Visibleâ€Lightâ€Induced Oxidation/[3+2] Cycloaddition Photocatalytic Strategy To Construct Pyrrolo[2,1â€<i>a

Angewandte Chemie - International Edition 50, 7171-7175

DOI: 10.1002/anie.201102306

Citation Report

#	Article	IF	CITATIONS
1	Tandem Visible Light-Mediated Radical Cyclization–Divinylcyclopropane Rearrangement to Tricyclic Pyrrolidinones. Organic Letters, 2011, 13, 5468-5471.	2.4	114
2	An Efficient Route to Tetrahydroindeno[2,1- <i>b</i>)pyrroles via a Base-Promoted Reaction of (<i>E</i>)-2-Alkynylphenylchalcone with 2-Isocyanoacetate. Organic Letters, 2011, 13, 6402-6405.	2.4	47
3	Graphene oxide and Rose Bengal: oxidative C–H functionalisation of tertiary amines using visible light. Green Chemistry, 2011, 13, 3341.	4.6	268
5	Visible-light photoredox catalyzed oxidative Strecker reaction. Chemical Communications, 2011, 47, 12709.	2.2	214
6	A Photo Touch on Amines: New Synthetic Adventures of Nitrogen Radical Cations. Synlett, 2012, 23, 1851-1856.	1.0	68
7	Ethyl 2-phenyl-5,6-dihydropyrrolo[2,1-a]isoquinoline-3-carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o2021-o2021.	0.2	O
8	Photoredox Catalysis as an Efficient Tool for the Aerobic Oxidation of Amines and Alcohols: Bioinspired Demethylations and Condensations. ACS Catalysis, 2012, 2, 2810-2815.	5.5	137
9	Direct α-Arylation of α-Amino Carbonyl Compounds with Indoles Using Visible Light Photoredox Catalysis. Journal of Organic Chemistry, 2012, 77, 8705-8711.	1.7	160
10	Merging visible-light photoredox and Lewis acid catalysis for the functionalization and arylation of glycine derivatives and peptides. Chemical Communications, 2012, 48, 11960.	2.2	192
11	Generation of 3-(1H-pyrrol-3-yl)-1H-inden-1-ones via a tandem reaction of 1-(2-alkynylphenyl)-2-enone, 2-isocyanoacetate, and water. Chemical Communications, 2012, 48, 8568.	2.2	16
12	Shining Light on Photoredox Catalysis: Theory and Synthetic Applications. Journal of Organic Chemistry, 2012, 77, 1617-1622.	1.7	995
13	Friedel–Crafts Amidoalkylation via Thermolysis and Oxidative Photocatalysis. Journal of Organic Chemistry, 2012, 77, 4425-4431.	1.7	184
14	Direct sp ³ CH Amination of Nitrogenâ€Containing Benzoheterocycles Mediated by Visible‣ightâ€Photoredox Catalysts. Chemistry - A European Journal, 2012, 18, 16473-16477.	1.7	99
15	The Reaction of Tertiary Anilines with Maleimides under Visible Light Redox Catalysis. Advanced Synthesis and Catalysis, 2012, 354, 3561-3567.	2.1	131
16	Visible Lightâ€Induced Selective Generation of Radicals from Organoborates by Photoredox Catalysis. Advanced Synthesis and Catalysis, 2012, 354, 3414-3420.	2.1	212
17	[Ru(bpy)3]2+ aided photocatalytic synthesis of 2-arylpyridines via Hantzsch reaction under visible irradiation and oxygen atmosphere. Catalysis Science and Technology, 2012, 2, 1463.	2.1	33
18	Sunlight-driven synthesis of \hat{I}^3 -diketones via oxidative coupling of enamines with silyl enol ethers catalyzed by [Ru(bpy)3]2+. Chemical Communications, 2012, 48, 5355.	2.2	70
19	Oxidative cross-esterification of dithiolanes with alcohols through a cross-dehydrogenative coupling (CDC)/deprotection sequence. Organic and Biomolecular Chemistry, 2012, 10, 506-508.	1.5	17

#	ARTICLE	IF	CITATIONS
21	Visible light induced intermolecular [2+2]-cycloaddition reactions ofÂ3-ylideneoxindoles through energy transfer pathway. Tetrahedron, 2012, 68, 6914-6919.	1.0	142
22	Photoredox functionalization of C–H bonds adjacent to a nitrogen atom. Chemical Society Reviews, 2012, 41, 7687.	18.7	966
23	Direct CH Functionalization of Enamides and Enecarbamates by Using Visible‣ight Photoredox Catalysis. Chemistry - A European Journal, 2012, 18, 15158-15166.	1.7	170
26	Visible Light Photocatalysis of [2+2] Styrene Cycloadditions by Energy Transfer. Angewandte Chemie - International Edition, 2012, 51, 10329-10332.	7.2	337
27	A Visibleâ€Lightâ€Mediated Oxidative CN Bond Formation/Aromatization Cascade: Photocatalytic Preparation of <i>N</i> â€Arylindoles. Angewandte Chemie - International Edition, 2012, 51, 9562-9566.	7.2	240
28	Visible light-induced 3-sulfenylation of N-methylindoles with arylsulfonyl chlorides. Chemical Communications, 2012, 48, 11686.	2.2	163
29	A Palladium Iodide-Catalyzed Carbonylative Approach to Functionalized Pyrrole Derivatives. Journal of Organic Chemistry, 2012, 77, 4005-4016.	1.7	53
30	Reactivity Insight into Reductive Coupling and Aldol Cyclization of Chalcones by Visible Light Photocatalysis. Journal of Organic Chemistry, 2012, 77, 6302-6306.	1.7	63
31	Visible-light-mediated photochemistry: accelerating Ru(bpy)32+-catalyzed reactions in continuous flow. Chemical Science, 2012, 3, 1612.	3.7	82
32	Crossed intermolecular [2 + 2] cycloaddition of styrenes by visible light photocatalysis. Chemical Science, 2012, 3, 2807.	3.7	169
33	Application of Microflow Conditions to Visible Light Photoredox Catalysis. Organic Letters, 2012, 14, 2658-2661.	2.4	167
34	Room temperature synthesis of isoquino[2,1-a][3,1]oxazine and isoquino[2,1-a]pyrimidine derivatives via visible light photoredox catalysis. RSC Advances, 2012, 2, 4065.	1.7	111
35	Functionally Diverse Nucleophilic Trapping of Iminium Intermediates Generated Utilizing Visible Light. Organic Letters, 2012, 14, 94-97.	2.4	353
36	Metalâ€Free, Visible Lightâ€Induced Borylation of Aryldiazonium Salts: A Simple and Green Synthetic Route to Arylboronates. Advanced Synthesis and Catalysis, 2012, 354, 2625-2628.	2.1	142
37	Synthesis of Indolo [1,2- <i>a</i>)Quinoxalines via a Pd-Catalyzed Regioselective C–H Olefination/Cyclization Sequence. Organic Letters, 2012, 14, 740-743.	2.4	71
38	Visible light-induced oxidative coupling reaction: easy access to Mannich-type products. Chemical Communications, 2012, 48, 2337.	2.2	127
39	Visible-Light-Mediated Utilization of \hat{l}_{\pm} -Aminoalkyl Radicals: Addition to Electron-Deficient Alkenes Using Photoredox Catalysts. Journal of the American Chemical Society, 2012, 134, 3338-3341.	6.6	355
40	An unexpected silver triflate-catalyzed tandem reaction of Nâ \in 2-(2-alkynylbenzylidene)hydrazide with ketene. Chemical Communications, 2012, 48, 7049.	2.2	29

3

#	Article	IF	CITATIONS
41	Accessing the Synthetic Chemistry of Radical Ions. European Journal of Organic Chemistry, 2012, 2012, 3359-3372.	1.2	189
42	Recent advances in transition-metal catalyzed reactions using molecular oxygen as the oxidant. Chemical Society Reviews, 2012, 41, 3381.	18.7	1,107
43	N719 Dye-Sensitized Organophotocatalysis: Enantioselective Tandem Michael Addition/Oxyamination of Aldehydes. Organic Letters, 2012, 14, 3272-3275.	2.4	85
44	Development of Cascade Reactions for the Concise Construction of Diverse Heterocyclic Architectures. Accounts of Chemical Research, 2012, 45, 1278-1293.	7.6	502
45	Metal-Free, Visible-Light-Mediated Direct C–H Arylation of Heteroarenes with Aryl Diazonium Salts. Journal of the American Chemical Society, 2012, 134, 2958-2961.	6.6	701
46	A Scalable, Efficient Gold atalyzed Oxidative Phosphonation of <i>sp</i> ³ CH Bonds using Air as Sustainable Oxidant. Advanced Synthesis and Catalysis, 2012, 354, 1646-1650.	2.1	88
52	Visibleâ€Lightâ€Promoted Stereoselective Alkylation by Combining Heterogeneous Photocatalysis with Organocatalysis. Angewandte Chemie - International Edition, 2012, 51, 4062-4066.	7.2	252
53	Visibleâ€Light Photoredox Catalysis. Angewandte Chemie - International Edition, 2012, 51, 6828-6838.	7.2	1,973
54	Visibleâ€Light Photoredox Catalysis in Flow. Angewandte Chemie - International Edition, 2012, 51, 4144-4147.	7.2	307
55	Visibleâ€Lightâ€Promoted CC Bond Cleavage: Photocatalytic Generation of Iminium Ions and Amino Radicals. Angewandte Chemie - International Edition, 2012, 51, 8050-8053.	7.2	120
56	1â€Bromoâ€2â€(cyclopropylidenemethyl)benzene: A Useful Building Block in the Palladiumâ€Catalyzed Reaction of 2â€Alkynylbenzenamine. Chemistry - an Asian Journal, 2012, 7, 1691-1696.	1.7	10
57	Lightâ€Mediated Heterogeneous Cross Dehydrogenative Coupling Reactions: Metal Oxides as Efficient, Recyclable, Photoredox Catalysts in CC Bondâ€Forming Reactions. Chemistry - A European Journal, 2012, 18, 3478-3481.	1.7	213
58	Dual Catalysis: Combination of Photocatalytic Aerobic Oxidation and Metal Catalyzed Alkynylation Reactions—Cĩ£¿C Bond Formation Using Visible Light. Chemistry - A European Journal, 2012, 18, 5170-5174.	1.7	217
59	Aerobic Visible-Light Photoredox Radical C–H Functionalization: Catalytic Synthesis of 2-Substituted Benzothiazoles. Organic Letters, 2012, 14, 98-101.	2.4	254
60	Visible light photocatalysis of intramolecular radical cation Diels–Alder cycloadditions. Tetrahedron Letters, 2012, 53, 3073-3076.	0.7	56
61	Photoredoxâ€Initiated αâ€Alkylation of Imines through a Threeâ€Component Radical/Cationic Reaction. Chemistry - A European Journal, 2012, 18, 423-427.	1.7	114
62	Asymmetric Synthesis of Hexahydropyrroloâ€isoquinolines by an Organocatalytic Three omponent Reaction. Chemistry - A European Journal, 2012, 18, 2773-2776.	1.7	26
64	Intermolecular [3+2] Cycloaddition of Cyclopropylamines with Olefins by Visible‣ight Photocatalysis. Angewandte Chemie - International Edition, 2012, 51, 222-226.	7.2	254

