics in MOFs. 2016 , 28, 5829-5846		49
913	Construction of Pt complex within Zr-based MOF and its application for hydrogen production under visible-light irradiation. 2016 , 42, 7679-7688		27
912	Photochemistry of Zr-based MOFs: ligand-to-cluster charge transfer, energy transfer and excimer formation, what else is there?. 2016 , 18, 27761-27774		52
911	Nanoporous Transparent MOF Glasses with Accessible Internal Surface. 2016 , 138, 10818-21		53
910	All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition. 2016 , 7, 13578		96
909	Palladium(II)@Zirconium-Based Mixed-Linker Metal©rganic Frameworks as Highly Efficient and Recyclable Catalysts for Suzuki and Heck Cross-Coupling Reactions. 2016 , 8, 3261-3271		40
908	Thermodynamic Insight in the High-Pressure Behavior of UiO-66: Effect of Linker Defects and Linker Expansion. 2016 , 28, 5721-5732		68
907	Windmill Co4 (Co4 (🛘 -O)) with 16 Divergent Branches Forming a Family of Metal-Organic Frameworks: Organic Metrics Control Topology, Gas Sorption, and Magnetism. <i>Chemistry - A European Journal</i> , 2016 , 22, 12088-94	4.8	32
906	Competitive Excimer Formation and Energy Transfer in Zr-Based Heterolinker Metal-Organic Frameworks. <i>Chemistry - A European Journal</i> , 2016 , 22, 13072-82	4.8	19
905	Adding to the Arsenal of Zirconium-Based Metal Organic Frameworks: the Topology as a Platform for Solvent-Assisted Metal Incorporation. 2016 , 2016, 4349-4352		46
904	Two new Cu(ii) and La(iii) 2D coordination polymers, synthesis and in situ structural analysis by X-ray diffraction. 2016 , 45, 12827-34		1
903	Two highly porous single-crystalline zirconium-based metal-organic frameworks. 2016 , 59, 980-983		14
902	High and Reversible Ammonia Uptake in Mesoporous Azolate Metal-Organic Frameworks with Open Mn, Co, and Ni Sites. 2016 , 138, 9401-4		166
901	Zinc(II) and Copper(II) Metal Drganic Frameworks Constructed from a Terphenyl-4,4??-dicarboxylic Acid Derivative: Synthesis, Structure, and Catalytic Application in the Cyanosilylation of Aldehydes. 2016 , 2016, 5557-5567		21
900	A drug-loaded nanoscale metal-organic framework with a tumor targeting agent for highly effective hepatoma therapy. 2016 , 52, 14113-14116		42

899	Mechanized azobenzene-functionalized zirconium metal-organic framework for on-command cargo release. 2016 , 2, e1600480	150
898	Direct synthesis of non-breathing MIL-53(Al)(ht) from a terephthalate-based ionic liquid as linker precursor. 2016 , 45, 18443-18446	16
897	Group 4 Metals as Secondary Building Units: Ti, Zr, and Hf-based MOFs. 2016 , 137-170	2
896	On thermal stability and catalytic reactivity of Zr-based metalBrganic framework (UiO-67) encapsulated Pt catalysts. 2016 , 340, 85-94	43
895	Investigating the Case of Titanium(IV) Carboxyphenolate Photoactive Coordination Polymers. 2016 , 55, 7192-9	56
894	Linker Installation: Engineering Pore Environment with Precisely Placed Functionalities in Zirconium MOFs. 2016 , 138, 8912-9	214
893	A metal-organic framework/\balumina composite with a novel geometry for enhanced adsorptive separation. 2016 , 52, 8869-72	23
892	Inkjet-printed porphyrinic metalörganic framework thin films for electrocatalysis. 2016 , 4, 11094-11102	50
891	Highly Porous Zirconium Metal-Organic Frameworks with EUH3-like Topology Based on Elongated Tetrahedral Linkers. 2016 , 138, 8380-3	63
890	High-throughput synthesis and characterization of nanocrystalline porphyrinic zirconium metal-organic frameworks. 2016 , 52, 7854-7	54
889	Organocatalysis by site-isolated N-heterocyclic carbenes doped into the UIO-67 framework. 2016 , 114, 422-427	11
888	Investigation of metal organic frameworks for the adsorptive removal of hydrochloride from dilute aqueous solution. 2016 , 231, 40-46	26
887	The dual capture of As and As by UiO-66 and analogues. 2016 , 7, 6492-6498	132
886	A hydrostable and twofold interpenetrating three-dimensional zinc-organic framework with rob topology based on 4,4'-oxydibenzoate and 3,3'-dimethyl-4,4'-bipyridine ligands. 2016 , 72, 373-8	3
885	A Computational and Experimental Approach Linking Disorder, High-Pressure Behavior, and Mechanical Properties in UiO Frameworks. 2016 , 128, 2447-2451	20
884	A Computational and Experimental Approach Linking Disorder, High-Pressure Behavior, and Mechanical Properties in UiO Frameworks. 2016 , 55, 2401-5	80
883	Rational construction of defects in a metal®rganic framework for highly efficient adsorption and separation of dyes. 2016 , 289, 486-493	149
882	Pd@UiO-66: An Efficient Catalyst for SuzukiMiyaura Coupling Reaction at Mild Condition. 2016 , 146, 117-125	40

(2016-2016)

881	Mechanochemical and solvent-free assembly of zirconium-based metal-organic frameworks. 2016 , 52, 2133-6	194
880	Proline Functionalized UiO-67 and UiO-68 Type Metal®rganic Frameworks Showing Reversed Diastereoselectivity in Aldol Addition Reactions. 2016 , 28, 2573-2580	119
879	Modulator Effects on the Water-Based Synthesis of Zr/Hf MetalDrganic Frameworks: Quantitative Relationship Studies between Modulator, Synthetic Condition, and Performance. 2016 , 16, 2295-2301	99
878	A thiadiazole-functionalized Zr(IV)-based metalBrganic framework as a highly fluorescent probe for the selective detection of picric acid. 2016 , 18, 3104-3113	109
877	Pd(0)@UiO-68-AP: chelation-directed bifunctional heterogeneous catalyst for stepwise organic transformations. 2016 , 52, 6517-20	49
876	Zr-based metal-organic frameworks: design, synthesis, structure, and applications. 2016 , 45, 2327-67	1411
875	Size-Controlled Synthesis of Porphyrinic Metal-Organic Framework and Functionalization for Targeted Photodynamic Therapy. 2016 , 138, 3518-25	503
874	UiO-67-type Metal-Organic Frameworks with Enhanced Water Stability and Methane Adsorption Capacity. 2016 , 55, 1986-91	94
873	Amino acids as highly efficient modulators for single crystals of zirconium and hafnium metal B rganic frameworks. 2016 , 4, 6955-6963	100
872	Covalent Chemistry beyond Molecules. 2016 , 138, 3255-65	256
871	Defect engineering of UiO-66 for CO2 and H2O uptake - a combined experimental and simulation study. 2016 , 45, 4496-500	133
870		
Í	Cooperative effects at the interface of nanocrystalline metal@rganic frameworks. 2016, 9, 47-58	53
869	Cooperative effects at the interface of nanocrystalline metal@rganic frameworks. 2016 , 9, 47-58 Mixed Matrix Membranes Containing UiO-66(Hf)-(OH)2 Metal@rganic Framework Nanoparticles for Efficient H2/CO2 Separation. 2016 , 55, 7933-7940	53 31
869	Mixed Matrix Membranes Containing UiO-66(Hf)-(OH)2 Metal Drganic Framework Nanoparticles	
	Mixed Matrix Membranes Containing UiO-66(Hf)-(OH)2 Metal©rganic Framework Nanoparticles for Efficient H2/CO2 Separation. 2016 , 55, 7933-7940 Structural diversity of a series of coordination polymers built from 5-substituted isophthalic acid	31
868	Mixed Matrix Membranes Containing UiO-66(Hf)-(OH)2 Metal Drganic Framework Nanoparticles for Efficient H2/CO2 Separation. 2016, 55, 7933-7940 Structural diversity of a series of coordination polymers built from 5-substituted isophthalic acid with or without a methyl-functionalized N-donor ligand. 2016, 18, 1363-1375 Synergetic catalysis of palladium nanoparticles encaged within amine-functionalized UiO-66 in the	31
868	Mixed Matrix Membranes Containing UiO-66(Hf)-(OH)2 Metal®rganic Framework Nanoparticles for Efficient H2/CO2 Separation. 2016, 55, 7933-7940 Structural diversity of a series of coordination polymers built from 5-substituted isophthalic acid with or without a methyl-functionalized N-donor ligand. 2016, 18, 1363-1375 Synergetic catalysis of palladium nanoparticles encaged within amine-functionalized UiO-66 in the hydrodeoxygenation of vanillin in water. 2016, 18, 2900-2908 A diiodo-BODIPY postmodified metal®rganic framework for efficient heterogeneous	31 14 127

863	Exploration of MOF nanoparticle sizes using various physical characterization methods Is what you measure what you get?. 2016 , 18, 4359-4368	79
862	From Highly Crystalline to Outer Surface-Functionalized Covalent Organic FrameworksA Modulation Approach. 2016 , 138, 1234-9	106
861	Controlled synthesis of highly stable zeolitic imidazolate framework-67 dodecahedra and their use towards the templated formation of a hollow Co3O4 catalyst for CO oxidation. 2016 , 6, 6915-6920	44
860	MetalBrganic frameworks with high working capacities and cyclic hydrothermal stabilities for fresh water production. 2016 , 286, 467-475	47
859	Ameliorated synthetic methodology for crystalline lanthanoidthetalloporphyrin open frameworks based on a multitopic octacarboxy-porphyrin scaffold: structural, gas sorption and photophysical properties. 2016 , 18, 515-520	16
858	Tuning Zr6 Metal (Drganic Framework (MOF) Nodes as Catalyst Supports: Site Densities and Electron-Donor Properties Influence Molecular Iridium Complexes as Ethylene Conversion Catalysts. 2016 , 6, 235-247	128
857	Facile preparation of UiO-66 nanoparticles with tunable sizes in a continuous flow microreactor and its application in drug delivery. 2016 , 220, 148-154	86
856	Adsorption of fluoride to UiO-66-NH2 in water: Stability, kinetic, isotherm and thermodynamic studies. 2016 , 461, 79-87	196
855	Facile synthesis of nanoscale high porosity IR-MOFs for low-k dielectrics thin films. 2016 , 221, 40-47	19
854	Spectral and dynamical properties of a Zr-based MOF. 2016 , 18, 5112-20	26
853	Ruthenium(ii)-polypyridyl zirconium(iv) metal-organic frameworks as a new class of sensitized solar cells. 2016 , 7, 719-727	113
852	Multi-scale crystal engineering of metal organic frameworks. 2016 , 307, 147-187	186
851	Exploring structure and reactivity of Cu sites in functionalized UiO-67 MOFs. 2017 , 283, 89-103	42
850	Monocarboxylic Acid Driven Structural Transformation in Manganese Based Metal@rganic Frameworks. 2017 , 17, 982-989	3
849	Application of metal [brganic frameworks. 2017, 66, 731-744	116
848	Room-Temperature Synthesis of UiO-66 and Thermal Modulation of Densities of Defect Sites. 2017 , 29, 1357-1361	217
847	The Highly Connected MOFs Constructed from Nonanuclear and Trinuclear Lanthanide-Carboxylate Clusters: Selective Gas Adsorption and Luminescent pH Sensing. 2017 , 56, 2159-2164	74
846	Nanoscaled porphyrinic metal-organic frameworks: photosensitizer delivery systems for photodynamic therapy. 2017 , 5, 1815-1821	51

(2017-2017)

845	South African hydrogen infrastructure (HySA infrastructure) for fuel cells and energy storage: Overview of a projects portfolio. 2017 , 42, 13568-13588	37
844	Tuning the stability of bimetallic Ce(iv)/Zr(iv)-based MOFs with UiO-66 and MOF-808 structures. 2017 , 46, 2425-2429	96
843	Green Synthesis of Zr-CAU-28: Structure and Properties of the First Zr-MOF Based on 2,5-Furandicarboxylic Acid. 2017 , 56, 2270-2277	53
842	Controlled 2D Assembly of Nickel-Seamed Hexameric Pyrogallol[4]arene Nanocapsules. 2017 , 139, 2920-2923	45
841	Tuning Pt and Cu sites population inside functionalized UiO-67 MOF by controlling activation conditions. 2017 , 201, 265-286	27
840	An Organoselective Zirconium-Based Metal©rganic-Framework UiO-66 Membrane for Pervaporation. 2017 , 2017, 2094-2099	40
839	Solvent-Assisted Metal Metathesis: A Highly Efficient and Versatile Route towards Synthetically Demanding Chromium Metal Drganic Frameworks. 2017 , 129, 6578-6582	3
838	A multi-responsive carbazole-functionalized Zr(IV)-based metal-organic framework for selective sensing of Fe(III), cyanide and p -nitrophenol. 2017 , 250, 121-131	70
837	Selective Surface PEGylation of UiO-66 Nanoparticles for Enhanced Stability, Cell Uptake, and pH-Responsive Drug Delivery. 2017 , 2, 561-578	183
836	Large-Scale Synthesis of Monodisperse UiO-66 Crystals with Tunable Sizes and Missing Linker Defects via Acid/Base Co-Modulation. 2017 , 9, 15079-15085	80
835	Increasing both selectivity and permeability of mixed-matrix membranes: Sealing the external surface of porous MOF nanoparticles. 2017 , 535, 350-356	58
834	Catalytic MOF-ClothFormed via Directed Supramolecular Assembly of UiO-66-NH2 Crystals on Atomic Layer Deposition-Coated Textiles for Rapid Degradation of Chemical Warfare Agent Simulants. 2017 , 29, 4894-4903	131
833	Role of Modulators in Controlling the Colloidal Stability and Polydispersity of the UiO-66 Metal-Organic Framework. 2017 , 9, 33413-33418	115
832	A Fluorescent Zirconium-Based Metal-Organic Framework for Selective Detection of Nitro Explosives and Metal Ions. 2017 , 35, 1091-1097	9
831	When defects turn into virtues: The curious case of zirconium-based metal-organic frameworks. 2017 , 343, 1-24	157
830	High temperature ionic conduction mediated by ionic liquid incorporated within the metal-organic framework UiO-67(Zr). 2017 , 81, 1-4	17
829	Green and rapid synthesis of zirconium metal-organic frameworks via mechanochemistry: UiO-66 analog nanocrystals obtained in one hundred seconds. 2017 , 53, 5818-5821	61
828	Chemically Modulated Microwave-Assisted Synthesis of MOF-74(Ni) and Preparation of MetalDrganic Framework-Matrix Based Membranes for Removal of Metal Ions from Aqueous Media. 2017 , 17, 156-162	40

827	Crystallization process development of metalBrganic frameworks by linking secondary building units, lattice nucleation and luminescence: insight into reproducibility. 2017 , 19, 426-441	26
826	The modulator driven polymorphism of Zr(IV) based metal-organic frameworks. 2017, 375,	13
825	Monodispersed gold nanoparticles supported on a zirconium-based porous metal-organic framework and their high catalytic ability for the reverse water-gas shift reaction. 2017 , 53, 7953-7956	42
824	Mixed-Matrix-Membranen. 2017 , 129, 9420-9439	49
823	Crystalline Nanochannels with Pendant Azobenzene Groups: Steric or Polar Effects on Gas Adsorption and Diffusion?. 2017 , 139, 8784-8787	67
822	Electron Crystallography Reveals Atomic Structures of Metal-Organic Nanoplates with M(ED)(EDH) (EDH) (M = Zr, Hf) Secondary Building Units. 2017 , 56, 8128-8134	44
821	Titanium coordination compounds: from discrete metal complexes to metal-organic frameworks. 2017 , 46, 3431-3452	177
820	Enhanced properties of metalorganic framework thin films fabricated via a coordination modulation-controlled layer-by-layer process. 2017 , 5, 13665-13673	26
819	Construction of hierarchically porous metal-organic frameworks through linker labilization. 2017 , 8, 15356	247
818	PVP-assisted synthesis of monodisperse UiO-66 crystals with tunable sizes. 2017 , 82, 68-71	16
817	In situ high-resolution powder X-ray diffraction study of UiO-66 under synthesis conditions in a continuous-flow microwave reactor. 2017 , 19, 3206-3214	23
816	Efficient light harvesting within a C153@Zr-based MOF embedded in a polymeric film: spectral and dynamical characterization. 2017 , 19, 17544-17552	6
815	Enhancing Mixed-Matrix Membrane Performance with Metal Drganic Framework Additives. 2017 , 17, 4467-4488	92
814	Mixed-Matrix Membranes. 2017 , 56, 9292-9310	347
813	Solvent-Assisted Metal Metathesis: A Highly Efficient and Versatile Route towards Synthetically Demanding Chromium Metal-Organic Frameworks. 2017 , 56, 6478-6482	54
812	Modulated synthesis of zirconium metal b rganic framework UiO-66 with enhanced dichloromethane adsorption capacity. 2017 , 197, 167-170	46
811	Gel-based morphological design of zirconium metal-organic frameworks. 2017 , 8, 3939-3948	123
810	The origin of the measured chemical shift of Xe in UiO-66 and UiO-67 revealed by DFT investigations. 2017 , 19, 10020-10027	18

