Tosylhydrazones: New Uses for Classic Reagents in Pall Metalâ€Free Reactions

Angewandte Chemie - International Edition 50, 7486-7500

DOI: 10.1002/anie.201007961

Citation Report

#	Article	IF	CITATIONS
1	Carbonylation of Metal Carbene with Carbon Monoxide: Generation of Ketene. ACS Catalysis, $2011, 1, 1621-1630$.	11.2	79
2	Palladiumâ€Catalyzed Amidation of <i>N</i> à€Tosylhydrazones with Isocyanides. Chemistry - A European Journal, 2011, 17, 12268-12271.	3.3	103
4	Synthesis of Diarylmethanes via Metal-Free Reductive Cross-Coupling of Diarylborinic Acids with Tosyl Hydrazones. Journal of Organic Chemistry, 2012, 77, 10991-10995.	3.2	45
5	Synthesis of Polysubstituted Isoquinolines through Cross-Coupling Reactions with α-Alkoxytosylhydrazones. Organic Letters, 2012, 14, 2323-2325.	4.6	40
6	C(sp)–C(sp ³) Bond Formation through Cu-Catalyzed Cross-Coupling of <i>N</i> -Tosylhydrazones and Trialkylsilylethynes. Journal of the American Chemical Society, 2012, 134, 5742-5745.	13.7	177
7	Alkene Synthesis Through Transition Metal-Catalyzed Cross-Coupling of N-Tosylhydrazones. Topics in Current Chemistry, 2012, 327, 239-269.	4.0	59
10	Tandem Heck/Decarboxylation/Heck Strategy: Protectingâ€Groupâ€Free Synthesis of Symmetric and Unsymmetric Hydroxylated Stilbenoids. Angewandte Chemie - International Edition, 2012, 51, 12250-12253.	13.8	38
11	Acyl–Carbene and Methyl–Carbene Coupling via Migratory Insertion in Palladium Complexes. Organometallics, 2012, 31, 5494-5499.	2.3	20
12	Cyclopropylmethyl Palladium Species from Carbene Migratory Insertion: New Routes to 1,3-Butadienes. Organic Letters, 2012, 14, 922-925.	4.6	49
13	Rh(II)-catalyzed [2,3]-sigmatropic rearrangement of sulfur ylides derived from N-tosylhydrazones and sulfides. Tetrahedron, 2012, 68, 5234-5240.	1.9	36
14	Arylation of Rhodium(II) Azavinyl Carbenes with Boronic Acids. Journal of the American Chemical Society, 2012, 134, 14670-14673.	13.7	165
15	Rhodium-Catalyzed Oxidative Annulation of Sulfonylhydrazones with Alkenes. Organic Letters, 2012, 14, 5338-5341.	4.6	56
16	A Nonmetal Approach to αâ€Heterofunctionalized Carbonyl Derivatives by Formal Reductive XH Insertion. Angewandte Chemie - International Edition, 2012, 51, 10605-10609.	13.8	64
17	Palladiumâ€Catalyzed Crossâ€Coupling Reactions of Electronâ€Deficient Alkenes with <i>N</i> à€Tosylhydrazones: Functionalâ€Groupâ€Controlled Cĭ£¿C Bond Construction. Chemistry - A European Journal, 2012, 18, 11884-11888.	3.3	37
18	Recent developments in copper-catalyzed reactions of diazo compounds. Chemical Communications, 2012, 48, 10162.	4.1	323
19	A convenient synthesis of anthranilic acids by Pd-catalyzed direct intermolecular ortho-C–H amidation of benzoic acids. Chemical Communications, 2012, 48, 11680.	4.1	84
20	Copperâ€Catalyzed Synthesis of Alkylphosphonates from <i>H</i> à€Phosphonates and <i>N</i> â€Tosylhydrazones. Advanced Synthesis and Catalysis, 2012, 354, 2659-2664.	4.3	77
21	Synthesis of 1,1-Diarylethylenes via Efficient Iron/Copper Co-Catalyzed Coupling of 1-Arylvinyl Halides with Grignard Reagents. Organic Letters, 2012, 14, 2782-2785.	4.6	39

#	Article	IF	CITATIONS
22	Carbenylative Amination with <i>N</i> -Tosylhydrazones. Organic Letters, 2012, 14, 3233-3235.	4.6	85
23	Rh-Catalyzed Intermolecular Carbenoid Functionalization of Aromatic C–H Bonds by α-Diazomalonates. Journal of the American Chemical Society, 2012, 134, 13565-13568.	13.7	451
24	Straightforward Reductive Esterification of Carbonyl Compounds with Carboxylic Acids through Tosylhydrazone Intermediates. European Journal of Organic Chemistry, 2012, 2012, 3925-3928.	2.4	18
25	Recent advances in transition-metal catalyzed reactions using molecular oxygen as the oxidant. Chemical Society Reviews, 2012, 41, 3381.	38.1	1,107
33	Palladiumâ€Catalyzed Dehydrative Heck Olefination of Secondary Aryl Alcohols in Ionic Liquids: Towards a Wasteâ€Free Strategy for Tandem Synthesis of Stilbenoids. Angewandte Chemie - International Edition, 2012, 51, 2636-2639.	13.8	36
34	Transitionâ€Metalâ€Free Synthesis of Pinacol Alkylboronates from Tosylhydrazones. Angewandte Chemie - International Edition, 2012, 51, 2943-2946.	13.8	161
35	Reductive Azidation of Carbonyl Compounds via Tosylhydrazone Intermediates Using Sodium Azide. Angewandte Chemie - International Edition, 2012, 51, 5950-5952.	13.8	64
36	Olefination of Carbonyl Compounds through Reductive Coupling of Alkenylboronic Acids and Tosylhydrazones. Angewandte Chemie - International Edition, 2012, 51, 5953-5957.	13.8	104
37	Rhodium(II)â€Catalyzed Cyclization of Bis(<i>N</i> â€ŧosylhydrazone)s: An Efficient Approach towards Polycyclic Aromatic Compounds. Angewandte Chemie - International Edition, 2012, 51, 5714-5717.	13.8	143
38	Detection and Reactivity of a Palladium Alkoxycarbene. Chemistry - A European Journal, 2012, 18, 7658-7661.	3.3	19
39	Carbon–Carbon Bond Formation: Palladiumâ€Catalyzed Oxidative Crossâ€Coupling of <i>N</i> â€Tosylhydrazones with Allylic Alcohols. Chemistry - A European Journal, 2012, 18, 10497-10500.	3.3	46
40	A Oneâ€Pot Threeâ€Step Synthesis of <i>Z</i> â€Trisubstituted Olefins from Arylalkynes and Their Cyclization into 4â€Arylâ€2 <i>H</i> â€chromenes. European Journal of Organic Chemistry, 2012, 2012, 1603-1615.	2.4	19
41	Palladiumâ€Catalyzed Divergent Reactions of αâ€Diazocarbonyl Compounds with Allylic Esters: Construction of Quaternary Carbon Centers. Angewandte Chemie - International Edition, 2012, 51, 1370-1374.	13.8	120
42	Nickel―and Cobaltâ€Catalyzed Direct Alkylation of Azoles with <i>N</i> à€Tosylhydrazones Bearing Unactivated Alkyl Groups. Angewandte Chemie - International Edition, 2012, 51, 775-779.	13.8	217
43	N-Alkylation of tosylhydrazones in the presence ofÂtriphenylphosphine. Tetrahedron, 2013, 69, 7487-7491.	1.9	13
44	DABCO-promoted synthesis of pyrazoles from tosylhydrazones and nitroalkenes. Organic and Biomolecular Chemistry, 2013, 11, 6250.	2.8	55
45	Synthesis of (<i>Z</i>)â€ <i>N</i> â€Alkenylazoles and Pyrroloisoquinolines from αâ€ <i>N</i> â€Azoleketones through Pdâ€Catalyzed Tosylhydrazone Crossâ€Couplings. Chemistry - A European Journal, 2013, 19, 10506-10510.	3.3	43
46	Catalytic Three-Component One-Pot Reaction of Hydrazones, Dihaloarenes, and Amines. Organic Letters, 2013, 15, 148-151.	4.6	44

#	ARTICLE	IF	CITATIONS
47	One-pot synthesis of S-alkyl dithiocarbamates via the reaction of N-tosylhydrazones, carbon disulfide and amines. Organic and Biomolecular Chemistry, 2013, 11, 5615.	2.8	32
49	Csp ² â€"N Bond Formation via Ligand-Free Pd-Catalyzed Oxidative Coupling Reaction of <i>N</i> -Tosylhydrazones and Indole Derivatives. Journal of Organic Chemistry, 2013, 78, 8485-8495.	3.2	38
50	Palladium-Catalyzed Carbene Migratory Insertion Using Conjugated Ene–Yne–Ketones as Carbene Precursors. Journal of the American Chemical Society, 2013, 135, 13502-13511.	13.7	153
51	Copper-catalyzed direct cross-coupling of 1,3,4-oxadiazoles with N-tosylhydrazones: efficient synthesis of benzylated 1,3,4-oxadiazoles. RSC Advances, 2013, 3, 20538.	3.6	21
52	Palladiumâ€Catalyzed Threeâ€Component Reaction of Allenes, Aryl Iodides, and Diazo Compounds: Approach to 1,3â€Dienes. Angewandte Chemie - International Edition, 2013, 52, 9305-9308.	13.8	93
53	Ir(III)-Catalyzed Mild C–H Amidation of Arenes and Alkenes: An Efficient Usage of Acyl Azides as the Nitrogen Source. Journal of the American Chemical Society, 2013, 135, 12861-12868.	13.7	280
54	Palladium-catalyzed cross-coupling of cyclopropylmethyl N-tosylhydrazones with aromatic bromides: an easy access to multisubstituted 1,3-butadienes. Tetrahedron Letters, 2013, 54, 6485-6489.	1.4	16
55	Copperâ€Mediated Synthesis of 1,2,3â€Triazoles from <i>N</i> â€Tosylhydrazones and Anilines. Angewandte Chemie - International Edition, 2013, 52, 13324-13328.	13.8	145
56	N-Alkylation of tosylhydrazones via a metal-free reductive coupling procedure. Tetrahedron Letters, 2013, 54, 891-895.	1.4	19
57	Palladium-catalyzed insertion of \hat{l}_{\pm},\hat{l}^2 -unsaturated N-tosylhydrazones and trapping with carbon nucleophiles. Chemical Communications, 2013, 49, 10190.	4.1	50
58	Cross-Coupling Reactions Involving Metal Carbene: From Câ•C/C–C Bond Formation to C–H Bond Functionalization. Journal of Organic Chemistry, 2013, 78, 10024-10030.	3.2	219
59	Catalytic Cascade Reactions Involving Metal Carbene Migratory Insertion. ACS Catalysis, 2013, 3, 2586-2598.	11.2	342
60	Facile synthesis of dibranched conjugated dienes via palladium-catalyzed oxidative coupling of N-tosylhydrazones. Chemical Communications, 2013, 49, 9218.	4.1	35
61	Pd-Catalyzed Heck-Type Cascade Reactions with <i>N</i> -Tosyl Hydrazones: An Efficient Way to Alkenes via in Situ Generated Alkylpalladium. Organic Letters, 2013, 15, 4814-4817.	4.6	92
62	Capture of <i>In Situ</i> Generated Diazo Compounds or Copper Carbenoids by Triphenylphosphine: Selective Synthesis of <i>trans</i> ―Alkenes and Unsymmetric Azines <i>via</i> Reaction of Aldehydes with Ketoneâ€Derived <i>N</i> â€Tosylhydrazones. Advanced Synthesis and Catalysis, 2013, 355, 2145-2150.	4.3	15
63	Pd-Catalyzed Cyclization and Carbene Migratory Insertion: New Approach to 3-Vinylindoles and 3-Vinylbenzofurans. Organic Letters, 2013, 15, 5032-5035.	4.6	57
64	Palladium-Catalyzed Insertion of N-tosylhydrazones and Trapping with Carbon Nucleophiles. Organic Letters, 2013, 15, 5080-5083.	4.6	32
65	Pd(ii)-catalyzed direct C–H acylation of N-Boc hydrazones with aldehydes: one-pot synthesis of 1,2-diacylbenzenes. Organic and Biomolecular Chemistry, 2013, 11, 7869.	2.8	28

#	ARTICLE	IF	CITATIONS
66	Copper Acetoacetonate [Cu(acac) ₂]/BINAPâ€Promoted C <i>sp</i> ³ N Bond Formation <i>via</i> Reductive Coupling of <i>N</i> â€Tosylhydrazones with Anilines. Advanced Synthesis and Catalysis, 2013, 355, 2417-2429.	4.3	45
67	Identification of "hot spots―of the science of catalysis: bibliometric and thematic analysis of nowaday reviews and monographs. Russian Chemical Bulletin, 2013, 62, 2266-2278.	1.5	6
68	Synthesis of <i>Ortho</i> / <i>Ortho</i> àꀲ-Substituted 1,1-Diarylethylenes through Cross-Coupling Reactions of Sterically Encumbered Hydrazones and Aryl Halides. Journal of Organic Chemistry, 2013, 78, 445-454.	3.2	54
69	Cul-Catalyzed Cross-Coupling of <i>N</i> -Tosylhydrazones with Terminal Alkynes: Synthesis of 1,3-Disubstituted Allenes. Journal of Organic Chemistry, 2013, 78, 1236-1241.	3.2	95
70	Benzofuran and indole synthesis via Cu(<scp>i</scp>)-catalyzed coupling of N-tosylhydrazone and o-hydroxy or o-amino phenylacetylene. Organic and Biomolecular Chemistry, 2013, 11, 1490-1497.	2.8	45
71	Design, synthesis and anticancer properties of 5-arylbenzoxepins as conformationally restricted iso combretastatin A-4 analogs. European Journal of Medicinal Chemistry, 2013, 62, 28-39.	5 . 5	39
72	Reductive coupling reactions: a new strategy for C(sp3)–P bond formation. Tetrahedron, 2013, 69, 1065-1068.	1.9	42
73	Catalystâ€Free Intramolecular Formal Carbon Insertion into Ïfâ€CC Bonds: A New Approach toward Phenanthrols and Naphthols. Angewandte Chemie - International Edition, 2013, 52, 2543-2546.	13.8	69
74	Palladium-catalyzed insertion of N-tosylhydrazones for the synthesis of isoindolines. Chemical Communications, 2013, 49, 3254.	4.1	62
75	Palladium-catalyzed insertion of \hat{l} ±-diazocarbonyl compounds for the synthesis of cyclic amino esters. Chemical Communications, 2013, 49, 561-563.	4.1	59
76	Base and solvent mediated decomposition of tosylhydrazones: highly selective synthesis of N-alkyl substituted hydrazones, dialkylidenehydrazines, and oximes. Tetrahedron, 2013, 69, 3829-3835.	1.9	25
77	Recent advances in transition-metal-free direct C–C and C–heteroatom bond forming reactions. RSC Advances, 2013, 3, 11957.	3.6	155
78	Palladium-Catalyzed Diarylmethyl C(sp ³)–C(sp ²) Bond Formation: A New Coupling Approach toward Triarylmethanes. Organic Letters, 2013, 15, 1784-1787.	4.6	84
79	Subtle Electronic Effects in Metal-Free Rearrangement of Allenic Alcohols. Organic Letters, 2013, 15, 1552-1555.	4.6	24
80	Palladium-catalyzed Suzuki cross-coupling of N′-tosyl arylhydrazines. Chemical Communications, 2013, 49, 5268.	4.1	46
81	Iodineâ€Catalyzed Regioselective Sulfenylation of Indoles with Sulfonyl Hydrazides. Angewandte Chemie - International Edition, 2013, 52, 4929-4932.	13.8	374
82	An efficient coupling of N-tosylhydrazones with 2-halopyridines: synthesis of 2-α-styrylpyridines endowed with antitumor activity. Organic and Biomolecular Chemistry, 2013, 11, 3664.	2.8	30
83	Palladium-catalyzed conjugate addition of arylsulfonyl hydrazides to $\hat{l}\pm,\hat{l}^2$ -unsaturated ketones. Organic and Biomolecular Chemistry, 2013, 11, 4295.	2.8	37

