Anisotropic Growth of Titania onto Various Gold Nanos Understanding, and Optimization for Catalysis

Angewandte Chemie - International Edition 50, 10140-10143 DOI: 10.1002/anie.201104943

Citation Report

#	Article	IF	Citations
1	Shape-controlled self-assembly of colloidal nanoparticles. Chemical Science, 2012, 3, 2252.	3.7	14
2	Composite Metal–Oxide Nanocatalysts. ChemCatChem, 2012, 4, 1462-1484.	1.8	65
3	Bulk synthesis of Janus objects and asymmetric patchy particles. Journal of Materials Chemistry, 2012, 22, 15457.	6.7	121
4	In situ growth of Au nanoparticles on Fe2O3 nanocrystals for catalytic applications. CrystEngComm, 2012, 14, 7229.	1.3	48
5	Fabrication, properties and applications of Janus particles. Chemical Society Reviews, 2012, 41, 4356.	18.7	570
6	Janus Auâ€TiO ₂ Photocatalysts with Strong Localization of Plasmonic Nearâ€Fields for Efficient Visibleâ€Light Hydrogen Generation. Advanced Materials, 2012, 24, 2310-2314.	11.1	768
7	Titaniaâ€Coated Metal Nanostructures. Chemistry - an Asian Journal, 2012, 7, 2174-2184.	1.7	29
8	Bimetallic Platonic Janus Nanocrystals. Langmuir, 2013, 29, 12844-12851.	1.6	15
11	Direct observation of charge separation on Au localized surface plasmons. Energy and Environmental Science, 2013, 6, 3584.	15.6	70
12	Extension of the Stöber Method to Construct Mesoporous SiO ₂ and TiO ₂ Shells for Uniform Multifunctional Core–Shell Structures. Advanced Materials, 2013, 25, 142-149.	11.1	270
13	Gold nanorods and their plasmonic properties. Chemical Society Reviews, 2013, 42, 2679-2724.	18.7	1,576
14	Metallic Janus and Patchy Particles. Particle and Particle Systems Characterization, 2013, 30, 46-60.	1.2	81
15	TiO2 coated Au/Ag nanorods with enhanced photocatalytic activity under visible light irradiation. Nanoscale, 2013, 5, 4236.	2.8	176
16	Magnetically Recyclable Goldâ^'Magnetite Nanocatalysts for Reduction of Nitrophenols. ACS Symposium Series, 2013, , 291-305.	0.5	1
17	Gas-assisted growth of boron-doped nickel nanotube arrays: rapid synthesis, growth mechanisms, tunable magnetic properties, and super-efficient reduction of 4-nitrophenol. Nanoscale, 2013, 5, 3648.	2.8	35
18	Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications. Nano Today, 2013, 8, 168-197.	6.2	431
19	Goldâ€Nanorodâ€Photosensitized Titanium Dioxide with Wideâ€Range Visibleâ€Light Harvesting Based on Localized Surface Plasmon Resonance. Angewandte Chemie - International Edition, 2013, 52, 6689-6693.	7.2	244
20	Dual Surfaceâ€Functionalized Janus Nanocomposites of Polystyrene/Fe ₃ O ₄ @SiO ₂ for Simultaneous Tumor Cell Targeting and Stimulusâ€Induced Drug Release. Advanced Materials, 2013, 25, 3485-3489.	11.1	186