(2017-2017)

809	Metal Drganic Frameworks from Group 4 Metals and 2,5-Dihydroxyterephthalic Acid: Reinvestigation, New Structure, and Challenges Toward Gas Storage and Separation. 2017 , 17, 2140-2146	15
808	Energy Storage during Compression of Metal-Organic Frameworks. 2017 , 139, 4667-4670	42
807	Synthesis and water sorption properties of a series of exfoliated graphene/MIL-100(Fe) composites. 2017 , 7, 17353-17356	1
806	Continuous synthesis of UiO-66 in microreactor: Pursuing the optimum between intensified production and structural properties. 2017 , 197, 213-216	6
805	Metal Insertion in a Methylamine-Functionalized Zirconium Metal-Organic Framework for Enhanced Carbon Dioxide Capture. 2017 , 56, 4308-4316	9
804	Metal-Organic Nanosheets Formed via Defect-Mediated Transformation of a Hafnium Metal-Organic Framework. 2017 , 139, 5397-5404	165
803	Effect of Benzoic Acid as a Modulator in the Structure of UiO-66: An Experimental and Computational Study. 2017 , 121, 9312-9324	125
802	Functional Versatility of a Series of Zr Metal-Organic Frameworks Probed by Solid-State Photoluminescence Spectroscopy. 2017 , 139, 6253-6260	58
801	Heterogeneous catalysis with a coordination modulation synthesized MOF: morphology-dependent catalytic activity. 2017 , 41, 3957-3965	46
800	Synthesis of the homochiral metalBrganic framework DUT-129 based on a chiral dicarboxylate linker with 6 stereocenters. 2017 , 19, 2494-2499	13
799	Stepwise Synthesis of Metal-Organic Frameworks. 2017 , 50, 857-865	183
798	Acid-promoted synthesis of UiO-66 for highly selective adsorption of anionic dyes: Adsorption performance and mechanisms. 2017 , 499, 151-158	241
797	Metal-Organic Framework UiO-66 Layer: A Highly Oriented Membrane with Good Selectivity and Hydrogen Permeance. 2017 , 9, 12878-12885	94
796	A Modulator-Induced Defect-Formation Strategy to Hierarchically Porous Metal-Organic Frameworks with High Stability. 2017 , 56, 563-567	337
795	Expanding the Group of Porous Interpenetrated Zr-Organic Frameworks (PIZOFs) with Linkers of Different Lengths. 2017 , 56, 748-761	40
794	A Modulator-Induced Defect-Formation Strategy to Hierarchically Porous Metal © rganic Frameworks with High Stability. 2017 , 129, 578-582	83
793	Light responsive metal-organic frameworks as controllable CO-releasing cell culture substrates. 2017 , 8, 2381-2386	78
792	Fully meta-Substituted 4,4?-Biphenyldicarboxylate-Based Metal © rganic Frameworks: Synthesis, Structures, and Catalytic Activities. 2017 , 2017, 1478-1487	10

791	Dual-Surface Functionalization of Metal-Organic Frameworks for Enhancing the Catalytic Activity of Candida antarctica Lipase B in Polar Organic Media. 2017 , 7, 438-442	31
790	Multifaceted Modularity: A Key for Stepwise Building of Hierarchical Complexity in Actinide Metal-Organic Frameworks. 2017 , 139, 16852-16861	83
789	Controllable Activation of Pd-G3 Palladacycle Precatalyst in the Presence of Thiosugars: Rapid Access to 1-Aminobiphenyl Thioglycoside Atropoisomers at Room Temperature. 2017 , 12, 3114-3118	3
788	Facile Fabrication of Multifunctional Metal-Organic Framework Hollow Tubes To Trap Pollutants. 2017 , 139, 16482-16485	75
787	A dendritic catiomer with an MOF motif for the construction of safe and efficient gene delivery systems. 2017 , 5, 8322-8329	12
786	Role of a Modulator in the Synthesis of Phase-Pure NU-1000. 2017 , 9, 39342-39346	39
785	Injectable Contrast Agents for Enhanced Subsurface Mapping and Monitoring. 2017, 114, 3764-3770	1
7 ⁸ 4	UiO-68-ol NMOF-Based Fluorescent Sensor for Selective Detection of HClO and Its Application in Bioimaging. 2017 , 56, 13241-13248	38
783	Bond breakage under pressure in a metal organic framework. 2017 , 8, 8004-8011	52
782	Metal-organic framework loaded manganese oxides as efficient catalysts for low-temperature selective catalytic reduction of NO with NH3. 2017 , 11, 594-602	19
781	Smart pH-Responsive Polymer-Tethered and Pd NP-Loaded NMOF as the Pickering Interfacial Catalyst for One-Pot Cascade Biphasic Reaction. 2017 , 9, 36438-36446	50
780	Effects of Monocarboxylic Acid Additives on Synthesizing Metal©rganic Framework NH2-MIL-125 with Controllable Size and Morphology. 2017 , 17, 6586-6595	35
779	Spiers Memorial Lecture:. Progress and prospects of reticular chemistry. 2017, 201, 9-45	67
778	Size Modulation of Zirconium-Based Metal Organic Frameworks for Highly Efficient Phosphate Remediation. 2017 , 9, 32151-32160	83
777	Synthesis of stable UiO-66 membranes for pervaporation separation of methanol/methyl tert-butyl ether mixtures by secondary growth. 2017 , 544, 342-350	49
776	Boosting Catalytic Performance of Metal-Organic Framework by Increasing the Defects via a Facile and Green Approach. 2017 , 9, 34937-34943	65
775	The duality of UiO-67-Pt MOFs: connecting treatment conditions and encapsulated Pt species by operando XAS. 2017 , 19, 27489-27507	25
774	Isoreticular expansion of polyMOFs achieves high surface area materials. 2017 , 53, 10684-10687	39

(2017-2017)

773	Structural defects in metalbrganic frameworks (MOFs): Formation, detection and control towards practices of interests. 2017 , 349, 169-197	109
77²	Heat-Treatment of Defective UiO-66 from Modulated Synthesis: Adsorption and Stability Studies. 2017 , 121, 23471-23479	42
771	ATP-Responsive Aptamer-Based Metal © rganic Framework Nanoparticles (NMOFs) for the Controlled Release of Loads and Drugs. 2017 , 27, 1702102	113
770	Synthetic Considerations in the Self-Assembly of Coordination Polymers of Pyridine-Functionalized Hybrid Mn-Anderson Polyoxometalates. 2017 , 17, 4739-4748	27
769	Nanoparticles@nanoscale metal-organic framework composites as highly efficient heterogeneous catalysts for size- and shape-selective reactions. 2017 , 10, 3826-3835	54
768	Experimental and theoretical study on selenate uptake to zirconium metalBrganic frameworks: Effect of defects and ligands. 2017 , 330, 1012-1021	79
767	Modulator Effect in UiO-66-NDC (1,4-Naphthalenedicarboxylic Acid) Synthesis and Comparison with UiO-67-NDC Isoreticular Metal@rganic Frameworks. 2017 , 17, 5422-5431	42
766	Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. 2017 , 2,	306
765	A turn-on fluorescent probe for Cd2+ detection in aqueous environments based on an imine functionalized nanoscale metal b rganic framework. 2017 , 7, 54892-54897	30
764	Tackling the Defect Conundrum in UiO-66: A Mixed-Linker Approach to Engineering Missing Linker Defects. 2017 , 29, 10478-10486	66
763	Ratiometric Fluorescent Chemosensor for Zn2+ Ions in Environmental Samples Using Supermicroporous Organic-Inorganic Structures as Potential Platforms. 2017 , 2, 11083-11090	37
762	Influence of Metal©rganic Framework Porosity on Hydrogen Generation from Nanoconfined Ammonia Borane. 2017 , 121, 27369-27378	27
761	Missing Linker Defects in a Homochiral Metal-Organic Framework: Tuning the Chiral Separation Capacity. 2017 , 139, 18322-18327	39
760	MetalBrganic frameworks as media for the catalytic degradation of chemical warfare agents. 2017 , 353, 159-179	64
759	Efficient Capture and Effective Sensing of CrO from Water Using a Zirconium Metal-Organic Framework. 2017 , 56, 14178-14188	137
758	Revisiting the Aluminum Trimesate-Based MOF (MIL-96): From Structure Determination to the Processing of Mixed Matrix Membranes for CO2 Capture. 2017 , 29, 10326-10338	53
757	Zirconium-Based Nanoscale Metal-Organic Framework/Poly(Paprolactone) Mixed-Matrix Membranes as Effective Antimicrobials. 2017 , 9, 41512-41520	50
756	Characterizing Defects in a UiO-AZB Metal-Organic Framework. 2017 , 56, 13777-13784	14

755	Fast and scalable synthesis of uniform zirconium-, hafnium-based metal-organic framework nanocrystals. 2017 , 9, 19209-19215	60
754	Cul@UiO-67-IM: A MOF-Based Bifunctional Composite Triphase-Transfer Catalyst for Sequential One-Pot Azide-Alkyne Cycloaddition in Water. 2017 , 56, 8341-8347	26
753	Synthesis of MOFs: a personal view on rationalisation, application and exploration. 2017 , 46, 8339-8349	22
75 ²	Post-Synthetic Annealing: Linker Self-Exchange in UiO-66 and Its Effect on PolymerMetal Organic Framework Interaction. 2017 , 17, 4384-4392	27
751	Pitfalls in metal-organic framework crystallography: towards more accurate crystal structures. 2017 , 46, 4867-4876	43
75°	A Flexible Fluorescent Zr Carboxylate Metal-Organic Framework for the Detection of Electron-Rich Molecules in Solution. 2017 , 56, 8423-8429	15
749	UiO-66 incorporated thin-film nanocomposite membranes for efficient selenium and arsenic removal. 2017 , 541, 262-270	130
748	Solvent-Dependent Synthesis of Porous Anionic Uranyl-Organic Frameworks Featuring a Highly Symmetrical (3,4)-Connected ctn or bor Topology for Selective Dye Adsorption. <i>Chemistry - A</i> 4.8 <i>European Journal</i> , 2017 , 23, 529-532	47
747	Catalytic degradation of chemical warfare agents and their simulants by metal-organic frameworks. 2017 , 346, 101-111	206
746	Preparation of thin film nanocomposite membranes with surface modified MOF for high flux organic solvent nanofiltration. 2017 , 63, 1303-1312	84
745	Best Practices for the Synthesis, Activation, and Characterization of Metal®rganic Frameworks. 2017 , 29, 26-39	341
744	Modulator Effect of Acetic Acid on the Morphology of Luminescent Mixed Lanthanide-Organic Frameworks. 2017 , 20, 681-687	3
743	Porous Organic Cages. 2017 , 139-197	6
742	Metal©rganic Frameworks: An Emerging Class of Solid-State Materials. 2017 , 165-193	1
741	Postsynthetic Addition of Ligand Struts in Metal-Organic Frameworks: Effect of Syn/Anti Addition on Framework Structures with Distinct Topologies. 2018 , 57, 2369-2372	2
740	Enhancing anticancer cytotoxicity through bimodal drug delivery from ultrasmall Zr MOF nanoparticles. 2018 , 54, 2792-2795	62
739	Aqueous-Phase Synthesis of Mesoporous Zr-Based MOFs Templated by Amphoteric Surfactants. 2018 , 130, 3497-3501	25
738	Capture of pure toxic gases through porous materials from molecular simulations. 2018 , 116, 2095-2107	16

737	BTEX removal from aqueous solution with hydrophobic Zr metal organic frameworks. 2018, 214, 17-22	34
736	One-Pot Synthetic Approach toward Porphyrinatozinc and Heavy-Atom Involved Zr-NMOF and Its Application in Photodynamic Therapy. 2018 , 57, 3169-3176	25
735	Size and surface controllable metal-organic frameworks (MOFs) for fluorescence imaging and cancer therapy. 2018 , 10, 6205-6211	69
734	Ultramicroporous carbon nanoparticles derived from metal B rganic framework nanoparticles for high-performance supercapacitors. 2018 , 211, 234-241	50
733	The effect of crystallite size on pressure amplification in switchable porous solids. 2018, 9, 1573	71
732	Constructing Redox-Responsive Metal-Organic Framework Nanocarriers for Anticancer Drug Delivery. 2018 , 10, 16698-16706	100
731	Vacancy defect configurations in the metal-organic framework UiO-66: energetics and electronic structure. 2018 , 6, 8507-8513	28
730	NanoMOFs: little crystallites for substantial applications. 2018 , 6, 7338-7350	54
7 2 9	Preparation and evaluation of open-tubular capillary column combining a metal-organic framework and a brush-shaped polymer for liquid chromatography. 2018 , 41, 2347-2353	8
728	Recent advances in controlled modification of the size and morphology of metal-organic frameworks. 2018 , 11, 4441-4467	46
7 2 7	Synthesis, structure, and photoluminescence properties of lanthanide based metal organic frameworks and a cadmium coordination polymer derived from 2,2?-diamino-trans 4,4?-stilbenedicarboxylate. 2018 , 478, 243-249	1
726	Polycatenated 2D Hydrogen-Bonded Binary Supramolecular Organic Frameworks (SOFs) with Enhanced Gas Adsorption and Selectivity. 2018 , 18, 2555-2562	33
725	High effective adsorption/removal of illegal food dyes from contaminated aqueous solution by Zr-MOFs (UiO-67). 2018 , 254, 241-248	107
724	Sensitive and selective fluorometric determination and monitoring of Zn2+ ions using supermicroporous Zr-MOFs chemosensors. 2018 , 139, 24-33	57
723	Dual colorimetric and fluorometric monitoring of Bi3+ ions in water using supermicroporous Zr-MOFs chemosensors. 2018 , 198, 438-448	56
722	A high-capacitance flexible solid-state supercapacitor based on polyaniline and Metal-Organic Framework (UiO-66) composites. 2018 , 379, 350-361	99
721	Preparation of Dual-Emitting Ln@UiO-66-Hybrid Films via Electrophoretic Deposition for Ratiometric Temperature Sensing. 2018 , 10, 6014-6023	58
720	Zirconium B orphyrin-Based Metal © rganic Framework Hollow Nanotubes for Immobilization of Noble-Metal Single Atoms. 2018 , 130, 3551-3556	72

719	Zirconium-Porphyrin-Based Metal-Organic Framework Hollow Nanotubes for Immobilization of Noble-Metal Single Atoms. 2018 , 57, 3493-3498	237
718	Aqueous-Phase Synthesis of Mesoporous Zr-Based MOFs Templated by Amphoteric Surfactants. 2018 , 57, 3439-3443	56
717	Titanium-based metalBrganic frameworks for photocatalytic applications. 2018, 359, 80-101	163
716	Development of a UiO-Type Thin Film Electrocatalysis Platform with Redox-Active Linkers. 2018 , 140, 2985-2994	84
715	Rapid solvothermal synthesis of microporous UiO-66 particles for carbon dioxide capture. 2018 , 35, 764-769	17
714	Stable Metal-Organic Frameworks: Design, Synthesis, and Applications. 2018 , 30, e1704303	1138
713	Operando study of palladium nanoparticles inside UiO-67 MOF for catalytic hydrogenation of hydrocarbons. 2018 , 208, 287-306	37
712	Enhanced CO2 Adsorption and Selectivity of CO2/N2 on Amino-MIL-53(Al) Synthesized by Polar Co-solvents. 2018 , 32, 4502-4510	25
711	Ligand modification of UiO-66 with an unusual visible light photocatalytic behavior for RhB degradation. 2018 , 47, 1895-1902	74
710	Box-like gel capsules from heterostructures based on a core-shell MOF as a template of crystal crosslinking. 2018 , 54, 1437-1440	30
709	Manipulation of interactions at membrane interfaces for energy and environmental applications. 2018 , 80, 125-152	40
708	Thermally activated delayed fluorescence of a Zr-based metal-organic framework. 2018 , 54, 631-634	17
707	Towards high-efficiency sorptive capture of radionuclides in solution and gas. 2018 , 94, 1-67	59
706	Interpenetration-Dependent Luminescent Probe in Indium-Organic Frameworks for Selectively Detecting Nitrofurazone in Water. 2018 , 90, 1516-1519	95
7°5	Hierarchical Porous Zr-Based MOFs Synthesized by a Facile Monocarboxylic Acid Etching Strategy. Chemistry - A European Journal, 2018 , 24, 2962-2970 4.8	59
704	Defect Engineering into Metal-Organic Frameworks for the Rapid and Sequential Installation of Functionalities. 2018 , 57, 1040-1047	20
703	Influences of Deprotonation and Modulation on Nucleation and Growth of UiO-66: Intergrowth and Orientation. 2018 , 122, 2200-2206	28
702	Revisiting the structural homogeneity of NU-1000, a Zr-based metalorganic framework. 2018 , 20, 5913-5918	83

(2018-2018)