#	Article	IF	CITATIONS
84	Palladium-Catalyzed Oxidative Cross-Coupling of $\langle i \rangle N - \langle i \rangle Tosylhydrazones$ with Indoles: Synthesis of $\langle i \rangle N - \langle i \rangle Vinylindoles$. Organic Letters, 2013, 15, 3022-3025.	4.6	57
85	A Metal-Free Tandem Demethylenation/C(sp ²)–H Cycloamination Process of <i>N</i> -Benzyl-2-aminopyridines via C–C and C–N Bond Cleavage. Organic Letters, 2013, 15, 3476-3479.	4.6	74
86	Regioselective Oneâ€Step Synthesis of Pyrazoles from Alkynes and Nâ€Tosylhydrazones: [3+2]â€Dipolar Cycloaddition/[1,5]â€Sigmatropic Rearrangement Cascade. Angewandte Chemie - International Edition, 2013, 52, 7219-7223.	13.8	102
87	N-Tosylhydrazine-mediated deoxygenative hydrogenation ofÂaldehydes and ketones catalyzed by Pd/C. Tetrahedron, 2013, 69, 6083-6087.	1.9	14
89	Synthesis, biological evaluation, and structure–activity relationships of tri- and tetrasubstituted olefins related to isocombretastatin A-4 as new tubulin inhibitors. Organic and Biomolecular Chemistry, 2013, 11, 430-442.	2.8	55
90	Diazo Compounds and <i>N</i> -Tosylhydrazones: Novel Cross-Coupling Partners in Transition-Metal-Catalyzed Reactions. Accounts of Chemical Research, 2013, 46, 236-247.	15.6	879
97	Rhodium(III)―and Iridium(III)â€Catalyzed C7 Alkylation of Indolines with Diazo Compounds. Chemistry - A European Journal, 2014, 20, 17653-17657.	3.3	162
99	Palladium-catalyzed coupling of N-tosylhydrazones and \hat{l}^2 -bromostyrene derivatives: new approach to 2H-chromenes. Organic and Biomolecular Chemistry, 2014, 12, 9333-9336.	2.8	45
100	Palladium-Mediated Organofluorine Chemistry. Advances in Organometallic Chemistry, 2014, 62, 1-110.	1.0	20
101	Copperâ€Catalyzed Aerobic Oxidative Transformation of Ketoneâ€Derived <i>N</i> à€Tosyl Hydrazones: An Entry to Alkynes. Angewandte Chemie - International Edition, 2014, 53, 14485-14489.	13.8	74
103	Oxidative Crossâ€Coupling of Allenyl Ketones and Organoboronic Acids: Expeditious Synthesis of Highly Substituted Furans. Angewandte Chemie - International Edition, 2014, 53, 3917-3921.	13.8	74
104	Facile Oneâ€Pot Synthesis of <i>N</i> â€Alkylated Benzimidazole and Benzotriazole from Carbonyl Compounds. Journal of Heterocyclic Chemistry, 2014, 51, 349-356.	2.6	5
105	A General Synthesis of αâ€Trifluoromethylstyrenes through Palladiumâ€Catalyzed Crossâ€Couplings with 1,1,1â€Trifluoroacetone Tosylhydrazone. Advanced Synthesis and Catalysis, 2014, 356, 1079-1084.	4.3	34
106	Copper(I)â€Catalyzed Wittig Olefination Reactions of <i>N</i> â€Tosylhydrazones with Trifluoromethylketones. ChemCatChem, 2014, 6, 131-134.	3.7	12
107	Palladiumâ€Catalyzed Suzuki Crossâ€Coupling of Phenylhydrazine or (Phenylsulfonyl)hydrazine. European Journal of Organic Chemistry, 2014, 2014, 3307-3312.	2.4	17
108	Rhodium(III)â€Catalyzed <i>ortho</i> Alkenylation of <i>N</i> â€Phenoxyacetamides with <i>N</i> â€Tosylhydrazones or Diazoesters through CH Activation. Angewandte Chemie - International Edition, 2014, 53, 1364-1367.	13.8	229
109	Pd–Carbene Migratory Insertion: Application to the Synthesis of Trifluoromethylated Alkenes and Dienes. Chemistry - A European Journal, 2014, 20, 961-965.	3.3	71
110	Palladiumâ€Catalyzed/Norborneneâ€Mediated CH Activation/ <i>N</i> â€Tosylhydrazone Insertion Reaction: A Route to Highly Functionalized Vinylarenes. Chemistry - A European Journal, 2014, 20, 6745-6751.	3.3	52

#	ARTICLE	IF	CITATIONS
111	Metal-Free Coupling of Saturated Heterocyclic Sulfonylhydrazones with Boronic Acids. Journal of Organic Chemistry, 2014, 79, 328-338.	3.2	87
112	Regioselective Synthesis of 1,3,5-Trisubstituted Pyrazoles from N-Alkylated Tosylhydrazones and Terminal Alkynes. Organic Letters, 2014, 16, 576-579.	4.6	68
113	Ethyl Glyoxylate <i>N</i> -Tosylhydrazone as Sulfonyl-Transfer Reagent in Base-Catalyzed Sulfa-Michael Reactions. Journal of Organic Chemistry, 2014, 79, 441-445.	3.2	35
114	Formal Carbon Insertion of <i>N-</i> Tosylhydrazone into Bâ€"B and Bâ€"Si Bonds: <i>gem</i> -Diborylation and <i>gem</i> -Silylborylation of sp ³ Carbon. Organic Letters, 2014, 16, 448-451.	4.6	147
115	Using <i>N</i> â€Tosylhydrazone as a Double Nucleophile in the Palladiumâ€Catalyzed Crossâ€Coupling Reaction To Synthesize Allylic Sulfones. Chemistry - A European Journal, 2014, 20, 16093-16096.	3.3	35
116	Design and Synthesis of 3â€Trifluoromethylâ€3 <i>H</i> à€pyrazoles and Further Investigations of Their Transformation to 1 <i>H</i> â€Pyrazoles. European Journal of Organic Chemistry, 2014, 2014, 7707-7715.	2.4	19
117	Pd-catalyzed cross-coupling reactions of less activated alkenyl electrophiles (for tosylates and) Tj ETQq0 0 0 rgB	Γ/Qverloc	k 10 Tf 50 50
118	A General and Practical Palladiumâ€Catalyzed Direct αâ€Arylation of Amides with Aryl Halides. Advanced Synthesis and Catalysis, 2014, 356, 165-178.	4.3	59
119	Copper-Catalyzed Coupling of <i>N</i> -Tosylhydrazones with Amines: Synthesis of Fluorene Derivatives. ACS Catalysis, 2014, 4, 4498-4503.	11,2	37
120	Rhodium(iii)-catalyzed C2-selective carbenoid functionalization and subsequent C7-alkenylation of indoles. Chemical Communications, 2014, 50, 6483.	4.1	109
121	Synthesis of polycyclic substituted vinylarenes via a one-pot intramolecular aryl alkylationâ€"N-tosylhydrazone insertion reaction. Chemical Communications, 2014, 50, 3882.	4.1	49
122	PdCl2 catalyzed efficient assembly of organic azides, CO, and alcohols under mild conditions: a direct approach to synthesize carbamates. Chemical Communications, 2014, 50, 3706.	4.1	79
123	Practical access to spiroacetal enol ethers via nucleophilic dearomatization of 2-furylmethylenepalladium halides generated by Pd-catalyzed coupling of furfural tosylhydrazones with aryl halides. Chemical Communications, 2014, 50, 8113.	4.1	38
124	Ruthenium–Porphyrinâ€Catalyzed Diastereoselective Intramolecular Alkyl Carbene Insertion into CH Bonds of Alkyl Diazomethanes Generated In Situ from <i>N</i> àêTosylhydrazones. Angewandte Chemie - International Edition, 2014, 53, 14175-14180.	13.8	99
125	Role of Acetate and Water in the Water-Assisted Pd(OAc) ₂ -Catalyzed Cross-Coupling of Alkenes with <i>N</i> -Tosyl Hydrazones: A DFT Study. Organometallics, 2014, 33, 3453-3463.	2.3	22
126	Cyclization of î· ³ -Benzylpalladium Intermediates Derived from Carbene Insertion. Organic Letters, 2014, 16, 5498-5501.	4.6	48
127	Theoretical Studies on a New Class of C–C Bond Formation: Palladium-Catalyzed Reactions of α-Diazocarbonyl Compounds with Allylic Esters. Organometallics, 2014, 33, 1404-1415.	2.3	25
128	Cu(I)-Catalyzed Cross-Coupling of Conjugated Ene-yne-ketones and Terminal Alkynes: Synthesis of Furan-Substituted Allenes. Organic Letters, 2014, 16, 4082-4085.	4.6	70

#	Article	IF	Citations
129	Palladium-catalyzed three-component reaction of N-tosylhydrazone, norbornene and aryl halide. Organic and Biomolecular Chemistry, 2014, 12, 3590-3593.	2.8	31
130	Tandem One-Pot Palladium-Catalyzed Coupling of Hydrazones, Haloindoles, and Amines: Synthesis of Amino- <i>N</i> -vinylindoles and Their Effect on Human Colon Carcinoma Cells. Journal of Organic Chemistry, 2014, 79, 7583-7592.	3.2	45
131	Gold(I) Carbenes by Retro-Buchner Reaction: Generation and Fate. Journal of the American Chemical Society, 2014, 136, 801-809.	13.7	107
132	Efficient Synthesis of Polysubstituted Olefins Using Stable Palladium Nanocatalyst: Applications in Synthesis of Tamoxifen and Isocombretastatin A4. Organic Letters, 2014, 16, 3856-3859.	4.6	56
133	Cul-catalyzed cross-coupling of terminal alkynes with dialkoxycarbenes: a general method for the synthesis of unsymmetrical propargylic acetals. Organic and Biomolecular Chemistry, 2014, 12, 6215-6222.	2.8	13
134	Synthesis of a $3-(\hat{l}\pm-Styryl)$ benzo[$b]-thiophene Library via Bromocyclization of Alkynes and Palladium-Catalyzed Tosylhydrazones Cross-Couplings: Evaluation as Antitubulin Agents. ACS Combinatorial Science, 2014, 16, 702-710.$	3.8	25
135	Convergent integration of three self-sorting domino sequences: three-component direct synthesis of 3-methylthio-4-aryl-maleimides from methyl ketones with acetonitrile and DMSO. Tetrahedron Letters, 2014, 55, 6403-6406.	1.4	18
136	Transition-Metal-Free Coupling Reactions. Chemical Reviews, 2014, 114, 9219-9280.	47.7	903
137	Practical and Convenient Synthesis of 1,6-Di- or 1,2,5,6-Tetra-arylhexa-1,3,5-trienes by the Dimerization of Pd(0)-Complexed Alkenylcarbenes Generated from Ï∈-Allylpalladium Intermediates. Organic Letters, 2014, 16, 3184-3187.	4.6	17
138	Synthesis of 1H-indazoles from N-tosylhydrazones and nitroaromatic compounds. Chemical Communications, 2014, 50, 5061-5063.	4.1	35
139	Palladium-Catalyzed/Norbornene-Mediated <i>ortho</i> -Amination/ <i>N</i> -Tosylhydrazone Insertion Reaction: An Approach to the Synthesis of <i>ortho</i> -Aminated Vinylarenes. Journal of Organic Chemistry, 2014, 79, 6627-6633.	3.2	95
140	Palladium(II)/Lewis Acid Synergistically Catalyzed Allylic C–H Olefination. Organic Letters, 2014, 16, 3332-3335.	4.6	59
141	Efficient construction of C–S and C–N bonds via metal-free reductive coupling of N-tosylhydrazones with benzo[d]thiazole-2-thiol. RSC Advances, 2014, 4, 16855-16863.	3.6	22
142	Palladium-Catalyzed Cross-Coupling Reaction of Diazo Compounds and Vinyl Boronic Acids: An Approach to 1,3-Diene Compounds. Journal of Organic Chemistry, 2014, 79, 7711-7717.	3.2	33
143	Copper-catalyzed direct alkylation of 1,3-azoles with N-tosylhydrazones bearing a ferrocenyl group: a novel method for the synthesis of ferrocenyl-based ligands. Organic and Biomolecular Chemistry, 2014, 12, 7721-7727.	2.8	23
144	Pd-Catalyzed Autotandem C–C/C–C Bond-Forming Reactions with Tosylhydrazones: Synthesis of Spirocycles with Extended π-Conjugation. Organic Letters, 2014, 16, 2264-2267.	4.6	56
145	Formal Carbene Insertion into C–C Bond: Rh(I)-Catalyzed Reaction of Benzocyclobutenols with Diazoesters. Journal of the American Chemical Society, 2014, 136, 3013-3015.	13.7	182
146	Enantioselective Insertion of a Carbenoid Carbon into a $\hat{\text{Ca}}$ C Bond To Expand Cyclobutanols to Cyclopentanols. Journal of the American Chemical Society, 2014, 136, 7217-7220.	13.7	141

#	Article	IF	CITATIONS
147	Palladium-Catalyzed Suzuki Cross-Coupling of Arylhydrazines via C–N Bond Cleavage. Journal of Organic Chemistry, 2014, 79, 2733-2738.	3.2	48
149	Copper(I)â€Catalyzed Reductive Crossâ€Coupling of <i>N</i> â€Tosylhydrazones with Amides: A Straightforward Method for the Construction of C(<i>sp</i> scup>3)N Amide Bonds from Aldehydes. Advanced Synthesis and Catalysis, 2015, 357, 3441-3446.	4.3	22
151	Structurally Diverse Ï€â€Extended Conjugated Polycarbo―and Heterocycles through Pd atalyzed Autotandem Cascades. Chemistry - A European Journal, 2015, 21, 16463-16473.	3.3	25
152	Baseâ€Promoted Coupling of Carbon Dioxide, Amines, and <i>N</i> i>â€Tosylhydrazones: A Novel and Versatile Approach to Carbamates. Angewandte Chemie, 2015, 127, 3127-3130.	2.0	34
153	Rh ^V â€Nitrenoid as a Key Intermediate in Rh ^{III} â€Catalyzed Heterocyclization by CH Activation: A Computational Perspective on the Cycloaddition of Benzamide and Diazo Compounds. Chemistry - A European Journal, 2015, 21, 9209-9218.	3.3	85
154	Rhodium(I) atalyzed Sequential C(sp)C(sp ³) and C(sp ³)C(sp ³) Bond Formation through Migratory Carbene Insertion. Angewandte Chemie - International Edition, 2015, 54, 7891-7894.	13.8	67
155	Transitionâ€Metalâ€Free Intramolecular Carbene Aromatic Substitution/Býchner Reaction: Synthesis of Fluorenes and [6,5,7]Benzoâ€fused Rings. Angewandte Chemie, 2015, 127, 3099-3103.	2.0	18
156	Rhodium(I)â€Catalyzed Sequential C(sp)C(sp ³) and C(sp ³)C(sp ³) Bond Formation through Migratory Carbene Insertion. Angewandte Chemie, 2015, 127, 8002-8005.	2.0	11
157	Copperâ€Catalyzed Formation of αâ€Alkoxycycloalkenones from <i>N</i> â€Tosylhydrazones. Angewandte Chemie - International Edition, 2015, 54, 12942-12946.	13.8	28
158	Enantioselective Rhodium(I) Donor Carbenoidâ€Mediated Cascade Triggered by a Baseâ€Free Decomposition of Arylsulfonyl Hydrazones. Chemistry - A European Journal, 2015, 21, 16240-16245.	3.3	37
159	Baseâ€Promoted/Goldâ€Catalyzed Intramolecular Highly Selective and Controllable Detosylative Cyclization. Chemistry - A European Journal, 2015, 21, 12871-12875.	3.3	36
160	I ₂ –TBHP-Catalyzed Oxidative Cross-Coupling of <i>N</i> lsocyanides to 5-Aminopyrazoles. Organic Letters, 2015, 17, 1521-1524.	4.6	93
161	Pd-catalyzed Heck cyclization and in situ hydrocarboxylation or hydromethenylation via a hydrogen borrowing strategy. Organic Chemistry Frontiers, 2015, 2, 778-782.	4.5	48
162	Pd-catalyzed desulfitative and denitrogenative Suzuki-type reaction of arylsulfonyl hydrazides. RSC Advances, 2015, 5, 27029-27033.	3.6	24
163	Pd-catalyzed cross-coupling of terminal alkynes with ene-yne-ketones: access to conjugated enynes via metal carbene migratory insertion. Chemical Communications, 2015, 51, 11233-11235.	4.1	50
164	Mechanisms and stereoselectivities of the Rh(<scp>i</scp>)-catalyzed carbenoid carbon insertion reaction of benzocyclobutenol with diazoester. Organic and Biomolecular Chemistry, 2015, 13, 6587-6597.	2.8	36
165	Palladium-Catalyzed One-Pot Reaction of Hydrazones, Dihaloarenes, and Organoboron Reagents: Synthesis and Cytotoxic Activity of 1,1-Diarylethylene Derivatives. Journal of Organic Chemistry, 2015, 80, 6715-6727.	3.2	28
166	Rh(I)-Catalyzed Cross-Coupling of α-Diazoesters with Arylsiloxanes. Organic Letters, 2015, 17, 956-959.	4.6	31