TITATION REDOD

#	Article	IF	CITATIONS
21	Asymmetric organic/metal(oxide) hybrid nanoparticles: synthesis and applications. Nanoscale, 2013, 5, 5151.	2.8	50
22	Electromagnetic interaction with two eccentric spheres. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, 783.	0.8	21
23	COLLOIDAL PREPARATION OF MONODISPERSE NANOCRYSTALS. Journal of Molecular and Engineering Materials, 2014, 02, 1430001.	0.9	6
24	Enhanced Photocatalytic Activity of Au/TiO ₂ Nanocomposite Prepared Using Bifunctional Bridging Linker. Advanced Functional Materials, 2014, 24, 907-915.	7.8	39
25	Strictly Biphasic Soft and Hard Janus Structures: Synthesis, Properties, and Applications. Angewandte Chemie - International Edition, 2014, 53, 5524-5538.	7.2	178
26	Characterization of interfacially electronic structures of gold–magnetite heterostructures using X-ray absorption spectroscopy. Journal of Colloid and Interface Science, 2014, 417, 325-332.	5.0	24
27	Metal/Semiconductor Hybrid Nanostructures for Plasmonâ€Enhanced Applications. Advanced Materials, 2014, 26, 5274-5309.	11.1	926
28	New Insight into the Role of Gold Nanoparticles in Au@CdS Core–Shell Nanostructures for Hydrogen Evolution. Small, 2014, 10, 4664-4670.	5.2	138
29	Self-Organization of Plasmonic and Excitonic Nanoparticles into Resonant Chiral Supraparticle Assemblies. Nano Letters, 2014, 14, 6799-6810.	4.5	61
30	Harnessing nonlinear rubber swelling for bulk synthesis of anisotropic hybrid nanoparticles. Journal of Materials Chemistry C, 2014, 2, 8745-8749.	2.7	10
31	Anisotropic growth of SiO2and TiO2mixed oxides onto Au nanostructures: highly thermal stability and enhanced reaction activity. RSC Advances, 2014, 4, 40078-40084.	1.7	11
32	Synthesis and aggregation behavior of hybrid amphiphilic titania Janus nanoparticles via surface-functionalization in Pickering emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 461, 142-150.	2.3	25
33	Enhancing visible-light photoelectrochemical water splitting through transition-metal doped TiO ₂ nanorod arrays. Journal of Materials Chemistry A, 2014, 2, 17820-17827.	5.2	157
34	(Gold core)/(titania shell) nanostructures for plasmon-enhanced photon harvesting and generation of reactive oxygen species. Energy and Environmental Science, 2014, 7, 3431-3438.	15.6	180
35	Plasmonic Janusâ€Composite Photocatalyst Comprising Au and C–TiO ₂ for Enhanced Aerobic Oxidation over a Broad Visible‣ight Range. Advanced Functional Materials, 2014, 24, 7754-7762.	7.8	83
36	Preparation of Gold/Silver/Titania Trilayered Nanorods and Their Photocatalytic Activities. Langmuir, 2014, 30, 922-928.	1.6	55
37	Janus Nanoparticles: Preparation, Characterization, and Applications. Chemistry - an Asian Journal, 2014, 9, 418-430.	1.7	86
38	Strategy for Nanoâ€Catalysis in a Fixedâ€Bed System. Advanced Materials, 2014, 26, 4151-4155.	11.1	95