701	A [COF-300]-[UiO-66] composite membrane with remarkably high permeability and H/CO separation selectivity. 2018 , 47, 7206-7212	35
700	Nanosheet-Assembled Hierarchical Carbon Nanoframeworks Bearing a Multiactive Center for Oxygen Reduction Reaction. 2018 , 2, 1800068	17
699	Acidic ionic liquid based UiO-67 type MOFs: a stable and efficient heterogeneous catalyst for esterification 2018 , 8, 10009-10016	19
698	Selective Catalytic Reduction of NOx with NH3 on Cu-BTC-derived Catalysts: Influence of Modulation and Thermal Treatment. 2018 , 22, 95-104	14
697	12-Tungstophosphoric acid niched in Zr-based metal-organic framework: a stable and efficient catalyst for Friedel-Crafts acylation. 2018 , 61, 402-411	32
696	Stable Metal-Organic Frameworks with Group 4 Metals: Current Status and Trends. 2018, 4, 440-450	259
695	The Stability of Metal©rganic Frameworks. 2018 , 1-28	16
694	Role of Defects in Catalysis. 2018 , 341-378	2
693	Designing bipyridine-functionalized zirconium metalBrganic frameworks as a platform for clean energy and other emerging applications. 2018 , 364, 33-50	70
692	On-Surface Synthesis of Highly Oriented Thin Metal-Organic Framework Films through Vapor-Assisted Conversion. 2018 , 140, 4812-4819	96
691	Immobilization of silver nanoparticles in Zr-based MOFs: induction of apoptosis in cancer cells. 2018 , 20, 1	13
690	Ultrathin 2D Zirconium Metal-Organic Framework Nanosheets: Preparation and Application in Photocatalysis. 2018 , 14, e1703929	110
689	Modified metal-organic frameworks as photocatalysts. 2018 , 231, 317-342	243
688	Adsorption of Cr(VI) on nano Uio-66-NH MOFs in water. 2018 , 39, 1937-1948	61
687	Efficient solvothermal synthesis of highly porous UiO-66 nanocrystals in dimethylformamide-free media. 2018 , 53, 1862-1873	17
686	Enhancement of CO2/CH4 separation performances of 6FDA-based co-polyimides mixed matrix membranes embedded with UiO-66 nanoparticles. 2018 , 192, 465-474	53
685	Self-assembly of polyhedral metal-organic framework particles into three-dimensional ordered superstructures. 2017 , 10, 78-84	173
684	Microwave-assisted synthesis of zirconium-based metal organic frameworks (MOFs): Optimization and gas adsorption. 2018 , 260, 45-53	93

683	Design and Synthesis of Porous Coordination Polymers with Expanded One-Dimensional Channels and Strongly Lewis-Acidic Sites. 2018 , 4, 103-111	8
682	Microwave-assisted synthesis of well-shaped UiO-66-NH2 with high CO2 adsorption capacity. 2018 , 98, 308-313	49
681	[TiZrO(COO)] Cluster: An Ideal Inorganic Building Unit for Photoactive Metal-Organic Frameworks. 2018 , 4, 105-111	148
680	Insight into Metal-Organic Framework Reactivity: Chemical Water Oxidation Catalyzed by a [Ru(tpy)(dcbpy)(OH)]-Modified UiO-67. 2018 , 11, 464-471	25
679	Oriented UiO-66 thin films through solution shearing. 2018 , 20, 294-300	12
678	Controlling interpenetration through linker conformation in the modulated synthesis of Sc metal b rganic frameworks. 2018 , 6, 1181-1187	30
677	Stimuli-Responsive Nucleic Acid-Based Polyacrylamide Hydrogel-Coated Metal©rganic Framework Nanoparticles for Controlled Drug Release. 2018 , 28, 1705137	151
676	A Monodispersed Spherical Zr-Based Metal-Organic Framework Catalyst, Pt/Au@Pd@UIO-66, Comprising an Au@Pd Core-Shell Encapsulated in a UIO-66 Center and Its Highly Selective CO Hydrogenation to Produce CO. 2018 , 14, 1702812	47
675	Synthesis, characterization, and luminescent properties of two new Zr(IV) metal 0 rganic frameworks based on anthracene derivatives. 2018 , 96, 875-880	7
674	Compaction of a zirconium metal b rganic framework (UiO-66) for high density hydrogen storage applications. 2018 , 6, 23569-23577	42
673	An ambient-temperature aqueous synthesis of zirconium-based metal@rganic frameworks. 2018 , 20, 5292-5298	29
672	Metal®rganic Framework Membranes: From Fabrication to Gas Separation. 2018, 8, 412	38
671	A Stable Zr(IV)-Based Metal-Organic Framework Constructed from C?C Bridged Di-isophthalate Ligand for Sensitive Detection of CrO in Water. 2018 , 57, 14260-14268	42
670	CO2 capture and separation over N2 and CH4 in nanoporous MFM-300(In, Al, Ga, and In-3N): Insight from GCMC simulations. 2018 , 28, 145-151	12
669	Hierarchically porous UiO-66: facile synthesis, characterization and application. 2018 , 54, 11817-11820	24
668	Graphene-like metalBrganic frameworks: morphology control, optimization of thin film electrical conductivity and fast sensing applications. 2018 , 20, 6458-6471	44
667	MetalBrganic framework sorbents for the removal of perfluorinated compounds in an aqueous environment. 2018 , 42, 17889-17894	34
666	Highly Stable Chiral Zirconium-Metallosalen Frameworks for CO Conversion and Asymmetric C-H Azidation. 2018 , 10, 36047-36057	36

(2018-2018)

665	Postsynthetic Selective Ligand Cleavage by Solid-Gas Phase Ozonolysis Fuses Micropores into Mesopores in Metal-Organic Frameworks. 2018 , 140, 15022-15030	64
664	Hydrolysis of cellulose using cellulase physically immobilized on highly stable zirconium based metal-organic frameworks. 2018 , 270, 377-382	48
663	Aqueous Synthesis of Copper(II)-Imidazolate Nanoparticles. 2018, 57, 12056-12065	2
662	Improved Fenton Therapy Using Cancer Cell Hydrogen Peroxide. 2018 , 71, 826	12
661	SuFEx in Metal-Organic Frameworks: Versatile Postsynthetic Modification Tool. 2018, 10, 33785-33789	15
660	From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. 2018 , 47, 8611-8638	656
659	Improving the capability of UiO-66 for Cr(vi) adsorption from aqueous solutions by introducing isonicotinate N-oxide as the functional group. 2018 , 47, 14549-14555	29
658	Synthesis of the novel MOF hcp UiO-66 employing ionic liquids as a linker precursor. 2018 , 47, 14426-14430	26
657	Flexible metalorganic frameworks for the wavelength-based luminescence sensing of aqueous pH. 2018 , 6, 10628-10639	30
656	High Catalytic Activity of C Pd Encapsulated in Metal-Organic Framework UiO-67, for Tandem Hydrogenation Reaction. <i>Chemistry - A European Journal</i> , 2018 , 24, 19141-19145 4.8	8
655	Insights into CO2 adsorption and chemical fixation properties of VPI-100 metalorganic frameworks. 2018 , 6, 22195-22203	14
654	Zirconium-based metal organic frameworks loaded on polyurethane foam membrane for simultaneous removal of dyes with different charges. 2018 , 527, 267-279	62
653	Recent progress in the syntheses of mesoporous metal Brganic framework materials. 2018, 369, 76-90	95
652	Optimization protocols and improved strategies for metal-organic frameworks for immobilizing enzymes: Current development and future challenges. 2018 , 370, 22-41	110
651	Synthesis and structural characterization of the first neptunium based metal-organic frameworks incorporating {NpO} hexanuclear clusters. 2018 , 54, 6979-6982	37
650	Incorporation of Functional Groups Expands the Applications of UiO-67 for Adsorption, Catalysis and Thiols Detection. 2018 , 3, 7066-7080	6
649	l-proline modulated zirconium metal organic frameworks: Simple chiral catalysts for the aldol addition reaction. 2018 , 365, 36-42	43
648	Simple Fabrication Method for Mixed Matrix Membranes with in Situ MOF Growth for Gas Separation. 2018 , 10, 24784-24790	51

647	Allenylphosphine Oxides as Starting Materials for the Synthesis of Conjugated Enynes: Boosting the Catalytic Performance by MOF Encapsulated Palladium Nanoparticles. 2018 , 360, 3518-3525		7
646	Realizing the Potential of Acetylenedicarboxylate by Functionalization to Halofumarate in Zr Metal-Organic Frameworks. <i>Chemistry - A European Journal</i> , 2018 , 24, 14048-14053	8	14
645	Delamination and Photochemical Modification of a Novel Two-Dimensional Zr-Based Metal-Organic Frameworks. <i>Chemistry - A European Journal</i> , 2018 , 24, 12848-12855	8	5
644	Two-dimensional metal-organic framework nanosheets: synthesis and applications. 2018 , 47, 6267-6295		662
643	Reactive gas atmospheres as a tool for the synthesis of MOFs: the creation of a metal hybrid fumarate with a controlled Fe/Al composition profile. 2018 , 6, 14352-14358		5
642	Compartmentalization within Self-Assembled Metal © rganic Framework Nanoparticles for Tandem Reactions. 2018 , 28, 1802479		36
641	Beyond pristine metal-organic frameworks: Preparation and application of nanostructured, nanosized, and analogous MOFs. 2018 , 376, 20-45		84
640	Zirconium-Formate Macrocycles and Supercage: Molecular Packing versus MOF-like Network for Water Vapor Sorption. 2018 , 140, 10915-10920		23
639	Eine Calixaren-basierte Metall-organische Ger\(\textstyerbindung f\text{\textstyerbindung f\text{\text{\textstyerbindung f\text{\text{\textstyerbindung f\text{\tex{\tex		9
638	Design of Metal-Organic Framework-Based Nanoprobes for Multicolor Detection of DNA Targets with Improved Sensitivity. 2018 , 90, 9929-9935		44
637	Metal-Organic Framework Nanocrystals. 2018 , 3, 7459-7471		15
636	A new and highly robust light-responsive Azo-UiO-66 for highly selective and low energy post-combustion CO2 capture and its application in a mixed matrix membrane for CO2/N2 separation. 2018 , 6, 16390-16402		53
635	Post-Synthetic Ligand Exchange in Zirconium-Based Metal-Organic Frameworks: Beware of The Defects!. 2018 , 57, 11706-11710		73
634	A Calixarene-Based Metal-Organic Framework for Highly Selective NO Detection. 2018 , 57, 12961-12965		55
633	Impact of Higher-Order Structuralization on the Adsorptive Properties of Metal-Organic Frameworks. 2018 , 13, 1979		5
632	Modulated synthesis of monodisperse MOF-5 crystals with tunable sizes and shapes. 2018 , 93, 56-60		35
631	Novel amino-functionalized carbon material derived from metal organic framework: A characteristic adsorbent for U(VI) removal from aqueous environment. 2018 , 556, 72-80		16
630	Determination of carbamazepine in urine and water samples using amino-functionalized metal-organic framework as sorbent. 2018 , 12, 77		16

629	Small-Sized Bimetallic CuPd Nanoclusters Encapsulated Inside Cavity of NH2-UiO-66(Zr) with Superior Performance for Light-Induced Suzuki Coupling Reaction. 2018 , 2, 1800164	39
628	Metal®rganic Frameworks Materials for Post-Combustion CO2 Capture. 2018 , 79-111	1
627	Post-Synthetic Ligand Exchange in Zirconium-Based Metal (Drganic Frameworks: Beware of The Defects!. 2018 , 130, 11880-11884	2
626	Combined experimental and theoretical investigation on selective removal of mercury ions by metal organic frameworks modified with thiol groups. 2018 , 354, 790-801	73
625	Metal-Organic Framework Nanoparticles. 2018 , 30, e1800202	338
624	Structural Characterization of Pristine and Defective [Zr12(B-O)8(B-OH)8(D-OH)6]18+ Double-Node MetalDrganic Framework and Predicted Applications for Single-Site Catalytic Hydrolysis of Sarin. 2018 , 30, 4432-4439	35
623	Formic acid modulated (fam) aluminium fumarate MOF for improved isotherms and kinetics with water adsorption: Cooling/heat pump applications. 2018 , 272, 109-116	24
622	Hybridization of metalBrganic framework and monodisperse spherical silica for chromatographic separation of xylene isomers. 2019 , 27, 818-826	13
621	Morphology control in modulated synthesis of metal-organic framework CPO-27. 2019 , 275, 207-213	24
620	Band gap modulation in zirconium-based metal ö rganic frameworks by defect engineering. 2019 , 7, 23781-23786	49
619	Development of microporous Zr-MOF UiO-66 by sol-gel synthesis for CO2 capture from synthetic gas containing CO2 and H2. 2019 ,	1
618	A Low-Temperature Approach for the Phase-Pure Synthesis of MIL-140 Structured Metal-Organic Frameworks. <i>Chemistry - A European Journal</i> , 2019 , 25, 13598-13608	6
617	2D Metal-Organic Frameworks as Multifunctional Materials in Heterogeneous Catalysis and Electro/Photocatalysis. 2019 , 31, e1900617	199
616	Enhanced Visible-Light-Driven H2 Production via UiO-66 Nanospheres Attached to Flower-Shaped ZnIn2S4 Microspheres. 2019 , 92, 1047-1052	7
615	Understanding Reduced CO2 Uptake of Ionic Liquid/Metal © rganic Framework (IL/MOF) Composites. 2019 , 2, 6022-6029	21
614	MOF nano porous-supported C-S cross coupling through one-pot post-synthetic modification. 2019 , 898, 120867	5
613	Acetic acid as a solvent for the synthesis of metalBrganic frameworks based on trimesic acid. 2019 , 170, 458-462	7
612	Ti3C2 nanosheets modified Zr-MOFs with Schottky junction for boosting photocatalytic HER performance. 2019 , 188, 750-759	23

611	Controlling the Synthesis of Metal©rganic Framework UiO-67 by Tuning Its Kinetic Driving Force. 2019 , 19, 4246-4251	16
610	Formation of Metal-Organic Frameworks on a Metal Ion-Doped Polymer Substrate: In-Depth Time-Course Analysis Using Scanning Electron Microscopy. 2019 , 35, 10390-10396	2
609	Control of the nucleation and growth processes of metal Brganic frameworks using a metal ion-doped polymer substrate for the construction of continuous films. 2019 , 21, 4851-4854	
608	Facile Synthesis of UiO-66(Zr) Using a Microwave-Assisted Continuous Tubular Reactor and Its Application for Toluene Adsorption. 2019 , 19, 4949-4956	26
607	Metal-Organic Frameworks for Food Safety. 2019 , 119, 10638-10690	217
606	Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities. 2019 , 1, 100005	204
605	A highly augmented, (12,3)-connected Zr-MOF containing hydrated coordination sites for the catalytic transformation of gaseous CO to cyclic carbonates. 2019 , 48, 15487-15492	9
604	Harnessing combinational phototherapy via post-synthetic PpIX conjugation on nanoscale metal-organic frameworks. 2019 , 7, 4763-4770	5
603	The impact of crystal size and temperature on the adsorption-induced flexibility of the Zr-based metal-organic framework DUT-98. 2019 , 10, 1737-1744	18
602	Self-Assembly of Metal©rganic Frameworks into Monolithic Materials with Highly Controlled Trimodal Pore Structures. 2019 , 131, 19223-19229	5
601	Recent Advances in Polymeric Nanocomposites of Metal-Organic Frameworks (MOFs). 2019, 11,	19
600	White Light Emission Properties of Defect Engineered Metal®rganic Frameworks by Encapsulation of Eu3+ and Tb3+. 2019 , 19, 6339-6350	20
599	Co-delivery of PARP and PI3K inhibitors by nanoscale metal®rganic frameworks for enhanced tumor chemoradiation. 2019 , 12, 3003-3017	16
598	Lanthanide Metal-Organic Framework Nanoprobes for the In Vitro Detection of Cardiac Disease Markers. 2019 , 11, 43989-43995	24
597	Chemical Control over Nucleation and Anisotropic Growth of Two-Dimensional Covalent Organic Frameworks. 2019 , 5, 1892-1899	26
596	PolyMOF Nanoparticles: Dual Roles of a Multivalent polyMOF Ligand in Size Control and Surface Functionalization. 2019 , 131, 16829-16834	4
595	PolyMOF Nanoparticles: Dual Roles of a Multivalent polyMOF Ligand in Size Control and Surface Functionalization. 2019 , 58, 16676-16681	30
594	Self-Assembly of Metal-Organic Frameworks into Monolithic Materials with Highly Controlled Trimodal Pore Structures. 2019 , 58, 19047-19053	23