#	ARTICLE	IF	CITATIONS
65	Highly Efficient Aerobic Oxidative Hydroxylation of Arylboronic Acids: Photoredox Catalysis Using Visible Light. Angewandte Chemie - International Edition, 2012, 51, 784-788.	7.2	442
66	Visible-light-induced hydroalkoxymethylation of electron-deficient alkenes by photoredox catalysis. Chemical Communications, 2013, 49, 7249.	2.2	100
67	Porous material-immobilized iodo-Bodipy as an efficient photocatalyst for photoredox catalytic organic reaction to prepare pyrrolo[2,1-a]isoquinoline. Chemical Communications, 2013, 49, 8689.	2.2	102
68	Visible-light photo-catalytic C–C bond cleavages: preparations ofÂN,N-dialkylformamides from 1,2-vicinal diamines. Tetrahedron, 2013, 69, 8129-8131.	1.0	25
69	Visible light-mediated oxidative quenching reaction to electron-rich epoxides: highly regioselective synthesis of \hat{l} ±-bromo (di)ketones and mechanism study. Organic and Biomolecular Chemistry, 2013, 11, 5787.	1.5	22
70	Desulfonylation of Tosyl Amides through Catalytic Photoredox Cleavage of NS Bond Under Visibleâ€Light Irradiation. Chemistry - an Asian Journal, 2013, 8, 1090-1094.	1.7	56
71	[4+3] Cycloaddition of in situ generated azoalkenes with C,N-cyclic azomethine imines: efficient synthesis of tetrazepine derivatives. Chemical Communications, 2013, 49, 7905.	2,2	106
72	Intermolecular Visibleâ€Light Photoredox Atomâ€Transfer Radical [3+2]â€Cyclization of 2â€(Iodomethyl)cyclopropaneâ€1,1â€dicarboxylate with Alkenes and Alkynes. Chemistry - A European Journal, 2013, 19, 11878-11882.	1.7	43
73	Cobalt-catalyzed oxidative [3 + 2] cycloaddition reactions: an efficient synthesis of pyrrolo- and imidazo-[2,1-a]isoquinolines. Organic and Biomolecular Chemistry, 2013, 11, 6691.	1.5	28
74	Amphiphilic methyleneamino synthon through organic dye catalyzed-decarboxylative aminoalkylation. Organic and Biomolecular Chemistry, 2013, 11, 5922.	1.5	100
75	Visible light photoredox atom transfer Ueno–Stork reaction. Organic and Biomolecular Chemistry, 2013, 11, 7088.	1.5	17
76	Iodo-Bodipys as visible-light-absorbing dual-functional photoredox catalysts for preparation of highly functionalized organic compounds by formation of C–C bonds via reductive and oxidative quenching catalytic mechanisms. RSC Advances, 2013, 3, 23377.	1.7	102
77	Photoredox-Mediated C–H Functionalization and Coupling of Tertiary Aliphatic Amines with 2-Chloroazoles. Organic Letters, 2013, 15, 5390-5393.	2.4	60
78	Visible-Light-Mediated Nucleophilic Addition of an α-Aminoalkyl Radical to Isocyanate or Isothiocyanate. Organic Letters, 2013, 15, 5646-5649.	2.4	80
79	Energyâ€Funnelingâ€Based Broadband Visibleâ€Lightâ€Absorbing Bodipy–C ₆₀ Triads and Tetrads Dual Functional Heavyâ€Atomâ€Free Organic Triplet Photosensitizers for Photocatalytic Organic Reactions. Chemistry - A European Journal, 2013, 19, 17472-17482.	s as 1.7	129
80	A Novel Tandem Sequence to Pyrrole Syntheses by 5- <i>endo</i> - <i>dig</i> Cyclization of 1,3-Enynes with Amines. Organic Letters, 2013, 15, 4996-4999.	2.4	65
81	Synthesis of H-pyrazolo [5,1-a] isoquinolines via a silver triflate-catalyzed tandem reaction of N \hat{a} \in 2-(2-alkynylbenzylidene) hydrazide with alcohol. Tetrahedron, 2013, 69, 9219-9223.	1.0	19
82	The Synthesis of Benzo[<i>f</i>]isoindole-1,3-dicarboxylates via an I ₂ -Induced 1,3-Dipolar Cycloaddition Reaction. Journal of Organic Chemistry, 2013, 78, 9424-9430.	1.7	28

#	Article	IF	CITATIONS
83	An unexpected silver triflate-catalyzed reaction of 2-alkynylbenzaldoxime in the presence of benzoyl chloride. RSC Advances, 2013, 3, 10666.	1.7	15
84	A visible-light-promoted aerobic C–H/C–N cleavage cascade to isoxazolidine skeletons. Chemical Science, 2013, 4, 1281.	3.7	104
85	Oxygen Switch in Visible-Light Photoredox Catalysis: Radical Additions and Cyclizations and Unexpected C–C-Bond Cleavage Reactions. Journal of the American Chemical Society, 2013, 135, 1823-1829.	6.6	376
86	Iron(II) Bromide-Catalyzed Intramolecular C–H Bond Amination [1,2]-Shift Tandem Reactions of Aryl Azides. Journal of the American Chemical Society, 2013, 135, 620-623.	6.6	154
87	Transition Metal-Mediated Synthesis of Monocyclic Aromatic Heterocycles. Chemical Reviews, 2013, 113, 3084-3213.	23.0	886
88	Oxidative C–C Bond Cleavage of Aldehydes via Visible-Light Photoredox Catalysis. Organic Letters, 2013, 15, 624-627.	2.4	95
89	Highly efficient visible-light-induced aerobic oxidative C–C, C–P coupling from C–H bonds catalyzed by a gold(iii)-complex. Organic and Biomolecular Chemistry, 2013, 11, 1606.	1.5	90
91	Tandem Cyclizations of 1,6â€Enynes with Arylsulfonyl Chlorides by Using Visibleâ€Light Photoredox Catalysis. Angewandte Chemie - International Edition, 2013, 52, 1535-1538.	7.2	164
92	Organic Dyeâ€Photocatalyzed Acylnitroso Ene Reaction. ChemCatChem, 2013, 5, 235-240.	1.8	61
93	Synthetic applications of photoredox catalysis with visible light. Organic and Biomolecular Chemistry, 2013, 11, 2387.	1.5	607
94	Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chemical Reviews, 2013, 113, 5322-5363.	23.0	7,226
95	Synthesis of β-Halo-pyrrolidinones through a Tandem Sequence of 5-Endo Halolactamization and C–H Oxidative Functionalization. Organic Letters, 2013, 15, 1382-1385.	2.4	20
96	CH Functionalization of Enamides: Synthesis of βâ€Amidovinyl Sulfones <i>via</i> Visible‣ight Photoredox Catalysis. Advanced Synthesis and Catalysis, 2013, 355, 809-813.	2.1	73
97	Triplet photosensitizers: from molecular design to applications. Chemical Society Reviews, 2013, 42, 5323.	18.7	1,234
98	Visible Light Photocatalysis: The Development of Photocatalytic Radical Ion Cycloadditions. ACS Catalysis, 2013, 3, 895-902.	5.5	258
99	Visible Light Photoredox-Catalyzed Multicomponent Reactions. Organic Letters, 2013, 15, 2092-2095.	2.4	135
100	A Highly Tunable Stereoselective Dimerization of Methyl Ketone: Efficient Synthesis of $\langle i \rangle E \langle j \rangle$ - and $\langle i \rangle Z \langle j \rangle$ -1,4-Enediones. Organic Letters, 2013, 15, 2148-2151.	2.4	50
101	Cooperative Nâ€Heterocyclic Carbene (NHC) and Ruthenium Redox Catalysis: Oxidative Esterification of Aldehydes with Air as the Terminal Oxidant. Advanced Synthesis and Catalysis, 2013, 355, 1098-1106.	2.1	118