#	Article	IF	CITATIONS
39	Pure monoclinic La1â^'Eu PO4 micro-/nano-structures: Fast synthesis, shape evolution and optical properties. Journal of Colloid and Interface Science, 2014, 428, 141-145.	5.0	10
40	Magnetic Pd/Fe3O4 Composite: Synthesis, Structure, and Catalytic Activity. Australian Journal of Chemistry, 2014, 67, 1387.	0.5	3
41	Seeded Growth of Metal-Doped Plasmonic Oxide Heterodimer Nanocrystals and Their Chemical Transformation. Journal of the American Chemical Society, 2014, 136, 5106-5115.	6.6	65
42	Streng zweiphasige weiche und harte Janus‧trukturen – Synthese, Eigenschaften und Anwendungen. Angewandte Chemie, 2014, 126, 5630-5644.	1.6	20
43	Modified hierarchical TiO ₂ NTs for enhanced gas phase photocatalytic activity. RSC Advances, 2015, 5, 57937-57942.	1.7	11
45	Enhanced catalytic activity with high thermal stability based on multiple Au cores in the interior of mesoporous Si–Al shells. RSC Advances, 2015, 5, 48187-48193.	1.7	18
46	Heterojunction Synergies in Titania‣upported Gold Photocatalysts: Implications for Solar Hydrogen Production. ChemSusChem, 2015, 8, 2551-2559.	3.6	24
47	Symmetry breaking polymerization: one-pot synthesis of plasmonic hybrid Janus nanoparticles. Nanoscale, 2015, 7, 10344-10349.	2.8	16
48	Synthesis of gold/rare-earth-vanadate core/shell nanorods for integrating plasmon resonance and fluorescence. Nano Research, 2015, 8, 2548-2561.	5.8	43
49	Interfaced heterogeneous nanodimers. National Science Review, 2015, 2, 329-348.	4.6	79
50	Mesoporous SnO ₂ -Coated Metal Nanoparticles with Enhanced Catalytic Efficiency. ACS Applied Materials & Interfaces, 2015, 7, 4844-4850.	4.0	52
51	Methods and Structures for Self-assembly of Anisotropic 1D Nanocrystals. Nanoscience and Technology, 2015, , 27-68.	1.5	1
52	Plasmon-enhanced light harvesting: applications in enhanced photocatalysis, photodynamic therapy and photovoltaics. RSC Advances, 2015, 5, 29076-29097.	1.7	196
53	Hybrid Hairy Janus Particles Decorated with Metallic Nanoparticles for Catalytic Applications. ACS Applied Materials & Interfaces, 2015, 7, 21218-21225.	4.0	102
54	UV-light aided photoelectrochemical synthesis of Au/TiO2 NTs for photoelectrocatalytic degradation of HPAM. RSC Advances, 2016, 6, 63711-63716.	1.7	21
55	Engineering the Absorption and Field Enhancement Properties of Au–TiO ₂ Nanohybrids <i>via</i> Whispering Gallery Mode Resonances for Photocatalytic Water Splitting. ACS Nano, 2016, 10, 4496-4503.	7.3	230
56	Surface- and Tip-Enhanced Raman Spectroscopy in Catalysis. Journal of Physical Chemistry Letters, 2016, 7, 1570-1584.	2.1	149
57	Structural Control of Hybrid Colloidal Particle Surface by Plasma-etching Treatment. Chemistry Letters, 2016, 45, 979-981.	0.7	13

#	Article	IF	CITATIONS
58	Shape Selective Au-TiO2 Nanocomposites for Photocatalytic Applications. Materials Today: Proceedings, 2016, 3, 1939-1948.	0.9	10
59	Asymmetric silica encapsulation toward colloidal Janus nanoparticles: a concave nanoreactor for template-synthesis of an electocatalytic hollow Pt nanodendrite. Nanoscale, 2016, 8, 14593-14599.	2.8	15
60	Clustered Au on TiO ₂ Snowman-Like Nanoassemblies for Photocatalytic Applications. ChemistrySelect, 2016, 1, 2963-2970.	0.7	28
62	A one-pot approach using recyclable template to prepare dual-responsive yolk–shell or Janus-like nanoparticles. Polymer Chemistry, 2016, 7, 7170-7176.	1.9	7
63	Anisotropic gold nanoparticles: Preparation and applications in catalysis. Chinese Journal of Catalysis, 2016, 37, 1619-1650.	6.9	107
64	Anisotropic Growth of TiO ₂ onto Gold Nanorods for Plasmon-Enhanced Hydrogen Production from Water Reduction. Journal of the American Chemical Society, 2016, 138, 1114-1117.	6.6	422
65	A simple approach to the synthesis of eccentric Au@SiO2 Janus nanostructures and their catalytic applications. Surface Science, 2016, 648, 313-318.	0.8	18
66	Energy transfer in plasmonic photocatalytic composites. Light: Science and Applications, 2016, 5, e16017-e16017.	7.7	462
67	Direct coating of mesoporous titania on CTAB-capped gold nanorods. Nanoscale, 2016, 8, 5417-5421.	2.8	26
68	Nanocomposite materials for photocatalytic degradation of pollutants. Catalysis Today, 2017, 281, 85-100.	2.2	161
69	Gelatinâ€Immobilized High Aspect Ratio Gold Nanocrystals: An Efficient Catalyst for 4â€Nitrophenol Reduction. Advances in Polymer Technology, 2017, 36, 301-308.	0.8	2
70	Spiky TiO ₂ /Au nanorod plasmonic photocatalysts with enhanced visible-light photocatalytic activity. Dalton Transactions, 2017, 46, 3887-3894.	1.6	42
71	Plasmon-Enhanced Fluorescence of Rare Earth Nanocrystals. International Journal of Behavioral and Consultation Therapy, 2017, , 15-37.	0.4	1
73	Anisotropic Metal Deposition on TiO ₂ Particles by Electricâ€Fieldâ€Induced Charge Separation. Angewandte Chemie - International Edition, 2017, 56, 11431-11435.	7.2	37
74	Visualization of submicron aerosol agglomeration by laser-induced fluorescence. Aerosol Science and Technology, 2017, 51, 1093-1098.	1.5	0
75	Precise synthesis of unique polydopamine/mesoporous calcium phosphate hollow Janus nanoparticles for imaging-guided chemo-photothermal synergistic therapy. Chemical Science, 2017, 8, 8067-8077.	3.7	125
76	Fabrication of Janus particles via a "photografting-from―method and gold photoreduction. Journal of Materials Science, 2017, 52, 13444-13454.	1.7	12
77	Anisotropic Metal Deposition on TiO ₂ Particles by Electricâ€Fieldâ€Induced Charge Separation. Angewandte Chemie, 2017, 129, 11589-11593.	1.6	4