593	Detection of Purine Metabolite Uric Acid with Picolinic-Acid-Functionalized Metal-Organic Frameworks. 2019 , 11, 34196-34202	32
592	Tailoring the Properties of UiO-66 through Defect Engineering: A Review. 2019 , 58, 17646-17659	64
591	Ligand Exchange in the Synthesis of Metal-Organic Frameworks Occurs Through Acid-Catalyzed Associative Substitution. 2019 , 58, 14457-14466	8
590	The preparation and characterization of UiO-66 metalBrganic frameworks for the delivery of the drug ciprofloxacin and an evaluation of their antibacterial activities. 2019 , 43, 16033-16040	36
589	NH-MIL-53(Al) Metal-Organic Framework as the Smart Platform for Simultaneous High-Performance Detection and Removal of Hg. 2019 , 58, 12573-12581	66
588	Structural Control of Uniform MOF-74 Microcrystals for the Study of Adsorption Kinetics. 2019 , 11, 35820-35	82 65
587	Plasma-catalysed reaction M + L-H -fMOFs: facile and tunable construction of metal-organic frameworks in dielectric barrier discharge. 2019 , 55, 12192-12195	16
586	Size control over metal-organic framework porous nanocrystals. 2019 , 10, 9396-9408	79
585	Colorimetric Sensor Array for Human Semen Identification Designed by Coupling Zirconium Metal-Organic Frameworks with DNA-Modified Gold Nanoparticles. 2019 , 11, 36316-36323	26
584	Facile Green Synthesis of Zirconium Based Metal-Organic Framework having Carboxylic Anchors. 2019 , 9, 522-527	3
583	Geometry Mismatch and Reticular Chemistry: Strategies To Assemble Metal-Organic Frameworks with Non-default Topologies. 2019 , 141, 16517-16538	57
582	Controllable Synthesis of Metal-Organic Frameworks and Their Hierarchical Assemblies. 2019 , 1, 801-824	96
581	Structural study of functional hierarchical porous carbon synthesized from metal-organic framework template. 2019 , 14, 100188	3
580	Bipyridine-based UiO-67 as novel filler in mixed-matrix membranes for CO2-selective gas separation. 2019 , 576, 78-87	56
579	A dual functional MOF-based fluorescent sensor for intracellular phosphate and extracellular 4-nitrobenzaldehyde. 2019 , 48, 1332-1343	39
578	Synthesis of modulator-driven highly stable zirconium-fumarate frameworks and mechanistic investigations of their arsenite and arsenate adsorption from aqueous solutions. 2019 , 21, 2320-2332	20
577	Space-confined indicator displacement assay inside a metal-organic framework for fluorescence turn-on sensing. 2019 , 10, 3307-3314	45
576	Application of acid-promoted UiO-66-NH2 MOFs in the treatment of wastewater containing methylene blue. 2019 , 73, 1401-1411	9

Implementing fluorescent MOFs as down-converting layers in hybrid light-emitting diodes. 2019, 7, 2394-2400 15 575 Core-Shell Gold Nanorod@Zirconium-Based Metal-Organic Framework Composites as in Situ 574 73 Size-Selective Raman Probes. 2019, 141, 3893-3900 An analysis of the effect of zirconium precursors of MOF-808 on its thermal stability, and structural 20 573 and surface properties. 2019, 21, 1407-1415 Duet of Acetate and Water at the Defects of Metal-Organic Frameworks. 2019, 19, 1618-1624 572 33

571	Redox-Active 1D Coordination Polymers of Iron-Sulfur Clusters. 2019 , 141, 3940-3951	23
570	Microwave-assisted synthesis of urea-containing zirconium metalörganic frameworks for heterogeneous catalysis of Henry reactions. 2019 , 21, 1358-1362	23
569	Elucidating the mechanism of the UiO-66-catalyzed sulfide oxidation: activity and selectivity enhancements through changes in the node coordination environment and solvent. 2019 , 9, 327-335	27
568	Anchoring anions with metalorganic framework-functionalized separators for advanced lithium batteries. 2019 , 4, 705-711	53
567	Structure, characterization, and catalytic properties of open-metal sites in metal organic frameworks. 2019 , 4, 207-222	61
566	Stimuli-responsive multifunctional metal-organic framework nanoparticles for enhanced chemo-photothermal therapy. 2019 , 7, 994-1004	55
565	Crystallization of high aspect ratio HKUST-1 thin films in nanoconfined channels for selective small molecule uptake. 2019 , 1, 2946-2952	7
564	Thermodynamics and Electronic Properties of Heterometallic Multinuclear Actinide-Containing Metal-Organic Frameworks with "Structural Memory". 2019 , 141, 11628-11640	42
563	Optimization of the synthesis of UiO-66(Zr) in ionic liquids. 2019 , 288, 109564	11
562	Coordination polymers of Cu(II), Co(II) and Cd(II) based on a tetramethyl-substituted terphenyldicarboxylic acid. 2019 , 170, 463-470	5
561	Exploring the Potential of Defective UiO-66 as Reverse Osmosis Membranes for Desalination. 2019 , 123, 16118-16126	20
560	Strong improvement of reverse osmosis polyamide membrane performance by addition of ZIF-8 nanoparticles: Effect of particle size and dispersion in selective layer. 2019 , 233, 524-531	38
559	Modulating Guest Uptake in Core-Shell MOFs with Visible Light. 2019 , 58, 12862-12867	50
558	2-Methylimidazole assisted ultrafast synthesis of carboxylate-based metalBrganic framework nano-structures in aqueous medium at room temperature. 2019 , 64, 1103-1109	6

557	Electrically Conducting Nanocomposites of Carbon Nanotubes and Metal-Organic Frameworks with Strong Interactions between the two Components. 2019 , 5, 1159-1169	12
556	Controlling Size, Defectiveness, and Fluorescence in Nanoparticle UiO-66 Through Water and Ligand Modulation. 2019 , 31, 4831-4839	16
555	Tuning the adsorption properties of UiO-66 via acetic acid modulation. 2019 , 131, 1	4
554	Ferrocene-based metalorganic framework nanosheets loaded with palladium as a super-high active hydrogenation catalyst. 2019 , 7, 15975-15980	40
553	Fabrication of 1D long chain-like metal porphyrin-based coordination complexes for high-efficiency hydrogen evolution and photoelectric response. 2019 , 44, 18072-18082	3
552	Metal-organic frameworks for CO2 photoreduction. 2019 , 13, 221-250	13
551	Modulierung der Gastaufnahme in Core-Shell-MOFs mit sichtbarem Licht. 2019 , 131, 12994-12999	10
550	Determination and removal of clenbuterol with a stable fluorescent zirconium(IV)-based metal organic framework. 2019 , 186, 454	23
549	Facile synthesis of acid-modified UiO-66 to enhance the removal of Cr(VI) from aqueous solutions. 2019 , 682, 118-127	47
548	Tuning the supramolecular isomerism of MOF-74 by controlling the synthesis conditions. 2019 , 48, 10043-10	005 0 4
547	An insight into the effect of azobenzene functionalities studied in UiO-66 frameworks for low energy CO2 capture and CO2/N2 membrane separation. 2019 , 7, 15164-15172	20
546	Zr and Hf-metal-organic frameworks: Efficient and recyclable heterogeneous catalysts for the synthesis of 2-arylbenzoxazole via ring open pathway acylation reaction. 2019 , 374, 110-117	23
545	Rising Up: Hierarchical Metal-Organic Frameworks in Experiments and Simulations. 2019 , 31, e1901744	67
544	Symmetry-guided syntheses of mixed-linker Zr metal-organic frameworks with precise linker locations. 2019 , 10, 5801-5806	14
543	Single-component frameworks for heterogeneous catalytic hydrolysis of organophosphorous compounds in pure water. 2019 , 55, 7005-7008	16
542	Zr (IV)-based coordination porous materials for adsorption of Copper(II) from water. 2019 , 285, 215-222	13
541	Kinetic Control of Interpenetration in Fe-Biphenyl-4,4'-dicarboxylate Metal-Organic Frameworks by Coordination and Oxidation Modulation. 2019 , 141, 8346-8357	31
540	A general method for measuring the thermal conductivity of MOF crystals. 2019 , 138, 11-16	21

539	Bifunctional metalBrganic frameworks toward photocatalytic CO2 reduction by post-synthetic ligand exchange. 2019 , 38, 413-419	50
538	Torsion Angle Effect on the Activation of UiO Metal-Organic Frameworks. 2019 , 11, 15788-15794	20
537	Different functional group modified zirconium frameworks for the photocatalytic reduction of carbon dioxide. 2019 , 48, 8221-8226	26
536	Cleaving DNA-model phosphodiester with Lewis acid-base catalytic sites in bifunctional Zr-MOFs. 2019 , 48, 8044-8048	5
535	Unprecedented Ultralow Detection Limit of Amines using a Thiadiazole-Functionalized Zr(IV)-Based Metal-Organic Framework. 2019 , 141, 7245-7249	139
534	Synthesis of porous TiO2/ZrO2 photocatalyst derived from zirconium metal organic framework for degradation of organic pollutants under visible light irradiation. 2019 , 7, 103096	57
533	Enhancing Permeability of Thin Film Nanocomposite Membranes via Covalent Linking of Polyamide with the Incorporated Metal D rganic Frameworks. 2019 ,	22
532	Rapid and Low-Cost Electrochemical Synthesis of UiO-66-NH with Enhanced Fluorescence Detection Performance. 2019 , 58, 6742-6747	34
531	Effective Recovery of Pt(IV) from Acidic Solution by a Defective Metal®rganic Frameworks Using Central Composite Design for Synthesis. 2019 , 7, 7510-7518	13
530	Synthesis, characterization, and post-synthetic modification of a micro/mesoporous zirconiumEricarboxylate metalBrganic framework: towards the addition of acid active sites. 2019 , 21, 3014-3030	26
529	Highly Active Urea-Functionalized Zr(IV)-UiO-67 Metal-Organic Framework as Hydrogen Bonding Heterogeneous Catalyst for Friedel-Crafts Alkylation. 2019 , 58, 5163-5172	31
528	Metal-Organic Frameworks for Nanoarchitectures: Nanoparticle, Composite, Core-Shell, Hierarchical, and Hollow Structures. 2019 , 151-194	
527	A Chemiluminescent Metal-Organic Framework. <i>Chemistry - A European Journal</i> , 2019 , 25, 6349-6354 4.8	19
526	miRNA-Specific Unlocking of Drug-Loaded Metal-Organic Framework Nanoparticles: Targeted Cytotoxicity toward Cancer Cells. 2019 , 15, e1900935	28
525	Supramolecular assemblies of phenolic metalloporphyrins: Structures and electrochemical studies. 2019 , 23, 103-116	2
524	One-Step Template-Free Fabrication of Ultrathin Mixed-Valence Polyoxovanadate-Incorporated Metal-Organic Framework Nanosheets for Highly Efficient Selective Oxidation Catalysis in Air. 2019 , 11, 12786-12796	31
523	Salen-Co(iii) insertion in multivariate cationic metal-organic frameworks for the enhanced cycloaddition reaction of carbon dioxide. 2019 , 55, 4063-4066	36
522	Water-induced synthesis of hierarchical Zr-based MOFs with enhanced adsorption capacity and catalytic activity. 2019 , 281, 92-100	11

521	Surfactant-Thermal Synthesis of Amino Acid-Templated Zinc Phosphates with 3-Connected Nets Related to Zeolite ABW. 2019 , 58, 4089-4092	16
520	Highly Defective UiO-66 Materials for the Adsorptive Removal of Perfluorooctanesulfonate. 2019 , 7, 6619-6628	60
519	Impacts of Metal-Organic Frameworks on Structure and Performance of Polyamide Thin-Film Nanocomposite Membranes. 2019 , 11, 13724-13734	61
518	Anion-Sorbent Composite Separators for High-Rate Lithium-Ion Batteries. 2019 , 31, e1808338	103
517	A Reusable MOF-Supported Single-Site Zinc(II) Catalyst for Efficient Intramolecular Hydroamination of o-Alkynylanilines. 2019 , 58, 7687-7691	52
516	A Reusable MOF-Supported Single-Site Zinc(II) Catalyst for Efficient Intramolecular Hydroamination of o-Alkynylanilines. 2019 , 131, 7769-7773	8
515	Elucidation of adsorption cooling characteristics of Zr-MOFs: Effects of structure property and working fluids. 2019 , 204, 48-58	17
5 1 4	Effective loading of cisplatin into a nanoscale UiO-66 metal-organic framework with preformed defects. 2019 , 48, 5308-5314	32
513	Single-Crystal Synthesis and Structures of Highly Stable Ni8-Pyrazolate-Based Metal@rganic Frameworks. 2019 , 1, 20-24	16
512	In-situ synthesis of single-atom Ir by utilizing metal-organic frameworks: An acid-resistant catalyst for hydrogenation of levulinic acid to Evalerolactone. 2019 , 373, 161-172	57
511	Three-dimensional PEDOT composite based electrochemical sensor for sensitive detection of chlorophenol. 2019 , 837, 1-9	31
510	Post-synthetic Modification of Metal-Organic Framework through Urethane Formation. 2019 , 48, 285-287	3
509	Cluster nuclearity control and modulated hydrothermal synthesis of functionalized Zr metal-organic frameworks. 2019 , 48, 7069-7073	20
508	Ferrocenecarboxylic acid: a functional modulator for UiO-66 synthesis and incorporation of Pd nanoparticles. 2019 , 21, 1772-1779	10
507	ZnIn2S4/UiO-66-(SH)2 composites as efficient visible-light photocatalyst for RhB degradation. 2019 , 102, 25-29	16
506	Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs. 2019 , 386, 32-49	194
505	Understanding the modifications and applications of highly stable porous frameworks via UiO-66. 2019 , 12, 139-165	40
504	Uncovering the Structural Diversity of Y(III) Naphthalene-2,6-Dicarboxylate MOFs Through Coordination Modulation. 2019 , 7, 36	10

503	Direct grafting-from of PEDOT from a photoreactive Zr-based MOF - a novel route to electrically conductive composite materials. 2019 , 55, 3367-3370	18
502	StructureBroperty relationship of metalBrganic frameworks for alcohol-based adsorption-driven heat pumps via high-throughput computational screening. 2019 , 7, 7470-7479	29
501	Metal-organic Framework Sponges. 2019 , 59-121	
500	Uniform and directional growth of centimeter-sized single crystals of cyclodextrin-based metal organic frameworks. 2019 , 21, 1867-1871	5
499	A Zn(ii) metal-organic framework with dinuclear [Zn(N-oxide)] secondary building units. 2019 , 48, 6314-6318	2
498	Engineering new defective phases of UiO family metalBrganic frameworks with water. 2019 , 7, 7459-7469	37
497	One-pot synthesis of poly(ethylene glycol) modified zeolitic imidazolate framework-8 nanoparticles: Size control, surface modification and drug encapsulation. 2019 , 568, 224-230	21
496	Microwave-Assisted Synthesis as an Efficient Method to Enhance the Catalytic Activity of Zr-Based Metal Organic Framework UiO-66 in a Heterocyclization Reaction. 2019 , 8, 2276-2281	20
495	Pt nanoparticles embedded in flowerlike NH2-UiO-68 for enhanced photocatalytic carbon dioxide reduction. 2019 , 7, 26490-26495	31
494	Green separation of rare earth elements by valence-selective crystallization of MOFs. 2019 , 55, 14902-14905	7
493	A Thiophene-2-carboxamide-Functionalized Zr(IV) Organic Framework as a Prolific and Recyclable Heterogeneous Catalyst for Regioselective Ring Opening of Epoxides. 2019 , 58, 16581-16591	9
492	Temperature modulation of defects in NH-UiO-66(Zr) for photocatalytic CO reduction 2019 , 9, 37733-37738	23
491	Improving MOF stability: approaches and applications. 2019 , 10, 10209-10230	366
490	Robust photocatalytic reduction of Cr(VI) on UiO-66-NH2(Zr/Hf) metal-organic framework membrane under sunlight irradiation. 2019 , 356, 393-399	165
489	Highly efficient adsorption of benzothiophene from model fuel on a metal-organic framework modified with dodeca-tungstophosphoric acid. 2019 , 362, 30-40	21
488	Enhanced luminescence of NH2-UiO-66 for selectively sensing fluoride anion in water medium. 2019 , 208, 67-74	39
487	Enhancing Efficiency and Stability of Photovoltaic Cells by Using Perovskite/Zr-MOF Heterojunction Including Bilayer and Hybrid Structures. 2019 , 6, 1801715	104
486	Enzyme-Driven Release of Loads from Nucleic Acid©apped Metal©rganic Framework Nanoparticles. 2019 , 29, 1805341	33

485	Linker Competition within a Metal-Organic Framework for Topological Insights. 2019, 58, 1513-1517	20
484	Magnetic metal-organic framework nanocomposites for enrichment and direct detection of environmental pollutants by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. 2019 , 194, 329-335	13
483	Metal®rganic frameworks in Germany: From synthesis to function. 2019 , 380, 378-418	65
482	Engineering UiO-66 Metal Organic Framework for Heterogeneous Catalysis. 2019 , 11, 899-923	104
481	Heterogeneous Metal-Organic-Framework-Based Biohybrid Catalysts for Cascade Reactions in Organic Solvent. <i>Chemistry - A European Journal</i> , 2019 , 25, 1716-1721	45
480	Adsorption of diclofenac from aqueous solution using UiO-66-type metal-organic frameworks. 2019 , 359, 354-362	115
479	Catalysis by Metal Organic Frameworks: Perspective and Suggestions for Future Research. 2019 , 9, 1779-1798	8 375
478	Design and Synthesis of Ionic Liquid Supported Hierarchically Porous Zr Metal@rganic Framework as a Novel Brfistedflewis Acidic Catalyst in Biodiesel Synthesis. 2019 , 58, 1123-1132	40
477	Scalable and Sustainable Synthesis of Advanced Porous Materials. 2019 , 7, 3647-3670	41
476	Adjustable pervaporation performance of Zr-MOF/poly(vinyl alcohol) mixed matrix membranes. 2019 , 94, 973-981	21
475	Application of zirconium MOFs in drug delivery and biomedicine. 2019 , 380, 230-259	296
474	Noble metal nanoparticle-functionalized Zr-metal organic frameworks with excellent photocatalytic performance. 2019 , 538, 569-577	28
473	Pristine Transition-Metal-Based Metal-Organic Frameworks for Electrocatalysis. 2019 , 6, 1273-1299	41
472	Highly Porous Nanocrystalline UiO-66 Thin Films via Coordination Modulation Controlled Step-by-Step Liquid-Phase Growth. 2019 , 19, 1738-1747	13
471	⊞e2O3 nanoclusters confined into UiO-66 for efficient visible-light photodegradation performance. 2019 , 466, 956-963	34
470	Efficient removal of phosphate from acidified urine using UiO-66 metal-organic frameworks with varying functional groups. 2020 , 501, 144074	41
469	Mechanical properties and decomposition performance of peelable coating containing UiO-66 catalyst and waterborne silane-terminated polyurethane dispersions. 2020 , 55, 2604-2617	8
468	Proton conductive carboxylate-based metalörganic frameworks. 2020 , 403, 213100	142