#	Article	IF	Citations
102	C60-Bodipy dyad triplet photosensitizers as organic photocatalysts for photocatalytic tandem oxidation/[3+2] cycloaddition reactions to prepare pyrrolo[2,1-a]isoquinoline. Chemical Communications, 2013, 49, 3751.	2.2	97
103	Synthesis of 3,4-dihydropyrrolo[2,1-a]isoquinolines based on [3+2] cycloaddition initiated by Rh2(cap)4-catalyzed oxidation. Tetrahedron Letters, 2013, 54, 3015-3018.	0.7	32
104	A Highly Efficient and Selective Aerobic Crossâ€Dehydrogenativeâ€Coupling Reaction Photocatalyzed by a Platinum(II) Terpyridyl Complex. Chemistry - A European Journal, 2013, 19, 6443-6450.	1.7	144
105	Bodipy Derivatives as Organic Triplet Photosensitizers for Aerobic Photoorganocatalytic Oxidative Coupling of Amines and Photooxidation of Dihydroxylnaphthalenes. Journal of Organic Chemistry, 2013, 78, 5627-5637.	1.7	175
106	Generation of CF ₃ â€Containing Epoxides and Aziridines by Visibleâ€Lightâ€Driven Trifluoromethylation of Allylic Alcohols and Amines. Chemistry - A European Journal, 2013, 19, 6209-6212.	1.7	174
107	Direct synthesis of pyrrolo[2,1-a]isoquinolines by 1,3-dipolar cycloaddition of stabilized isoquinolinium N-ylides with vinyl sulfonium salts. Tetrahedron Letters, 2013, 54, 3834-3837.	0.7	34
108	New Approach to Oximes through Reduction of Nitro Compounds Enabled by Visible Light Photoredox Catalysis. Organic Letters, 2013, 15, 2660-2663.	2.4	61
109	Continuous Flow Organocatalytic C–H Functionalization and Cross-Dehydrogenative Coupling Reactions: Visible Light Organophotocatalysis for Multicomponent Reactions and C–C, C–P Bond Formations. ACS Catalysis, 2013, 3, 1676-1680.	5.5	176
110	Visible Lightâ€Induced Aerobic Oxyamidation of Indoles: A Photocatalytic Strategy for the Preparation of Tetrahydroâ€5 <i>H</i> à€Indolo[2,3â€ <i>b</i>]quinolinols. Advanced Synthesis and Catalysis, 2013, 355, 1483-1489.	2.1	46
111	Nucleophilic Attack of αâ€Aminoalkyl Radicals on CarbonNitrogen Triple Bonds to Construct αâ€Amino Nitriles: An Experimental and Computational Study. Chemistry - A European Journal, 2013, 19, 17917-17925.	1.7	37
112	Dehydrogenation and dehalogenation of amines in MALDIâ€TOF MS investigated by isotopic labeling. Journal of Mass Spectrometry, 2013, 48, 1318-1324.	0.7	7
113	The chemistry of amine radical cations produced by visible light photoredox catalysis. Beilstein Journal of Organic Chemistry, 2013, 9, 1977-2001.	1.3	349
115	Visibleâ€Lightâ€Induced Formal [3+2] Cycloaddition for Pyrrole Synthesis under Metalâ€Free Conditions. Angewandte Chemie, 2014, 126, 5759-5762.	1.6	65
116	Photoredox activation and anion binding catalysis in the dual catalytic enantioselective synthesis of \hat{l}^2 -amino esters. Chemical Science, 2014, 5, 112-116.	3.7	257
117	When C–H bond functionalization meets visible-light photoredox catalysis. Tetrahedron Letters, 2014, 55, 36-48.	0.7	209
118	Resonance energy transfer-enhanced rhodamine–styryl Bodipy dyad triplet photosensitizers. Journal of Materials Chemistry C, 2014, 2, 3900-3913.	2.7	50
120	Direct Arylation of Nâ∈Heteroarenes with Aryldiazonium Salts by Photoredox Catalysis in Water. Chemistry - A European Journal, 2014, 20, 2960-2965.	1.7	134
121	Solar Synthesis: Prospects in Visible Light Photocatalysis. Science, 2014, 343, 1239176.	6.0	2,043

#	Article	IF	CITATIONS
122	<i>De Novo</i> Synthesis of \hat{i}^3 , \hat{i}^3 â€Disubstituted Butyrolactones through a Visible Light Photocatalytic Arylation–Lactonization Sequence. Advanced Synthesis and Catalysis, 2014, 356, 2787-2793.	2.1	74
123	Visible-Light Photoredox-Catalyzed Synthesis of Nitrones: Unexpected Rate Acceleration by Water in the Synthesis of Isoxazolidines. Organic Letters, 2014, 16, 2872-2875.	2.4	61
124	Visibleâ€Lightâ€Induced CS Bond Activation: Facile Access to 1,4â€Diketones from βâ€Ketosulfones. Chemistr - A European Journal, 2014, 20, 3045-3049.	y _{1.7}	80
125	Visible-Light-Induced Redox Reactions by Ruthenium Photoredox Catalyst. Topics in Organometallic Chemistry, 2014, , 371-395.	0.7	12
126	Visibleâ€Lightâ€Induced Formal [3+2] Cycloaddition for Pyrrole Synthesis under Metalâ€Free Conditions. Angewandte Chemie - International Edition, 2014, 53, 5653-5656.	7.2	271
127	lodine-Catalyzed 1,3-Dipolar Cycloaddition/Oxidation/Aromatization Cascade with Hydrogen Peroxide as the Terminal Oxidant: General Route to Pyrrolo[2,1- <i>a</i>)]isoquinolines. Journal of Organic Chemistry, 2014, 79, 1084-1092.	1.7	74
128	Visible Lightâ€Induced γâ€Alkoxynitrile Synthesis <i>via</i> Three―Component Alkoxycyanomethylation of Alkenes. Advanced Synthesis and Catalysis, 2014, 356, 2873-2877.	2.1	85
129	A Unique 1,2-Acyl Migration for the Construction of Quaternary Carbon by Visible Light Irradiation of Platinum(II) Polypyridyl Complex and Molecular Oxygen. Organic Letters, 2014, 16, 5968-5971.	2.4	58
130	Synthesis of 2â€Substituted Indoles through Visible Lightâ€Induced Photocatalytic Cyclizations of Styryl Azides. Advanced Synthesis and Catalysis, 2014, 356, 2807-2812.	2.1	62
131	Metalâ€Free Intramolecular Carbocyanation of Alkenes: Catalytic Stereoselective Construction of Pyrrolo[2,1â€∢i>a⟨ i>]isoquinolines with Multiple Substituents. Chemistry - A European Journal, 2014, 20, 13876-13880.	1.7	14
132	Photodriven Transfer Hydrogenation of Olefins. European Journal of Organic Chemistry, 2014, 2014, 7347-7352.	1.2	15
133	A general, simple and green process to access pyrrolo[2,1-a]isoquinolines using a KI/TBHP catalytic system. RSC Advances, 2014, 4, 27250-27258.	1.7	28
134	Molecular iodine induced/1,3-dipolar cycloaddition/oxidative aromatization sequence: an efficient strategy to construct 2-substituted benzo[f]isoindole-1,3-dicarboxylates. RSC Advances, 2014, 4, 15526-15533.	1.7	11
135	Visible-light-initiated photo-oxidative cyclization of phenolic amidines using CBr4 – A metal free approach to 2-aminobenzoxazoles. RSC Advances, 2014, 4, 5815.	1.7	20
136	Photocatalytic Generation of Nâ€Centered Hydrazonyl Radicals:†A Strategy for Hydroamination of β,γâ€Unsaturated Hydrazones. Angewandte Chemie - International Edition, 2014, 53, 12163-12167.	7.2	270
137	Visible-light-induced photocatalytic formyloxylation reactions of 3-bromooxindoles with water and DMF: the scope and mechanism. Green Chemistry, 2014, 16, 3787-3795.	4.6	47
138	Cu ₂ O mesoporous spheres with a high internal diffusion capacity and improved catalytic ability for the aza-Henry reaction driven by visible light. Chemical Communications, 2014, 50, 14237-14240.	2.2	33
139	Photoredox catalytic organic reactions promoted with broadband visible light-absorbing Bodipy-iodo-aza-Bodipy triad photocatalyst. RSC Advances, 2014, 4, 36131-36139.	1.7	47

#	Article	IF	Citations
140	Phenazinium Salt-Catalyzed Aerobic Oxidative Amidation of Aromatic Aldehydes. Organic Letters, 2014, 16, 5812-5815.	2.4	98
141	Visible light-mediated dehydrogenative \hat{l}^2 -arylsulfonylation of tertiary aliphatic amines with arylsulfonyl chlorides. Organic and Biomolecular Chemistry, 2014, 12, 9337-9340.	1.5	27
142	Visible-light-induced direct C(sp3)â€"H difluromethylation of tetrahydroisoquinolines with the in situ generated difluoroenolates. Chemical Communications, 2014, 50, 7521-7523.	2.2	62
144	Visible light-induced intermolecular radical addition: facile access to \hat{I}^3 -ketoesters from alkyl-bromocarboxylates and enamines. Chemical Communications, 2014, 50, 13547-13550.	2.2	33
145	Photocatalytic aerobic oxidation/semipinacol rearrangement sequence: a concise route to the core of pseudoindoxyl alkaloids. Tetrahedron Letters, 2014, 55, 4648-4652.	0.7	93
146	Photocatalytic Synthesis of Dihydrobenzofurans by Oxidative [3+2] Cycloaddition of Phenols. Angewandte Chemie - International Edition, 2014, 53, 11056-11059.	7.2	107
147	Metal-Free Visible-Light Induced Cross-Dehydrogenative Coupling of Tertiary Amines with Diazo Compounds. Organic Letters, 2014, 16, 4232-4235.	2.4	104
148	Autoâ€Oxidative Coupling of Glycine Derivatives. Angewandte Chemie - International Edition, 2014, 53, 13544-13547.	7.2	162
149	A Cascade Crossâ€Coupling and <i>in Situ</i> i> Hydrogenation Reaction by Visible Light Catalysis. Advanced Synthesis and Catalysis, 2014, 356, 2846-2852.	2.1	50
151	De Novo Synthesis of Imidazoles by Visibleâ€Lightâ€Induced Photocatalytic Aerobic Oxidation/[3+2] Cycloaddition/Aromatization Cascade. Chemistry - an Asian Journal, 2014, 9, 2432-2435.	1.7	56
152	The Coupling of Tertiary Amines with Acrylate Derivatives via Visible-Light Photoredox Catalysis. Journal of Organic Chemistry, 2014, 79, 7212-7219.	1.7	79
153	Hydroaminomethylation of Olefins with Aminomethyltrifluoroborate by Photoredox Catalysis. Advanced Synthesis and Catalysis, 2014, 356, 2749-2755.	2.1	108
154	Direct sp3 Câ€"H acroleination of N-aryl-tetrahydroisoquinolines by merging photoredox catalysis with nucleophilic catalysis. Organic and Biomolecular Chemistry, 2014, 12, 2037-2040.	1.5	60
155	7.08 Oxidation Adjacent to Nitrogen. , 2014, , 242-261.		1
156	Visible-light radical reaction designed by Ru- and Ir-based photoredox catalysis. Inorganic Chemistry Frontiers, 2014, 1, 562-576.	3.0	329
157	Carbon Nitrideâ€Catalyzed Photoredox Sakurai Reactions and Allylborations. Advanced Synthesis and Catalysis, 2014, 356, 2825-2829.	2.1	29
158	Visible-light photoredox catalysis enabled bromination of phenols and alkenes. Beilstein Journal of Organic Chemistry, 2014, 10, 622-627.	1.3	37
159	Visible-light photoredox catalyzed synthesis of pyrroloisoquinolines via organocatalytic oxidation/[3 + 2] cycloaddition/oxidative aromatization reaction cascade with Rose Bengal. Beilstein Journal of Organic Chemistry, 2014, 10, 1233-1238.	1.3	76