#	Article	IF	CITATIONS
78	Regiospecific Nucleation and Growth of Silane Coupling Agent Droplets onto Colloidal Particles. Journal of Physical Chemistry C, 2017, 121, 19989-19998.	1.5	10
79	Preparation of Au@silica Janus nanosheets and their catalytic application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 613-620.	2.3	27
80	Preparation of Janus-type catalysts and their catalytic performance at emulsion interface. Journal of Colloid and Interface Science, 2017, 490, 357-364.	5.0	61
81	Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy and Environmental Science, 2017, 10, 402-434.	15.6	820
82	Synthesis and characterization of noble metal–titania core–shell nanostructures with tunable shell thickness. Beilstein Journal of Nanotechnology, 2017, 8, 2083-2093.	1.5	17
84	Synergistically Enhancing the Therapeutic Effect of Radiation Therapy with Radiation Activatable and Reactive Oxygen Species-Releasing Nanostructures. ACS Nano, 2018, 12, 4946-4958.	7.3	101
85	Thermally Stable TiO ₂ †and SiO ₂ â€Shellâ€Isolated Au Nanoparticles for In Situ Plasmonâ€Enhanced Raman Spectroscopy of Hydrogenation Catalysts. Chemistry - A European Journal, 2018, 24, 3733-3741.	1.7	44
86	Influence of dimensionality and crystallization on visible-light hydrogen production of Au@TiO2 core–shell photocatalysts based on localized surface plasmon resonance. Catalysis Science and Technology, 2018, 8, 1094-1103.	2.1	29
87	Conductive scanning probe microscopy of the semicontinuous gold film and its SERS enhancement toward two-step photo-induced charge transfer and effect of the supportive layer. Applied Surface Science, 2018, 441, 364-371.	3.1	10
88	Synthesis of hierarchically meso-macroporous TiO2/CdS heterojunction photocatalysts with excellent visible-light photocatalytic activity. Journal of Colloid and Interface Science, 2018, 512, 47-54.	5.0	77
89	Au-CeO2 Janus-like nanoparticles fabricated by block copolymer templates and their catalytic activity in the degradation of methyl orange. Applied Surface Science, 2018, 427, 771-778.	3.1	26
90	Plasmonic Pt nanoparticles—TiO2 hierarchical nano-architecture as a visible light photocatalyst for water splitting. Scientific Reports, 2018, 8, 16198.	1.6	51
91	Plasmonâ€Enhanced Solar Water Splitting on Metalâ€5emiconductor Photocatalysts. Chemistry - A European Journal, 2018, 24, 18322-18333.	1.7	57
92	Janus nanoarchitectures: From structural design to catalytic applications. Nano Today, 2018, 22, 62-82.	6.2	137
93	Spatial Isolation of Carbon and Silica in a Single Janus Mesoporous Nanoparticle with Tunable Amphiphilicity. Journal of the American Chemical Society, 2018, 140, 10009-10015.	6.6	120
94	Catalytic applications of Janus nanoparticles. , 2018, , 51-70.		6
95	Bovine serum albumin stabilized iron oxide and gold bimetallic heterodimers: Synthesis, characterization and Stereological study. Applied Organometallic Chemistry, 2019, 33, e5155.	1.7	13
96	Droplet-based microfluidic synthesis of (Au nanorod@Ag)–polyaniline Janus nanoparticles and their application as a surface-enhanced Raman scattering nanosensor for mercury detection. Analytical Methods, 2019, 11, 3966-3973.	1.3	30