#	Article	IF	CITATIONS
167	Câ€"H bond functionalization based on metal carbene migratory insertion. Chemical Communications, 2015, 51, 7986-7995.	4.1	229
168	Base-Mediated Decomposition of Amide-Substituted Furfuryl Tosylhydrazones: Synthesis and Cytotoxic Activities of Enynyl-Ketoamides. Journal of Organic Chemistry, 2015, 80, 2092-2102.	3.2	25
169	Rh(<scp>iii</scp>)-catalyzed and alcohol-involved carbenoid Câ€"H insertion into N-phenoxyacetamides using α-diazomalonates. Chemical Communications, 2015, 51, 5868-5871.	4.1	63
170	Baseâ€Promoted Coupling of Carbon Dioxide, Amines, and <i>N</i> li>â€Tosylhydrazones: A Novel and Versatile Approach to Carbamates. Angewandte Chemie - International Edition, 2015, 54, 3084-3087.	13.8	121
171	Pd embedded in chitosan microspheres as tunable soft-materials for Sonogashira cross-coupling in water–ethanol mixture. Green Chemistry, 2015, 17, 1893-1898.	9.0	66
172	Transitionâ€Metalâ€Free Intramolecular Carbene Aromatic Substitution/Býchner Reaction: Synthesis of Fluorenes and [6,5,7]Benzoâ€fused Rings. Angewandte Chemie - International Edition, 2015, 54, 3056-3060.	13.8	84
173	An entry to vinylcyclopropane through palladium-catalyzed intramolecular cyclopropanation of alkenes with unstabilized allylic tosylhydrazones. Chemical Communications, 2015, 51, 6179-6182.	4.1	24
174	Aminopalladationâ€Triggered Carbene Insertion Reaction: Synthesis of 2â€(1 <i>H</i> àêIndolâ€3â€yl)acetates. Advanced Synthesis and Catalysis, 2015, 357, 1060-1064.	4.3	17
175	Palladium-Catalyzed Oxidative Cross-Coupling of Conjugated Enynones with Organoboronic Acids. Journal of Organic Chemistry, 2015, 80, 7856-7864.	3.2	40
176	AgNO2-mediated cleavage of the N–N bond of sulfonylhydrazones and oxygen transfer: access to fulleroisoxazolines via radical cyclization with [60]fullerene. Chemical Communications, 2015, 51, 12775-12778.	4.1	25
177	Olefin Preparation via Palladium-Catalyzed Oxidative De-Azotative and De-Sulfitative Internal Cross-Coupling of Sulfonylhydrazones. Organic Letters, 2015, 17, 3548-3551.	4.6	15
178	Aryl alkyl carbene–Pd complex assisted C–Cl bond activation: an unprecedented cross-coupling route to trans-stilbenes. RSC Advances, 2015, 5, 55218-55226.	3.6	4
179	Pd-Catalyzed Highly Regio- and Stereoselective Formation of C–C Double Bonds: An Efficient Method for the Synthesis of Benzofuran-, Dihydrobenzofuran-, and Indoline-Containing Alkenes. Journal of Organic Chemistry, 2015, 80, 7456-7467.	3.2	69
180	Iron-catalyzed direct α-arylation of ethers with azoles. Chemical Communications, 2015, 51, 13365-13368.	4.1	69
181	Palladium-catalyzed cross-coupling of aryl fluorides with N-tosylhydrazones via C–F bond activation. Chemical Communications, 2015, 51, 13321-13323.	4.1	29
182	Palladium-Catalyzed Tandem Carbene Migratory Insertion and Intramolecular Cyclization: Synthesis of Chromeno[4,3- <i>b</i>)chromene Compounds. Journal of Organic Chemistry, 2015, 80, 4808-4815.	3.2	33
183	Efficient Palladiumâ€Catalyzed Synthesis of Sulfonylâ€Substituted Vinyl Arenes: Hydrazones Provide the Crossâ€Coupling Partner and Nucleophile Components. Asian Journal of Organic Chemistry, 2015, 4, 516-520.	2.7	5
184	2-(Isopropylamino)thieno[3,2-d]pyrimidin-4(3H)-one derivatives as selective phosphodiesterase 7 inhibitors with potent in vivo efficacy. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1910-1914.	2.2	15

#	Article	IF	CITATIONS
185	A straightforward synthesis of alkyl 1H-tetrazol-5-yl thioethers via a one-pot reaction of aldehydes and 1H-tetrazole-5-thiols mediated by N-tosylhydrazones. RSC Advances, 2015, 5, 29996-30000.	3.6	17
186	Access to polysubstituted indoles or benzothiophenes via palladium-catalyzed cross-coupling of furfural tosylhydrazones with 2-iodoanilines or 2-iodothiophenols. Chemical Communications, 2015, 51, 6126-6129.	4.1	31
187	Palladium-Catalyzed C–H Functionalization of Acyldiazomethane and Tandem Cross-Coupling Reactions. Journal of the American Chemical Society, 2015, 137, 4435-4444.	13.7	94
188	Copper-Catalyzed Radical Reaction of $\langle i \rangle N \langle j \rangle$ -Tosylhydrazones: Stereoselective Synthesis of $(\langle i \rangle E \langle j \rangle)$ -Vinyl Sulfones. Organic Letters, 2015, 17, 1692-1695.	4.6	76
189	Cu(I)-Catalyzed Cross-Coupling of Terminal Alkynes with Trifluoromethyl Ketone <i>N</i> -Tosylhydrazones: Access to 1,1-Difluoro-1,3-enynes. Organic Letters, 2015, 17, 2474-2477.	4.6	121
190	[RhIII(Cp*)]-Catalyzed Cascade Arylation and Chlorination of α-Diazocarbonyl Compounds with Arylboronic Acids and N-Chlorosuccinimide for Facile Synthesis of α-Aryl-α-chloro Carbonyl Compounds. Organic Letters, 2015, 17, 1676-1679.	4.6	44
191	Pd(0)-Catalyzed Carbene Insertion into Si–Si and Sn–Sn Bonds. Journal of the American Chemical Society, 2015, 137, 12800-12803.	13.7	94
192	Palladium-Catalyzed Formal Insertion of Carbenoids into Aminals via C–N Bond Activation. Journal of the American Chemical Society, 2015, 137, 12490-12493.	13.7	99
193	Molybdenum hexacarbonyl mediated synthesis of indolin-2-one & amp; azaindolin-2-one under catalyst free conditions. Tetrahedron Letters, 2015, 56, 6370-6372.	1.4	14
194	Palladium-Catalyzed Intermolecular Carbene Insertion Prior to Intramolecular Heck Cyclization: Synthesis of 2-Arylidene-3-aryl-1-indanones. Organic Letters, 2015, 17, 5448-5451.	4.6	35
195	Carbenylative Amination and Alkylation of Vinyl Iodides via Palladium Alkylidene Intermediates. Organic Letters, 2015, 17, 5464-5467.	4.6	19
196	Pd(ii)-catalyzed formal [4+1] cycloaddition reactions of diazoacetates and aryl propargyl alcohols to form 2,5-dihydrofurans. Chemical Communications, 2015, 51, 15204-15207.	4.1	55
197	Palladium-Catalyzed Coupling of Sulfonylhydrazones with Heteroaromatic 2-Amino-Halides (Barluenga Reaction): Exploring the Electronics of the Sulfonylhydrazone. Organic Process Research and Development, 2015, 19, 1044-1048.	2.7	18
198	Expedient synthesis of gem-dialkylbenzyl heterocycles through olefinic hydroarylation. Tetrahedron, 2015, 71, 9509-9514.	1.9	8
199	Synthesis of benzofulvenes through chemoselective Sonogashira and Barluenga couplings of ortho ethynyl-N-tosylhydrazones and cycloisomerization. RSC Advances, 2015, 5, 74391-74398.	3.6	7
200	Construction of All-Carbon Quaternary Centers through Cu-Catalyzed Sequential Carbene Migratory Insertion and Nucleophilic Substitution/Michael Addition. Journal of Organic Chemistry, 2015, 80, 8748-8757.	3.2	31
201	The Pd-catalyzed synthesis of benzofused carbo- and heterocycles through carbene migratory insertion/carbopalladation cascades with tosylhydrazones. Chemical Communications, 2015, 51, 16241-16243.	4.1	31
202	Copper-Catalyzed Cross-Coupling of Allylboronic Acids with \hat{l}_{\pm} -Diazoketones. Organic Letters, 2015, 17, 4754-4757.	4.6	23

#	Article	IF	CITATIONS
203	Catalyst-free cross-coupling of N-tosylhydrazones with chromium(0) Fischer carbene complexes: a new approach to diarylethanone. Organic Chemistry Frontiers, 2015, 2, 1450-1456.	4.5	21
204	CO ₂ Chemistry in SCUT Group: New Methods for Conversion of Carbon Dioxide into Organic Compounds. ACS Symposium Series, 2015, , 71-108.	0.5	1
205	A direct facile and effective synthesis of various 1,1-heterodiaryl alkenes through Pd catalyzed cross coupling reaction using N-tosylhydrazones via C–OH bond activation. Tetrahedron Letters, 2015, 56, 6585-6589.	1.4	15
206	A One-Pot Synthesis of Dibenzofurans from 6-Diazo-2-cyclohexenones. Organic Letters, 2015, 17, 5744-5747.	4.6	30
207	Ir(III)-Catalyzed Aromatic C–H Bond Functionalization via Metal Carbene Migratory Insertion. Journal of Organic Chemistry, 2015, 80, 223-236.	3.2	142
208	Regioselective Synthesis of Vinyl Halides, Vinyl Sulfones, and Alkynes: A Tandem Intermolecular Nucleophilic and Electrophilic Vinylation of Tosylhydrazones. Organic Letters, 2015, 17, 18-21.	4.6	75
209	Synthesis of the cyclic prenylguanidine nitensidine E using a palladium-catalyzed carbenylative amination. Tetrahedron Letters, 2015, 56, 3027-3031.	1.4	15
210	Synthesis of Terminal Allenes through Copper-Mediated Cross-Coupling of Ethyne with <i>N</i> -Tosylhydrazones or α-Diazoesters. Journal of Organic Chemistry, 2015, 80, 647-652.	3.2	55
211	One-pot cascade synthesis of N-methoxyisoquinolinediones via Rh(<scp>iii</scp>)-catalyzed carbenoid insertion C–H activation/cyclization. Chemical Communications, 2015, 51, 668-671.	4.1	110
212	Transition Metal-Participated Synthesis and Utilization of N-containing Heterocycles: Exploring for Nitrogen Sources. Chemical Record, 2016, 16, 1701-1714.	5.8	19
213	Hydrohydrazination of Arylalkynes Catalyzed by an Expanded Ring Nâ€Heterocyclic Carbene (erâ€NHC) Gold Complex Under Solventâ€Free Conditions . Advanced Synthesis and Catalysis, 2016, 358, 1463-1468.	4.3	27
214	Rhodium(II) atalyzed Regioselective Carbenoid Insertion Reaction of Simple Indoles with <i>N</i> à€€aulfonyltriazoles: A Rapid Access to Tryptamine Vinylogues. Advanced Synthesis and Catalysis, 2016, 358, 201-206.	4.3	26
215	Neue AnsÃtze für die Synthese von Metallcarbenen. Angewandte Chemie, 2016, 128, 9280-9313.	2.0	62
216	New Approaches to the Synthesis of Metal Carbenes. Angewandte Chemie - International Edition, 2016, 55, 9134-9166.	13.8	279
217	Stereoselective Csp ³ â€"Csp ² Bondâ€Forming Reactions by Transitionâ€Metalâ€Free Reductive Coupling of Cyclic Tosylhydrazones with Boronic Acids. Chemistry - A European Journal, 2016, 22, 6253-6257.	3.3	24
218	Cobalt(II) Porphyrinâ€Catalyzed Intramolecular Cyclopropanation of Nâ€Alkyl Indoles/Pyrroles with Alkylcarbene: Efficient Synthesis of Polycyclic Nâ€Heterocycles. Angewandte Chemie - International Edition, 2016, 55, 1810-1815.	13.8	74
219	Oxysulfonylation of Alkenes with Sulfonyl Hydrazides under Transitionâ€Metalâ€Free Conditions. European Journal of Organic Chemistry, 2016, 2016, 910-912.	2.4	40
220	Rh(I)â€Catalyzed Reaction of Trifluoromethylketone <i>N</i> â€Tosylhydrazones and Arylboronates. Chinese Journal of Chemistry, 2016, 34, 473-476.	4.9	30

#	Article	IF	CITATIONS
221	Palladium and Copper Cocatalyzed Intermolecular Cyclization Reaction: Synthesis of 5â€Aminopyrazole Derivatives. Advanced Synthesis and Catalysis, 2016, 358, 1073-1077.	4.3	17
222	Palladiumâ€Catalyzed Tandem Reaction of Alkyneâ€Based Aryl Iodides and Salicyl <i>N</i> â€Tosylhydrazones to Construct the Spiro[benzofuranâ€3,2′â€chromene] Skeleton. Advanced Synthesis and Catalysis, 2016, 358, 1577-1582.	4.3	10
223	Palladiumâ€Catalyzed Oneâ€Pot Synthesis of 5â€(1â€Arylvinyl)â€1 <i>H</i> à€benzimidazoles: Overcoming the Limitation of Acetamide Partners. Advanced Synthesis and Catalysis, 2016, 358, 1833-1847.	4.3	19
224	Copperâ€Catalyzed Reductive <i>N</i> â€Alkylation of Amides with <i>N</i> â€Tosylhydrazones Derived from Ketones. Chemistry - an Asian Journal, 2016, 11, 2030-2034.	3.3	17
225	Palladiumâ€Catalyzed Intramolecular Carbene Insertion into C(sp ³)â^'H Bonds. Angewandte Chemie - International Edition, 2016, 55, 6467-6470.	13.8	41
226	Copperâ€Catalyzed Direct Crossâ€Coupling of Compounds Containing Activated C–H/Heteroatom–H Bonds with <i>N</i> à€Tosylhydrazones. European Journal of Organic Chemistry, 2016, 2016, 2369-2382.	2.4	52
227	Palladium atalyzed Cascade Reactions of <i>α</i> à€Haloâ€ <i>N</i> â€Tosylhydrazones, Indoles, and Aryl Iodides. Asian Journal of Organic Chemistry, 2016, 5, 874-877.	2.7	12
228	Cobalt(II) Porphyrinâ€Catalyzed Intramolecular Cyclopropanation of Nâ€Alkyl Indoles/Pyrroles with Alkylcarbene: Efficient Synthesis of Polycyclic Nâ€Heterocycles. Angewandte Chemie, 2016, 128, 1842-1847.	2.0	8
229	Enantioselective Synthesis of Atropisomeric Vinyl Arene Compounds by Palladium Catalysis: A Carbene Strategy. Angewandte Chemie, 2016, 128, 2226-2230.	2.0	53
230	Palladiumâ€Catalyzed Intramolecular Carbene Insertion into C(sp ³)â^'H Bonds. Angewandte Chemie, 2016, 128, 6577-6580.	2.0	14
231	Transition-Metal-Free Synthesis of Tertiary Aminocyclopropanes. Organic Letters, 2016, 18, 6448-6451.	4.6	33
232	Cu-Catalyzed Expeditious Synthesis of N-Benzylaminoheter-ocycles Using N-Tosylhydrazones and Aminoheteroarenes. ChemistrySelect, 2016, 1, 6368-6373.	1.5	4
233	Rhodium(I) atalyzed Câ^'C Bond Activation of Siloxyvinylcyclopropanes with Diazoesters. Angewandte Chemie, 2016, 128, 15627-15631.	2.0	7
234	Copper-Mediated [3 + 2] Oxidative Cyclization Reaction of $\langle i \rangle N \langle i \rangle$ -Tosylhydrazones and \hat{l}^2 -Ketoesters: Synthesis of 2,3,5-Trisubstituted Furans. Journal of Organic Chemistry, 2016, 81, 5014-5020.	3.2	41
235	Ir(III)-Catalyzed Carbenoid Functionalization of Benzamides: Synthesis of <i>N</i> -Methoxyisoquinolinediones and <i>N</i> -Methoxyisoquinolinones. Organic Letters, 2016, 18, 2828-2831.	4.6	61
236	Rh(I)-Catalyzed Coupling of Conjugated Enynones with Arylboronic Acids: Synthesis of Furyl-Containing Triarylmethanes. Journal of Organic Chemistry, 2016, 81, 10484-10490.	3.2	44
237	Pd-catalyzed cascade reactions between o-iodo-N-alkenylanilines and tosylhydrazones: novel approaches to the synthesis of polysubstituted indoles and 1,4-dihydroquinolines. Chemical Communications, 2016, 52, 6312-6315.	4.1	37
238	Formation of C(sp3)–C(sp3) Bonds by Palladium Catalyzed Cross-Coupling of α-Diazoketones and Allylboronic Acids. Organic Letters, 2016, 18, 2503-2506.	4.6	15