#	Article	IF	CITATIONS
162	Formation of Carbonyl Compounds from Amines through Oxidative Ci£¿N Bond Cleavage using Visible Light Photocatalysis and Applications to ⟨i⟩N⟨/i⟩â€PMBâ€Amide Deprotection. Advanced Synthesis and Catalysis, 2015, 357, 2187-2192.	2.1	42
163	Visibleâ€Lightâ€Induced Click Chemistry. Angewandte Chemie - International Edition, 2015, 54, 10284-10288.	7.2	62
165	Cu/Fe $\hat{a} \in \mathbb{C}$ ocatalyzed Formation of $\hat{l}^2 \hat{a} \in \mathbb{K}$ etophosphonates by a Domino Knoevenagel $\hat{a} \in \mathbb{C}$ Decarboxylation $\hat{a} \in \mathbb{C}$ Oxyphosphorylation Sequence from Aromatic Aldehydes and H $\hat{a} \in \mathbb{P}$ hosphonates. Chemistry - A European Journal, 2015, 21, 10654-10659.	1.7	41
167	Visibleâ€Light Photoredox Catalysis: Direct Synthesis of Sulfonated Oxindoles from <i>N</i> à€Arylacrylamides and Arylsulfinic Acids by Means of a Cascade Câ^S/Câ^C Formation Process. Chemistry - an Asian Journal, 2015, 10, 1919-1925.	1.7	77
168	Eosin Y-catalyzed visible-light-mediated aerobic oxidative cyclization of $\langle i \rangle N \langle i \rangle, \langle i \rangle N \langle i \rangle$ -dimethylanilines with maleimides. Beilstein Journal of Organic Chemistry, 2015, 11, 425-430.	1.3	60
170	Room Temperature CP Bond Formation Enabled by Merging Nickel Catalysis and Visibleâ€Lightâ€Induced Photoredox Catalysis. Chemistry - A European Journal, 2015, 21, 4962-4965.	1.7	170
171	Catalytic amounts of CBr4 mediated dehydrogenative coupling of isochromans with aromatic ketones. Chemical Communications, 2015, 51, 4708-4711.	2.2	45
172	Visibleâ€Lightâ€Photocatalyzed Metalâ€Free C–H Heteroarylation of Heteroarenes at Room Temperature: A Sustainable Synthesis of Biheteroaryls. European Journal of Organic Chemistry, 2015, 2015, 1727-1734.	1.2	60
174	Photoredox Removal of <i>p</i> pi>â€Methoxybenzyl Ether Protecting Group with Hydrogen Peroxide as Terminal Oxidant. Advanced Synthesis and Catalysis, 2015, 357, 589-593.	2.1	22
175	Carbon radical addition–cyclization reaction induced by ruthenium-photocatalyst under visible light irradiation. Tetrahedron, 2015, 71, 773-781.	1.0	24
176	[3+2] Cycloaddition/Oxidative Aromatization Sequence via Photoredox Catalysis: One-Pot Synthesis of Oxazoles from $2 < i > H < /i > -Azirines$ and Aldehydes. Organic Letters, 2015, 17, 4070-4073.	2.4	120
177	Boron chemistry in a new light. Chemical Science, 2015, 6, 5366-5382.	3.7	131
178	Ascorbic Acid Promoted Oxidative Arylation of Vinyl Arenes to 2-Aryl Acetophenones without Irradiation at Room Temperature under Aerobic Conditions. Journal of Organic Chemistry, 2015, 80, 7739-7745.	1.7	28
179	Application of singlet energy transfer in triplet state formation: broadband visible light-absorbing triplet photosensitizers, molecular structure design, related photophysics and applications. Journal of Materials Chemistry C, 2015, 3, 8735-8759.	2.7	42
180	The effect of heavy atom to two photon absorption properties and intersystem crossing mechanism in aza-boron-dipyrromethene compounds. Dyes and Pigments, 2015, 122, 286-294.	2.0	32
181	Visible light mediated efficient oxidative benzylic sp ³ Câ€"H to ketone derivatives obtained under mild conditions using O ₂ . Chemical Communications, 2015, 51, 14046-14049.	2.2	103
182	Visible light photoredox catalysis: regioselective radical addition of aminoalkyl radicals to 2,3-allenoates. RSC Advances, 2015, 5, 55290-55294.	1.7	30
183	Visible-Light-Promoted Vinylation of Tetrahydrofuran with Alkynes through Direct C–H Bond Functionalization. Organic Letters, 2015, 17, 2522-2525.	2.4	100

#	Article	IF	CITATIONS
184	TBHP mediated oxidation of N-2-alkynylphenyl \hat{l}_{\pm} -amino carbonyl compounds to oxalic amides using visible light photoredox catalysis and their application in the synthesis of 2-aryl indoles. RSC Advances, 2015, 5, 17383-17388.	1.7	10
185	Cross dehydrogenative coupling (CDC) of aldehydes with N-hydroxyimides by visible light photoredox catalysis. RSC Advances, 2015, 5, 44928-44932.	1.7	37
186	Amine Functionalization via Oxidative Photoredox Catalysis: Methodology Development and Complex Molecule Synthesis. Accounts of Chemical Research, 2015, 48, 1474-1484.	7.6	562
187	Merger of Visible Light Induced Oxidation and Enantioselective Alkylation with a Chiral Iridium Catalyst. Chemistry - A European Journal, 2015, 21, 7355-7359.	1.7	78
188	Visible-Light-Promoted Photoredox Syntheses of $\hat{l}\pm,\hat{l}^2$ -Epoxy Ketones from Styrenes and Benzaldehydes under Alkaline Conditions. Organic Letters, 2015, 17, 5260-5263.	2.4	74
189	Visible-light photoredox catalysis: direct synthesis of fused \hat{l}^2 -carbolines through an oxidation/[3 + 2] cycloaddition/oxidative aromatization reaction cascade in batch and flow microreactors. Organic Chemistry Frontiers, 2015, 2, 1308-1312.	2.3	55
190	Aerobic Asymmetric Dehydrogenative Crossâ€Coupling between Two CH Groups Catalyzed by a Chiralâ€atâ€Metal Rhodium Complex. Angewandte Chemie - International Edition, 2015, 54, 13045-13048.	7.2	135
191	The triplet excited state of Bodipy: formation, modulation and application. Chemical Society Reviews, 2015, 44, 8904-8939.	18.7	665
192	Advances in visible light-mediated oxidative coupling reactions. Chinese Journal of Catalysis, 2015, 36, 1428-1439.	6.9	40
193	Phototandem Catalysis: Efficient Synthesis of 3â€Esterâ€3â€hydroxyâ€2â€oxindoles by a Visible Lightâ€Induced Cyclization of Diazoamides through an Aerobic Oxidation Sequence. Chemistry - an Asian Journal, 2015, 10, 124-128.	1.7	39
194	Metalâ€Free, Roomâ€Temperature, Radical Alkoxycarbonylation of Aryldiazonium Salts through Visibleâ€Light Photoredox Catalysis. Angewandte Chemie - International Edition, 2015, 54, 2265-2269.	7.2	163
195	Redoxâ€Neutral αâ€Allylation of Amines by Combining Palladium Catalysis and Visible‣ight Photoredox Catalysis. Angewandte Chemie - International Edition, 2015, 54, 1625-1628.	7.2	241
197	Visible-light photocatalyzed synthesis of 2-aryl N -methylpyrroles, furans and thiophenes utilizing arylsulfonyl chlorides as a coupling partner. Tetrahedron, 2016, 72, 2521-2526.	1.0	36
198	Visible Light Driven Photocascade Catalysis: Ru(bpy) ₃ (PF ₆) ₂ /TBHP-Mediated Synthesis of Fused β-Carbolines in Batch and Flow Microreactors. Organic Letters, 2016, 18, 2974-2977.	2.4	65
199	Sequential Photo-oxidative $[3 + 2]$ Cycloaddition/Oxidative Aromatization Reactions for the Synthesis of Pyrrolo $[2,1-\langle i\rangle a\langle i\rangle]$ isoquinolines Using Molecular Oxygen as the Terminal Oxidant. Journal of Organic Chemistry, 2016, 81, 7262-7270.	1.7	70
200	Visible-light-promoted syntheses of \hat{l}^2 -keto sulfones from alkynes and sulfonylhydrazides. Organic and Biomolecular Chemistry, 2016, 14, 4205-4209.	1.5	65
201	Visible light mediated aerobic radical C–H phosphorization toward arylphosphonates. Organic Chemistry Frontiers, 2016, 3, 749-752.	2.3	73
202	Enhancement of two photon absorption properties and intersystem crossing by charge transfer in pentaaryl boron-dipyrromethene (BODIPY) derivatives. Physical Chemistry Chemical Physics, 2016, 18, 13546-13553.	1.3	35