#	Article	IF	CITATIONS
97	Janus particles: design, preparation, and biomedical applications. Materials Today Bio, 2019, 4, 100033.	2.6	161
98	Transparent nanomaterial-based solar cool coatings: Synthesis, morphologies and applications. Solar Energy, 2019, 193, 837-858.	2.9	35
99	Seeded-Growth Aqueous Synthesis of Colloidal-Stable Citrate-Stabilized Au/CeO ₂ Hybrid Nanocrystals: Heterodimers, Core@Shell, and Clover- and Star-Like Structures. Chemistry of Materials, 2019, 31, 7922-7932.	3.2	17
100	Gold nanorods-based hybrids with tailored structures for photoredox catalysis: fundamental science, materials design and applications. Nano Today, 2019, 27, 48-72.	6.2	104
101	Site-Selective Growth of Crystalline Ceria with Oxygen Vacancies on Gold Nanocrystals for Near-Infrared Nitrogen Photofixation. Journal of the American Chemical Society, 2019, 141, 5083-5086.	6.6	222
102	Compact Integration of TiO2 Nanoparticles into the Cross-Points of 3D Vertically Stacked Ag Nanowires for Plasmon-Enhanced Photocatalysis. Nanomaterials, 2019, 9, 468.	1.9	17
103	Hollow PdAg-CeO2 heterodimer nanocrystals as highly structured heterogeneous catalysts. Scientific Reports, 2019, 9, 18776.	1.6	13
104	Plasmonic noble metal@metal oxide core–shell nanoparticles for dye-sensitized solar cell applications. Sustainable Energy and Fuels, 2019, 3, 63-91.	2.5	48
105	Formation of the core-shell structures from bimetallic Janus-like nanoclusters under low-energy Ar and Ar13 impacts: A molecular dynamics study. Computational Materials Science, 2019, 159, 110-119.	1.4	5
106	Surface and Interface Control in Nanoparticle Catalysis. Chemical Reviews, 2020, 120, 1184-1249.	23.0	492
107	Nano-Gold Boosted Environmental Catalysis. , 2020, , 165-202.		1
108	Ultrathin Al2O3 passivation layer-wrapped Ag@TiO2 nanorods by atomic layer deposition for enhanced photoelectrochemical performance. Applied Surface Science, 2020, 499, 143971.	3.1	14
109	A materials perspective on radiative cooling structures for buildings. Solar Energy, 2020, 207, 247-269.	2.9	63
110	Plasmonic Metallic Heteromeric Nanostructures. Small, 2020, 16, e2002588.	5.2	33
111	Continuous Tuning of Au–Cu 2 O Janus Nanostructures for Efficient Charge Separation. Angewandte Chemie, 2020, 132, 22430-22435.	1.6	16
112	Continuous Tuning of Au–Cu ₂ O Janus Nanostructures for Efficient Charge Separation. Angewandte Chemie - International Edition, 2020, 59, 22246-22251.	7.2	69
113	Metal Oxide–Based Nanocomposites as Antimicrobial and Biomedical Agents. , 2020, , 287-323.		11
114	Compartmentalized bimetal cluster-poly(aniline) hybrid nanostructures for multiplexed detection of autoantibodies in early diagnosis of rheumatoid arthritis. Sensors and Actuators B: Chemical, 2020, 321, 128482.	4.0	12