467	Degradation of phenol using a peroxidase mimetic catalyst through conjugating deuterohemin-peptide onto metal-organic framework with enhanced catalytic activity. 2020 , 134, 105859	5
466	Metal-organic framework gels and monoliths. 2020 , 11, 310-323	86
465	Facile and reversible digestion and regeneration of zirconium-based metal-organic frameworks. 2020 , 3,	11
464	Enhanced adsorption removal performance of UiO-66 by rational hybridization with nanodiamond. 2020 , 296, 110008	20
463	MetalBrganic framework tethering pH- and thermo-responsive polymer for ONDFF controlled release of guest molecules. 2020 , 22, 1106-1111	11
462	The synthesis and applications of chiral pyrrolidine functionalized metal B rganic frameworks and covalent-organic frameworks. 2020 , 7, 1319-1333	6
461	Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An update review. 2020 , 406, 213149	152
460	Unexpected structural complexity of thorium coordination polymers and polyoxo cluster built from simple formate ligands. 2020 , 7, 260-269	18
459	In Situ Imine-Based Linker Formation for the Synthesis of Zirconium MOFs: A Route to CO Capture Materials and Ethylene Oligomerization Catalysts. 2020 , 59, 350-359	11
458	Fast and Selective Semihydrogenation of Alkynes by Palladium Nanoparticles Sandwiched in Metal-Organic Frameworks. 2020 , 59, 3650-3657	51
457	A Decade of UiO-66 Research: A Historic Review of Dynamic Structure, Synthesis Mechanisms, and Characterization Techniques of an Archetypal Metal (Drganic Framework. 2020 , 20, 1347-1362	130
456	Immobilization of porcine pancreatic lipase onto a metal-organic framework, PPL@MOF: A new platform for efficient ligand discovery from natural herbs. 2020 , 1099, 94-102	27
455	Fast and Selective Semihydrogenation of Alkynes by Palladium Nanoparticles Sandwiched in Metal Drganic Frameworks. 2020 , 132, 3679-3686	6
454	Controllable Synthesis of Porphyrin-Based 2D Lanthanide Metal (Drganic Frameworks with Thickness- and Metal-Node-Dependent Photocatalytic Performance. 2020 , 132, 3326-3332	13
453	Controllable Synthesis of Porphyrin-Based 2D Lanthanide Metal-Organic Frameworks with Thickness- and Metal-Node-Dependent Photocatalytic Performance. 2020 , 59, 3300-3306	82
452	Defectous UiO-66 MOF Nanocomposites as Reactive Media of Superior Protection against Toxic Vapors. 2020 , 12, 14678-14689	25
451	Toward a Rational Design of Titanium Metal-Organic Frameworks. 2020 , 2, 440-450	25
450	The synthesis strategies and photocatalytic performances of TiO2/MOFs composites: A state-of-the-art review. 2020 , 391, 123601	77

449	Analysis of Electrocatalytic Metal-Organic Frameworks. 2020 , 406,	41
448	Strategies for Pore Engineering in Zirconium Metal-Organic Frameworks. 2020 , 6, 2902-2923	25
447	Twinning in Zr-Based Metal-Organic Framework Crystals. 2020 , 2, 777-786	1
446	Multiuse Al-MOF Chemosensors for Visual Detection and Removal of Mercury Ions in Water and Skin-Whitening Cosmetics. 2020 , 8, 15097-15107	24
445	Experimental evidence for a general model of modulated MOF nanoparticle growth. 2020, 11, 11539-11547	11
444	Synthesis Methods and Crystallization of MOFs. 2020,	3
443	Coordination and space confined preparation of nickel sub-nanoparticles within a metal-organic framework for catalytic degradation of methyl orange. 2020 , 8, 104363	5
442	Applications of multifunctional zirconium-based metal-organic frameworks in analytical chemistry: Overview and perspectives. 2020 , 131, 116015	16
441	Cd-Based Metal-Organic Framework Containing Uncoordinated Carbonyl Groups as Lanthanide Postsynthetic Modification Sites and Chemical Sensing of Diphenyl Phosphate as a Flame-Retardant Biomarker. 2020 , 59, 15088-15100	21
440	Kinetically Controlled Reticular Assembly of a Chemically Stable Mesoporous Ni(II)-Pyrazolate Metal-Organic Framework. 2020 , 142, 13491-13499	48
439	Introducing a Cantellation Strategy for the Design of Mesoporous Zeolite-like Metal-Organic Frameworks: Zr-sod-ZMOFs as a Case Study. 2020 , 142, 20547-20553	12
438	Role of Spin-Orbit Coupling in Long Range Energy Transfer in Metal-Organic Frameworks. 2020 ,	16
437	Modulation of crystal growth and structure within cerium-based metal®rganic frameworks. 2020 , 22, 8182-8188	8
436	Orderly MOF-Assembled Hybrid Monolithic Stationary Phases for Nano-Flow HPLC. 2020 , 92, 15757-15765	8
435	Node-Accessible Zirconium MOFs. 2020 , 142, 21110-21121	42
434	Determination of benzomercaptans in environmental complex samples by combining zeolitic imidazolate framework-8-based solid-phase extraction and high-performance liquid chromatography with UV detection. 2020 , 1631, 461580	7
433	The Surface Chemistry of Metal Oxide Clusters: From Metal-Organic Frameworks to Minerals. 2020 , 6, 1523-1533	11
432	Design and applications of water-stable metal-organic frameworks: status and challenges. 2020 , 423, 213507	41

431	A comparative study of perfluorinated and non-fluorinated UiO-67 in gas adsorption. 2020 , 27, 1773-1782	4
430	Synthesis and development of metal®rganic frameworks. 2020 , 3-43	4
429	In situ confined growth of ultrasmall perovskite quantum dots in metal-organic frameworks and their quantum confinement effect. 2020 , 12, 17113-17120	13
428	Fuel additive synthesis by acetylation of glycerol using activated carbon/UiO-66 composite materials. 2020 , 281, 118584	14
427	Enhanced Sulfur Dioxide Adsorption in UiO-66 Through Crystal Engineering and Chalcogen Bonding. 2020 , 20, 6139-6146	9
426	Anisotropic reticular chemistry. 2020 , 5, 764-779	72
425	Facile directions for synthesis, modification and activation of MOFs. 2020 , 17, 100343	22
424	Downsizing metalBrganic frameworks by bottom-up and top-down methods. 2020 , 12,	47
423	Microwave-Assisted Solvothermal Synthesis of UiO-66-NH2 and Its Catalytic Performance toward the Hydrolysis of a Nerve Agent Simulant. 2020 , 10, 1086	9
422	Synthesis of novel and engineered UiO-66/graphene oxide nanocomposite with enhanced H2S adsorption capacity. 2020 , 8, 104351	11
421	Acid-Modulated Synthesis of High Surface Area Amine-Functionalized MIL-101(Cr) Nanoparticles for CO2 Separations. 2020 , 59, 18139-18150	6
420	Second-order programming the synthesis of metal-organic frameworks. 2020 , 56, 12355-12358	2
419	Modulator-free approach towards missing-cluster defect formation in Zr-based UiO-66 2020 , 10, 28180-281	85 ₇
418	Boric-acid-modified FeO@PDA@UiO-66 for enrichment and detection of glucose by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. 2020 , 412, 8083-8092	3
417	Interfacial growth of metal-organic framework on carboxyl-functionalized carbon nanotubes for efficient dye adsorption and separation. 2020 , 12, 4534-4540	9
416	Structural Characterization of a High-Nuclearity Niobium(V) Carboxylate Cluster Based on Pivalic Acid. 2020 , 103, e2000186	1
415	Structural Diversity of Zirconium Metal-Organic Frameworks and Effect on Adsorption of Toxic Chemicals. 2020 , 142, 21428-21438	44
414	Novel multi-channel anion exchange membrane based on poly ionic liquid-impregnated cationic metal-organic frameworks. 2020 , 45, 17813-17823	11

(2020-2020)

413	Synthesis of ordered microporous/macroporous MOF-808 through modulator-induced defect-formation, and surfactant self-assembly strategies. 2020 , 22, 12591-12604	9
412	Modulated synthesis and isoreticular expansion of Th-MOFs with record high pore volume and surface area for iodine adsorption. 2020 , 56, 6715-6718	40
411	Metal organic frameworks for biomass conversion. 2020 , 49, 3638-3687	91
410	Ordered Large-Pore MesoMOFs Based on Synergistic Effects of TriBlock Polymer and Hofmeister Ion. 2020 , 59, 14124-14128	20
409	Experimental Demonstration of Dynamic Temperature-Dependent Behavior of UiO-66 Metal-Organic Framework: Compaction of Hydroxylated and Dehydroxylated Forms of UiO-66 for High-Pressure Hydrogen Storage. 2020 , 12, 24883-24894	16
408	Formation of Local Defects and Mesopores in a Structure of UiO-66-NDC Metal-Organic Framework. 2020 , 14, 318-323	O
407	Analyzing the adsorptive behavior of Amoxicillin on four Zr-MOFs nanoparticles: Functional groups dependence of adsorption performance and mechanisms. 2020 , 268, 110630	30
406	Enhanced Oral Bioavailability of the Pharmacologically Active Lignin Magnolol via Zr-Based Metal Organic Framework Impregnation. 2020 , 12,	10
405	Influence of Water in the Synthesis of the Zirconium-Based Metal-Organic Framework UiO-66: Isolation and Reactivity of [ZrCl(OH)(DMF)]Cl. 2020 , 59, 7860-7868	11
404	Ordered Large-Pore MesoMOFs Based on Synergistic Effects of TriBlock Polymer and Hofmeister Ion. 2020 , 132, 14228-14232	7
403	Constructing high-efficiency facilitated transport pathways via embedding heterostructured Ag+@MOF/GO laminates into membranes for pervaporative desulfurization. 2020 , 245, 116858	7
402	Incorporation of a dioxo-molybdenum (VI) complex into a titanium-functionalized Zr(IV)-Based metal-organic framework. 2020 , 305, 110359	5
401	Colloidal crystal engineering with metal-organic framework nanoparticles and DNA. 2020, 11, 2495	45
400	Enhancement of crystallinity of imine-linked covalent organic frameworks via aldehyde modulators. 2020 , 11, 4464-4468	14
399	Tuning the Wettability of Metal-Organic Frameworks via Defect Engineering for Efficient Oil/Water Separation. 2020 , 12, 34413-34422	15
398	Two-dimensional metalBrganic framework nanosheets: synthetic methodologies and electrocatalytic applications. 2020 , 8, 15271-15301	40
397	Octahedral coreShell bimetallic catalysts M@UIO-67 (M = PtPd nanoparticles, PtPd nanocages): Metallic nanocages that enhanced CO2 conversion. 2020 , 19, 100609	13
396	Strongly visible light-absorbing metal-organic frameworks functionalized by cyclometalated ruthenium(ii) complexes 2020 , 10, 9052-9062	3

395	Metal-Organic Frameworks as a Versatile Platform for Proton Conductors. 2020, 32, e1907090	118
394	Encapsulation of Hydrophobic Guests within Metal©rganic Framework Capsules for Regulating Host©uest Interaction. 2020 , 32, 3553-3560	15
393	MOF-Based Membranes for Gas Separations. 2020 , 120, 8161-8266	255
392	Applications of Dynamic Covalent Chemistry Concept towards Tailored Covalent Organic Framework Nanomaterials: A Review. 2020 , 3, 6239-6269	40
391	Rapid defect engineering of UiO-67 (Zr) via microwave-assisted continuous-flow synthesis: Effects of modulator species and concentration on the toluene adsorption. 2020 , 306, 110405	25
390	Single-Site Cobalt-Catalyst Ligated with Pyridylimine-Functionalized Metal-Organic Frameworks for Arene and Benzylic Borylation. 2020 , 59, 10473-10481	16
389	Enhanced catalytic performance of UiO-66 via a sulfuric acid post-synthetic modification strategy with partial etching. 2020 , 602, 117733	2
388	Catalytic hydrolysis of Elactam antibiotics via MOF-derived MgO nanoparticles embedded on nanocast silica. 2020 , 738, 139742	6
387	Direct Imaging of Correlated Defect Nanodomains in a Metal-Organic Framework. 2020 , 142, 13081-13089	34
386	Ultra-Stable UiO-66 Involved Molecularly Imprinted Polymers for Specific and Sensitive Determination of Tyramine Based on Quartz Crystal Microbalance Technology. 2020 , 12,	5
385	Modulator-Induced Zr-MOFs Diversification and Investigation of Their Properties in Gas Sorption and Fe Ion Sensing. 2020 , 59, 2961-2968	16
384	Confinement-Driven Photophysics in Cages, Covalent-Organic Frameworks, Metal-Organic Frameworks, and DNA. 2020 , 142, 4769-4783	19
383	Enhanced dispersibility of metal-organic frameworks (MOFs) in the organic phase surface modification for TFN nanofiltration membrane preparation 2020 , 10, 4045-4057	31
382	Raman and FTIR spectroscopic study on the formation of the isomers MIL-68(Al) and MIL-53(Al) 2020 , 10, 7336-7348	24
381	The Chemistry of Reticular Framework Nanoparticles: MOF, ZIF, and COF Materials. 2020, 30, 1909062	79
380	Adsorption behavior of a metal organic framework of University in Oslo 67 and its application to the extraction of sulfonamides in meat samples. 2020 , 1619, 460949	15
379	Ultrafast and simultaneous removal of anionic and cationic dyes by nanodiamond/UiO-66 hybrid nanocomposite. 2020 , 247, 125882	23
378	Thin-film nanocomposite nanofiltration membrane with an ultrathin polyamide/UIO-66-NH2 active layer for high-performance desalination. 2020 , 600, 117874	52

(2020-2020)

377	Zirconium-Based Metal-Organic Frameworks for the Catalytic Hydrolysis of Organophosphorus Nerve Agents. 2020 , 12, 14702-14720		90
376	Single wavelength excited multi-channel nanoMOF sensor for simultaneous and ratiometric imaging of intracellular pH and O2. 2020 , 8, 3904-3913		10
375	Bioinspired chemistry at MOF secondary building units. 2020 , 11, 1728-1737		39
374	Efficient SF6/N2 separation at high pressures using a zirconium-based mesoporous metal o rganic framework. 2020 , 84, 179-184		12
373	Nanoscale Metal-Organic Frameworks: Synthesis, Biocompatibility, Imaging Applications, and Thermal and Dynamic Therapy of Tumors. 2020 , 30, 1908924		50
372	UiO-66 microcrystals catalyzed direct arylation of enol acetates and heteroarenes with aryl diazonium salts in water. 2020 , 34, e5482		3
371	HKUST-1-Supported Cerium Catalysts for CO Oxidation. 2020 , 10, 108		5
370	State-of-the-art of methane sensing materials: A review and perspectives. 2020 , 125, 115820		11
369	Facile Fabrication of Hierarchical MOF-Metal Nanoparticle Tandem Catalysts for the Synthesis of Bioactive Molecules. 2020 , 12, 23002-23009		11
368	Topology-Based Functionalization of Robust Chiral Zr-Based Metal-Organic Frameworks for Catalytic Enantioselective Hydrogenation. 2020 , 142, 9642-9652		27
367	Water-based routes for synthesis of metal-organic frameworks: A review. 2020 , 63, 667-685		103
366	Mechanochemical synthesis of MOFs. 2020 , 197-222		4
365	Size Control of the MOF NU-1000 through Manipulation of the Modulator/Linker Competition. 2020 , 20, 2965-2972		13
364	Modulated self-assembly of metal-organic frameworks. 2020 , 11, 4546-4562		70
363	Assessing Crystallisation Kinetics of Zr Metal-Organic Frameworks through Turbidity Measurements to Inform Rapid Microwave-Assisted Synthesis. <i>Chemistry - A European Journal</i> , 2020 , 26, 6910-6918	.8	11
362	Time-Resolved in Situ Polymorphic Transformation from One 12-Connected Zr-MOF to Another. 2020 , 2, 499-504		6
361	A series of highly stable porphyrinic metal@rganic frameworks based on iron@xo chain clusters: design, synthesis and biomimetic catalysis. 2020 , 8, 8376-8382		5
360	Two amino acid-templated metal phosphates: surfactant-thermal synthesis, water stability, and proton conduction. 2020 , 49, 5440-5444		7