#	Article	IF	CITATIONS
203	Catching \hat{l}_{\pm} -aminoalkyl radicals: cyclization between tertiary alkylanilines and alkenes. Tetrahedron, 2016, 72, 7715-7721.	1.0	31
204	Visible Light Initiated Hantzsch Synthesis of 2,5-Diaryl-Substituted Pyrroles at Ambient Conditions. Organic Letters, 2016, 18, 2479-2482.	2.4	68
205	Photocatalysis in organic and polymer synthesis. Chemical Society Reviews, 2016, 45, 6165-6212.	18.7	587
206	Independence from the Sequence of Single-Electron Transfer of Photoredox Process in Redox-Neutral Asymmetric Bond-Forming Reaction. Journal of Organic Chemistry, 2016, 81, 6953-6958.	1.7	63
207	Preparation of \hat{l}_{\pm} -Acyloxy Ketones via Visible-Light-Driven Aerobic Oxo-Acyloxylation of Olefins with Carboxylic Acids. Organic Letters, 2016, 18, 5256-5259.	2.4	40
208	Regioselective synthesis of functionalized dihydroisoquinolines from o-alkynylarylaldimines via the Reformatsky reaction. Organic and Biomolecular Chemistry, 2016, 14, 9896-9906.	1.5	13
209	Chloroacetate Promotes and Participates in the Oxidative Annulation of Pyridines/Isoquinoline by Using Oxygen as the Oxidant. Chemistry - an Asian Journal, 2016, 11, 3339-3344.	1.7	10
210	Rutheniumâ€Catalyzed Addition of Carboxylic Acids to Propargylic Alcohols: An Easy Route to <i>O</i> à€Dienyl Esters and Their Tandem Atomâ€Transfer Radical Polymerization. European Journal of Organic Chemistry, 2016, 2016, 6015-6021.	1.2	11
211	Generation of N-Heterocycles via Tandem Reactions of <i>N < /i> ′-(2-Alkynylbenzylidene) hydrazides. Chemical Record, 2016, 16, 19-34.</i>	2.9	36
212	Synthesis of $\langle i \rangle N \langle i \rangle$ -Containing Heterocyclic Compounds Using Visible-light Photoredox Catalysis. Chemical Record, 2016, 16, 319-334.	2.9	68
213	Exploration of Visible-Light Photocatalysis in Heterocycle Synthesis and Functionalization: Reaction Design and Beyond. Accounts of Chemical Research, 2016, 49, 1911-1923.	7.6	533
214	α-Alkylation of tertiary amines by C(sp3)–C(sp3) cross-coupling under redox neutral photocatalysis. Tetrahedron Letters, 2016, 57, 4480-4483.	0.7	16
215	The functionalization of a cascade of C(sp ²)â€"H/C(sp ³)â€"H bonds: synthesis of fused dihydropyrazoles via visible-light photoredox catalysis. Chemical Communications, 2016, 52, 11901-11904.	2.2	34
216	Synthesis, Spectroscopic Properties and DFT Calculation of Novel Pyrrolo[1′,5′-a]-1,8-naphthyridine Derivatives through a Facile One-pot Process. Journal of Chemical Sciences, 2016, 128, 1813-1821.	0.7	0
217	Advances of radical and photo reactions in natural products synthesis. Science China Chemistry, 2016, 59, 1093-1108.	4.2	19
218	Synthesis of Tryptanthrins by Organocatalytic and Substrate Co-catalyzed Photochemical Condensation of Indoles and Anthranilic Acids with Visible Light and O ₂ . Organic Letters, 2016, 18, 5744-5747.	2.4	32
219	Catalytic N-radical cascade reaction of hydrazones by oxidative deprotonation electron transfer and TEMPO mediation. Nature Communications, 2016, 7, 11188.	5.8	196
220	Base-Promoted Intermolecular Cyclization of Substituted 3-Aryl (Heteroaryl)-3-chloroacrylaldehydes and Tetrahydroisoquinolines: An Approach to Access Pyrrolo [2,1- <i>a</i>) isoquinolines. Journal of Organic Chemistry, 2016, 81, 11950-11955.	1.7	29

#	Article	IF	CITATIONS
221	Baylisâ€"Hillman Acetates in Synthesis: Copper(I)/ <i>tert</i> â€Butyl Hydroperoxide Promoted Oneâ€Pot Oxidative Intramolecular Cyclization Protocol for the Preparation of Pyrroleâ€Fused Compounds and the Formal Synthesis of (±) rispine A. European Journal of Organic Chemistry, 2016, 2016, 2398-2403.	1.2	34
222	Visible Light Photocatalysis: Applications and New Disconnections in the Synthesis of Pharmaceutical Agents. Organic Process Research and Development, 2016, 20, 1134-1147.	1.3	293
223	Visible-Light-Enabled Decarboxylative Sulfonylation of Cinnamic Acids with Sulfonylhydrazides under Transition-Metal-Free Conditions. Organic Letters, 2016, 18, 2990-2993.	2.4	111
224	Organic Photoredox Catalysis. Chemical Reviews, 2016, 116, 10075-10166.	23.0	4,263
225	Visible-Light Photoredox-Catalyzed Coupling Reaction of Azoles with $\hat{l}\pm$ -Carbamoyl Sulfides. Journal of Organic Chemistry, 2016, 81, 7230-7236.	1.7	24
226	Diastereoselective synthesis of dispiro[indoline-3, $1\hat{a}\in^2$ -cyclobutane- $2\hat{a}\in^2$, $3\hat{a}\in^3$ -indolines] via visible light catalyzed cyclodimerization of 3-phenacylideneoxindoles. Heterocyclic Communications, 2016, 22, 151-156.	0.6	9
227	Advances in Photocatalysis: A Microreview of Visible Light Mediated Ruthenium and Iridium Catalyzed Organic Transformations. Organic Process Research and Development, 2016, 20, 1156-1163.	1.3	342
228	C–H allylation of N-aryl-tetrahydroisoquinolines by merging photoredox catalysis with iodide catalysis. Science China Chemistry, 2016, 59, 171-174.	4.2	19
229	Robust Metal–Organic Framework Containing Benzoselenadiazole for Highly Efficient Aerobic Cross-dehydrogenative Coupling Reactions under Visible Light. Inorganic Chemistry, 2016, 55, 1005-1007.	1.9	71
230	The cycloaddition reaction using visible light photoredox catalysis. Science China Chemistry, 2016, 59, 161-170.	4.2	50
231	Catalyst free visible light induced cycloaddition as an avenue for polymer ligation. Chemical Communications, 2016, 52, 5928-5931.	2.2	52
232	Potassium Thioacids Mediated Selective Amide and Peptide Constructions Enabled by Visible Light Photoredox Catalysis. ACS Catalysis, 2016, 6, 1732-1736.	5 . 5	60
233	One-pot Suzuki coupling of aromatic amines via visible light photocatalyzed metal free borylation using t-BuONO at room temperature. Tetrahedron Letters, 2016, 57, 1551-1554.	0.7	34
234	α-Carbamoylsulfides as <i>N</i> -Carbamoylimine Precursors in the Visible Light Photoredox-Catalyzed Synthesis of α,α-Disubstituted Amines. Organic Letters, 2016, 18, 1478-1481.	2.4	30
235	Functionalization of C(sp3)–H Bond by Visible-Light Photoredox Catalysis. Springer Briefs in Molecular Science, 2016, , 61-81.	0.1	1
236	Developing efficient heavy-atom-free photosensitizers applicable to TTA upconversion in polymer films. Chemical Science, 2016, 7, 1233-1237.	3.7	106
237	TBAI/TBHP-catalyzed [3 + 2]cycloaddition/oxidation/aromatization cascade and online ESI-MS mechanistic studies: synthesis of pyrrolo[2,1- <i>a</i> jisoquinolines and indolizino[8,7- <i>b</i> jindoles. RSC Advances, 2016, 6, 2671-2677.	1.7	47
238	A facile synthesis of 1-oxo-pyrrolo[2,1-a]isoquinolines. Tetrahedron Letters, 2017, 58, 877-879.	0.7	15