#	Article	IF	CITATIONS
239	Intermolecular dearomative oxidative coupling of indoles with ketones and sulfonylhydrazines catalyzed by I2: synthesis of [2,3]-fused indoline tetrahydropyridazines. Science China Chemistry, 2016, 59, 1311-1316.	8.2	4
240	Transition-Metal-Free Diastereoselective Epoxidation of Trifluoromethylketones with <i>N</i> -Tosylhydrazones: Access to Tetrasubstituted Trifluoromethylated Oxiranes. Organic Letters, 2016, 18, 4008-4011.	4.6	37
241	Rhodium(II)â€Catalyzed Carbenoid Insertion of <i>N</i> à€Tosylhydrazones into Amide NH Bonds: An Efficient Approach to <i>N</i> ³ â€Benzyl/Alkylâ€2â€arylquinazolinones. Advanced Synthesis and Catalysis, 2016, 358, 81-89.	4.3	23
242	Ir ^{III} â€Catalyzed Oneâ€Pot Cascade Synthesis of Pentacyclicâ€Fused Carbazoles from Indoles and Diazoes. Chemistry - an Asian Journal, 2016, 11, 3165-3168.	3.3	42
243	Recent Advances in the Synthesis of Heterocycles and Related Substances Based on αâ€lmino Rhodium Carbene Complexes Derived from <i>N</i> â€Sulfonylâ€1,2,3â€triazoles. Chemistry - A European Journal, 2016, 22, 17910-17924.	3.3	196
244	TfNHNHBoc as a Trifluoromethylating Agent for Vicinal Difunctionalization of Terminal Alkenes. Organic Letters, 2016, 18, 3850-3853.	4.6	65
245	A general synthesis of arylindoles and (1-arylvinyl)carbazoles via a one-pot reaction from N-tosylhydrazones and 2-nitro-haloarenes and their potential application to colon cancer. Chemical Communications, 2016, 52, 13027-13030.	4.1	40
246	Iridium(III)â€Catalyzed Regioselective Carbenoid Insertion C–H Alkylation by αâ€Diazotized Meldrum's Acid. European Journal of Organic Chemistry, 2016, 2016, 5637-5641.	2.4	42
247	Rhodium(I)â€Catalyzed Câ^'C Bond Activation of Siloxyvinylcyclopropanes with Diazoesters. Angewandte Chemie - International Edition, 2016, 55, 15401-15405.	13.8	27
248	Palladiumâ€Catalyzed Multiâ€Component Reactions of <i>N</i> li>â€Tosylhydrazones, 2â€Iodoanilines and CO ₂ towards 4â€Arylâ€2â€Quinolinones. Chemistry - A European Journal, 2016, 22, 18729-18732.	3.3	59
249	Relay Rh(II)/Pd(0) Dual Catalysis: Selective Construction of Cyclic All-Quaternary Carbon Centers. Organic Letters, 2016, 18, 5876-5879.	4.6	31
250	An Enantioselective Cascade Cyclopropanation Reaction Catalyzed by Rhodium(I): Asymmetric Synthesis of Vinylcyclopropanes. Advanced Synthesis and Catalysis, 2016, 358, 3512-3516.	4.3	21
251	The Selection of Catalysts for Metal Carbene Transformations. Advances in Organometallic Chemistry, 2016, 66, 1-31.	1.0	32
252	Calcium carbide as the acetylide source: transition-metal-free synthesis of substituted pyrazoles via [1,5]-sigmatropic rearrangements. Green Chemistry, 2016, 18, 6445-6449.	9.0	56
253	Metalâ€Free Ringâ€Expansion Reaction of Sixâ€membered Sulfonylimines with Diazomethanes: An Approach toward Sevenâ€Membered Enesulfonamides. Angewandte Chemie, 2016, 128, 1463-1466.	2.0	5
254	Regioselective Synthesis of Naphthoâ€fused Heterocycles <i>via</i> Palladium(0)â€Catalyzed Tandem Reaction of <i>N</i> â€Tosylhydrazones. Advanced Synthesis and Catalysis, 2016, 358, 1328-1336.	4.3	19
255	Metalâ€Free Ringâ€Expansion Reaction of Sixâ€membered Sulfonylimines with Diazomethanes: An Approach toward Sevenâ€Membered Enesulfonamides. Angewandte Chemie - International Edition, 2016, 55, 1441-1444.	13.8	49
256	Recent advances in transition-metal-catalyzed synthesis of conjugated enynes. Organic and Biomolecular Chemistry, 2016, 14, 6638-6650.	2.8	107

#	ARTICLE	IF	CITATIONS
257	Co ^{III} â€"Carbene Radical Approach to Substituted 1 <i>H</i> Indenes. Journal of the American Chemical Society, 2016, 138, 8968-8975.	13.7	117
258	Enantioselective Synthesis of Atropisomeric Vinyl Arene Compounds by Palladium Catalysis: A Carbene Strategy. Angewandte Chemie - International Edition, 2016, 55, 2186-2190.	13.8	171
259	One-Step Synthesis of Sulfonamides from <i>N</i> -Tosylhydrazones. Organic Letters, 2016, 18, 508-511.	4.6	105
260	Silver(<scp>i</scp>)-mediated three-component annulation reaction of [60]fullerene, sulfonylhydrazones, and nitriles: leading to diverse disubstituted [60]fullerene-fused dihydropyrroles. Chemical Communications, 2016, 52, 982-985.	4.1	34
261	Cobalt-Catalyzed Carbonylative Cyclization of Pyridinyl Diazoacetates for the Synthesis of Pyridoisoquinolinones. Organic Letters, 2016, 18, 104-107.	4.6	29
262	Iodine-Promoted Radical Cyclization in Water: A Selective Reaction of 1,6-Enynes with Sulfonyl Hydrazides. Journal of Organic Chemistry, 2016, 81, 66-76.	3.2	69
263	Transition-metal-free cascade reaction of \hat{l}_{\pm} -halo-N-tosylhydrazones, indoles and arylboronic acids. Chemical Communications, 2016, 52, 5266-5268.	4.1	24
264	Cu(I)-Catalyzed Synthesis of Furan-Substituted Allenes by Use of Conjugated Ene-yne Ketones as Carbene Precursors. Journal of Organic Chemistry, 2016, 81, 3275-3285.	3.2	43
265	C–H Bond Functionalization of Benzoxazoles with Chromium(0) Fischer Carbene Complexes. Organometallics, 2016, 35, 1409-1414.	2.3	12
266	Pd(0)-catalyzed cross-coupling of allyl halides with $\hat{l}\pm$ -diazocarbonyl compounds or N-mesylhydrazones: synthesis of 1,3-diene compounds. Organic and Biomolecular Chemistry, 2016, 14, 3809-3820.	2.8	34
267	Palladium-catalyzed direct arylation of indoles with arylsulfonyl hydrazides. Organic and Biomolecular Chemistry, 2016, 14, 2824-2827.	2.8	39
268	Simple and efficient synthesis of pyrazole-fused porphyrins. Tetrahedron Letters, 2016, 57, 1265-1267.	1.4	19
269	Regiospecific Synthesis of Benzoxepines through Pd-Catalyzed Carbene Migratory Insertion and C–C Bond Cleavage. Journal of Organic Chemistry, 2016, 81, 2128-2134.	3.2	33
270	Structures of Reactive Donor/Acceptor and Donor/Donor Rhodium Carbenes in the Solid State and Their Implications for Catalysis. Journal of the American Chemical Society, 2016, 138, 3797-3805.	13.7	142
271	Copper(<scp>i</scp>)-catalyzed olefination of N-sulfonylhydrazones with sulfones. Chemical Communications, 2016, 52, 4478-4480.	4.1	26
272	Cp*Rh(III)-Catalyzed Cross-Coupling of Alkyltrifluoroborate with α-Diazomalonates for C(sp ³)–C(sp ³) Bond Formation. Organic Letters, 2016, 18, 1350-1353.	4.6	19
273	Transition-Metal-Free Cyclopropanation of 2-Aminoacrylates with <i>N</i> -Tosylhydrazones: A General Route to Cyclopropane α-Amino Acid with Contiguous Quaternary Carbon Centers. Organic Letters, 2016, 18, 1470-1473.	4.6	48
274	Amination of Diazocarbonyl Compounds: N–H Insertion under Metal-Free Conditions. Journal of Organic Chemistry, 2016, 81, 2943-2949.	3.2	23

#	Article	IF	CITATIONS
275	Aminofluorination: transition-metal-free N–F bond insertion into diazocarbonyl compounds. Chemical Science, 2016, 7, 1786-1790.	7.4	53
276	Palladium-catalysed coupling reaction of aminals with N-sulfonyl hydrazones to give allylic sulfones. Organic Chemistry Frontiers, 2016, 3, 259-267.	4.5	21
277	Synthesis of Highly Substituted Polyenes by Palladiumâ€Catalyzed Cross–Couplings of Sterically Encumbered Alkenyl Bromides and <i>N</i> â€Tosylhydrazones. Advanced Synthesis and Catalysis, 2017, 359, 1058-1062.	4.3	17
278	Palladium-Catalyzed Denitrogenative Synthesis of Aryl Ketones from Arylhydrazines and Nitriles Using O2 as Sole Oxidant. Journal of Organic Chemistry, 2017, 82, 2211-2218.	3.2	30
279	Synthesis of 3-azabicyclo[3.1.0]hexane derivatives via palladium-catalyzed cyclopropanation of maleimides with N-tosylhydrazones: practical and facile access to CP-866,087. Organic and Biomolecular Chemistry, 2017, 15, 1228-1235.	2.8	21
280	Cî€N bond formation via palladium-catalyzed carbene insertion into Nî€N bonds: inhibiting the general 1,2-migration process of ylide intermediates. Chemical Communications, 2017, 53, 2697-2700.	4.1	13
281	Silver-catalyzed geminal aminofluorination of diazoketones with anilines and N-fluorobenzenesulphonimide. Organic Chemistry Frontiers, 2017, 4, 529-533.	4.5	17
282	Pd/Cu-free Heck and Sonogashira cross-coupling reaction by Co nanoparticles immobilized on magnetic chitosan as reusable catalyst. Green Chemistry, 2017, 19, 1353-1361.	9.0	114
283	Palladium-catalysed intramolecular carbenoid insertion of \hat{l} ±-diazo- \hat{l} ±-(methoxycarbonyl)acetanilides for oxindole synthesis. Chemical Communications, 2017, 53, 3110-3113.	4.1	15
284	Cu(I)-catalyzed cascade reaction of N-tosylhydrazones with 3-butyn-1-ol: A new synthesis of tetrahydrofurans. Chinese Journal of Catalysis, 2017, 38, 115-122.	14.0	17
285	Palladium-Catalyzed Formal [4 + 1] Annulation via Metal Carbene Migratory Insertion and C(sp ²)â€"H Bond Functionalization. ACS Catalysis, 2017, 7, 1993-1997.	11.2	95
286	Coupling of anhydro-aldose tosylhydrazones with hydroxy compounds and carboxylic acids: a new route for the synthesis of $C-\hat{l}^2-\langle scp \rangle d\langle scp \rangle$ -glycopyranosylmethyl ethers and esters. RSC Advances, 2017, 7, 10454-10462.	3.6	12
287	Transition metal and base free coupling of N-tosylhydrazones with 1,3-dicarbonyl compound. Tetrahedron Letters, 2017, 58, 1132-1136.	1.4	11
288	Silver(<scp>i</scp>)-promoted insertion into X–H (X = Si, Sn, and Ge) bonds with N-nosylhydrazones. Chemical Communications, 2017, 53, 2503-2506.	4.1	46
289	Nickel-Catalyzed Direct Synthesis of Aryl Olefins from Ketones and Organoboron Reagents under Neutral Conditions. Journal of the American Chemical Society, 2017, 139, 6086-6089.	13.7	42
290	Cu(I)â€Catalyzed Threeâ€Component Coupling of Trifluoromethyl Ketone <i>N</i> à€Tosylhydrazones, Alkynes and Azides: Synthesis of Difluoromethylene Substituted 1,2,3â€Triazoles. Chinese Journal of Chemistry, 2017, 35, 387-391.	4.9	25
291	Divergent Synthesis of Disulfanes and Benzenesulfonothioates Bearing 2â€Aminofurans From Nâ€Tosylhydrazoneâ€Bearing Thiocarbamates. Angewandte Chemie - International Edition, 2017, 56, 7952-7957.	13.8	48
292	Recent Advances in Transition-Metal-Catalyzed Cross-Coupling Reactions With N -Tosylhydrazones. Advances in Organometallic Chemistry, 2017, 67, 151-219.	1.0	22

#	Article	IF	CITATIONS
293	Palladium-Catalyzed Desulfitative Cross-Coupling of Arylsulfonyl Hydrazides with Terminal Alkynes: A General Approach toward Functionalized Internal Alkynes. Journal of Organic Chemistry, 2017, 82, 6764-6769.	3.2	35
294	Transition metal-free Suzuki type cross-coupling reaction for the synthesis of dissymmetric ketones. Tetrahedron Letters, 2017, 58, 3201-3204.	1.4	3
295	Divergent Synthesis of Disulfanes and Benzenesulfonothioates Bearing 2â€Aminofurans From Nâ€Tosylhydrazoneâ€Bearing Thiocarbamates. Angewandte Chemie, 2017, 129, 8060-8065.	2.0	6
296	Highly stereoselective synthesis of 1-cyanocyclopropane-carboxamides from 3-substituted-2-cyanoacrylamides with N -tosylhydrazones under metal-free conditions. Tetrahedron Letters, 2017, 58, 3003-3007.	1.4	9
297	Oximes and Hydrazones in Bioconjugation: Mechanism and Catalysis. Chemical Reviews, 2017, 117, 10358-10376.	47.7	450
298	Pd-Catalyzed Cross-Coupling of Terminal Alkynes with Chromium(0) Fischer Carbene Complexes. Organic Letters, 2017, 19, 2861-2864.	4.6	14
299	Copper-catalyzed N-alkylation of indoles by N-tosylhydrazones. RSC Advances, 2017, 7, 27974-27980.	3.6	25
300	Alkynyl <i>N</i> â€Nosylhydrazones: Easy Decomposition to Alknynl Diazomethanes and Application in Allene Synthesis. Chemistry - A European Journal, 2017, 23, 9009-9013.	3.3	26
301	Copper-Catalyzed Formal Carbene Migratory Insertion into Internal Olefinic Câ•C Bonds with <i>N</i> -Tosylhydrazones To Access Iminofuran and 2(3 <i>H</i>)-Furanone Derivatives. Organic Letters, 2017, 19, 3660-3663.	4.6	45
302	Transition Metal, Azide, and Oxidant-Free Homo- and Heterocoupling of Ambiphilic Tosylhydrazones to the Regioselective Triazoles and Pyrazoles. Organic Letters, 2017, 19, 1534-1537.	4.6	39
303	Pd(0)â€Catalyzed Tandem Oneâ€Pot Reaction of Biphenyl Ketones/Aldehydes to the Corresponding Diâ€substituted Aryl Olefins. Chinese Journal of Chemistry, 2017, 35, 1141-1148.	4.9	15
304	Pd-Catalyzed Autotandem Reactions with <i>N</i> -Tosylhydrazones. Synthesis of Condensed Carboand Heterocycles by Formation of a C–C Single Bond and a C╀ Double Bond on the Same Carbon Atom. Organic Letters, 2017, 19, 2034-2037.	4.6	28
305	The synthesis of cardenolide and bufadienolide aglycones, and related steroids bearing a heterocyclic subunit. Natural Product Reports, 2017, 34, 361-410.	10.3	43
306	Metal free coupling of heteroaryl N -tosylhydrazones and thiols: Efficient synthesis of sulfides. Tetrahedron Letters, 2017, 58, 1952-1956.	1.4	12
307	N-Tosylhydrazones: versatile synthons in the construction of cyclic compounds. Chemical Society Reviews, 2017, 46, 2306-2362.	38.1	271
308	Metal-Free $[2+1+2]$ -Cycloaddition of Tosylhydrazones with Hexahydro-1,3,5-triazines To Form Imidazolidines. Organic Letters, 2017, 19, 1858-1861.	4.6	49
309	Palladium-Catalyzed Cleavage of α-Allenylic Aryl Ether toward Pyrazolemethylene-Substituted Phosphinyl Allenes and Their Transformations via Alkenyl C–P(O) Cleavage. Organic Letters, 2017, 19, 1946-1949.	4.6	35
310	Access to Fluorescent Azines from Nâ€Heterocyclic Carbene Precursors and <i>N</i> â€Tosylhydrazones. Advanced Synthesis and Catalysis, 2017, 359, 1825-1830.	4.3	5