359	Heterogeneous catalysts with programmable topologies generated by reticulation of organocatalysts into metal-organic frameworks: The case of squaramide. 2021 , 14, 458-465	4
358	Metal-Organic Framework Composites for Theragnostics and Drug Delivery Applications. 2021 , 16, e2000005	39
357	Quasi-solid electrolyte membranes with percolated metal®rganic frameworks for practical lithium-metal batteries. 2021 , 52, 354-360	11
356	Preparation of MOFs and MOFs derived materials and their catalytic application in air pollution: A review. 2021 , 375, 10-29	37
355	Kinetic and thermodynamic studies of neutral dye removal from water using zirconium metal-organic framework analogues. 2021 , 258, 123924	19
354	Solvothermal synthesis of Co-substituted phosphomolybdate acid encapsulated in the UiO-66 framework for catalytic application in olefin epoxidation. 2021 , 42, 356-366	13
353	Modification of the pore environment in UiO-type metal-organic framework toward boosting the separation of propane/propylene. 2021 , 403, 126428	11
352	Curcumin-loaded nanoMOFs@CMFP: A biological preserving paste with antibacterial properties and long-acting, controllable release. 2021 , 337, 127987	16
351	Synthesis of resilient hybrid hydrogels using UiO-66 MOFs and alginate (hydroMOFs) and their effect on mechanical and matter transport properties. 2021 , 251, 116977	9
350	New fast synthesis of MOF-801 for water and hydrogen storage: Modulator effect and recycling options. 2021 , 514, 120025	7
349	Defective UiO-67 for enhanced adsorption of dimethyl phthalate and phthalic acid. 2021, 321, 114477	10
348	Cellular evaluation of the metal-organic framework PCN-224 associated with inflammation and autophagy. 2021 , 70, 105019	2
347	Preparation of HPW@UiO-66 catalyst with defects and its application in oxidative desulfurization. 2021 , 404, 127062	16
346	Roles of defects and linker exchange in phosphate adsorption on UiO-66 type metal organic frameworks: Influence of phosphate concentration. 2021 , 405, 126681	21
345	Encapsulation of ultrafine Pd nanoparticles within the shallow layers of UiO-67 for highly efficient hydrogenation reactions. 2021 , 64, 109-115	5
344	Facile design of UiO-66-NH2@La(OH)3 composite with enhanced efficiency for phosphate removal. 2021 , 9, 104632	3
343	A defect-free MOF composite membrane prepared via in-situ binder-controlled restrained second-growth method for energy storage device. 2021 , 35, 687-694	10
342	Heterogeneous Organocatalysts for the Reduction of Carbon Dioxide with Silanes. 2021 , 14, 281-292	7

(2021-2021)

341	Insights into metal-organic frameworks-integrated membranes for desalination process: A review. 2021 , 500, 114867	26
340	Iron(iii)-bipyridine incorporated metal-organic frameworks for photocatalytic reduction of CO with improved performance. 2021 , 50, 384-390	15
339	Construction of crystal defect sites in UiO-66 for adsorption of dimethyl phthalate and phthalic acid. 2021 , 312, 110778	5
338	Improved dispersion performance and interfacial compatibility of covalent-grafted MOFs in mixed-matrix membranes for gas separation. 2021 , 2, 86-95	5
337	Atomistic Mechanisms of Thermal Transformation in a Zr-Metal Organic Framework, MIL-140C. 2021 , 12, 177-184	3
336	Evaluating the purification and activation of metal-organic frameworks from a technical and circular economy perspective. 2021 , 428, 213578	9
335	Design and fabrication of boric acid functionalized hierarchical porous metal-organic frameworks for specific removal of cis-diol-containing compounds from aqueous solution. 2021 , 535, 147714	11
334	Phosphomolybdic acid niched in the metal-organic framework UiO-66 with defects: An efficient and stable catalyst for oxidative desulfurization. 2021 , 212, 106629	28
333	Cyclodextrins: a new and effective class of co-modulators for aqueous zirconium-MOF syntheses. 2021 , 23, 2764-2772	0
332	Titanium-based metal-organic frameworks for photocatalytic applications. 2021 , 37-63	2
331	Mixed-Matrix Membranes. 2021, 87-113	0
330	Hydrophobic Fluorous Metal©rganic Framework Nanoadsorbent for Removal of Hazardous Wastes from Water. 2021 , 4, 1576-1585	12
329	Benefits of active site proximity in Cu@UiO-66 catalysts for efficient upgrading of ethanol to n-butanol. 2021 , 5, 4628-4636	0
328	Boron containing metal-organic framework for highly selective photocatalytic production of HO by promoting two-electron O reduction. 2021 , 8, 2842-2850	3
327	Constructing Strong Interfacial Interactions under Mild Conditions in MOF-Incorporated Mixed Matrix Membranes for Gas Separation. 2021 , 13, 3166-3174	12
326	Metal-organic framework photocatalysts for carbon dioxide reduction. 2021 , 389-420	
325	The key role of metal nanoparticle in metal organic frameworks of UiO family (MOFs) for the application of CO2 capture and heterogeneous catalysis. 2021 , 369-404	0
324	Amino acid-templated zinc phosphites: low-dimensional structures, fluorescence, and nonlinear optical properties. 2021 , 50, 5442-5445	1

323 Robust and Environmentally Friendly MOFs. **2021**, 1-31

322	Stimuli-responsive metal-organic framework nanoparticles for controlled drug delivery and medical applications. 2021 , 50, 4541-4563	52
321	Elucidating pore chemistry within metalBrganic frameworks via single crystal X-ray diffraction; from fundamental understanding to application. 2021 , 23, 2185-2195	1
320	Controlling the molecular diffusion in MOFs with the acidity of monocarboxylate modulators. 2021 , 50, 11291-11299	1
319	Effect of Functional Groups on the I2 Sorption Kinetics of Isostructural Metal®rganic Frameworks. 2021 , 42, 290-293	4
318	Application of hard and soft acid base theory to uncover the destructiveness of Lewis bases to UiO-66 type metal organic frameworks in aqueous solutions. 2021 , 9, 14868-14876	3
317	Template-free synthesis of hierarchical nanocrystal UiO-66 and its adsorption thermodynamics for n-heptane and methyl cyclohexane. 2021 , 23, 4549-4559	
316	Self-decontaminating nanofibrous filters for efficient particulate matter removal and airborne bacteria inactivation. 2021 , 8, 1081-1095	8
315	Beyond structural motifs: the frontier of actinide-containing metal-organic frameworks. 2021 , 12, 7214-7230	13
314	Diffusion driven nanostructuring of metalörganic frameworks (MOFs) for graphene hydrogel based tunable heterostructures: highly active electrocatalysts for efficient water oxidation. 2021 , 9, 7640-7649	7
313	MetalBrganic framework. 2021 , 279-387	2
312	Immobilization of Heterocycle-Appended Porphyrins on UiO-66 and UiO-67 MOFs. 2021 , 66, 193-201	3
311	Adsorptive Behavior of Prepared Metal-Organic Framework Composites on Phosphates in Aqueous Solutions. 2021 , 2021, 1-10	3
310	Small Molecules, Big Effects: Tuning Adsorption and Catalytic Properties of Metal©rganic Frameworks. 2021 , 33, 1444-1454	19
309	Polymer-Coated NH-UiO-66 for the Codelivery of DOX/pCRISPR. 2021 , 13, 10796-10811	31
308	Highly selective and high-performance osmotic power generators in subnanochannel membranes enabled by metal-organic frameworks. 2021 , 7,	54
307	Nanoscale Metal-Organic Frameworks as Fluorescence Sensors for Food Safety. 2021 , 10,	4
306	Composite fast scintillators based on high-Z fluorescent metalBrganic framework nanocrystals. 2021 , 15, 393-400	24

305	Functional UiO-66 Series Membranes with High Perm Selectivity of Monovalent and Bivalent Anions for Electrodialysis Applications. 2021 , 60, 4086-4096	3
304	The Structures of Metal©rganic Frameworks. 2021 , 283-309	
303	Zirconium-based metal-organic framework as an efficiently heterogeneous photocatalyst for oxidation of benzyl halides to aldehydes. 2021 , 506, 111542	1
302	High-Throughput Electron Diffraction Reveals a Hidden Novel Metal-Organic Framework for Electrocatalysis. 2021 , 60, 11391-11397	9
301	Immobilisation of L-proline onto mixed-linker zirconium MOFs for heterogeneous catalysis of the aldol reaction. 2021 , 161, 108315	5
300	The Structures of Metal©rganic Frameworks. 2021 , 342-389	
299	The Structures of Metal®rganic Frameworks. 2021 , 309-389	
298	Two-Dimensional Metal©rganic Frameworks and Covalent©rganic Frameworks for Electrocatalysis: Distinct Merits by the Reduced Dimension. 2003990	12
297	High-Throughput Electron Diffraction Reveals a Hidden Novel Metal Drganic Framework for Electrocatalysis. 2021 , 133, 11492-11498	0
296	The Modulating Effect of Ethanol on the Morphology of a Zr-Based Metal®rganic Framework at Room Temperature in a Cosolvent System. 2021 , 11, 434	2
295	Metal-organic frameworks as functional materials for implantable flexible biochemical sensors. 2021 , 14, 2981-3009	8
294	Metal © rganic Frameworks as Versatile Platforms for Organometallic Chemistry. 2021 , 9, 27	2
293	Modulator Induced Formation of a Neutral Framework Based on Trinuclear Cobalt(II) Clusters and Nitrilotribenzoic Acid: Synthesis, Magnetism, and Sorption Properties. 2021 , 2021, 2266-2273	1
292	Importance of Lattice Constants in QM/MM Calculations on Metal-Organic Frameworks. 2021 , 125, 5786-5793	О
291	Fe3O4 Magnetic Cores Coated with Metal©rganic Framework Shells as Collectable Composite Nanoparticle Vehicles for Sustained Release of the Pesticide Imidacloprid. 2021 , 4, 5864-5870	2
290	Recent Advances in Nucleic Acid Modulation for Functional Nanozyme. 2021 , 11, 638	5
289	PEGylated Mn containing MOF nanoparticles for potential immunotherapy of pancreatic cancer via manganese induced activation of anti-tumor immunity. 2021 , 42, 100409	4
288	Recent progress on water vapor adsorption equilibrium by metal-organic frameworks for heat transformation applications. 2021 , 124, 105242	12

287	Cooling performance of metal organic framework-water pairs in cascaded adsorption chillers. 2021 , 189, 116707	8
286	Near-Linear Controllable Synthesis of Mesoporosity in Hierarchical UiO-66 by Template-Free Nucleation-Competition. 2021 , 31, 2102868	5
285	Millimeter-Scale Zn(3-ptz) Metal-Organic Framework Single Crystals: Self-Assembly Mechanism and Growth Kinetics. 2021 , 6, 17289-17298	1
284	A Showcase of Green Chemistry: Sustainable Synthetic Approach of Zirconium-Based MOF Materials. <i>Chemistry - A European Journal</i> , 2021 , 27, 9967-9987	5
283	Cuboctahedral [In(EOH)(NO)(Imtb)]MOF with Atypical Pyramidal Nitrate Ion in SBU: Lewis Acid-Base Assisted Catalysis and Nanomolar Sensing of Picric Acid. 2021 , 60, 9238-9242	4
282	Bandgap Modulation in Zr-Based Metal-Organic Frameworks by Mixed-Linker Approach. 2021 , 60, 8908-8916	3
281	An amine-functionalized metal-organic framework and triple-helix molecular beacons as a sensing platform for miRNA ratiometric detection. 2021 , 228, 122199	6
2 80	Mechanistic Investigations into and Control of Anisotropic Metal-Organic Framework Growth. 2021 , 60, 10439-10450	1
279	New Structure Mass Tag based on Zr-NMOF for Multiparameter and Sensitive Single-Cell Interrogating in Mass Cytometry. 2021 , 33, e2008297	3
278	Magnetism and Luminescence of a MOF with Linear Mn Nodes Derived from an Emissive Terthiophene-Based Imidazole Linker. 2021 , 26,	1
277	25 Jahre retikulīle Chemie. 2021 , 133, 24142	О
276	Interaction of metal organic framework with fluorinated polymer on ceramic hollow fiber. 2021 , 555, 149674	2
275	Modulating Coordination Environment of Single-Atom Catalysts and Their Proximity to Photosensitive Units for Boosting MOF Photocatalysis. 2021 , 143, 12220-12229	58
274	MetalBrganic frameworks as recyclable catalysts for efficient esterification to synthesize traditional plasticizers. 2021 , 622, 118212	4
273	The Importance of Highly Connected Building Units in Reticular Chemistry: Thoughtful Design of Metal-Organic Frameworks. 2021 , 54, 3298-3312	16
272	Synthesis of High-Quality Mg-MOF-74 Thin Films Vapor-Assisted Crystallization. 2021 , 13, 35223-35231	3
271	Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material. 2021 , 145, 110854	13
270	An fcu Th-MOF Constructed from In Situ Coupling of Monovalent Ligands. 2021 , 13, 1332	2

269	Metal®rganic Framework UiO-68 and Its Derivatives with Sufficiently Good Properties and Performance Show Promising Prospects in Potential Industrial Applications. 2021 , 21, 4780-4804	5
268	25 Years of Reticular Chemistry. 2021 , 60, 23946-23974	50
267	Synthesis of two new Hf-MOFs with UiO-66 and CAU-22 structure employing 2,5-pyrazinedicarboxylic acid as linker molecule 2021 , 647, 2029	
266	Facile microwave synthesis of zirconium metal-organic framework thin films on gold and silicon and application to sensor functionalization. 2021 , 323, 111133	3
265	Metal-Organic Frameworks Featuring 18-Connected Nonanuclear Rare-Earth Oxygen Clusters and Cavities for Efficient CH/CO Separation. 2021 , 60, 13471-13478	5
264	MetalBrganic frameworks as catalysts for fructose conversion into 5-hydroxymethylfurfural: Catalyst screening and parametric study. e6419	3
263	Rational design of two novel metalBrganic frameworks as photocatalysts for degradation of organic dyes and their derived materials as electrocatalysts for OER. 2021 , 523, 120416	3
262	Formulation of Metal-Organic Framework-Based Drug Carriers by Controlled Coordination of Methoxy PEG Phosphate: Boosting Colloidal Stability and Redispersibility. 2021 , 143, 13557-13572	15
261	Biomedical Applicable Cellulose Fabric Modified with Zirconium-Based Metal-Organic Frameworks (Zr-MOFs). 2021 , 73, 2100120	3
260	An antioxidant system through conjugating superoxide dismutase onto metal-organic framework for cardiac repair 2022 , 10, 56-67	O
259	Water-Stable Two-Dimensional Metal Drganic Framework Nanostructures for Fe3+ Ions Detection. 2021 , 21, 5275-5282	7
258	Amino Group Functionalized Hf-Based Metal-Organic Framework for Knoevenagel-Doebner Condensation. 2021 , 2021, 3396-3403	2
257	Synthesis and application of [Zr-UiO-66-PDC-SOH]Cl MOFs to the preparation of dicyanomethylene pyridines via chemical and electrochemical methods. 2021 , 11, 16817	12
256	NH2-UiO-66 Metal©rganic Framework Nanoparticles for Hydroxide Ion Conductive Photoswitches. 2021 , 4, 8352-8359	3
255	State of the art and prospects of chemically and thermally aggressive membrane gas separations: Insights from polymer science. 2021 , 229, 123988	4
254	Defect Engineering in Metal-Organic Frameworks as Futuristic Options for Purification of Pollutants in an Aqueous Environment. 2021 , 9, 673738	3
253	Extra-framework zirconium clusters in metal organic framework DUT-67 controlled by the choice of the metal precursor. 2021 , 324, 111293	1
252	Performance and mechanism for U(VI) adsorption in aqueous solutions with amino-modified UiO-66. 1	2

251	Hierarchical-pore UiO-66 modified with Ag for Ecomplexation adsorption desulfurization. 2021 , 418, 126247	19
250	Designing of a novel polyvinylidene fluoride/TiO/UiO-66-NH membrane with photocatalytic antifouling properties using modified zirconium-based metal-organic framework. 2021 , 84, 2380-2393	
249	In Search of Effective UiO-66 Metal-Organic Frameworks for Artificial Kidney Application. 2021 , 13, 45149-4	I516 ρ
248	High-Throughput Discovery of a Rhombohedral Twelve-Connected Zirconium-Based Metal-Organic Framework with Ordered Terephthalate and Fumarate Linkers. 2021 ,	2
247	Metal-Organic Frameworks for Ammonia-Based Thermal Energy Storage. 2021 , 17, e2102689	1
246	High-throughput discovery of a rhombohedral twelve-connected zirconium-based metal-organic framework with ordered terephthalate and fumarate linkers.	2
245	Integration of mixed ligand into a multivariate metal-organic framework for enhanced UV-light photocatalytic degradation of Rhodamine B. 2021 ,	3
244	New route for the synthesis of Co-MOF from metal substrates. 2021 , 324, 111310	О
243	Metal-Organic Frameworks: from ambient green synthesis to applications.	6
242	In-situ growth UiO-66 on Bi2O3 to fabrication p-p heterojunction with enhanced visible-light degradation of tetracycline. 2021 , 302, 122353	7
241	Long-term stable metal organic framework (MOF) based mixed matrix membranes for ultrafiltration. 2021 , 635, 119339	11
240	Classification and role of modulators on crystal engineering of metal organic frameworks (MOFs). 2021 , 444, 214064	3
239	Cooperative defect tailoring: A promising protocol for exceeding performance limits of state-of-the-art MOF membranes. 2021 , 635, 119515	9
238	Flexible and hierarchical metal-organic framework composite as solid-phase media for facile affinity-tip fabrication to selectively enrich glycopeptides and phosphopeptides. 2021 , 233, 122576	5
237	Post-synthetic anchoring Fe(III) into a fcu-type Zr-MOF for the catalyzed hydrolysis of 5-hydroxylmethoxyfurfural. 2021 , 328, 111449	1
236	Hierarchical Pd/UiO-66-NH2-SiO2 nanofibrous catalytic membrane for highly efficient removal of p-nitrophenol. 2021 , 279, 119731	3
235	Recent advances of Zr based metal organic frameworks photocatalysis: Energy production and environmental remediation. 2021 , 448, 214177	20
234	Defects controlled by acid-modulators and water molecules enabled UiO-67 for exceptional toluene uptakes: An experimental and theoretical study. 2022 , 427, 131573	42