#	Article	IF	CITATIONS
239	Photochemically Driven Polymeric Network Formation: Synthesis and Applications. Advanced Materials, 2017, 29, 1604005.	11.1	130
240	Understanding Reactivity Patterns in Lightâ€Induced Nitrile Imine Mediated Tetrazole–Ene Cycloadditions. ChemPhotoChem, 2017, 1, 159-163.	1.5	27
241	NHC $\hat{a}\in M$ ediated Synthesis of Pyrrolo[2,1 $\hat{a}\in a$]isoquinolines and Their Photophysical Investigations. Chemistry - an Asian Journal, 2017, 12, 623-627.	1.7	26
242	Visible-Light Driven Photocascade Catalysis: Union of <i>N</i> , <i>N</i> -Dimethylanilines and α-Azidochalcones in Flow Microreactors. Journal of Organic Chemistry, 2017, 82, 2249-2256.	1.7	41
243	Construction and Functionalization of Heteroarenes by Use of Photoredox Catalysis. European Journal of Organic Chemistry, 2017, 2017, 2072-2084.	1.2	49
244	Construction of Spiro[indeneâ€2,1′â€pyrrolo[2,1â€a]isoquinoline]s through a Visibleâ€Lightâ€Catalyzed Oxidative [3+2] Cycloaddition Reaction. Asian Journal of Organic Chemistry, 2017, 6, 862-866.	1.3	9
245	Acid-Mediated Intermolecular $[3 + 2]$ Cycloaddition toward Pyrrolo $[2,1-\langle i \rangle a \langle i \rangle]$ isoquinolines: Total Synthesis of the Lamellarin Core and Lamellarin G Trimethyl Ether. Organic Letters, 2017, 19, 2262-2265.	2.4	68
246	Recent advances in visible-light-driven organic reactions. National Science Review, 2017, 4, 359-380.	4.6	258
247	Merging visible-light photoredox and copper catalysis in catalytic aerobic oxidation of amines to nitriles. Organic and Biomolecular Chemistry, 2017, 15, 328-332.	1.5	27
248	Efficient oxidative N -dealkylative addition of trialkylamines to dimethyl acetylenedicarboxylate using BrCCl 3 as the terminal oxidant. Tetrahedron Letters, 2017, 58, 2707-2710.	0.7	6
249	Visibleâ€Lightâ€Irradiated Graphitic Carbon Nitride Photocatalyzed Diels–Alder Reactions with Dioxygen as Sustainable Mediator for Photoinduced Electrons. Angewandte Chemie - International Edition, 2017, 56, 9336-9340.	7.2	101
251	Visibleâ€Lightâ€Mediated Twoâ€Fold Unsymmetrical C(sp ³)â^'H Functionalization and Double Câ^'F Substitution. Chemistry - A European Journal, 2017, 23, 2249-2254.	1.7	85
252	Recent progress in mild Csp ³ â€"H bond dehydrogenative or (mono-) oxidative functionalization. Organic and Biomolecular Chemistry, 2017, 15, 1294-1312.	1.5	62
253	Rose Bengal-photosensitized oxidation of tertiary amines for the synthesis of bis-1,3-dicarbonyl compounds. Tetrahedron, 2017, 73, 6471-6478.	1.0	15
254	Catalytic Asymmetric 1,3-Dipolar Cycloaddition/Hydroamination Sequence: Expeditious Access to Enantioenriched Pyrroloisoquinoline Derivatives. Journal of Organic Chemistry, 2017, 82, 11238-11246.	1.7	8
255	Photocatalytic coupling of amines to imidazoles using a Mo–ZnIn ₂ S ₄ catalyst. Green Chemistry, 2017, 19, 5172-5177.	4.6	44
256	Catalyst-free [3 + 2] cyclization of imines and Morita–Baylis–Hillman carbonates: a general route to tetrahydropyrrolo[2,1-a]isoquinolines and dihydropyrrolo[2,1-a]isoquinolines. Organic Chemistry Frontiers, 2017, 4, 2128-2133.	2.3	43
257	Benzoic Acidâ€Promoted Intermolecular [3+2] Cycloaddition with Air as the Terminal Oxidant: General Approach toward Pyrrolo[2, 1â€ <i>a</i>)isoquinolines. ChemistrySelect, 2017, 2, 10762-10765.	0.7	13

#	Article	IF	CITATIONS
258	Synthesis of 4-Isoxazolines via Visible-Light Photoredox-Catalyzed [3Â+ 2] Cycloaddition of Oxaziridines with Alkynes. Organic Letters, 2017, 19, 6448-6451.	2.4	33
259	Furans Accessed through Visibleâ€Lightâ€Mediated Oxidative [3+2] Cycloaddition of Enols and Alkynes. Chemistry - A European Journal, 2017, 23, 17874-17878.	1.7	22
260	Visibleâ€Lightâ€Irradiated Graphitic Carbon Nitride Photocatalyzed Diels–Alder Reactions with Dioxygen as Sustainable Mediator for Photoinduced Electrons. Angewandte Chemie, 2017, 129, 9464-9468.	1.6	25
261	Photocatalytic functionalization for the synthesis of drugs and analogs. Current Opinion in Green and Sustainable Chemistry, 2017, 6, 139-149.	3.2	11
262	Selective Oxidative Esterification from Two Different Alcohols via Photoredox Catalysis. ChemSusChem, 2017, 10, 79-82.	3.6	20
263	Eco-Friendly Solid-State Upconversion Hydrogel with Thermoresponsive Feature as the Temperature Indicator. Journal of Physical Chemistry C, 2017, 121, 20158-20164.	1.5	40
264	Photocatalytic oxidative cyclization of \hat{l}_{\pm} -halo hydrazones with tetrahydroisoquinoline for construction of isoquino [3,4-a] [1,2,4]-triazines. Catalysis Communications, 2018, 109, 60-64.	1.6	6
267	Boosting photocatalytic cross-dehydrogenative coupling reaction by incorporating [Rull(bpy)3] into a radical metal-organic framework. Applied Catalysis B: Environmental, 2018, 227, 425-432.	10.8	27
268	Copper-Catalyzed Oxygenation Approach to Oxazoles from Amines, Alkynes, and Molecular Oxygen. Organic Letters, 2018, 20, 2762-2765.	2.4	47
269	Copper-catalyzed aerobic cyclizations of tetrahydroisoquinolines with bromoketones and alkenes for the synthesis of 5,6-dihydropyrrolo[2,1- <i>a</i>) isoquinolines. Organic and Biomolecular Chemistry, 2018, 16, 1651-1658.	1.5	17
270	K 3 PO 4 promoted dipolar [3+3] cyclization: Direct synthesis of pyrazino[2,1- a]isoquinoline derivatives. Tetrahedron Letters, 2018, 59, 138-142.	0.7	5
271	N-substituted-3(10H)-acridones as visible-light photosensitizers for organic photoredox catalysis. Tetrahedron, 2018, 74, 483-489.	1.0	13
272	Visible-light initiated aerobic oxidations: a critical review. Green Chemistry, 2018, 20, 4790-4833.	4.6	189
273	Photocatalytic Oxyamination of Alkenes: Copper(II) Salts as Terminal Oxidants in Photoredox Catalysis. Organic Letters, 2018, 20, 7345-7350.	2.4	53
274	Aerobic Catalytic Features in Photoredox- and Copper-Catalyzed Iodolactonization Reactions. Organic Letters, 2018, 20, 6462-6466.	2.4	28
275	Photocatalytic Activation of Less Reactive Bonds and Their Functionalization via Hydrogen-Evolution Cross-Couplings. Accounts of Chemical Research, 2018, 51, 2512-2523.	7.6	216
276	Copper(II)-catalyzed- $\hat{1}$ ±-C(sp3)-H activation of cyclic amines: A simple and efficient strategy for the synthesis of fused pyrazole derivatives. Tetrahedron Letters, 2018, 59, 4161-4164.	0.7	11
277	Domino reactions of vinyl ethynyl ketones with 1-aryl-3,4-dihydroisoquinolines $\hat{a}\in$ " Search for selectivity. Molecular Catalysis, 2018, 461, 67-72.	1.0	14

#	Article	IF	CITATIONS
278	Synthesis of Benzoindolizines through 1,5-Electrocyclization/Oxidation Cascades. Journal of Organic Chemistry, 2018, 83, 13754-13764.	1.7	38
279	Organic Synthesis: New Vistas in the Brazilian Landscape. Anais Da Academia Brasileira De Ciencias, 2018, 90, 895-941.	0.3	4
280	Pd/Câ€Catalyzed Dehydrogenative [3+2] Cycloaddition for the Synthesis of Functionalized Tropanes. European Journal of Organic Chemistry, 2018, 2018, 5456-5459.	1.2	7
281	Visible Lightâ€Induced Câ^'H Bond Functionalization: A Critical Review. Advanced Synthesis and Catalysis, 2018, 360, 4652-4698.	2.1	131
282	Carbotrifluoromethylation of Allylic Alcohols <i>via</i> 1,2â€Aryl Migration Promoted by Visibleâ€Lightâ€Induced Photoredox Catalysis. Advanced Synthesis and Catalysis, 2018, 360, 4084-4088.	2.1	44
283	Visible-light photocatalytic bicyclization of \hat{l}^2 -alkynyl propenones for accessing diastereoenriched <i>syn</i> fluoren-9-ones. Chemical Communications, 2018, 54, 11542-11545.	2.2	61
284	Direct Synthesis of Dihydropyrrolo[2,1―a]Isoquinolines through FeCl 3 Promoted Oxidative Aromatization. Advanced Synthesis and Catalysis, 2019, 361, 4772-4780.	2.1	34
285	Visibleâ€Light Photoredoxâ€Catalyzed Crossâ€Dehydrogenative Coupling of Tetrahydroisoquinolines with 3â€Fluorooxindoles. Asian Journal of Organic Chemistry, 2019, 8, 1436-1440.	1.3	10
286	A Facile Approach to αâ€Keto Esters via Oxidative Esterification of αâ€Amino Carbonyl Compounds. Asian Journal of Organic Chemistry, 2019, 8, 1354-1357.	1.3	1
287	Highly Efficient Synthesis of 1â€Nitroindolizine Derivatives via the DBU/Acetic Acid System. ChemistrySelect, 2019, 4, 11121-11124.	0.7	6
288	Visible-Light-Induced Oxidation/[3 + 2] Cycloaddition/Oxidative Aromatization to Construct Benzo[$\langle i \rangle$ a $\langle i \rangle$] carbazoles from 1,2,3,4-Tetrahydronaphthalene and Arylhydrazine Hydrochlorides. Organic Letters, 2019, 21, 7179-7183.	2.4	15
290	Visible-light-promoted oxidation/condensation of benzyl alcohols with dialkylacetamides to cinnamides. Organic and Biomolecular Chemistry, 2019, 17, 449-453.	1.5	10
291	Oxidation-Induced β-Selective C–H Bond Functionalization: Thiolation and Selenation of N-Heterocycles. ACS Catalysis, 2019, 9, 1888-1894.	5 . 5	41
292	External oxidant-free oxidation/[3+2] cycloaddition/aromatization cascade: electrochemical synthesis of polycyclic N-heterocycles. Chemical Communications, 2019, 55, 8398-8401.	2.2	24
293	Cross-dehydrogenative C(sp ³)–C(sp ³) coupling <i>via</i> C–H activation using magnetically retrievable ruthenium-based photoredox nanocatalyst under aerobic conditions. Chemical Communications, 2019, 55, 7402-7405.	2.2	36
294	Visible light promoted PANI@Au:CuO catalyzed sequential amination, azidation and annulation for the preparation of 2-arylbenzimidazoles. Green Chemistry, 2019, 21, 3666-3674.	4.6	11
295	Visibleâ€Lightâ€Induced Ringâ€Opening of Hydrogenolysis Spirocyclopropyl Oxindoles Through Photoredox Catalysis. European Journal of Organic Chemistry, 2019, 2019, 4085-4088.	1.2	7
296	Phosphorus corrole complexes: from property tuning to applications in photocatalysis and triplet–triplet annihilation upconversion. Chemical Science, 2019, 10, 7091-7103.	3.7	48