#	Article	IF	CITATIONS
311	Palladium-Catalyzed Synthesis of Indoles and Isoquinolines with <i>in Situ</i> Generated Phosphinimine. Journal of Organic Chemistry, 2017, 82, 48-56.	3.2	30
312	Silverâ€Catalyzed Crossâ€Olefination of Donor and Acceptor Diazo Compounds: Use of <i>N</i> à€Nosylhydrazones as Diazo Surrogate. European Journal of Organic Chemistry, 2017, 2017, 928-932.	2.4	22
313	Sulfonyl hydrazides as sulfonyl sources in organic synthesis. Tetrahedron Letters, 2017, 58, 487-504.	1.4	104
314	One-pot reductive coupling reactions of acetyl naphthalene derivatives, tosylhydrazide, with arylboronic acids. Tetrahedron, 2017, 73, 785-793.	1.9	19
315	Palladium(<scp>ii</scp>)-catalyzed direct O-alkenylation of 2-arylquinazolinones with N-tosylhydrazones: an efficient route to O-alkenylquinazolines. Chemical Communications, 2017, 53, 1672-1675.	4.1	15
316	Asymmetric Radical Cyclopropanation of Alkenes with In Situ-Generated Donor-Substituted Diazo Reagents via Co(II)-Based Metalloradical Catalysis. Journal of the American Chemical Society, 2017, 139, 1049-1052.	13.7	177
317	Synthesis of Benzyltributylstannanes by the Reaction of <i>N</i> -Tosylhydrazones with Bu ₃ SnH. Journal of Organic Chemistry, 2017, 82, 624-632.	3.2	19
318	A Transitionâ€Metalâ€Free and Baseâ€Mediated Carbene Insertion into Sulfurâ€Sulfur and Seleniumâ€Selenium Bonds: An Easy Access to Thio―and Selenoacetals. Advanced Synthesis and Catalysis, 2017, 359, 698-708.	4.3	18
319	Silverâ€Catalyzed [2+1] Cyclopropenation of Alkynes with Unstable Diazoalkanes: ⟨i⟩N⟨ i⟩â€Nosylhydrazones as Roomâ€Temperature Decomposable Diazo Surrogates. Chemistry - A European Journal, 2017, 23, 4756-4760.	3.3	58
320	Visibleâ€Lightâ€Driven Photocatalytic Transformation of α,βâ€Unsaturatedâ€ <i>N</i> à€Tosylhydrazones: A Nove Route to Allylic Sulfones. ChemPhotoChem, 2017, 1, 56-59.	el 3.0	12
321	Rhodium(II)â€or Copper(I)â€Catalyzed Formal Intramolecular Carbene Insertion into Vinylic C(sp ²)â~H Bonds: Access to Substituted 1 <i>H</i> a€Indenes. Angewandte Chemie - International Edition, 2017, 56, 16013-16017.	13.8	51
322	Synthesis of naphthyl-substituted terminal olefins via Pd-Catalyzed one-pot coupling of acetylnaphthalene, N -Tosylhydrazide with aryl halide. Tetrahedron, 2017, 73, 6558-6563.	1.9	15
323	Transition-Metal-Catalyzed Cross-Couplings through Carbene Migratory Insertion. Chemical Reviews, 2017, 117, 13810-13889.	47.7	915
324	Palladiumâ€Catalyzed [3+3] Annulation of Vinyl Chromium(0) Carbene Complexes through Carbene Migratory Insertion/Tsuji–Trost Reaction. Angewandte Chemie - International Edition, 2017, 56, 13140-13144.	13.8	44
325	A new synthesis of $C^{\hat{1}^2}$ - $c>c$ c c c c c c c c c	2.8	9
326	Conversion of Triple Bonds into Single Bonds in a Domino Carbopalladation with Norbornene. Chemistry - an Asian Journal, 2017, 12, 2991-2995.	3.3	4
327	Iron-catalyzed intermolecular cycloaddition of diazo surrogates with hexahydro-1,3,5-triazines. Organic and Biomolecular Chemistry, 2017, 15, 7743-7746.	2.8	22
328	Palladiumâ€Catalyzed Oneâ€Pot Synthesis of C2â€Quaternary Indolinâ€3â€ones via 1 <i>H</i> A€indoleâ€3â€sulf Generated in Situ from 2â€Alkynyl Arylazides and Sulfonic Acids. Advanced Synthesis and Catalysis, 2017, 359, 4147-4152.	onates 4.3	35

#	Article	IF	CITATIONS
329	Recent Developments in Azideâ€Free Synthesis of 1,2,3â€Triazoles. Chinese Journal of Chemistry, 2017, 35, 1797-1807.	4.9	25
330	Stereoselective Construction of α-Tetralone-Fused Spirooxindoles via Pd-Catalyzed Domino Carbene Migratory Insertion/Conjugate Addition Sequence. Organic Letters, 2017, 19, 5280-5283.	4.6	21
331	Palladiumâ€Catalyzed [3+3] Annulation of Vinyl Chromium(0) Carbene Complexes through Carbene Migratory Insertion/Tsuji–Trost Reaction. Angewandte Chemie, 2017, 129, 13320-13324.	2.0	30
332	Achieving Site Selectivity in Metal-Catalyzed Electron-Rich Carbene Transfer Reactions from N-Tosylhydrazones. Organic Letters, 2017, 19, 3990-3993.	4.6	21
333	Synthetic Applications of Vinyl Ruthenium Carbenes Derived from Diazoalkanes and Alkynes. Advanced Synthesis and Catalysis, 2017, 359, 2709-2722.	4.3	14
334	Metalâ€Catalyzed Synthesis of 1,1â€Diarylethylene Scaffolds. Asian Journal of Organic Chemistry, 2017, 6, 1509-1518.	2.7	4
335	Dual roles of sulfonyl hydrazides in the catalyst-free sulfonylation of unsaturated benzylic alcohols in water. Green Chemistry, 2017, 19, 4494-4497.	9.0	19
336	Copper-catalyzed cyanothiolation to incorporate a sulfur-substituted quaternary carbon center. Chemical Science, 2017, 8, 7047-7051.	7.4	44
337	Transition Metalâ€Catalysed Intramolecular Carbenoid Câ^H Insertion for Pyrrolidine Formation by Decomposition of αâ€Diazoesters. Advanced Synthesis and Catalysis, 2017, 359, 3654-3664.	4.3	16
338	Synthesis of 3-Aryl-2-pyrones by Palladium-Catalyzed Cross-Coupling of Aryl Iodides with Cyclic Vinyldiazo Ester. Journal of Organic Chemistry, 2017, 82, 9204-9209.	3.2	11
339	Stereoselective Palladium-Catalyzed Synthesis of Indolines via Intramolecular Trapping of <i>N</i> -Ylides with Alkenes. ACS Catalysis, 2017, 7, 6283-6288.	11.2	31
340	Rhodium(II)―or Copper(I)â€Catalyzed Formal Intramolecular Carbene Insertion into Vinylic C(sp ²)â°'H Bonds: Access to Substituted 1 <i>H</i> à€Indenes. Angewandte Chemie, 2017, 129, 16229-16233.	2.0	36
341	Enantiospecific Semisynthesis of Puupehedione-Type Marine Natural Products. Journal of Organic Chemistry, 2017, 82, 12914-12919.	3.2	23
342	Palladium-catalyzed three-component tandem reaction of sulfonyl hydrazones, aryl iodides and allenes: highly stereoselective synthesis of (Z)- \hat{l} ±-hydroxymethyl allylic sulfones. RSC Advances, 2017, 7, 50372-50377.	3.6	8
343	Synthesis of 1H-indole-3-sulfonates via palladium-catalyzed tandem reactions of 2-alkynyl arylazides with sulfonic acids. Organic and Biomolecular Chemistry, 2017, 15, 6080-6083.	2.8	15
344	Rh(I)â€Catalyzed Arylation of <i>α</i> â€Diazo Phosphonates with Aryl Boronic Acids: Synthesis of Diarylmethylphosphonates. Chinese Journal of Chemistry, 2017, 35, 621-627.	4.9	11
345	Transition metal-catalyzed [2,3]-sigmatropic rearrangements of ylides: An update of the most recent advances. Tetrahedron, 2017, 73, 4011-4022.	1.9	109
346	Synthesis of ferrocene-based phosphine ligands via Cu-catalyzed reductive coupling of ferrocenyl ketone-derived tosylhydrazones and H -phosphorus oxides. Tetrahedron, 2017, 73, 86-97.	1.9	10

#	Article	IF	CITATIONS
347	Multi-Component One-Pot Reaction of Aromatic Carbonyl Compounds, Tosylhydrazide, and Arylboronic Acids. Molecules, 2017, 22, 2168.	3.8	9
348	Total Synthesis of the Lindenane-Associated Terpenoids. Strategies and Tactics in Organic Synthesis, 2017, 13, 161-216.	0.1	0
349	Efficient access to \hat{I}^2 <i>>-</i> >vinylporphyrin derivatives via palladium cross coupling of \hat{I}^2 -bromoporphyrins with <i>N</i> -tosylhydrazones. Beilstein Journal of Organic Chemistry, 2017, 13, 195-202.	2.2	4
350	Pd-catalyzed coupling reactions of anhydro-aldose tosylhydrazones with aryl bromides to produce substituted exo -glycals. Carbohydrate Research, 2018, 466, 30-38.	2.3	13
351	Cooperative Iodide Pd(0)â€Catalysed Coupling of Alkoxyallenes and <i>N</i> â€Tosylhydrazones: A Selective Synthesis of Conjugated and Skipped Dienes. Chemistry - A European Journal, 2018, 24, 5484-5488.	3.3	18
352	Pd(II)-Catalyzed Denitrogenative and Desulfinative Addition of Arylsulfonyl Hydrazides with Nitriles. Journal of Organic Chemistry, 2018, 83, 3275-3284.	3.2	25
353	Culâ€Catalyzed Selective 3â€Alkylation of Indoles with <i>N</i> â€Tosylhydrazones and the I ₂ â€Mediated Further Cyclization to Chromeno[2,3â€ <i>b</i>)Indoles. Advanced Synthesis and Catalysis, 2018, 360, 2440-2445.	4.3	16
354	Cross-Coupling of Phenol Derivatives with Umpolung Aldehydes Catalyzed by Nickel. ACS Catalysis, 2018, 8, 4622-4627.	11.2	55
355	Cobalt(II) Porphyrin Catalyzed Cascade Reaction of Pyrrolyl Ketones for Construction of Polysubstituted Pyrrolizidines and Pyrrolizines. Advanced Synthesis and Catalysis, 2018, 360, 1433-1438.	4.3	14
356	Palladiumâ€Catalyzed Oxygenative Crossâ€Coupling of Ynamides and Benzyl Bromides by Carbene Migratory Insertion. Angewandte Chemie, 2018, 130, 2746-2750.	2.0	14
357	Palladiumâ€Catalyzed Oxygenative Crossâ€Coupling of Ynamides and Benzyl Bromides by Carbene Migratory Insertion. Angewandte Chemie - International Edition, 2018, 57, 2716-2720.	13.8	49
358	Highly Selective β â€Hydride Elimination in the Pdâ€Catalyzed Crossâ€Coupling of N â€Tosylhydrazones with Benzyl Bromides. ChemistrySelect, 2018, 3, 900-903.	1.5	14
359	Catalystâ€Free Regioselective Sulfenylation of Imidazoheterocycles with Sulfonyl Hydrazides in Water. Asian Journal of Organic Chemistry, 2018, 7, 332-336.	2.7	17
360	Discovery and Characterization of CD12681, a Potent ROR \hat{I}^3 Inverse Agonist, Preclinical Candidate for the Topical Treatment of Psoriasis. ChemMedChem, 2018, 13, 321-337.	3.2	14
361	Structure and Reactivity of Half-Sandwich $Rh(+3)$ and $Ir(+3)$ Carbene Complexes. Catalytic Metathesis of Azobenzene Derivatives. Journal of the American Chemical Society, 2018, 140, 1884-1893.	13.7	73
362	Catalytic Dibenzocyclooctene Synthesis via Cobalt(III)–Carbene Radical and <i>ortho</i> å€Quinodimethane Intermediates. Angewandte Chemie, 2018, 130, 146-151.	2.0	31
363	Copper catalyzed oxidative coupling of ortho-vinylanilines with N-tosylhydrazones: Efficient synthesis of polysubstituted quinoline derivatives. Journal of Catalysis, 2018, 363, 102-108.	6.2	16
364	Cu(I)-Catalyzed Coupling of Bis(trimethylsilyl)diazomethane with Terminal Alkynes: A Synthesis of 1,1-Disilyl Allenes. Journal of Organic Chemistry, 2018, 83, 6186-6192.	3.2	21

#	Article	IF	CITATIONS
365	Synthesis of benzocycloalkene derivatives via Pd-catalyzed one-pot two-step reactions of benzocyclic ketones, tosylhydrazide with aryl bromides. Journal of Saudi Chemical Society, 2018, 22, 930-936.	5.2	7
366	Phosphine-Free and Reusable Palladium Nanoparticles-Catalyzed Domino Strategy: Synthesis of Indanone Derivatives. Journal of Organic Chemistry, 2018, 83, 4692-4702.	3.2	23
367	Wittig Ylide Mediated Decomposition of $\langle i \rangle N \langle i \rangle$ -Sulfonylhydrazones to Sulfinates. Organic Letters, 2018, 20, 1703-1706.	4.6	16
368	lodine-Promoted Deoxygenative Iodization/Olefination/Sulfenylation of Ketones with Sulfonyl Hydrazides: Access to l²-lodoalkenyl Sulfides. Organic Letters, 2018, 20, 1966-1969.	4.6	29
369	Z-Selective iridium-catalyzed cross-coupling of allylic carbonates and \hat{l}_{\pm} -diazo esters. Chemical Science, 2018, 9, 238-244.	7.4	15
370	Palladium-Catalyzed Reductive Cross-Coupling Reaction of Aryl Chromium(0) Fischer Carbene Complexes with Aryl Iodides. Organometallics, 2018, 37, 1-10.	2.3	24
371	Rhodiumâ€Catalyzed Câ^'H Functionalization of Indoles with Diazo Compounds: Synthesis of Structurally Diverse 2,3â€Fused Indoles. Advanced Synthesis and Catalysis, 2018, 360, 100-105.	4.3	19
372	When diazo compounds meet with organoboron compounds. Pure and Applied Chemistry, 2018, 90, 617-623.	1.9	12
373	Palladiumâ€Catalyzed Intermolecular Acylation of Aryl Diazoesters with <i>ortho</i> å€Bromobenzaldehydes. Angewandte Chemie, 2018, 130, 325-329.	2.0	13
374	Oneâ€Pot Selective Functionalization of Nitrogenâ€Containing Heterocycles with <i>N</i> â€tosylhydrazones and Amines. Advanced Synthesis and Catalysis, 2018, 360, 584-594.	4.3	6
375	Cu(I)â€Catalyzed Asymmetric Crossâ€Coupling of <i>N</i> â€Tosylhydrazones and Trialkylsilylethynes: Enantioselective Construction of C(sp)â€"C(sp ³) Bonds. Chinese Journal of Chemistry, 2018, 36, 217-222.	4.9	20
376	A fluorine scan of a tubulin polymerization inhibitor isocombretastatin A-4: Design, synthesis, molecular modelling, and biological evaluation. European Journal of Medicinal Chemistry, 2018, 143, 473-490.	5.5	24
377	Copper―or Thermally Induced Divergent Outcomes: Synthesis of 4â€Methyl 2 <i>H</i> hhhchromenes and Spiroâ€4 <i>H</i> hhi>â€Pyrazoles. Chemistry - A European Journal, 2018, 24, 6705-6711.	3.3	20
378	Catalytic Synthesis of Indolines by Hydrogen Atom Transfer to Cobalt(III)–Carbene Radicals. Chemistry - A European Journal, 2018, 24, 5253-5258.	3.3	50
379	Catalytic Dibenzocyclooctene Synthesis via Cobalt(III)–Carbene Radical and <i>ortho</i> â€Quinodimethane Intermediates. Angewandte Chemie - International Edition, 2018, 57, 140-145.	13.8	83
380	Palladiumâ€Catalyzed Intermolecular Acylation of Aryl Diazoesters with <i>ortho</i> å€Bromobenzaldehydes. Angewandte Chemie - International Edition, 2018, 57, 319-323.	13.8	46
381	Iron-catalyzed synthesis of cyclopropanes by <i>in situ</i> generation and decomposition of electronically diversified diazo compounds. Chemical Communications, 2018, 54, 13256-13259.	4.1	25
382	Palladium-catalyzed olefination of aryl/alkyl halides with trimethylsilyldiazomethane <i>via</i> carbene migratory insertion. Chemical Communications, 2018, 54, 12994-12997.	4.1	7

