Biologyâ€Oriented Synthesis

Angewandte Chemie - International Edition 50, 10800-10826

DOI: 10.1002/anie.201007004

Citation Report

#	Article	IF	CITATIONS
1	Library Design: Reactant and Product-Based Approaches. , 2007, , 337-378.		0
2	Stereoselective Cascade Double-Annulations Provide Diversely Ring-Fused Tetracyclic Benzopyrones. Organic Letters, 2012, 14, 5924-5927.	4.6	34
3	Using Novel Descriptor Accounting for Ligand–Receptor Interactions To Define and Visually Explore Biologically Relevant Chemical Space. Journal of Chemical Information and Modeling, 2012, 52, 1086-1102.	5.4	9
4	Biologically Relevant Chemical Space Navigator: From Patent and Structure–Activity Relationship Analysis to Library Acquisition and Design. Journal of Chemical Information and Modeling, 2012, 52, 3123-3137.	5.4	18
6	Natureâ€Inspired Stereospecific Total Synthesis of <i>P</i> â€(+)â€Dispegatrine and Four Other Monomeric <i>Sarpagine</i> Indole Alkaloids. Angewandte Chemie - International Edition, 2012, 51, 11762-11765.	13.8	48
7	Asymmetric assembly of 2-oxindole and \hat{l}_{\pm} -angelica lactone units to construct vicinal quaternary chiral centers. Chemical Communications, 2012, 48, 2439.	4.1	85
8	Asymmetric Dielsâ \in Alder reaction of \hat{l}^2 , \hat{l}^2 -disubstituted enals and chromone-fused dienes: construction of collections with high molecular complexity and skeletal diversity. Chemical Science, 2012, 3, 1879.	7.4	94
9	Diversity-oriented synthesis: producing chemical tools for dissecting biology. Chemical Society Reviews, 2012, 41, 4444.	38.1	389
10	Recent applications of multicomponent reactions in medicinal chemistry. MedChemComm, 2012, 3, 1189.	3.4	403
12	Highly Enantioselective Catalytic [6+3] Cycloadditions of Azomethine Ylides. Angewandte Chemie - International Edition, 2012, 51, 9512-9516.	13.8	115
13	A Unifying Review of Bioassay-Guided Fractionation, Effect-Directed Analysis and Related Techniques. Sensors, 2012, 12, 9181-9209.	3.8	132
14	Diastereoselective Multicomponent Reaction in Water: Synthesis of 2-Azapyrrolizidine Alkaloid Analogues. Organic Letters, 2012, 14, 5204-5206.	4.6	29
15	Chemistry-based functional proteomics for drug target deconvolution. Expert Review of Proteomics, 2012, 9, 293-310.	3.0	27
16	Charting, Navigating, and Populating Natural Product Chemical Space for Drug Discovery. Journal of Medicinal Chemistry, 2012, 55, 5989-6001.	6.4	317
17	Natural product–inspired cascade synthesis yields modulators of centrosome integrity. Nature Chemical Biology, 2012, 8, 179-184.	8.0	116
18	Construction of a microbial natural product library for chemical biology studies. Current Opinion in Chemical Biology, 2012, 16, 101-108.	6.1	72
20	Druggable chemical space and enumerative combinatorics. Journal of Cheminformatics, 2013, 5, 19.	6.1	11
21	Multicomponent Synthesis of Antibacterial Dihydropyridin and Dihydropyran Embelin Derivatives. Journal of Organic Chemistry, 2013, 78, 7977-7985.	3.2	30