#	Article	IF	CITATIONS
297	Base-promoted [3+2] cycloaddition/aromatization cascade reaction under air: An approach to access perfluoroalkylated pyrrolo[2,1-a]isoquinolines. Journal of Fluorine Chemistry, 2019, 222-223, 51-58.	0.9	13
298	Phthalhydrazide immobilized on MCM \hat{a} \in 41 as a potent and recoverable catalyst for the synthesis of pyrrolo[2,1 \hat{a} \in 4a]isoquinolines. Journal of the Chinese Chemical Society, 2019, 66, 769-774.	0.8	7
299	Photoinduced Nonstabilized Azomethine Ylide Formation for the Preparation of Fluorine Containing Pyrrolidines. Journal of Organic Chemistry, 2019, 84, 5877-5885.	1.7	20
300	Photoaddition reactions of $\langle i \rangle N \langle i \rangle$ -benzylglycinates containing $\hat{l}\pm$ -trimethylsilyl group with dimethyl acetylenedicarboxylate: competitive formation of pyrroles $\langle i \rangle vs. \langle i \rangle \hat{l}^2$ -enamino esters. RSC Advances, 2019, 9, 5639-5648.	1.7	5
301	Synthesis of Chromenoisoxazolidines from Substituted Salicylic Nitrones via Visible-Light Photocatalysis. Organic Letters, 2019, 21, 1388-1392.	2.4	22
302	Gold-Catalyzed Atom-Economic Synthesis of Sulfone-Containing Pyrrolo[2,1- <i>a</i> jisoquinolines from Diynamides: Evidence for Consecutive Sulfonyl Migration. ACS Catalysis, 2019, 9, 2610-2617.	5.5	49
303	Pyrrolo[2,1- <i>a</i>]isoquinoline scaffold in drug discovery: advances in synthesis and medicinal chemistry. Future Medicinal Chemistry, 2019, 11, 2735-2755.	1.1	54
304	Visible light-driven organic photochemical synthesis in China. Science China Chemistry, 2019, 62, 24-57.	4.2	374
305	Visibleâ€Light Driven Hydrolysis of Benzyl Halides with Water for Preparation of Benzyl Alcohols. Asian Journal of Organic Chemistry, 2019, 8, 261-264.	1.3	11
306	Corroles as triplet photosensitizers. Coordination Chemistry Reviews, 2019, 379, 121-132.	9.5	81
307	Synthesis of substituted 2-alkylquinolines by visible-light photoredox catalysis. Organic and Biomolecular Chemistry, 2020, 18, 86-92.	1.5	9
308	Visible Light-Induced Amide Bond Formation. Organic Letters, 2020, 22, 371-375.	2.4	57
309	Photosensitizerâ€catalyzed Addition Reactions of <i>N</i> â€Î±â€Trimethylsilylâ€ <i>N</i> â€Alkylglycinates to Dimethyl Acetylenedicarboxylate. Bulletin of the Korean Chemical Society, 2020, 41, 205-208.	1.0	2
310	Visible light-driven oxidative coupling of dibenzylamine and substituted anilines with a 2D WSe ₂ nanomesh material. Nanoscale, 2020, 12, 21869-21878.	2.8	5
311	Potassium Acetate-Catalyzed Double Decarboxylative Transannulation To Access Highly Functionalized Pyrroles. Organic Letters, 2020, 22, 9585-9590.	2.4	16
312	Copper-catalyzed carbene insertion and ester migration for the synthesis of polysubstituted pyrroles. Chemical Communications, 2020, 56, 11050-11053.	2.2	20
313	Control of Chemoselectivity of SET-Promoted Photoaddition Reactions of Fullerene C $<$ sub $>$ 60 $<$ /sub $>$ with Î \pm -Trimethylsilyl Group-Containing $<$ i $>N<$ /i $>$ -Alkylglycinates Yielding Aminomethyl-1,2-dihydrofullerenes or Fulleropyrrolidines. Journal of Organic Chemistry, 2020, 85, 12882-12900.	1.7	5
314	Photoredox-Catalyzed α-C(sp3)–H Activation of Unprotected Secondary Amines: Facile Access to 1,4-Dicarbonyl Compounds. Organic Letters, 2020, 22, 7460-7464.	2.4	13

#	Article	IF	CITATIONS
315	Eosin Y-Catalyzed Visible-Light-Mediated Aerobic Transformation of Pyrazolidine-3-One Derivatives. Catalysts, 2020, 10, 981.	1.6	5
316	CuBr/NHPI co-catalyzed aerobic oxidative [3 + 2] cycloaddition-aromatization to access 5,6-dihydro-pyrrolo[2,1- <i>a</i>]isoquinolines. Organic and Biomolecular Chemistry, 2020, 18, 6889-6898.	1.5	13
317	Two new Bodipy-carbazole derivatives as metal-free photosensitizers in photocatalytic oxidation of 1,5-dihydroxynaphthalene. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 400, 112713.	2.0	7
318	Visible Light Excitation of BODIPYs Enables Dehydrogenative Enamination at Their α-Positions with Aliphatic Amines. Journal of Organic Chemistry, 2020, 85, 8360-8370.	1.7	18
319	Iron Catalyzed [3+2] Cycloaddition of Tetrahydroisoquinoline: Synthesis of Dihydropyrrolo[2,1―a]isoquinolines. Asian Journal of Organic Chemistry, 2020, 9, 1617-1622.	1.3	10
320	Photocatalyst-free visible light promoted <i>E</i> â†' <i>Z</i> isomerization of alkenes. Green Chemistry, 2020, 22, 2739-2743.	4.6	32
321	New Visibleâ€Lightâ€Triggered Photocatalytic Trifluoromethylation Reactions of Carbon–Carbon Multiple Bonds and (Hetero)Aromatic Compounds. Chemistry - A European Journal, 2020, 26, 11065-11084.	1.7	68
322	Chlorophyll-catalyzed tandem oxidation /[3+2] cycloaddition reactions toward the construction of pyrrolo[2,1-a]isoquinolines under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 404, 112877.	2.0	8
323	Catalyst- and Additive-Free Annulation of Ynediones and (Iso)Quinoline $\langle i \rangle N \langle i \rangle$ -Oxides: An Approach to Synthesis of Pyrrolo[2,1- $\langle i \rangle a \langle i \rangle$] Isoquinolines and Pyrrolo[1,2- $\langle i \rangle a \langle i \rangle$] Quinolines. Journal of Organic Chemistry, 2021, 86, 169-177.	1.7	15
324	Diethyl Azodicarboxylate-Promoted Oxidative $[3 + 2]$ Cycloaddition for the Synthesis of Pyrrolo $[2,1-\langle i\rangle a\langle li\rangle]$ isoquinolines. Journal of Organic Chemistry, 2021, 86, 91-102.	1.7	18
325	A combined multicomponentâ€acid catalyzed cyclization reaction as an efficient route to novel tricyclic pyrrolo[2,1â€ <i>a</i>]isoquinoline derivatives. Journal of Heterocyclic Chemistry, 2021, 58, 478-487.	1.4	3
326	Pivotal Electron Delivery Effect of the Cobalt Catalyst in Photocarboxylation of Alkynes: A DFT Calculation. Journal of Organic Chemistry, 2021, 86, 1540-1548.	1.7	3
327	Fullerene C60 promoted photochemical hydroamination reactions of an electron deficient alkyne with trimethylsilyl group containing tertiary N-alkylbenzylamines. RSC Advances, 2021, 11, 5914-5922.	1.7	1
328	Insights into Sustainable C–H Bond Activation. , 2021, , 253-318.		O
329	Photocatalyst- and additive-free decarboxylative alkylation of <i>N</i> -aryl tetrahydroisoquinolines induced by visible light. Organic Chemistry Frontiers, 2021, 8, 2473-2479.	2.3	23
330	Tetrathienoanthracene-functionalized conjugated microporous polymers as an efficient, metal-free visible-light solid organocatalyst for heterogeneous photocatalysis. Catalysis Science and Technology, 2021, 11, 3799-3809.	2.1	15
331	Metalâ€free Synthesis of <scp>βâ€Nitrostyrenes</scp> via <scp>DDQâ€Catalyzed</scp> Nitration. Bulletin of the Korean Chemical Society, 2021, 42, 525-528.	1.0	5
332	Dual organic dyes as a pseudo-redox mediation system to promotion of tandem oxidation /[3+2] cycloaddition reactions under visible light. Tetrahedron, 2021, 89, 132166.	1.0	11