233	Metal-Organic Frameworks as Delivery Systems of Small Drugs and Biological Gases. 2021, 349-378	1
232	Cu/ZnOx@UiO-66 synthesized from a double solvent method as an efficient catalyst for CO2 hydrogenation to methanol. 2021 , 11, 4367-4375	4
231	When metal-organic framework mediated smart drug delivery meets gastrointestinal cancers. 2021 , 9, 3967-3982	5
230	The chemistry and applications of hafnium and cerium(iv) metal-organic frameworks. 2021 , 50, 4629-4683	41
229	Effect of Linker Distribution in the Photocatalytic Activity of Multivariate Mesoporous Crystals. 2021 , 143, 1798-1806	14
228	Continuous microfluidic synthesis of zirconium-based UiO-67 using a coiled flow invertor reactor. 2021 , 8, 101246	2
227	Inside/Outside: Post-Synthetic Modification of the Zr-Benzophenonedicarboxylate Metal-Organic Framework. <i>Chemistry - A European Journal</i> , 2020 , 26, 2222-2232	3
226	Fabrication of highly CO2/N2 selective polycrystalline UiO-66 membrane with two-dimensional transition metal dichalcogenides as zirconium source via tertiary solvothermal growth. 2020 , 610, 118275	15
225	Headspace solid-phase microextraction of semi-volatile ultraviolet filters based on a superhydrophobic metal-organic framework stable in high-temperature steam. 2020 , 219, 121175	13
224	Zr-MOFs based BiOBr/UiO-66 nanoplates with enhanced photocatalytic activity for tetracycline degradation under visible light irradiation. 2020 , 10, 125228	6
223	Modelling of porous metal-organic framework (MOF) materials used in catalysis. 2020, 1-24	1
222	Metastable Zr/Hf-MOFs: the hexagonal family of EHU-30 and their water-sorption induced structural transformation.	1
221	Thiol decorated defective metal Brganic frameworks embedded with palladium nanoparticles for efficient Cr(VI) reduction. 2021 , 8, 5093-5099	1
220	UiO-66-NH2 as an effective solid support for quinazoline derivatives for antibacterial agents against Gram-negative bacteria. 2021 , 45, 20386-20395	2
219	Large MOFs: synthesis strategies and applications where size matters. 2021 , 9, 25258-25271	O
218	Synthesis of the Metal-Organic Framework UiO-66 in the Form of Nanoparticles with a Modified Surface. 2021 , 15, 920-926	
217	Room-Temperature Hydrogen Adsorption via Spillover in Pt Nanoparticle-Decorated UiO-66 Nanoparticles: Implications for Hydrogen Storage. 2021 , 4, 11269-11280	6
216	Postsynthetic Modification of the Magnetic Zirconium-Organic Framework for Efficient and Rapid Solid-Phase Extraction of DNA. 2021 , 13, 50309-50318	2

215 Preparation, Characterization and Catalytic Performance of WO3/UiO-66 Catalyst. **2018**, 07, 78-85

214	Exotic Functions of Flexible Coordination Polymer Crystals. 2018 , 71, 30-38	
213	Ault bimetallic nanoparticle catalysts supported on UiO-67 for selective 1,3-butadiene hydrogenation. 2020 , 114, 220-227	7
212	Linear and nonlinear isotherm, kinetic and thermodynamic behavior of methyl orange adsorption using modulated Al2O3@UiO-66 via acetic acid. 2021 , 9, 106675	11
211	Fabricated Metal-Organic Frameworks (MOFs) as luminescent and electrochemical biosensors for cancer biomarkers detection. 2022 , 197, 113738	11
210	Synchronous Construction of the Hierarchical Pores and High Hydrophobicity of Stable Metal-Organic Frameworks through a Dual Coordination-Competitive Strategy. 2021 , 37, 13116-13124	
209	CHAPTER 9:Metal Organic Frameworks: From Material Chemistry to Catalytic Applications. 2020 , 235-303	2
208	UiO-66 and hcp UiO-66 Catalysts Synthesized from Ionic Liquids as Linker Precursors. 2021 , 10, 233-242	1
207	A continuous flow chemistry approach for the ultrafast and low-cost synthesis of MOF-808.	5
206	Conductive MOFs based on Thiol-functionalized Linkers: Challenges, Opportunities, and Recent Advances. 2022 , 450, 214235	7
205	Amine-functionalized UiO-66 as a fluorescent sensor for highly selective detecting volatile organic compound biomarker of lung cancer. 2022 , 305, 122623	2
204	Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment. 2022 , 451, 214262	27
203	Solvothermal Crystallization Kinetics and Control of Crystal Size Distribution of MOF-808 in a Continuous Flow Reactor. 2021 , 21, 6529-6536	5
202	Fabrication of amidoxime-appended UiO-66 for the efficient and rapid removal of U(VI) from aqueous solution. 2021 , 329, 111511	
201	Unveiling the Unique Roles of Metal Coordination and Modulator in the Polymorphism Control of Metal-Organic Frameworks. <i>Chemistry - A European Journal</i> , 2021 ,	2
200	Sulfonate-Grafted Metal®rganic Frameworks for Reductive Functionalization of CO2 to Benzimidazoles and N-Formamides. 13983-13999	3
199	Dye Adsorption on UiO-66: the Importance of Electrostatic Attraction Mechanism. 2020 , 42, 441-449	3
198	UiO-66-NH-(AO) MOFs with a New Ligand BDC-NH-(CN) for Efficient Extraction of Uranium from Seawater. 2021 , 13, 57831-57840	4

197	Adenosine-functionalized UiO-66-NH to efficiently remove Pb(II) and Cr(VI) from aqueous solution: Thermodynamics, kinetics and isothermal adsorption 2022 , 425, 127771	5
196	Ratiometric fluorescence sensing of UiO-66-NH2 toward hypochlorite with novel dual emission in vitro and in vivo. 2021 , 353, 131032	O
195	UiO-66 metalBrganic frameworks in water treatment: A critical review. 2021 , 125, 100904	13
194	One-pot synthesis of oxygen-vacancy-rich Cu-doped UiO-66 for collaborative adsorption and photocatalytic degradation of ciprofloxacin. 2021 , 815, 151962	4
193	Meniscus Guided Coating and Evaporative Crystallization of UiO-66 Metal Organic Framework Thin Films.	O
192	Exploring the Role of Cluster Formation in UiO Family Hf Metal-Organic Frameworks with X-ray Pair Distribution Function Analysis. 2021 , 143, 19668-19683	2
191	Pd-promoted heteropolyacid on mesoporous zirconia as a stable and bifunctional catalyst for oxidation of thiophenes. 2021 , 310, 122462	3
190	Two-step preparation of Keggin-PW@UIO-66 composite showing high-activity and long-life conversion of soybean oil into biodiesel 2021 , 11, 38016-38025	2
189	Facet-engineering of NH-UiO-66 with enhanced photocatalytic hydrogen production performance. 2021 ,	1
188	Missing-linker engineering of Eu (III)-doped UiO-MOF for enhanced detection of heavy metal ions. 2022 , 431, 134050	6
187	Facile fabrication of flower-like NH2-UIO-66/BiOCl Z-scheme heterojunctions with largely improved photocatalytic performance for removal of tetracycline under solar irradiation. 2022 , 899, 163324	2
186	Effects of regulator ratio and guest molecule diffusion on VOCs adsorption by defective UiO-67: Experimental and theoretical insights. 2022 , 433, 134510	16
185	Two-dimensional Zr/Hf-hydroxamate metal-organic frameworks 2022,	1
184	Defective UiO-66 toward boosted electrochemical nitrogen reduction to ammonia. 2022 , 409, 139988	1
183	Post-synthetic modification of UiO-66-OH toward porous liquids for CO2 capture. 2022 , 46, 2189-2197	O
182	Heterogeneity in a metalBrganic framework in situ guides engineering Co@CoO heterojunction for electrocatalytic H2 production in tandem with glucose oxidation.	5
181	Metal-organic frameworks (MOFs) based nanofiber architectures for the removal of heavy metal ions 2022 , 12, 1433-1450	12
180	ZnO@BiOI Heterojunction Derived from ZIF-8@BiOI for Enhanced Photocatalytic Activity under Visible Light 2022 , 15,	O

179	Vacancies in Metal Drganic Frameworks: Formation, Arrangement, and Functions. 2100203	O
178	Ionic Liquid Grafted NH 2-UiO-66 as Heterogeneous Solid Acid Catalyst for Biodiesel Production.	
177	Use of modulators and light to control crystallisation of a hydrogen bonded framework. 2021,	
176	One-pot, facile synthesis and fast separation of a UiO-66 composite by a metalloporphyrin using nanomagnetic materials for oxidation of olefins and allylic alcohols. 2022 , 46, 654-662	1
175	Solvent sieving separators implement dual electrolyte for high-voltage lithium-metal batteries. 1	
174	Organophosphorus chemical security from a peaceful perspective: sustainable practices in its synthesis, decontamination and detection. 2022 , 24, 585-613	4
173	Creating Cu(I)-decorated defective UiO-66(Zr) framework with high CO adsorption capacity and selectivity. 2022 , 283, 120237	2
172	Immobilization of Lewis Basic Sites into a Stable Ethane-Selective MOF Enabling One-Step Separation of Ethylene from a Ternary Mixture 2022 ,	11
171	A method of preparing mesoporous Zr-based MOF and application in enhancing immobilization of cellulase on carrier surface. 2022 , 180, 108342	1
170	In-situ growth of UiO-66-NH2 in porous polymeric substrates at room temperature for fabrication of mixed matrix membranes with fast molecular separation performance. 2022 , 435, 134804	4
169	Enhanced Solubility of Zirconium Oxo Clusters from Diacetoxyzirconium(IV) Oxide Aqueous Solution as Inorganic Extreme-Ultraviolet Photoresists.	2
168	A Novel Combining Strategy of Hierarchically Porous Metal Organic Framework (Hp-Mof) and Cellulose Aerogel to Improve the Co2 Absorption Performance.	
167	In-Situ Growth of Uio-66-Nh2 in Porous Polymeric Substrates at Room Temperature for Fabrication of Mixed Matrix Membranes with Fast Molecular Separation Performance.	
166	Theoretical Evaluation Of Adsorption Desalination Performance of Metal-Organic Frameworks Under Varying Senarios.	
165	An efficient modulated synthesis of zirconium metal-organic framework UiO-66 2022 , 12, 6083-6092	0
164	Understanding the structure activity relationships of different double atom catalysts from density functional calculations: three general rules for efficient CO oxidation.	Ο
163	Enhanced photocatalytic activity of TiO/UiO-67 under visible-light for aflatoxin B1 degradation 2022 , 12, 6676-6682	2
162	An efficient and recyclable Cu@UiO-67-BPY catalyst for the selective oxidation of alcohols and the epoxidation of olefins. 2022 , 46, 5839-5847	O

161	Defect-engineered MOF-801 for cycloaddition of CO2 with epoxides.		4
160	Efficient oral insulin delivery enabled by transferrin-coated acid-resistant metal-organic framework nanoparticles 2022 , 8, eabm4677		3
159	Defective NH2-UiO-66 (Zr) effectively converting CO2 into cyclic carbonate under ambient pressure, solvent-free and co-catalyst-free conditions. 2022 , 43, 222-229		О
158	A StructureActivity Study of Aromatic Acid Modulators for the Synthesis of Zirconium-Based MetalDrganic Frameworks.		4
157	Life History of the Metal®rganic Framework UiO-66 Catalyzing Methanol Dehydration: Synthesis, Activation, Deactivation, and Demise.		1
156	Magnetic UiO-66 functionalized with 4,4'-diamino-2,2'-stilbenedisulfonic as a highly recoverable acid catalyst for the synthesis of 4H-chromenes in green solvent 2022 , 12, 5531		
155	The Influence of UiO-66 Metal-Organic Framework Structural Defects on Adsorption and Separation of Hexane Isomers <i>Chemistry - A European Journal</i> , 2022 ,	4.8	О
154	Aquatic arsenic removal with a Zr-MOF constructed via in situ nitroso coupling. 2022 , 288, 120700		O
153	Designing functional terminals and vacancies into crystalline porous materials for iodine capture. 2022 , 437, 135432		O
152	Preparation of Ni@UiO-66 incorporated polyethersulfone (PES) membrane by magnetic field assisted strategy to improve permeability and photocatalytic self-cleaning ability 2022 , 618, 483-495		7
151	Zr6O8-porphyrinic MOFs as promising catalysts for the boosting photocatalytic degradation of contaminants in high salinity wastewater. 2022 , 440, 135883		3
150	Radical PolyMOFs: A Role for Ligand Dispersity in Enabling Crystallinity. 2021 , 33, 9508-9514		O
149	Proton Conductivity of Porous Zirconium-Organic Frameworks Filled with Protic Ionic Liquid. 2022 , 94, 128-134		
148	An Electrically Conductive Tetrathiafulvalene-Based Hydrogen-Bonded Organic Framework. 2022 , 4, 128-135		3
147	Bimetallic Ordered Large-Pore MesoMOFs for Simultaneous Enrichment and Dephosphorylation of Phosphopeptides. 2021 ,		2
146	Analysis of the Water Adsorption Isotherms in UiO-Based Metal@rganic Frameworks. 2022 , 126, 1107-1	114	4
145	Metal-organic frameworks in pursuit of size: the development of macroscopic single crystals 2022,		0
144	Molybdenum active sites implanted defective UiO-66(Zr) for cyclohexene epoxidation: Activity and kinetics investigation. 2022 , 524, 112312		

143	Modulated self-assembly of an interpenetrated MIL-53 Sc metal b rganic framework with excellent volumetric H2 storage and working capacity. 2022 , 24, 100887	
142	Effective defluoridation of water using nanosized UiO-66-NH encapsulated within macroreticular polystyrene anion exchanger 2022 , 134584	O
141	Table_1.pdf. 2019 ,	
140	High-yield halide-assisted synthesis of metal-organic framework UiO-based nanocarriers 2022,	O
139	Strategies for induced defects in metal-organic frameworks for enhancing adsorption and catalytic performance 2022 ,	2
138	Design and construction of MOF nanomaterials. 2022 , 35-65	1
137	Tuning the Photocatalytic Activity of Ti-Based Metal-Organic Frameworks through Modulator Defect-Engineered Functionalization 2022 ,	3
136	Modulated Synthesis of Self-Standing Covalent Organic Framework Films <i>Chemistry - A European Journal</i> , 2022 ,	O
135	Customized Synthesis: Solvent- and Acid-Assisted Topology Evolution in Zirconium-Tetracarboxylate Frameworks 2022 ,	O
134	Development of soluble UiO-66 to improve photocatalytic CO2 reduction. 2022 ,	2
133	A Versatile Route to Fabricate Metal/UiO-66 (Metal = Pt, Pd, Ru) with High Activity and Stability for the Catalytic Oxidation of Various Volatile Organic Compounds. 2022 , 136900	3
132	An Iodine-Functionalized Metal©rganic framework for catalytic alkene bromination. 2022 , 141, 109529	O
131	A comprehensive review on water remediation using UiO-66 MOFs and their derivatives 2022 , 302, 134845	2
130	Dynamic Surface Modification of Metal-Organic Framework Nanoparticles via Alkoxyamine Functional Groups 2022 ,	
129	Efficient Capture and Release of Carboxylated Benzisothiazolinone from UiO-66-NH2 for Antibacterial and Antifouling Applications. 2022 ,	
128	General Synthesis and Solution Processing of Metal-Organic Framework Nanofibers 2022, e2202504	3
127	ZIF-8 with cationic defects toward efficient 125I2 uptake for in vitro radiotherapy of colon cancer.	1
	Investigation of Molecular Mean Free Path, Molecular Kinetic Energy, and Molecular Polarity	