#	Article	IF	CITATIONS
383	Rapid Synthesis of <i>N</i> €Tosylhydrazones under Solventâ€Free Conditions and Their Potential Application Against Human Tripleâ€Negative Breast Cancer. ChemistryOpen, 2018, 7, 977-983.	1.9	8
384	Palladium-Catalyzed Cross-Coupling Polymerization: A New Access to Cross-Conjugated Polymers with Modifiable Structure and Tunable Optical/Conductive Properties. Macromolecules, 2018, 51, 9662-9668.	4.8	22
385	Pdâ€Catalyzed Oneâ€Pot Twoâ€Step Synthesis of 2â€(1 <i>H</i> à€indolâ€3â€yl)â€2â€phenylindolinâ€3â€ones Arylazides and Indoles. ChemistrySelect, 2018, 3, 11696-11699.	from 2â€	Alkynyl
386	Cu(I)â€Catalyzed Crossâ€Coupling of Diazo Compounds with Terminal Alkynes: An Efficient Access to Allenes. Chemical Record, 2018, 18, 1548-1559.	5.8	43
387	lodineâ€Promoted Synthesis of 2â€Naphthyl Thioethers from Tetralones and Sulfonyl Hydrazides. Asian Journal of Organic Chemistry, 2019, 8, 234-237.	2.7	5
388	Transition-metal-free radical cleavage of a hydrazonyl N–S bond: tosyl radical-initiated cascade C(sp ³)–OAr cleavage, sulfonyl rearrangement and atropisomeric cyclopropanation. Organic Chemistry Frontiers, 2018, 5, 3567-3573.	4.5	12
389	Synthesis of 3-Aryl-1-Indanones via CsF-Promoted Coupling of Arylboronic Acids with N-Tosylhydrazones. Journal of Chemical Research, 2018, 42, 40-43.	1.3	8
390	Silver-Catalyzed Regio- and Stereoselective Formal Carbene Insertion into Unstrained Câ^C Ïf-Bonds of 1,3-Dicarbonyls. IScience, 2018, 8, 54-60.	4.1	33
391	Copper-Catalyzed Intramolecular Annulation of Conjugated Enynones to Substituted 1 <i>H</i> Indenes and Mechanistic Studies. Journal of Organic Chemistry, 2018, 83, 13243-13255.	3.2	26
392	Pd ⁰ â€Catalyzed Fourâ€Component Reaction of Aryl Halide, CO, <i>N</i> â€Tosylhydrazone, and Amine. Chemistry - an Asian Journal, 2018, 13, 3658-3663.	3.3	10
393	Palladium-catalyzed heck-type cascade cyclization of $(\langle i \rangle Z \langle i \rangle)$ -1-iodo-1,6-dienes with $\langle i \rangle N \langle i \rangle$ -tosyl hydrazones. Organic and Biomolecular Chemistry, 2018, 16, 7356-7360.	2.8	7
394	Rh(III)-catalyzed C-H activation of primary benzamides and tandem cyclization with cyclic 2-diazo-1,3-diketones for the synthesis of isocoumarins. Tetrahedron, 2018, 74, 7082-7088.	1.9	21
395	Synthesis of Highly Functionalized Allylic Alcohols from Vinyl Oxiranes and <i>N</i> -Tosylhydrazones via a Tsuji–Trost-Like "Palladium–lodide―Catalyzed Coupling. Organic Letters, 2018, 20, 6891-6895.	4.6	18
396	Base-Promoted Denitrogenative/Deoxygenative/Deformylative Benzannulation of $\langle i \rangle N \langle i \rangle$ -Tosylhydrazones with 3-Formylchromones for Diverse and Polyfunctionalized Xanthones. Organic Letters, 2018, 20, 7167-7171.	4.6	15
397	Palladium(0)-catalyzed C(sp ³)–Si bond formation <i>via</i> formal carbene insertion into a Si–H bond. Chemical Communications, 2018, 54, 11419-11422.	4.1	30
398	Pdâ€eatalyzed Oxidative Crossâ€eoupling of Alkyl Chromium(0) Fischer Carbene Complexes with Organoboronic Acids. Chemistry - an Asian Journal, 2018, 13, 3165-3168.	3.3	10
399	Two Amphoteric Silver Carbene Clusters. Angewandte Chemie, 2018, 130, 8221-8226.	2.0	11
400	Controlling Selectivities in Palladium-Catalyzed Cyclization Reactions Leading to Heterocycles. , 2018, , 311-337.		6

#	Article	IF	CITATIONS
401	Reactive Palladium Carbenes: Migratory Insertion and Other Carbeneâ€"Hydrocarbyl Coupling Reactions on Wellâ€Defined Systems. European Journal of Inorganic Chemistry, 2018, 2018, 3693-3705.	2.0	14
402	Synthesis of Heterocyclic Compounds Based on Transition-Metal-Catalyzed Carbene Coupling Reactions. , 2018, , 129-191.		1
403	Copper atalyzed Câ€N coupling reaction of tosylhydrazones. Applied Organometallic Chemistry, 2018, 32, e4483.	3.5	9
404	Copper-Catalyzed C5–H Sulfenylation of Unprotected 8-Aminoquinolines Using Sulfonyl Hydrazides. Journal of Organic Chemistry, 2018, 83, 11385-11391.	3.2	35
405	Palladium(0)â€Catalyzed Siâ€"Si Bond Insertion by the Terminal Nitrogen of Diazo Compounds. Chinese Journal of Chemistry, 2018, 36, 945-949.	4.9	4
406	Iron Porphyrin Catalyzed Insertion Reaction of <i>N</i> -Tosylhydrazone-Derived Carbenes into X–H (X) Tj ETQq	1 <u>1</u> 0.784 4.6	314 rgBT /0
407	Alkylating Reagents Employed in Catellaniâ€Type Reactions. Chemistry - A European Journal, 2018, 24, 15461-15476.	3.3	70
408	Design and Synthesis of Tubulin and Histone Deacetylase Inhibitor Based on <i>iso</i> -Combretastatin A-4. Journal of Medicinal Chemistry, 2018, 61, 6574-6591.	6.4	55
409	Cu(I)-Catalyzed Coupling and Cycloisomerization of Diazo Compounds with Terminal Yne-Alkylidenecyclopropanes: Synthesis of Functionalized Cyclopenta[<i>b</i>]naphthalene Derivatives. Organic Letters, 2018, 20, 4516-4520.	4.6	17
410	Two Amphoteric Silver Carbene Clusters. Angewandte Chemie - International Edition, 2018, 57, 8089-8094.	13.8	31
411	Rhodium-Catalyzed B–H Bond Insertion Reactions of Unstabilized Diazo Compounds Generated <i>in Situ</i> from Tosylhydrazones. Journal of the American Chemical Society, 2018, 140, 10663-10668.	13.7	71
412	Synthesis of α-Arylated Cycloalkanones from Congested Trisubstituted Spiro-epoxides: Application of the House–Meinwald Rearrangement for Ring Expansion. Journal of Organic Chemistry, 2018, 83, 12357-12373.	3.2	11
413	Dictating the Reactivity of î- ³ -Oxoallyl Pd-Intermediate toward 5- <i>exo-trig</i> Cyclization: Access to Indano-spirooxindoles. Journal of Organic Chemistry, 2018, 83, 11298-11308.	3.2	10
414	Copperâ€catalyzed oneâ€pot coupling reactions of aldehydes (ketones), tosylhydrazide and 2â€amino(benzo)thiazoles: An efficient strategy for the synthesis of <i>N</i> â€alkylated (benzo)thiazoles. Applied Organometallic Chemistry, 2019, 33, e5124.	3.5	6
415	Palladium-catalyzed cascade reactions of alkene-tethered carbamoyl chlorides with $\langle i \rangle N \langle i \rangle$ -tosyl hydrazones: synthesis of alkene-functionalized oxindoles. Organic and Biomolecular Chemistry, 2019, 17, 8358-8363.	2.8	25
416	Copper(<scp>i</scp>)-catalyzed benzylation of triazolopyridine through direct C–H functionalization. Organic and Biomolecular Chemistry, 2019, 17, 7455-7460.	2.8	12
417	Enantioselective Assembly of Congested Cyclopropanes using Redox-Active Aryldiazoacetates. ACS Catalysis, 2019, 9, 7870-7875.	11.2	30
418	Gold(I)-catalyzed [4Â+ 1]/[4Â+ 3] annulations of diazo esters with hexahydro-1,3,5-triazines: Theoretical study of mechanism and regioselectivity. Journal of Organometallic Chemistry, 2019, 897, 70-79.	1.8	5

#	Article	IF	CITATIONS
419	Reactivity of Carbenes in Aqueous Nanomicelles Containing Palladium Nanoparticles. ACS Catalysis, 2019, 9, 10963-10970.	11.2	30
420	Toward a Greener Barluenga–Valdés Cross-Coupling: Microwave-Promoted C–C Bond Formation with a Pd/PEG/H ₂ O Recyclable Catalytic System. Organic Letters, 2019, 21, 8708-8712.	4.6	11
421	AgOTf-catalyzed reaction of sulfonyl hydrazones with ynamides led to stereoselective synthesis of \hat{l}_{\pm} -amino alkenyl-substituted hydrazone derivatives. Tetrahedron, 2019, 75, 130534.	1.9	1
422	Lewis Acid Catalyzed [4 + 2] Cycloaddition of <i>N</i> -Tosylhydrazones with <i>ortho</i> -Quinone Methides. Journal of Organic Chemistry, 2019, 84, 14258-14269.	3.2	21
423	Synthesis of 4â€Arylâ€1,2,3â€Thiadiazoles via NH 4 lâ€Catalyzed Cyclization of N â€Tosylhydrazones with Sulfur. ChemistrySelect, 2019, 4, 10587-10590.	1.5	8
424	Trifluoroacetaldehyde <i>N</i> -Tosylhydrazone as a Precursor of Trifluorodiazoethane in Reactions of Insertion into the Heteroatom–Hydrogen Bond. Organic Letters, 2019, 21, 9080-9083.	4.6	19
425	A base-promoted cascade reaction of $\hat{l}\pm,\hat{l}^2$ -unsaturated <i>N</i> -tosylhydrazones with <i>o</i> -hydroxybenzyl alcohols: highly regioselective synthesis of <i>N-sec</i> -alkylpyrazoles. Organic and Biomolecular Chemistry, 2019, 17, 8561-8570.	2.8	16
426	Umpolung-like Cross-coupling of Tosylhydrazones with 4-Hydroxy-2-pyridones under Palladium Catalysis. Organic Letters, 2019, 21, 8110-8115.	4.6	13
427	Site Selectivity in Pd-Catalyzed Reactions of \hat{l}_{\pm} -Diazo- \hat{l}_{\pm} -(methoxycarbonyl)acetamides: Effects of Catalysts and Substrate Substitution in the Synthesis of Oxindoles and \hat{l}_{\pm} -Lactams. Molecules, 2019, 24, 3551.	3.8	5
428	Pyrrolo-imidazo[1,2- <i>a</i>]pyridine Scaffolds through a Sequential Coupling of <i>N</i> -Tosylhydrazones with Imidazopyridines and Reductive Cadogan Annulation, Synthetic Scope, and Application. Journal of Organic Chemistry, 2019, 84, 13807-13823.	3.2	18
429	Palladiumâ€Catalyzed Cascade Reaction of o â€Bromobenzaldehydes with N â€Sulfonylhydrazones: An Efficient Approach to the Naphthalene Skeleton. Advanced Synthesis and Catalysis, 2019, 361, 1576-1581.	4.3	14
430	Palladium-catalyzed oxidative borylation of conjugated enynones through carbene migratory insertion: synthesis of furyl-substituted alkenylboronates. Chemical Communications, 2019, 55, 59-62.	4.1	22
431	Palladium-catalyzed carbene coupling of <i>N</i> -tosylhydrazones and arylbromides to synthesize cross-conjugated polymers. Polymer Chemistry, 2019, 10, 569-573.	3.9	20
432	Influence of sulfonyl substituents on the decomposition of <i>N</i> -sulfonylhydrazones at room temperature. Organic Chemistry Frontiers, 2019, 6, 121-124.	4.5	28
433	Palladium-Catalyzed Oxidative Cross-Coupling of Conjugated Enynones with Allylarenes: Synthesis of Furyl-Substituted 1,3-Dienes. Journal of Organic Chemistry, 2019, 84, 8275-8283.	3.2	17
434	Culâ€Catalyzed coupling reaction of diazophosphonates with ferrocenylacetylenes: an efficient synthesis of ferroceneâ€containing allenylphosphonates. Applied Organometallic Chemistry, 2019, 33, e5003.	3.5	4
435	Total Synthesis of Caesalpinnone A and Caesalpinflavan B: Evolution of a Concise Strategy. Journal of the American Chemical Society, 2019, 141, 10082-10090.	13.7	11
436	Rh(i)-Catalyzed intramolecular $[2 + 2 + 1]$ cycloaddition of diynes with the N-terminal of the diazo group. Organic Chemistry Frontiers, 2019, 6, 2329-2333.	4.5	1

#	Article	IF	CITATIONS
437	Palladium-Catalyzed Dearomative Arylvinylation Reaction of Indoles with $\langle i \rangle N \langle i \rangle$ -Arylsulfonylhydrazones. Organometallics, 2019, 38, 3927-3930.	2.3	43
438	Metal-Free Denitrogenative C–C Couplings of Pyridotriazoles with Boronic Acids To Afford α-Secondary and α-Tertiary Pyridines. Organic Letters, 2019, 21, 4148-4152.	4.6	23
439	1,1,1,4,4,4â∈Hexafluorobutâ€2â€yne (HFB) as a Versatile Dipolarophile for [3+2] Cycloaddition with 1,3â€Dipoles toward Azoles with Adjacent CF 3 Groups. ChemistrySelect, 2019, 4, 4604-4610.	5 1.5	11
440	Sequentially Formations of Csp 3 â€Csp 2 and Csp 2 â€Csp 2 Bonds by a Oneâ€pot Reaction Involving N â€Tosylhydrazone and p â€Bromobenzeneboronic Acid. ChemistrySelect, 2019, 4, 4496-4498.	1.5	6
441	Trifluoromethylthiolation–arylation of diazocarbonyl compounds by modified Hooz multicomponent coupling. Chemical Science, 2019, 10, 5990-5995.	7.4	23
442	Pdâ€Catalyzed Tandem Coupling Reaction of 2â€ <i>>gem</i> >â€Dibromovinylanilines and <i>N</i> à6Tosylhydrazones to Construct 2â€(1â€phenylvinyl)â€indoles. Advanced Synthesis and Catalysis, 2019, 361, 3599-3604.	4.3	9
443	TBAB atalyzed C <i>sp</i> ³ –N Bond Formation by Coupling Pyridotriazoles with Anilines: A New Route to (2â€Pyridyl)alkylamines. European Journal of Organic Chemistry, 2019, 2019, 2602-2611.	2.4	15
444	Formal Carbene C–H Bond Insertion in the Cu(I)-Catalyzed Reaction of Bis(trimethylsilyl)diazomethane with Benzoxazoles and Oxazoles. Organic Letters, 2019, 21, 1809-1812.	4.6	21
445	Luxury of <i>N</i> àâ€Tosylhydrazones in Transitionâ€Metalâ€Free Transformations. Advanced Synthesis and Catalysis, 2019, 361, 1172-1207.	4.3	55
446	Synthesis of 1-aryl- benzocycloalkane derivatives via one-pot two-step reaction of benzocyclonone, tosylhydrazide, and arylboronic acid. Synthetic Communications, 2019, 49, 942-949.	2.1	3
447	Ruthenium-catalyzed <i>ortho</i> -selective C _{Ar} â€"H amination of heteroaryl arenes with di- <i>tert</i> -butyldiaziridinone. Chemical Communications, 2019, 55, 5487-5490.	4.1	11
448	Direct dehydrogenative alkyl Heck-couplings of vinylarenes with umpolung aldehydes catalyzed by nickel. Nature Communications, 2019, 10, 715.	12.8	56
449	Palladium-catalyzed Suzuki-Miyaura coupling of thioureas or thioamides. Nature Communications, 2019, 10, 5709.	12.8	37
450	Application of carbene chemistry in the synthesis of organofluorine compounds. Tetrahedron, 2019, 75, 949-964.	1.9	39
451	Use of trifluoroacetaldehyde N-tfsylhydrazone as a trifluorodiazoethane surrogate and its synthetic applications. Nature Communications, 2019, 10, 284.	12.8	71
452	Synthesis, X-ray crystal structure, DFT calculations, spectroscopic characterization and redox behaviour of a rhodium(III) complex of an anthracene–pyridylhydrazone ligand. Transition Metal Chemistry, 2019, 44, 341-347.	1.4	4
453	C â€Glycosyl Styrene Type Compounds by Pdâ€Catalyzed Crossâ€Coupling Reactions of Anhydroâ€Aldose Tosylhydrazones with Benzyl Bromides. Advanced Synthesis and Catalysis, 2019, 361, 105-117.	4.3	9
454	Versatile Synthesis of 4-Aryl Chroman and 1-Aryl Tetralins Through Metal-Free Reductive Arylations. European Journal of Organic Chemistry, 2019, 2019, 753-758.	2.4	4