#	Article	IF	CITATIONS
22	From a Multipotent Stilbene to Soluble Epoxide Hydrolase Inhibitors with Antiproliferative Properties. ChemMedChem, 2013, 8, 919-923.	3.2	25
23	Synthesis and reactivity of 5-polyfluoroalkyl-5-deazaalloxazines. Organic and Biomolecular Chemistry, 2013, 11, 5351.	2.8	12
24	Catalytic asymmetric exo-selective [6+3] cycloaddition of iminoesters with fulvenes. Chemical Communications, 2013, 49, 7800.	4.1	55
25	From micrograms to grams: scale-up synthesis of eribulin mesylate. Natural Product Reports, 2013, 30, 1158.	10.3	112
26	A strategy for the diversity-oriented synthesis of macrocyclic scaffolds using multidimensional coupling. Nature Chemistry, 2013, 5, 861-867.	13.6	118
27	Highly Enantioselective Catalytic Synthesis of Neurite Growth-Promoting Secoyohimbanes. Chemistry and Biology, 2013, 20, 500-509.	6.0	47
29	Expedient synthesis of bicyclo[3.2.1]octanes and bicyclo[3.3.1]nonanes via the double Michael addition to cyclic dienones. RSC Advances, 2013, 3, 22882.	3.6	9
30	Synthesis of 3H-pyrrolo[2,3-c]quinolin-4(5H)-ones via Pd-catalyzed cross-coupling reaction and cyclization. Organic and Biomolecular Chemistry, 2013, 11, 7334.	2.8	15
31	A conceptual framework for analysing and planning synthetic approaches to diverse lead-like scaffolds. Chemical Communications, 2013, 49, 2383.	4.1	48
32	Cascade Syntheses Routes to the Centrocountins. Chemistry - A European Journal, 2013, 19, 2294-2304.	3.3	42
33	Multicomponent reactions $\hat{a}\in$ opportunities for the pharmaceutical industry. Drug Discovery Today: Technologies, 2013, 10, e15-e20.	4.0	149
34	Natural-product-derived fragments for fragment-based ligand discovery. Nature Chemistry, 2013, 5, 21-28.	13.6	249
35	Target Identification for Small Bioactive Molecules: Finding the Needle in the Haystack. Angewandte Chemie - International Edition, 2013, 52, 2744-2792.	13.8	393
36	Discovery and Characterization of Proteinâ€Modifying Natural Products by MALDI Mass Spectrometry Reveal Potent SIRT1 and p300 Inhibitors. Angewandte Chemie - International Edition, 2013, 52, 5171-5174.	13.8	7
37	Natural products: A continuing source of novel drug leads. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 3670-3695.	2.4	2,059
38	Stereospecific Approach to the Synthesis of Ring-A Oxygenated <i>Sarpagine</i> Indole Alkaloids. Total Synthesis of the Dimeric Indole Alkaloid <i>P</i> -(+)-Dispegatrine and Six Other Monomeric Indole Alkaloids. Journal of Organic Chemistry, 2013, 78, 6471-6487.	3.2	42
39	Diversifying complexity. Nature Chemistry, 2013, 5, 157-158.	13.6	65
40	Novel and efficient synthesis of 4,7-dihydro-1H-pyrrolo[2,3-b]pyridine derivatives via one-pot, three-component approach from N-substituted 5-amino-3-cyanopyrroles, various carbonylÂand active methylene compounds. Tetrahedron, 2013, 69, 5955-5967.	1.9	18