#	Article	IF	CITATIONS
333	<scp>Oneâ€Pot</scp> Synthesis of Polysubstituted Pyrroles <i>>via</i> Sequential Ketenimine Formation/Ag(I)â€Catalyzed Alkyne Cycloisomerisation Starting from Ylide Adducts. Chinese Journal of Chemistry, 2021, 39, 1553-1557.	2.6	6
334	Mechanochemical Synthesis of 1,2-Diketoindolizine Derivatives from Indolizines and Epoxides Using Piezoelectric Materials. Organic Letters, 2021, 23, 7171-7176.	2.4	34
335	Triplet Photosensitizers Showing Strong Absorption of Visible Light and Long-Lived Triplet Excited States and Application in Photocatalysis: A Mini Review. Energy & Energy & 2021, 35, 18942-18956.	2.5	26
336	Asymmetric Catalytic Synthesis of Hexahydropyrroloâ€isoquinolines via Threeâ€Component 1,3â€Dipolarâ€Cycloaddition. Chemistry - A European Journal, 2021, 27, 14841-14845.	1.7	13
337	Photoredox-Catalyzed C–H Functionalization Reactions. Chemical Reviews, 2022, 122, 1925-2016.	23.0	388
338	Regioselective competitive synthesis of 3,5-bis(het) aryl pyrrole-2-carboxylates/carbonitriles vs. \hat{l}^2 -enaminones from \hat{l}^2 -thioxoketones. Tetrahedron Letters, 2021, 82, 153373.	0.7	10
339	Mechanistic Pathways Toward the Synthesis of Heterocycles Under Cross-Dehydrogenative Conditions., 2019,, 329-356.		4
340	Photocatalysis: A step closer to the perfect synthesis. Journal of Organometallic Chemistry, 2020, 920, 121335.	0.8	12
341	Luminescent tungsten(<scp>vi</scp>) complexes as photocatalysts for light-driven C–C and C–B bond formation reactions. Chemical Science, 2020, 11, 6370-6382.	3.7	33
342	A Review of Ruthenium-catalyzed C-N Bond Formation Reactions for the Synthesis of Five-membered N-heterocycles. Current Organic Chemistry, 2019, 23, 1901-1944.	0.9	37
343	One-Pot Synthesis of Chromone-Fused Pyrrolo $[2,1-\langle i\rangle a\langle i\rangle]$ isoquinolines and Indolizino $[8,7-\langle i\rangle b\langle i\rangle]$ indoles: Iodine-Promoted Oxidative $[2+2+1]$ Annulation of $\langle i\rangle O\langle i\rangle$ -Acetylphenoxyacrylates with Tetrahydroisoquinolines and Noreleagnines. Journal of Organic Chemistry, 2021, 86, 15733-15742.	1.7	18
344	Visible-Light-Mediated Transformation of Nitrogen-Containing Compounds Based on Single Electron Transfer. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2015, 73, 874-884.	0.0	2
345	Recent advances in photo-irradiated synthesis of bioactive heterocycles. , 2020, , 407-452.		3
346	Electrochemical Generation of a Nonstabilized Azomethine Ylide: Access to Substituted <i>N</i> -Heterocycles. Journal of Organic Chemistry, 2021, 86, 16104-16113.	1.7	10
347	Cleavage via Selective Catalytic Oxidation of Lignin or Lignin Model Compounds into Functional Chemicals. ChemEngineering, 2021, 5, 74.	1.0	1
348	Photo-induced copper-catalyzed sequential 1,n-HAT enabling the formation of cyclobutanols. Nature Communications, 2021, 12, 6404.	5.8	12
349	Fourâ€Component Construction of Coumarinâ€Fused Pyrrolo[2,1â€ <i>a</i>]isoquinoline: Expedient Synthesis of Lamellarins and Their Regioselective Demethylation. Asian Journal of Organic Chemistry, 2022, 11, e202100659.	1.3	11
350	A Convenient Synthesis of Polysubstituted Coumarinâ€pyrrolo[2,1â€ <i>a</i>]isoquinolineâ€1â€carbaldehydes from Isoquinoline, 2â€Bromoacetophenones and Coumarinâ€Î²â€chlorovinyl Aldehydes. ChemistrySelect, 2021, 6, 12960-12964.	0.7	10

#	Article	IF	CITATIONS
351	Design, synthesis <i>via</i> a one-pot approach and molecular docking studies of novel pyrrolo[2,1- <i>a</i>]isoquinoline derivatives. New Journal of Chemistry, 2022, 46, 792-797.	1.4	6
352	Mechanochemically Induced Dehydrogenation Coupling and [3+2] Cycloaddition of Indolizines with Allenes Using Piezoelectric Materials. Journal of Organic Chemistry, 2022, 87, 3265-3275.	1.7	17
353	Combined Photoredox and Carbene Catalysis for the Synthesis of \hat{l}_{\pm} -Amino Ketones from Carboxylic Acids. ACS Catalysis, 2022, 12, 2522-2531.	5.5	38
354	Vinylcyclopropane [3+2] Cycloaddition with Acetylenic Sulfones Based on Visible Light Photocatalysis**. Chemistry - A European Journal, 2022, 28, .	1.7	10
355	Building a Pyrazole–Benzothiadiazole–Pyrazole Photosensitizer into Metal–Organic Frameworks for Photocatalytic Aerobic Oxidation. Journal of the American Chemical Society, 2021, 143, 21340-21349.	6.6	84
356	Recent progress in the synthesis of pyrrolo[2,1- <i>a</i>]isoquinolines. Organic and Biomolecular Chemistry, 2022, 20, 2779-2801.	1.5	35
357	Organic dyes supported on silicon-based materials: synthesis and applications as photocatalysts. Organic Chemistry Frontiers, 2022, 9, 2856-2888.	2.3	7
358	C–H Activation with Photoredox Catalysis. Methods in Pharmacology and Toxicology, 2022, , 297-325.	0.1	1
359	Synthesis of Unexpected Dimethyl 2-(4-Chlorophenyl)-2,3-dihydropyrrolo[2,1-a]isoquinoline-1,3-dicarboxylate via Hydrolysis/Cycloaddition/Elimination Cascades: Single Crystal X-ray and Chemical Structure Insights. Crystals, 2022, 12, 6.	1.0	1
360	Tungsten catalysed decarboxylative [3 + 2] cycloaddition aromatization: one-pot synthesis of trifluoromethyl-pyrrolo[2,1- <i>a</i> jisoquinolines with visible light irradiation. Organic Chemistry Frontiers, 2022, 9, 2779-2785.	2.3	11
361	A Photo- and Redox Actives Mesoporous 3d Covalent Organic Framework Enables Highly Efficient Metal-Free Photoredox Catalysis. SSRN Electronic Journal, 0, , .	0.4	0
362	Iron-Catalyzed Synthesis of Pyrrolo[2,1-a]isoquinolines via 1,3-Dipolar Cycloaddition/Elimination/Aromatization Cascade and Modifications. Synlett, 2022, 33, 1645-1654.	1.0	6
363	Evolution of BODIPY/aza-BODIPY dyes for organic photoredox/energy transfer catalysis. Coordination Chemistry Reviews, 2022, 470, 214698.	9.5	35
364	A photo- and redox actives mesoporous 3D covalent organic framework enables highly efficient metal-free photoredox catalysis. Journal of Catalysis, 2022, 413, 692-702.	3.1	4
365	Metalâ€Organic Frameworks with Organic Photosensitizers in Organic Synthesis. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	2
366	Transition-Metal-Catalyzed C–S, C–Se, and C–Te Bond Formations via Cross-Coupling and Atom-Economic Addition Reactions. Achievements and Challenges. Chemical Reviews, 2022, 122, 16110-16293.	23.0	95
369	[3+2] Cycloaddition Reactions of 2‥lidene Acenaphthylenones with 3â€Benzylidene Succinimides and 1,4â€Benzoxazinone Derivatives. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	3
370	Acid-Promoted Redox-Annulation toward 1,2-Disubstituted-5,6-dihydropyrrolo[2,1-α]isoquinolines: Synthesis of the Lamellarin Core. ACS Omega, 2022, 7, 37050-37060.	1.6	5

#	Article	IF	CITATIONS
371	Synthesis of Pyrrolo[2,1- <i>a</i>]isoquinolines through Cu-Catalyzed Condensation/Addition/Oxidation/Cyclization Cascade. Journal of Organic Chemistry, 2022, 87, 15435-15447.	1.7	8
372	Visible Lightâ€Mediated Reactions of βâ€Nitroalkenes. Asian Journal of Organic Chemistry, 2023, 12, .	1.3	0
373	Selective oxidative β-Câ€"H bond sulfenylation of tetrahydroisoquinolines with elemental sulfur. Organic and Biomolecular Chemistry, 2022, 21, 127-131.	1.5	3
374	Anti-Markovnikov ring-opening of sulfonium salts with alkynes by visible light/copper catalysis. Science China Chemistry, 0, , .	4.2	4
375	Unraveling the Efficiency of Thioxanthone Based Triplet Sensitizers: A Detailed Theoretical Study. ChemPhysChem, 2023, 24, .	1.0	3
376	Metal-free photoinduced alkylative [3 + 2] annulation of terminal alkynes with <i>N</i> -alkyl isoquinolin-2-iums by catalytic isoquinoline-based electron donor–acceptor complex. Organic Chemistry Frontiers, 2023, 10, 1173-1181.	2.3	4
377	Fullerene C ₇₀ as Photoredox Catalyst for the Synthesis of Pyrrolo[2,1â€a]isoquinolines by 1,3â€Dipolar Cycloadditionâ€Aromatization Sequence. Chemistry - A European Journal, 2023, 29, .	1.7	0
378	Visible Light Induced C-H/N-H and C-X Bonds Reactions. Reactions, 2023, 4, 189-230.	0.9	0
379	Synthesis of 5,6-dihydropyrrolo[2,1-a]isoquinolines via a TFA-promoted annulation of arylpropiolaldehydes and 1,2,3,4-tetrahydroisoquinolines. Tetrahedron Letters, 2023, 120, 154458.	0.7	0
380	Visible Light Mediated Click Chemistry. Green Chemistry and Sustainable Technology, 2023, , 153-165.	0.4	0
386	($\langle i\rangle E\langle i\rangle$)-2-Methoxyethene-1-sulfonyl fluoride as a precursor of acetylene for synthesis of C $\langle sub\rangle 1\langle sub\rangle C\langle sub\rangle 2\langle sub\rangle$ non-functionalized pyrrolo[2,1- $\langle i\rangle a\langle i\rangle$]isoquinoline derivatives. New Journal of Chemistry, 2023, 47, 16332-16336.	1.4	0