#	Article	IF	CITATIONS
455	Cascade Reaction of Arylboronic Acids and 2′-Cyano-biaryl-2-aldehyde ⟨i⟩N⟨/i⟩-Tosylhydrazones: Access to Functionalized 9-Amino-10-arylphenanthrenes. Journal of Organic Chemistry, 2019, 84, 204-215.	3.2	32
456	One-Pot Reaction between <i>N</i> -Tosylhydrazones and 2-Nitrobenzyl Bromide: Route to NH-Free C2-Arylindoles. Journal of Organic Chemistry, 2019, 84, 228-238.	3.2	24
457	Catalytic Asymmetric Fluorination of Copper Carbene Complexes: Preparative Advances and a Mechanistic Rationale. Chemistry - A European Journal, 2020, 26, 2509-2515.	3.3	24
458	Carbene Bridging C–H Activation: Facile Isocoumarin Synthesis Through Palladium atalyzed Reaction of 2â€Pseudohalobenzaldehydes with Aryl Diazoesters. European Journal of Organic Chemistry, 2020, 2020, 723-727.	2.4	24
459	Relay Rh($<$ scp $>$ ii $<$ /scp $>$)/Pd(0) dual catalysis: synthesis of Î \pm -quaternary Î 2 -keto-esters $<$ i $>$ via $<$ /i $>$ a [1,2]-sigmatropic rearrangement/allylic alkylation cascade of Î \pm -diazo tertiary alcohols. Chemical Communications, 2020, 56, 782-785.	4.1	14
460	Diastereoselective Palladium Catalyzed Carbenylative Amination of ⟨i⟩ortho⟨ i⟩â€Vinylanilines with 3â€Diazoindolinâ€2â€ones. Advanced Synthesis and Catalysis, 2020, 362, 801-806.	4.3	21
461	Experimental and Computational Insights into the Waterâ€Mediated Decomposition of N â€Sulfonylhydrazones: A Catalystâ€Free Synthesis of γâ€Keto/Nitrile Sulfones. Asian Journal of Organic Chemistry, 2020, 9, 251-258.	2.7	1
462	Stoichiometric Photochemical Carbene Transfer by Bamford–Stevens Reaction. Chemistry - A European Journal, 2020, 26, 2586-2591.	3.3	60
463	Palladium(II)-Catalyzed Cross-Coupling of Diazo Compounds and Isocyanides to Access Ketenimines. ACS Catalysis, 2020, 10, 12881-12887.	11.2	35
464	Sequential One-Pot Synthesis of 3-Arylbenzofurans from <i>N</i> -Tosylhydrazones and Bromophenol Derivatives. Journal of Organic Chemistry, 2020, 85, 13664-13673.	3.2	5
465	K ₂ CO ₃ -Catalyzed Rapid Conversion of <i>N</i> Sulfinates. ACS Omega, 2020, 5, 17818-17827.	3. 5	5
466	Desymmetrization of $\langle i \rangle$ meso- $\langle i \rangle$ Dicarbonatecyclohexene with \hat{I}^2 -Hydrazino Carboxylic Esters via a Pd-Catalyzed Allylic Substitution Cascade. Organic Letters, 2020, 22, 8836-8841.	4.6	16
467	Experimental and Computational Studies on Rh(I)-Catalyzed Reaction of Siloxyvinylcyclopropanes and Diazoesters. Journal of the American Chemical Society, 2020, 142, 21032-21039.	13.7	9
468	Copperâ€Catalyzed Decarboxylative Hydrophosphinylation of αâ€Acylâ€Î±â€Diazoacetates. European Journal of Organic Chemistry, 2020, 2020, 7440-7444.	2.4	3
469	Palladiumâ€Catalyzed Olefination of <i>N</i> à€Tosylhydrazones as <i>β</i> â€Diazo Phosphonate Precursors with Arylhalides. European Journal of Organic Chemistry, 2020, 2020, 5857-5861.	2.4	8
470	Site-Selective C–H Benzylation of Alkanes with N-Triftosylhydrazones Leading to Alkyl Aromatics. CheM, 2020, 6, 2110-2124.	11.7	49
471	Visible-Light-Induced Pd-Catalyzed Radical Strategy for Constructing <i>C</i> -Vinyl Glycosides. Organic Letters, 2020, 22, 6288-6293.	4.6	39
472	Palladium-catalyzed cross-coupling reaction of sulfoxonium ylides and benzyl bromides by carbene migratory insertion. Chemical Communications, 2020, 56, 14287-14290.	4.1	6

#	Article	IF	CITATIONS
473	Synthetic and medicinal chemistry of phthalazines: Recent developments, opportunities and challenges. Bioorganic Chemistry, 2020, 105, 104425.	4.1	18
474	Base-Mediated Denitrogenative Sulfonylation/Benzannulation of Conjugated <i>N</i> -Sulfonylhydrazones with 3-Formylchromones for the Construction of Polyfunctionalized Biaryl Sulfones. Organic Letters, 2020, 22, 7531-7536.	4.6	15
475	Blue Lightâ€promoted Carbene Transfer Reactions of Tosylhydrazones. Chemistry - an Asian Journal, 2020, 15, 1945-1947.	3.3	18
476	Construction of <scp>Alkenylâ€Functionalized</scp> Spirocarbocyclic Scaffolds from <scp>Alkyneâ€Containing Phenolâ€Based</scp> Biaryls <i>via</i> Sequential <scp>Iodineâ€Induced</scp> Cyclization/Dearomatization and <scp>Pdâ€Catalyzed</scp> Coupling of <scp><i>N</i> Ali>â€Tosylhydrazones</scp> . Chinese Journal of Chemistry, 2020, 38, 1257-1262.	4.9	11
477	Br vs. TsO Chemoselective Suzuki–Miyaura Crossâ€Coupling Reaction on Nicotinaldehyde Moiety for the Preparation of 2,3,5â€Trisubstituted Pyridines. European Journal of Organic Chemistry, 2020, 2020, 3640-3649.	2.4	7
478	Transient-axial-chirality controlled asymmetric rhodium-carbene C(sp2)-H functionalization for the synthesis of chiral fluorenes. Nature Communications, 2020, 11, 2363.	12.8	43
479	Triarylboranâ€katalysierte Alkenylierungen von Arylestern mit Diazoverbindungen. Angewandte Chemie, 2020, 132, 15621-15626.	2.0	5
480	Triarylboraneâ€Catalyzed Alkenylation Reactions of Aryl Esters with Diazo Compounds. Angewandte Chemie - International Edition, 2020, 59, 15492-15496.	13.8	32
481	Desaturation via Redox-Neutral Hydrogen Transfer Process: Synthesis of 2-Allyl Anilines, Mechanism and Applications. IScience, 2020, 23, 101168.	4.1	1
482	CuCl2-promoted decomposition of sulfonyl hydrazides for the synthesis of thiosulfonates. Tetrahedron Letters, 2020, 61, 152112.	1.4	16
483	Facile access to 2,2-diaryl 2 <i>H</i> -chromenes through a palladium-catalyzed cascade reaction of <i>ortho</i> -vinyl bromobenzenes with <i>N</i> -tosylhydrazones. Organic and Biomolecular Chemistry, 2020, 18, 5115-5119.	2.8	14
484	Palladium-Catalyzed Three-Component Coupling Reaction of <i>o</i> -Bromobenzaldehyde, <i>N</i> -Tosylhydrazone, and Methanol. Organic Letters, 2020, 22, 2087-2092.	4.6	25
485	A General C(sp ³)–C(sp ³) Cross-Coupling of Benzyl Sulfonylhydrazones with Alkyl Boronic Acids. Organic Letters, 2020, 22, 2271-2275.	4.6	30
486	Easy access to medium-sized lactones through metal carbene migratory insertion enabled 1,4-palladium shift. Nature Communications, 2020, 11, 461.	12.8	55
487	Regioselective Synthesis of 3-Trifluoromethylpyrazole by Coupling of Aldehydes, Sulfonyl Hydrazides, and 2-Bromo-3,3,3-trifluoropropene. Organic Letters, 2020, 22, 809-813.	4.6	52
488	Stereoselective synthesis of trifluoromethyl-substituted 2 <i>H</i> furan-amines from enaminones. Chemical Communications, 2020, 56, 2043-2046.	4.1	29
489	Arylâ€Diadamantyl Phosphine Ligands in Palladiumâ€Catalyzed Crossâ€Coupling Reactions: Synthesis, Structural Analysis, and Application. European Journal of Organic Chemistry, 2020, 2020, 1122-1128.	2.4	6
490	Copper(I)/Bpyâ€Catalyzed Câ€2â€H Benzylation of Quinazolinâ€4(3 <i>H</i>)â€ones with <i>N</i> å€Tosylhydraz European Journal of Organic Chemistry, 2020, 2020, 2923-2928.	ones. 2.4	7

#	Article	IF	CITATIONS
491	<scp>Palladiumâ€Catalzyed</scp> Atroposelective <scp>16â€Membered</scp> Macrocyclization: Total Synthesis of Isoplagiochin D ^{â€} . Chinese Journal of Chemistry, 2020, 38, 1081-1085.	4.9	7
492	Transitionâ∈Metalâ∈Free Valorization of Biomassâ∈derived Levulinic Acid Derivatives: Synthesis of Curcumene and Xanthorrhizol. ChemSusChem, 2021, 14, 884-891.	6.8	5
493	Palladiumâ€Catalyzed Barluengaâ€Valdes Type Crossâ€Coupling Reaction: Alkenylation of 7â€Azaindole <i>></i> Asian Journal of Organic Chemistry, 2021, 10, 251-256.	2.7	2
494	Practical and Modular Construction of C(sp ³)-Rich Alkyl Boron Compounds. Journal of the American Chemical Society, 2021, 143, 471-480.	13.7	59
495	The intramolecular reaction of acetophenone $\langle i \rangle N \langle i \rangle$ -tosylhydrazone and vinyl: Br \tilde{A}_j nsted acid-promoted cationic cyclization toward polysubstituted indenes. Chemical Communications, 2021, 57, 1810-1813.	4.1	5
496	Copper-catalyzed sulfonylation of <i>N</i> -tosylhydrazones followed by a one-pot C–N bond formation. Organic and Biomolecular Chemistry, 2021, 19, 5358-5367.	2.8	3
497	Microwave assisted synthesis of phenanthridine derivatives via Suzuki coupling and condensation. Results in Chemistry, 2021, 3, 100149.	2.0	2
498	Palladium-catalyzed allene synthesis enabled by \hat{l}^2 -hydrogen elimination from sp2-carbon. Nature Communications, 2021, 12, 728.	12.8	13
499	Liquid crystalline hydrazones revisited: dipolar interactions vs hydrogen bonding affecting mesomorphic properties. Liquid Crystals, 2021, 48, 1382-1391.	2.2	8
500	Straightforward Construction and Functionalizations of Nitrogenâ€Containing Heterocycles Through Migratory Insertion of Metalâ€Carbenes/Nitrenes. Chemical Record, 2021, 21, 3411-3428.	5.8	21
501	Palladium-catalyzed diastereoselective synthesis of 2,2,3-trisubstituted dihydrobenzofurans via intramolecular trapping of O-ylides with activated alkenes. Journal of Catalysis, 2021, 396, 291-296.	6.2	10
502	Tetracoordinate Boron Intermediates Enable Unconventional Transformations. Accounts of Chemical Research, 2021, 54, 2298-2312.	15.6	81
503	Blue light-promoted cyclopropenizations of N-tosylhydrazones in water. Chinese Chemical Letters, 2021, 32, 3984-3987.	9.0	23
504	Synthetic and Computational Studies on Rh ^{III} -Catalyzed Redox-Neutral Cascade of Carbenoid Functionalization and Dephosphonylative Annulation. Journal of Organic Chemistry, 2021, 86, 7069-7077.	3.2	13
505	Recent Advances in Transitionâ€Metalâ€Catalyzed Reactions of Nâ€Tosylhydrazones. Advanced Synthesis and Catalysis, 2021, 363, 3616-3654.	4.3	32
506	Merging Electron Transfer with 1,2â€Metalate Rearrangement: Deoxygenative Arylation of Aromatic Amides with Arylboronic Esters. Angewandte Chemie, 2021, 133, 17225-17230.	2.0	5
507	Fluoroalkyl $\langle i \rangle N \langle i \rangle$ -Triftosylhydrazones as Easily Decomposable Diazo Surrogates for Asymmetric [2 + 1] Cycloaddition: Synthesis of Chiral Fluoroalkyl Cyclopropenes and Cyclopropanes. ACS Catalysis, 2021, 11, 8527-8537.	11.2	32
508	Synthesis of Alkenylboronates from <i>N</i> -Tosylhydrazones through Palladium-Catalyzed Carbene Migratory Insertion. Journal of the American Chemical Society, 2021, 143, 9769-9780.	13.7	34

#	Article	IF	CITATIONS
509	Merging Electron Transfer with 1,2â€Metalate Rearrangement: Deoxygenative Arylation of Aromatic Amides with Arylboronic Esters. Angewandte Chemie - International Edition, 2021, 60, 17088-17093.	13.8	27
510	Asymmetric Three-Component Propargyloxylation for Direct Assembly of Polyfunctionalized Chiral Succinate Derivatives. CCS Chemistry, 2021, 3, 1903-1912.	7.8	15
511	Fluoroalkyl N-sulfonyl hydrazones: An efficient reagent for the synthesis of fluoroalkylated compounds. Science China Chemistry, 2021, 64, 1614-1629.	8.2	25
512	Rhodium(III)â€Catalyzed Sequential Câ°'H Activation and Cyclization from ⟨i>N⟨ i>â€Methoxyarylamides and 3â€Diazooxindoles for the Synthesis of Isochromenoindolones. Chemistry - an Asian Journal, 2021, 16, 3179-3187.	3.3	7
513	Research Progress on EWG-Substituted <i>N</i> -Arylsulfonylhydrazones as the Diazo Compound Precursor. Acta Chimica Sinica, 2021, 79, 1085.	1.4	5
514	Palladium-catalyzed intramolecular diastereoselective dearomatization reaction of indoles with <i>N</i> -tosylhydrazones. Organic Chemistry Frontiers, 2021, 8, 5895-5901.	4.5	12
515	[2+2+1] Cycloaddition of <i>N</i> -tosylhydrazones, <i>tert</i> -butyl nitrite and alkenes: a general and practical access to isoxazolines. Chemical Science, 2021, 12, 9823-9830.	7.4	15
517	Transition-Metal-Catalyzed Cross-Coupling with Ketones or Aldehydes via <i>N</i> Journal of the American Chemical Society, 2020, 142, 10592-10605.	13.7	167
518	One-Pot Cascade Synthesis of Pyrazole Based Isosteres of Valdecoxib by a [3+2] Cycloaddition Sequence and Evaluation of Their Cox Inhibitory Activity. Heterocycles, 2019, 98, 416.	0.7	1
519	Palladium-Catalyzed Carbene Coupling Reactions of Cyclobutanone <i>N</i> Sulfonylhydrazones. Organic Letters, 2021, 23, 8348-8352.	4.6	16
520	Construction of NHâ€Unprotected Spiropyrrolidines and Spiroisoindolines by [4+1] Cyclizations of γâ€Azidoboronic Acids with Cyclic <i>N</i> â€Sulfonylhydrazones. Angewandte Chemie - International Edition, 2022, 61, .	13.8	13
521	Synthetic Reactions of M=C and M=N Bonds: Ylide Formation, Rearrangement, and 1,3-Dipolar Cycloaddition. , 2013, , .		O
522	Tunable Synthesis of Indeno $[1,2-\langle i\rangle c\langle i\rangle]$ furans and 3-Benzoylindenones via FeCl $\langle sub \rangle 3\langle sub \rangle$ -Catalyzed Carbene/Alkyne Metathesis Reaction of $\langle i\rangle o\langle i\rangle$ -Alkynylbenzoyl Diazoacetates. Organic Letters, 2021, 23, 388-393.	4.6	9
523	Divergent synthesis of 1,3,5-tri and 1,3-disubstituted pyrazoles under transition metal-free conditions. Organic and Biomolecular Chemistry, 2020, $18,6487-6491$.	2.8	7
524	Intramolecular 1,5-SN σ-hole interaction in (<i>E</i>)- <i>N</i> ê ² -(pyridin-4-ylmethylidene)thiophene-2-carbohydrazide. Acta Crystallographica Section E: Crystallographic Communications, 2020, 76, 557-561.	0.5	5
525	Construction of NHâ€Unprotected Spiropyrrolidines and Spiroisoindolines by [4+1] Cyclizations of γâ€Azidoboronic Acids with Cyclic <i>N</i>)â€Sulfonylhydrazones. Angewandte Chemie, 2022, 134, .	2.0	3
526	Divergent, C–C Bond Forming Macrocyclizations Using Modular Sulfonylhydrazone and Derived Substrates. Journal of Organic Chemistry, 2021, 86, 16485-16510.	3.2	1
527	A modular strategy for the synthesis of marine originated meroterpenoid-type natural products. Organic and Biomolecular Chemistry, 2021, 19, 9439-9447.	2.8	2