#	Article	IF	CITATIONS
41	Regiospecific 6-Endo-Annulation of in Situ Generated 3,4-Dienamides/Acids: Synthesis of \hat{l} -Lactams and \hat{l} -Lactones. Organic Letters, 2013, 15, 2608-2611.	4.6	48
42	Biotemplated Hierarchical Porous Material: The Positively Charged Leaf. Chemistry - A European Journal, 2013, 19, 4742-4747.	3.3	9
43	Discovery of Neuritogenic Compound Classes Inspired by Natural Products. Angewandte Chemie - International Edition, 2013, 52, 9576-9581.	13.8	72
46	Asymmetric Hetero-Diels–Alder Reaction of Danishefsky's Dienes with α-Carbonyl Esters Catalyzed by an Indium(III)–PyBox Complex. Organic Letters, 2013, 15, 2914-2917.	4.6	47
47	Scaffold Flatness: Reversing the Trend. Springer Science Reviews, 2013, 1, 141-151.	1.3	34
48	Lipid-based systems as a promising approach for enhancing the bioavailability of poorly water-soluble drugs. Acta Pharmaceutica, 2013, 63, 427-445.	2.0	157
49	Catalytic Enantioselective Synthesis of Functionalized Tropanes Reveals Novel Inhibitors of Hedgehog Signaling. Angewandte Chemie - International Edition, 2013, 52, 12892-12896.	13.8	111
51	Discovery of Inhibitors of the Wnt and Hedgehog Signaling Pathways through the Catalytic Enantioselective Synthesis of an Iridoidâ€Inspired Compound Collection. Angewandte Chemie - International Edition, 2013, 52, 12404-12408.	13.8	63
52	Biologyâ€Oriented Synthesis of a Tetrahydroisoquinolineâ€Based Compound Collection Targeting Microtubule Polymerization. ChemBioChem, 2013, 14, 295-300.	2.6	37
58	Synthesis of skeletally diverse alkaloid-like molecules: exploitation of metathesis substrates assembled from triplets of building blocks. Beilstein Journal of Organic Chemistry, 2013, 9, 775-785.	2.2	12
59	Natural Product-inspired Cascade Synthesis for Chemical Biology. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2013, 71, 247-248.	0.1	1
60	Library Design: Reactant and Product-Based Approaches. , 2013, , .		0
61	One-step synthesis of diazaspiro [4.5] decane scaffolds with exocyclic double bonds. Organic and Biomolecular Chemistry, 2014, 12, 5356-5359.	2.8	2
63	A Chemoinformatics Approach to the Discovery of Lead-Like Molecules from Marine and Microbial Sources En Route to Antitumor and Antibiotic Drugs. Marine Drugs, 2014, 12, 757-778.	4.6	28
64	Diastereoselective one-pot synthesis of novel ABCD-fused chromeno[2,3-d]pyrazolo[3,4-b]pyridines. Tetrahedron, 2014, 70, 2938-2943.	1.9	11
65	Synthesis, antibiotic activity and structure–activity relationship study of some 3-enaminetetramic acids. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1901-1906.	2.2	16
66	A Threeâ€Step Synthesis of the Guaianolide Ring System. European Journal of Organic Chemistry, 2014, 2014, 3097-3100.	2.4	11
67	Natural products as lead structures: chemical transformations to create lead-like libraries. Drug Discovery Today, 2014, 19, 215-221.	6.4	85