#	Article	IF	CITATIONS
115	Bioinspired polydopamine coating as a versatile platform for synthesizing asymmetric Janus particles at an air-water interface. Applied Surface Science, 2020, 509, 145360.	3.1	26
116	Structure design, controllable synthesis, and application of metal-semiconductor heterostructure nanoparticles. Progress in Natural Science: Materials International, 2020, 30, 1-12.	1.8	36
117	Site-selective exposure of iron nanoparticles to achieve rapid interface enrichment for heavy metals. Chemical Communications, 2020, 56, 2795-2798.	2.2	13
118	Plasmonically Modulated Gold Nanostructures for Photothermal Ablation of Bacteria. Advanced Healthcare Materials, 2021, 10, e2001158.	3.9	46
119	Research Advances in the Synthesis, Application, Assembly, and Calculation of Janus Materials. Industrial & Engineering Chemistry Research, 2021, 60, 1071-1095.	1.8	57
120	Colored Janus Nanocylinders Driven by Supramolecular Coassembly of Donor and Acceptor Building Blocks. ACS Nano, 2021, 15, 2569-2577.	7.3	9
121	Janus Nanoparticles: From Fabrication to (Bio)Applications. ACS Nano, 2021, 15, 6147-6191.	7.3	140
122	Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chemical Reviews, 2021, 121, 13342-13453.	23.0	237
123	Shining photocatalysis by gold-based nanomaterials. Nano Energy, 2021, 88, 106306.	8.2	64
124	High-efficient, broad-spectrum and recyclable mesoporous TiO2 adsorbent for water treatment. Microporous and Mesoporous Materials, 2021, 325, 111345.	2.2	4
125	Nanomaterials and Nanocomposites for Energy-Efficient Building Envelopes. , 2021, , 2621-2648.		0
126	Heterostructures Built through Site elective Deposition on Anisotropic Plasmonic Metal Nanocrystals and Their Applications. Small Structures, 2021, 2, .	6.9	21
127	Nanomaterials and Nanocomposites for Energy-Efficient Building Envelopes. , 2020, , 1-28.		0
128	Recent advances in scalable synthesis and performance of Janus polymer/inorganic nanocomposites. Progress in Materials Science, 2022, 124, 100888.	16.0	47
129	Surfactant-free one-pot synthesis of Au-TiO2 core-shell nanostars by inter-cation redox reaction for photoelectrochemical water splitting. Energy Conversion and Management, 2022, 252, 115038.	4.4	16
130	Cu _{2â^'} <i>_x</i> S <i>_x</i> Capped AuCu Nanostars for Efficient Plasmonic Photothermal Tumor Treatment in the Second Nearâ€Infrared Window. Small, 2022, 18, e2103174.	5.2	12
131	Preparation, Diagnosis and Evaluation of Cyclic-Tryptophan Derivatives as Anti Breast cancer Agents. Biomedical and Pharmacology Journal, 2021, 14, 1983-1991.	0.2	1
132	Semiconducting MOF@ZnS Heterostructures for Photocatalytic Hydrogen Peroxide Production: Heterojunction Coverage Matters. Advanced Functional Materials, 2022, 32, .	7.8	59

#	Article	IF	CITATIONS
133	Recent advances in nanotechnology-based functional coatings for the built environment. Materials Today Advances, 2022, 15, 100270.	2.5	30
134	Plasmonic enhanced piezoelectric photoresponse with flexible PVDF@Ag-ZnO/Au composite nanofiber membranes. Optics Express, 2022, 30, 32509.	1.7	4
135	Toward Rational Design of Ordered Heterostructures for Energy and Environmental Sustainability: A Review. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	3
136	Engineering the Auâ€Cu ₂ O Crystalline Interfaces for Structural and Catalytic Integration. Small, 2023, 19, .	5.2	6