#	Article	IF	Citations
528	Comprehensive Overview of Progress in Functionalization of 2â€Pyridone and 2, 4 â€Dihydroxy Pyridine: Key Constituents of Vital Natural Products. ChemistrySelect, 2021, 6, 11792-11821.	1.5	6
529	<i>^t</i> BuOK-Promoted Reaction of Selenocyanates and Hydrazones for the Synthesis of Selenoacetals. Chinese Journal of Organic Chemistry, 2021, 41, 4338.	1.3	2
530	Divergent Synthesis of 3,5â \in Disubstituted Pyrazoles and $\langle i \rangle \hat{l} \pm$, $\hat{l}^2 \langle i \rangle \hat{a} \in$ Alkynic Hydrazone from Diarylpropynones and Carbazates. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	2
531	Palladium-Catalyzed Carbene Migratory Insertion/Carbonylation Cascade Reaction: Synthesis of 2-Indolones with a C3 All-Carbon Quaternary Center. Organic Letters, 2022, 24, 1237-1242.	4.6	11
532	Deoxygenative Cross oupling of Aromatic Amides with Polyfluoroarenes. Angewandte Chemie - International Edition, 2022, 61, .	13.8	20
533	Deoxygenative Crossâ€Coupling of Aromatic Amides with Polyfluoroarenes. Angewandte Chemie, 0, , .	2.0	2
534	Pd-Catalyzed coupling of benzyl bromides with BMIDA-substituted <i>N</i> -tosylhydrazones: synthesis of <i>trans</i> -alkenyl MIDA boronates. Chemical Communications, 2022, 58, 399-402.	4.1	5
535	Pd-Catalyzed Coupling of N-Tosylhydrazones with Benzylic Phosphates: Toward the Synthesis of Di- or Tri-Substituted Alkenes. Journal of Organic Chemistry, 2022, 87, 1249-1261.	3.2	5
536	Aromatic π-Components for Enantioselective Heck Reactions and Heck/Anion-Capture Domino Sequences. Accounts of Chemical Research, 2022, 55, 734-745.	15.6	70
537	The merger of vinyl-N-triftosylhydrazones and silver catalysis to enable stereoselective vinylcyclopropanation of alkenes. Chem Catalysis, 2022, 2, 563-577.	6.1	16
538	Palladium-catalyzed carbene coupling polymerization: synthesis of <i>E</i> -poly(arylene vinylene)s. Chemical Communications, 2022, 58, 4032-4035.	4.1	4
539	Synthesis of polyallenoates through copper-mediated cross-coupling of dialkynes and bis-α-diazoesters. Chemical Communications, 2022, 58, 3909-3912.	4.1	5
540	Palladium-catalyzed dearomative 1,4-arylmethylenation of naphthalenes. Organic Chemistry Frontiers, 2022, 9, 2600-2605.	4.5	3
541	Dearomative $[4 + 3]$ cycloaddition of furans with vinyl- <i>N</i> -triftosylhydrazones by silver catalysis: stereoselective access to oxa-bridged seven-membered bicycles. Organic Chemistry Frontiers, 2022, 9, 2444-2452.	4.5	14
542	Recent advances in transition-metal-catalyzed carbene insertion to C–H bonds. Chemical Society Reviews, 2022, 51, 2759-2852.	38.1	120
543	Silver-catalyzed site-selective $C(sp3)\hat{a}^{\prime}H$ benzylation of ethers with N-triftosylhydrazones. Nature Communications, 2022, 13, 1674.	12.8	28
544	Coupling Reactions of Anhydro-Aldose Tosylhydrazones with Boronic Acids. Molecules, 2022, 27, 1795.	3.8	1
545	Copper-Catalyzed [5 + 1] Cyclization of <i>0/i>-Pyrrolo Anilines and Heterocyclic <i>0/i>-Tosylhydrazones for Access to Spiro-dihydropyrrolo[1,2-<i>0/i>-Quinoxaline Derivatives. Journal of Organic Chemistry, 2022, 87, 4112-4123.</i></i></i>	3.2	6

#	Article	IF	CITATIONS
548	Emerging Trends in <i>N</i> â€Tosylhydrazone Mediated Transitionâ€Metalâ€Free Reactions. ChemistrySelect, 2022, 7, .	1.5	5
549	Recent Advancement of Transition Metal-Mediated Reactions of Diazomethane and (Trimethylsilyl)diazomethane. Current Organic Chemistry, 2022, 26, .	1.6	0
550	Copper-catalyzed C-3 benzylation of quinoxalin- $2(1 < i > H < /i >)$ -ones with benzylsulfonyl hydrazides. Organic and Biomolecular Chemistry, 2022, 20, 4518-4521.	2.8	3
551	Pd-Catalyzed Dynamic Kinetic Asymmetric Cross-Coupling of Heterobiaryl Bromides with <i>N</i> -Tosylhydrazones. Organic Letters, 2022, 24, 3812-3816.	4.6	11
552	Pd-Catalyzed 1,4-Carboamination of Bicyclic Bromoarenes with Diazo Compounds and Amines. Organic Letters, 2022, 24, 4129-4134.	4.6	9
553	<i>N</i> -Triftosylhydrazones: A New Chapter for Diazo-Based Carbene Chemistry. Accounts of Chemical Research, 2022, 55, 1763-1781.	15.6	65
554	Silver-catalyzed $[4 + 3]$ cycloaddition of 1,3-dienes with alkenyl- $\langle i \rangle N \langle i \rangle$ -triftosylhydrazones: a practical approach to 1,4-cycloheptadienes. Organic Chemistry Frontiers, 2022, 9, 4426-4434.	4.5	5
555	Novel Imidazole Liquid Crystals; Experimental and Computational Approaches. Molecules, 2022, 27, 4607.	3.8	7
556	Environmentally Benign and User-Friendly <i>In Situ</i> Generation of Nitrile Imines from Hydrazones for 1,3-Dipolar Cycloaddition. Journal of Organic Chemistry, 2022, 87, 10550-10554.	3.2	11
557	Cu($<$ scp $>$ i $<$ /scp $>$)- and Pd($<$ scp $>$ ii $<$ /scp $>$)-catalyzed decarboxylative cross-couplings of alkynyl carboxylic acids with $<$ i $>$ N $<$ /i $>$ -tosylhydrazones: access to trisubstituted allenes and conjugated enynes. Organic Chemistry Frontiers, 2022, 9, 5899-5905.	4.5	2
558	Palladium/GF-Phos-catalyzed asymmetric carbenylative amination to access chiral pyrrolidines and piperidines. Chemical Science, 2022, 13, 11150-11155.	7.4	5
559	One-pot synthesis of ferrocenyl dithiocarbamates and its application for the detection of Cu2+. New Journal of Chemistry, 0 , , .	2.8	0
560	Diazo compounds and palladium–aryl complexes: trapping the elusive carbene migratory insertion organometallic products. Dalton Transactions, 2022, 51, 14847-14851.	3.3	2
562	Coupling of <i>N</i> â€Tosylhydrazones with Tetrazoles: A Regioselective Synthesis of 2,5â€Disubstitutedâ€2 <i>H</i> â€Tetrazoles. European Journal of Organic Chemistry, 2022, 2022, .	2.4	2
563	Silver-Catalyzed Vinylcarbene Insertion into C–C Bonds of 1,3-Diketones with Vinyl- <i>N</i> -triftosylhydrazones. Organic Letters, 2022, 24, 8136-8141.	4.6	3
564	Photoâ€Induced Homologation of Carbonyl Compounds for Iterative Syntheses. Angewandte Chemie, 2022, 134, .	2.0	0
565	Photoâ€Induced Homologation of Carbonyl Compounds for Iterative Syntheses. Angewandte Chemie - International Edition, 2022, 61, .	13.8	13
566	Palladium hydrazonato complexes and their role in the Pd-catalyzed cross-coupling reactions of hydrazones as carbene precursors. Dalton Transactions, 2022, 51, 17733-17742.	3.3	1

#	Article	IF	CITATIONS
567	Highly electrophilic silver carbenes. Chemical Communications, 2022, 58, 13699-13715.	4.1	1
568	α-Carbonyl sulfoxonium ylides in transition metal-catalyzed C–H activation: a safe carbene precursor and a weak directing group. Organic and Biomolecular Chemistry, 2023, 21, 879-909.	2.8	8
569	Transition-metal-free azide insertion of <i>N</i> -triftosylhydrazones using a non-metallic azide source. Chemical Communications, 2022, 58, 13783-13786.	4.1	3
571	Palladiumâ€Catalyzed Cyclizative Borylation of Allenyl Ketones through Carbene Boryl Migratory Insertion: Access to Densely Substituted Furyl Boronates. Chemistry - A European Journal, 2023, 29, .	3.3	4
572	Rh(II)-catalyzed Ring Expansion of Cyclopropyl N-Tosylhydrazones to 1-Substituted Cyclobutenes. Synlett, 0, , .	1.8	3
573	Chemoselective carbene insertion into the Nâ $^{\circ}$ H bonds of NH3 \hat{A} ·H2O. Nature Communications, 2022, 13, .	12.8	10
574	Transitionâ€Metalâ€Free Multicomponent Approach to the Regioselective Synthesis of Highly Substituted <i>N</i> â€Alkylpyrazoles. Chemistry - an Asian Journal, 2023, 18, .	3.3	1
575	Palladium-Catalyzed Cyclization Coupling with Cyclobutanone-Derived <i>N</i> -Tosylhydrazones: Synthesis of Benzofuran-3-Cyclobutylidenes and Spirocyclobutanes. Journal of Organic Chemistry, 2023, 88, 1568-1577.	3.2	4
576	Palladiumâ€catalyzed ringâ€opening addition of activated vinyl cyclopropanes with Nâ€tosylhydrazones. European Journal of Organic Chemistry, 0, , .	2.4	1
577	Recyclable Copper(I)-Catalyzed Cross-Coupling of Trialkylsilylethynes and <i>N</i> -Tosylhydrazones Leading to the Formation of C(sp)–C(sp ³) Bonds. Journal of Organic Chemistry, 2023, 88, 2973-2984.	3.2	2
578	Palladium-Catalyzed Oxidative Coupling of Dibenzosiloles with α-Diazo Esters: Formal Replacement of the Silyl Group with Carbenes. Organometallics, 2023, 42, 660-671.	2.3	1
579	Economical and Environmentally Friendly Organic hydrazone Derivatives Characterized by a Heteroaromatic Core as Potential Hole Transporting Materials in Perovskite Solar Cells. European Journal of Organic Chemistry, 0, , .	2.4	0
580	Chloroacetyl boronate <i>N</i> -tosylhydrazone as a versatile synthetic building block. Chemical Communications, 2023, 59, 7419-7422.	4.1	0
581	Rhodiumâ€Catalyzed Dearomative 1,4â€Acyl Rearrangement of 2â€Oxypyridines with Hydrazones: Access to Nâ€6ubstituted 2â€Pyridones. European Journal of Organic Chemistry, 2023, 26, .	2.4	2
582	Catalyst-Free Synthesis of Functionalized 4-Substituted-4 <i>H</i> -Benzo[<i>d</i>][1,3]oxazines via Intramolecular Cyclization of <i>ortho-</i> Amide- <i>N</i> -tosylhydrazones. Journal of Organic Chemistry, 2023, 88, 8636-8642.	3.2	1
583	Synthesis of Indoles from <i>>o</i> -Haloanilines. Journal of Organic Chemistry, 2023, 88, 10164-10170.	3.2	1
584	Novel oxoisochromene synthesis <i>via</i> chemoselective Oâ€"H insertion of 1,3-dicarbonyl compounds and subsequent Pd-catalyzed intramolecular arylation reaction. New Journal of Chemistry, 0, , .	2.8	0
585	Chemodivergent Synthesis of Sulfonamide and Sulfones from <i>N</i> -Tosylhydrazones by Switching Catalyst and Temperature. Organic Letters, 2023, 25, 6012-6017.	4.6	0

#	Article	IF	CITATIONS
586	Transition metal-catalyzed reactivity of carbenes with boronic acid derivatives for arylation (alkylation) and beyond. Organic and Biomolecular Chemistry, 2023, 21, 7062-7078.	2.8	2
587	Silver-catalyzed vinylcarbene insertion into Si–H bonds with vinyl <i>N</i> -triftosylhydrazones leading to allylsilanes. Organic Chemistry Frontiers, 2023, 10, 4588-4592.	4.5	0
588	<scp>Palladiumâ€Catalyzed</scp> Oxidative Alkynylation of Allenyl Ketones: Access to <scp>3â€Alkynyl</scp> Polyâ€substituted Furans ^{â€} . Chinese Journal of Chemistry, 2023, 41, 3598-3604.	4.9	1
589	Ruthenium-Catalyzed Chemo-Selective Carbene Insertion into C–H Bond of Styrene over Cyclopropanation: C–C Bond Formation. Journal of Organic Chemistry, 2023, 88, 15817-15831.	3.2	0
590	Palladium-catalyzed \hat{l}_{\pm} -arylation/ \hat{l}^2 -elimination of sulfones. New Journal of Chemistry, 0, , .	2.8	0
591	Recent Update on Alkylation of Indole and Its Derivatives Using <i>N</i> â€Tosylhydrazone. ChemistrySelect, 2023, 8, .	1.5	0
592	Rh-catalyzed asymmetric cyclopropanation of benzofurans with trifluoromethyl N-triftosylhydrazones. Journal of Fluorine Chemistry, 2024, 273, 110237.	1.7	0
593	Enantioselective synthesis of inherently chiral 9-benzylidene-9H-tribenzo[a,c,e][7]annulene and its application as a ligand platform. Chem Catalysis, 2024, 4, 100904.	6.1	0
594	Polycyclic Pyrazoles from Alkynyl Cyclohexadienones and Nonstabilized Diazoalkanes via $[3 + 2]$ -Cycloaddition/ $[1,5]$ -Sigmatropic Rearrangement/Aza-Michael Reaction Cascade. Organic Letters, 2024, 26, 839-844.	4.6	0
595	Light-induced arylation (alkylation) of <i>N</i> -sulfonylhydrazones with boronic acids. Chemical Communications, 2024, 60, 2796-2799.	4.1	0
596	A Short Synthesis of (â^)â€6,7â€Secoagroclavine via Metalâ€Free Reductive Coupling. European Journal of Organic Chemistry, 2024, 27, .	2.4	0
597	Assessment of Hydrazone Derivatives for Enhanced Steel Corrosion Resistance in 15 wt.% HCl Environments: A Dual Experimental and Theoretical Perspective. Molecules, 2024, 29, 985.	3.8	0
598	<i>N</i> -Heterocyclic Carbene-Catalyzed Facile Synthesis of Phthalidyl Sulfonohydrazones: Density Functional Theory Mechanistic Insights and Docking Interactions. ACS Omega, 2024, 9, 11510-11522.	3.5	0