125	Metal organic frameworks as a versatile platform for the radioactive iodine capture: State of the art developments and future prospects. 2022 , 539, 121026	О
124	Ionic liquid grafted NH2-UiO-66 as heterogeneous solid acid catalyst for biodiesel production. 2022 , 324, 124537	Ο
123	Facile membrane preparation from colloidally stable metal-organic framework-polymer nanoparticles. 2022 , 657, 120669	Ο
122	Coordinating Zirconium Nodes in Metal-Organic Framework with Trifluoroacetic Acid for Enhanced Lewis Acid Catalysis.	
121	Introduction of Cascade Biocatalysis Systems into Metal Drganic Aerogel Nanostructures for Colorimetric Sensing of Glucose.	0
120	Electrochemical Applications of Metal®rganic Frameworks: Overview, Challenges, and Perspectives. 395-453	
119	Construction and application of base-stable MOFs: a critical review.	9
118	Recyclable Luminescent Sensor for Detecting Creatinine Based on a Lanthanide Ω rganic Framework.	2
117	NH3 Plasma Functionalization of UiO-66-NH2 for Highly Enhanced Selective Fluorescence Detection of U(VI) in Water.	3
116	Hetero-Interfaces on Cu Electrode for Enhanced Electrochemical Conversion of CO2 to Multi-Carbon Products. 2022 , 14,	2
115	Thin Films Based on Polyimide/Metal®rganic Framework Nanoparticle Composite Membranes with Substantially Improved Stability for CO2/CH4 Separation.	2
114	A novel combining strategy of cellulose aerogel and hierarchically porous metal organic frameworks (HP-MOFs) to improve the CO2 absorption performance.	1
113	Clusters with a Zr6O8 core. 2022 , 469, 214686	3
112	The chemistry of metalBrganic frameworks with face-centered cubic topology. 2022 , 468, 214644	1
111	Experimental and molecular simulation studies on adsorption and diffusion of elemental mercury in flexible UiO-66. 2022 , 325, 124989	1
110	Ultrasmall bimetallic Ru-Co alloy nanoclusters immobilized in amino-functionalized UiO-66 and N-doped carbonaceous zirconium oxide nanocomposite for hydrogen generation. 2022 , 920, 165893	Ο
109	Facile in-situ strategy for incorporating amphoteric dopamine into metal®rganic framework with optimized degradation capacity of nerve agents simulant. 2022 , 448, 137702	1
108	The uptake of metalBrganic frameworks: a journey into the cell. 2022 , 51, 6065-6086	5

107	Dual-emissive EY/UiO-66-NH2 as ratiometric probe for turn-on sensing and cell imaging of hypochlorite.	1
106	Tailoring Defect-Type and Ligand-Vacancy in Zr(IV) Frameworks for CO2 Photoreduction.	0
105	A Review on Metal- Organic Frameworks (MOFS), Synthesis, Activation, Characterisation, and Application. 2022 , 38, 490-516	
104	Phase Control in the Modulated Self-Assembly of Lanthanide MOFs of a Flexible Tetratopic Bis-Amide Linker.	
103	Synthesis of Hierarchical-Porous Fluorinated Metal®rganic Frameworks with Superior Toluene Adsorption Properties.	
102	Washable and Reusable Zr-Metal Drganic Framework Nanostructure/Polyacrylonitrile Fibrous Mats for Catalytic Degradation of Real Chemical Warfare Agents.	2
101	Synthesis and uranium adsorption studies of UiO-66 (Ce) based metal organic frameworks from aqueous solutions. 2022 , 341, 112108	1
100	Sodium dodecyl sulfate/C-UIO-66 regulation of nanofiltration membrane with pleated and thin polyamide layer structure. 2022 , 538, 115927	O
99	Theoretical evaluation of adsorption desalination performance of metal-organic frameworks under varying scenarios. 2022 , 215, 119000	0
98	The role of cobalt to control the synthesis of nanoscale Co/UiO-66 composite for photocatalysis.	
97	Efficient adsorptive removal of diclofenac sodium by acidified MIL101(Cr): optimizing the content of phosphotungstic acid (PTA), Flow loop thin film slurry flat plate reactor, Kinetic, thermodynamic and recycling studies.	
96	Controlling the Mobility of Ionic Liquids in the Nanopores of MOFs by Adjusting the Pore Size: From Conduction Collapse by Mutual Pore Blocking to Unhindered Ion Transport. 2200602	1
95	Screening of specific aptamers against chlorpromazine and construction of novel ratiometric fluorescent aptasensor based on metal-organic framework. 2022 , 123850	0
94	Catechol redox couple functionalized metal-organic framework UiO-66-NH2 as an efficient catalyst for chromium ion sensor in water samples. 2022 , 133731	1
93	Chemo-Biocascade Reactions Enabled by Metal@rganic Framework Micro-Nanoreactor. 2022 , 2022, 1-11	
92	MetalBrganic frameworks in chiral separation of pharmaceuticals.	1
91	Exploring the Defect Sites in UiO-66 by Decorating Platinum Nanoparticles for an Efficient Hydrogen Evolution Reaction.	
90	Bromo- and iodo-bridged building units in metal-organic frameworks for enhanced carrier transport and CO2 photoreduction by water vapor. 2022 , 13,	5

89	Electrospinning UiO-66-NH2/polyacrylonitrile fibers for filtration of VOCs. 2022, 343, 112167	O
88	The design of the highly active NH3-SCR catalyst Ce-W/UiO-66: Close coupling of active sites and acidic sites. 2022 , 300, 121864	1
87	Dispersive solid phase extraction of several pesticides from fruit juices using a hydrophobic metal organic framework prior to HPLC-MS/MS determination. 2022 , 114, 104788	2
86	Anionic metal-organic framework modified separator boosting efficient Li-ion transport. 2023 , 451, 138536	5
85	Ferrocene-boosting Zr-MOFs for efficient photocatalytic CO2 reduction: A trade-off between enhancing LMCT and frustrating Lewis acid. 2023 , 451, 138747	О
84	A new aminobenzoate-substituted s-triazin-based Zr metal organic frameworks as efficient catalyst for biodiesel production from microalgal lipids. 2022 , 238, 107487	О
83	Applications of novel composite UiO-66-NH2/Melamine with phosphorous acid tags as a porous and efficient catalyst for the preparation of novel spiro-oxindoles.	2
82	Zirconia-based nanomaterials: recent developments in synthesis and applications.	1
81	Constructing strategies for hierarchically porous MOFs with different pore sizes and applications in adsorption and catalysis.	О
80	Hierarchical large-pore MOFs templated from poly(ethylene oxide)-b-polystyrene diblock copolymer with tuneable pore sizes. 2022 , 58, 10028-10031	1
79	Detection of nitrophenols with a fluorescent Zr(iv) metalBrganic framework functionalized with benzylamino groups. 2022 , 10, 12307-12315	2
78	Efficient Visible-Light-Responsive Photocatalytic Fuel Cell with a ZnIn2S4/UiO-66/TiO2/Ti Photoanode for Simultaneous RhB Degradation and Electricity Generation. 2022 , 51, 6121-6133	1
77	Structural and Acidic Characteristics of Multiple Zr Defect Sites in UiO-66 Metal Drganic Frameworks. 9295-9302	О
76	Multi-topic Carboxylates as Versatile Building Blocks for the Design and Synthesis of Multifunctional MOFs Based on Alkaline Earth, Main Group and Transition Metals. 1-48	О
75	Effects of Acid Modulators on the Microwave-Assisted Synthesis of Cr/Sn Metal-Organic Frameworks. 2022 , 14, 3826	1
74	Defective Site Modulation Strategy for Preparing Single Atom-Dispersed Catalysts as Superior Chemiluminescent Signal Probes. 2022 , 94, 13533-13539	О
73	Hierarchical porous metal®rganic gels and derived materials: from fundamentals to potential applications. 2022 , 51, 9068-9126	О
72	Green synthesis of redox-active riboflavin integrated Ni-MOF and its versatile electrocatalytic applications towards oxygen evolution and reduction, and HMF oxidation reactions.	1

71	Fast Assembly of Metal Organic Framework UiO-66 in Acid-Base Tunable Deep Eutectic Solvent for the Acetalization of Benzaldehyde and Methanol. 2022 , 27, 7246	0
70	Synthesis and Catalytic Activity in the Hydrogenation Reaction of Palladium-Doped Metal-Organic Frameworks Based on Oxo-Centered Zirconium Complexes. 2022 , 6, 299	Ο
69	Visible-light-induced photocatalytic CO2 reduction over zirconium metal organic frameworks modified with different functional groups. 2022 ,	0
68	Constructing a long-range proton conduction bridge in sulfonated polyetheretherketone membranes with low DS by incorporating acid-base bi-functionalized metal organic frameworks. 2022 ,	O
67	Engineering of Metal Drganic Frameworks/Gelatin Hydrogel Composites Mediated by the Coacervation Process for the Capture of Acetic Acid.	2
66	Efficient adsorptive removal of diclofenac sodium by acidified MIL101(Cr): optimizing the content of phosphotungstic acid (PTA), Flow loop thin film slurry flat plate reactor, Kinetic, thermodynamic and recycling studies.	O
65	Acetic acid-assisted polyhydroxy acid modification of a zirconium-based MOF for synergistic CO2 fixation. 2022 , 10, 108739	0
64	Regulation of Porosity in MOFs: A Review on Tunable Scaffolds and Related Effects and Advances in Different Applications. 2022 , 10, 108836	2
63	Efficient As(V) and Hg(II) removal from acidic wastewater by a sulphydryl functionalized UIO-66-NH2. 2022 , 146, 110069	0
62	Enhanced regenerability of metal-organic frameworks adsorbents: Influence factors and improved methods. 2022 , 10, 108737	O
61	Onion-Like nanoparticles of the metal®rganic framework UiO-66 synthesized by sequential spike crystal growth. 2023 , 601, 126911	0
60	Tailoring molecular structures of UiO-66-NH2 for high performance H2O/N2 separation membranes: A synergistic effect of hydrophilic modification and defect engineering. 2023 , 665, 121096	O
59	Ti(IV) immobilized bisphosphate fructose-modified magnetic Zr metal organic framework (MOF) for specific enrichment of phosphopeptides. 2023 , 305, 122426	0
58	Biogas upgrading to natural gas pipeline quality using pressure swing adsorption for CO2 separation over UiO-66: Experimental and dynamic modelling assessment. 2023 , 453, 139774	O
57	Recent Advancement in Nanomaterials for Carbon Capture and Storage. 2022, 1-34	O
56	Atomically dispersed Pt inside MOFs for highly efficient photocatalytic hydrogen evolution.	O
55	Zirconium-based metal-organic frameworks for fluorescent sensing. 2023 , 476, 214930	4
54	Recent advances in metal-organic frameworks for X-ray detection.	O

53	Ultrafast magic angle spinning NMR characterization of pharmaceutical solid polymorphism: A posaconazole example. 2023 , 346, 107352	О
52	Defect engineering and post-synthetic reduction of Cu based metal b rganic frameworks towards efficient adsorption desulfurization. 2023 , 455, 140487	Ο
51	Metal-organic framework membranes for proton exchange membrane fuel cells: A mini-review. 2023 , 546, 121304	1
50	Bimetallic metal-organic frameworks for efficient visible-light-driven photocatalytic CO2 reduction and H2 generation. 2023 , 308, 122868	Ο
49	Solvothermal and hydrothermal methods for preparative solid-state chemistry. 2022,	O
48	Efficient adsorptive removal of diclofenac sodium by acidified MIL101(Cr): optimizing the content of phosphotungstic acid, flow loop thin film slurry flat plate reactor.	О
47	Solid-Phase Extraction of Organic Dyes on Mixed-Ligand Zr(IV) Metal©rganic Framework. 2022 , 12, 12219	0
46	Experimental study on adsorption removal of SO2 in flue gas by defective UiO-66. 2022 , 140687	2
45	Recent Advances in Metal Drganic-Framework-Based Nanocarriers for Controllable Drug Delivery and Release. 2022 , 14, 2790	О
44	Efficient Propylene/Ethylene Separation in Highly Porous Metal®rganic Frameworks. 2023, 16, 154	1
43	Production of ultrapure biomethane from stratified bed in non-adiabatic and non-isothermal plate pressure swing adsorption. 2022 ,	O
42	Nanoarchitectonics of metal B rganic frameworks having hydroxy group for adsorption, catalysis, and sensing. 2022 ,	Ο
41	MOF-Based Sorbents Used for the Removal of Hg2+ from Aqueous Solutions via a Sorption-Assisted Microfiltration. 2022 , 12, 1280	0
40	Effect of Modulation and Functionalization of UiO-66 Type MOFs on Their Surface Thermodynamic Properties and Lewis Acid B ase Behavior. 2023 , 13, 205	О
39	Acetic Acid-Modulated Room Temperature Synthesis of MIL-100 (Fe) Nanoparticles for Drug Delivery Applications. 2023 , 24, 1757	О
38	A Straightforward Method to Prepare MOF-Based Membranes via Direct Seeding of MOF-Polymer Hybrid Nanoparticles. 2023 , 13, 65	O
37	Enhancing Dynamic Spectral Diffusion in Metal©rganic Frameworks through Defect Engineering. 2023 , 145, 1072-1082	1
36	Principles of Design and Synthesis of Metal Derivatives from MOFs. 2210166	O

35	2D Metal-Organic Frameworks: Properties, Synthesis, and Applications in Electrochemical and Optical Biosensors. 2023 , 13, 123	O
34	A systematic study of a polymer-assisted carboxylate-based MOF synthesis: multiple roles of core cross-linked PMAA-b-PMMA nanoparticles.	О
33	Modulated synthesis of S-functionalized magnetic metal organic frameworks-808 for Hg (II) removal. 2023 , 387, 135859	О
32	Tuning Size and Properties of Zinc Ascorbate Metal-Organic Framework via Acid Modulation. 2023 , 28, 253	O
31	Nanosized metalBrganic frameworks as unique platforms for bioapplications.	O
30	Lignin and metalBrganic frameworks: mutual partners on the road to sustainability. 2023 , 11, 2595-2617	1
29	Tuning the Optical Properties of the Metal-organic Framework UiO-66 via Ligand Functionalisation.	O
28	Metal-organic layers: Preparation and applications.	O
27	A LDH Template Triggers the Formation of a Highly Compact MIL-53 Metal-Organic Framework Membrane for Acid Upgrading. 2023 , 135,	O
26	Titanium Sulfonate-Based Metal©rganic Frameworks.	O
25	Efficient adsorption and photocatalytic degradation of water emerging contaminants through nanoarchitectonics of pore sizes and optical properties of zirconium-based MOFs. 2023 , 451, 131113	O
24	Efficient water adsorption of UiO-66 at low pressure using confined growth and ligand exchange strategies. 2023 , 322, 123970	О
23	A novel strategy of post defect modification (PDM) for synthesizing hydrophobic FA-UiO-66-CF3 with enhanced n-hexane vapor adsorption capacity under humidity. 2023 , 356, 112595	O
22	Acid promoted activity of UiO-66 as an efficient adsorbent for boron removal from aqueous solution. 2023 , 123855	O
21	Sequential Sol-Gel Self-Assembly and Nonclassical Gel-Crystal Transformation of the Metal-Organic Framework Gel. 2206718	O
20	Metal Organic Framework Template-Guided Electrochemical Lithography.	О
19	Metal Organic Framework Template-Guided Electrochemical Lithography. Isomerization of DASA Molecules in the Nanopores of Metal®rganic Frameworks: What Determines Its Reversibility?**.	0

CITATION REPORT

17	Systematic Thiol Decoration in a Redox-Active UiO-66-(SH)2 Metal ® rganic Framework: A Case Study under Oxidative and Reductive Conditions. 2023 , 62, 3875-3885	О
16	Efficient modulation of a barium metalBrganic framework using amino acids. 2023, 79, 114-121	O
15	A LDH Template Triggers the Formation of a Highly Compact MIL-53 Metal-Organic Framework Membrane for Acid Upgrading. 2023 , 62,	О
14	Raman Mapping as a Tool for Evaluating I2 and I3Diffusion Over Single-Crystal UiO-67_NH2(M) (M = Zr, Zr/Hf, or Hf). 2023 , 127, 4618-4635	О
13	Cu-MOF-808 as a Sensing Material for Gaseous Hydrogen Sulfide. 2023 , 88,	0
12	Influence of Water Content on Speciation and Phase Formation in ZrBorphyrin-Based MOFs.	O
11	A generalizable strategy based on the rule of like dissolves likelto construct porous liquids with low viscosity for CO2 capture.	0
10	Metal-organic frameworks for fast electrochemical energy storage: Mechanisms and opportunities. 2023 , 9, 798-822	O
9	Metal-organic frameworks: Synthetic methods for industrial production.	0
8	Water-Stable etb-MOFs for Methane and Carbon Dioxide Storage. 2023 , 62, 5496-5504	O
7	Establishing gas transport highways in MOF-based mixed matrix membranes. 2023, 9,	0
6	Metal-Organic Framework Based Polymer Fibers: Review on Synthesis and Applications.	O
5	Understanding the Role of Synthetic Parameters in the Defect Engineering of UiO-66: A Review and Meta-analysis.	0
4	Harnessing Hafnium-Based Nanomaterials for Cancer Diagnosis and Therapy.	O
3	Selective adsorption of anionic and cationic dyes on mesoporous UiO-66 synthesized using a template-free sonochemistry method: kinetic, isotherm and thermodynamic studies. 2023 , 13, 12320-12343	0
2	Preparation of EDTA-modified UiO-66 for the selective removal of Cu(II) from water. 2023 , 324, 124063	O
1	Based on Z-scheme heterojunction CsPbBr 3 /UiO-66 composite photocatalytic degradation.	0