#	Article	IF	CITATIONS
68	Probing chemical space with alkaloid-inspired libraries. Nature Chemistry, 2014, 6, 133-140.	13.6	87
69	Catalytic Enantioselective 1,3-Dipolar Cycloadditions of Azomethine Ylides for Biology-Oriented Synthesis. Accounts of Chemical Research, 2014, 47, 1296-1310.	15.6	418
70	Development of a Natural-Product-Derived Chemical Toolbox for Modulation of Protein Function. Chemical Reviews, 2014, 114, 4621-4639.	47.7	76
71	Asymmetric [5+3] Formal Cycloadditions with Cyclic Enones through Cascade Dienamine–Dienamine Catalysis. Angewandte Chemie - International Edition, 2014, 53, 6245-6248.	13.8	88
72	Synthesis of Complex and Diverse Compounds through Ring Distortion of Abietic Acid. Angewandte Chemie - International Edition, 2014, 53, 220-224.	13.8	110
74	Diversity-oriented synthesis as a tool for identifying new modulators of mitosis. Nature Communications, 2014, 5, 3155.	12.8	73
75	The Literature of Heterocyclic Chemistry, Part XII, 2010–2011. Advances in Heterocyclic Chemistry, 2014, , 147-274.	1.7	18
76	Natural products as starting points for the synthesis of complex and diverse compounds. Natural Product Reports, 2014, 31, 6-14.	10.3	179
78	Highly Enantioselective Intramolecular 1,3â€Dipolar Cycloaddition: A Route to Piperidinoâ€Pyrrolizidines. Angewandte Chemie - International Edition, 2015, 54, 651-655.	13.8	40
79	Rice-Husk-Templated Hierarchical Porous TiO ₂ /SiO ₂ for Enhanced Bacterial Removal. ACS Applied Materials & Samp; Interfaces, 2014, 6, 2377-2385.	8.0	20
80	The Chemistry-Biology-Medicine Continuum and the Drug Discovery and Development Process in Academia. Chemistry and Biology, 2014, 21, 1039-1045.	6.0	19
81	Evolution of a strategy for preparing bioactive small molecules by sequential multicomponent assembly processes, cyclizations, and diversification. Organic and Biomolecular Chemistry, 2014, 12, 7659-7672.	2.8	42
82	Efficient discovery of bioactive scaffolds by activity-directed synthesis. Nature Chemistry, 2014, 6, 872-876.	13.6	48
85	Biology-Oriented Synthesis: Harnessing the Power of Evolution. Journal of the American Chemical Society, 2014, 136, 11853-11859.	13.7	207
86	Protectingâ€Groupâ€Free Solidâ€Phase Anchoring of Polyphenolic <i>C</i> àêGlucosidic Ellagitannins and Synthesis of 1â€Alkylaminoâ€Vescalagin Derivatives. European Journal of Organic Chemistry, 2014, 2014, 4963-4972.	2.4	5
87	Toward performance-diverse small-molecule libraries for cell-based phenotypic screening using multiplexed high-dimensional profiling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10911-10916.	7.1	191
88	Diversity-oriented synthesis of Lycopodium alkaloids inspired by the hidden functional group pairing pattern. Nature Communications, 2014, 5, 4614.	12.8	52
89	Privileged Structures: Efficient Chemical "Navigators―toward Unexplored Biologically Relevant Chemical Spaces. Journal of the American Chemical Society, 2014, 136, 14629-14638.	13.7	242

#	Article	IF	CITATIONS
90	Diversityâ€Oriented Synthesis of Drugâ€Like Macrocyclic Scaffolds Using an Orthogonal Organo―and Metal Catalysis Strategy. Angewandte Chemie - International Edition, 2014, 53, 13093-13097.	13.8	54
91	Advancing the Drug Discovery and Development Process. Angewandte Chemie - International Edition, 2014, 53, 9128-9140.	13.8	71
93	Exploring the Chemical Space around the Privileged Pyrazolo[3,4- <i>d</i>) pyrimidine Scaffold: Toward Novel Allosteric Inhibitors of T315I-Mutated Abl. ACS Combinatorial Science, 2014, 16, 168-175.	3.8	16
94	Synthesis of sesquiterpene-inspired derivatives designed for covalent binding and their inhibition of the NF-Î ^o B pathway. Organic and Biomolecular Chemistry, 2014, 12, 370-375.	2.8	16
95	Amorfrutins: A Promising Class of Natural Products that Are Beneficial to Health. ChemBioChem, 2014, 15, 1231-1238.	2.6	32
96	Polymer supported synthesis of a natural product-inspired oxepane library. Bioorganic and Medicinal Chemistry, 2014, 22, 4430-4444.	3.0	13
97	Modulators of Protein–Protein Interactions. Chemical Reviews, 2014, 114, 4695-4748.	47.7	407
98	Diversity-Oriented Synthetic Strategies Applied to Cancer Chemical Biology and Drug Discovery. Molecules, 2014, 19, 17221-17255.	3.8	27
101	Synthesis of a Natural Productâ€Like Compound Collection through Oxidative Cleavage and Cyclization of Linear Peptides. Angewandte Chemie - International Edition, 2014, 53, 11778-11782.	13.8	15
104	Neuritogenic Militarinoneâ€Inspired 4â€Hydroxypyridones Target the Stress Pathway Kinase MAP4K4. Angewandte Chemie, 2015, 127, 12575-12580.	2.0	17
110	Asymmetric Synthesis of Tetracyclic Pyrroloindolines and Constrained Tryptamines by a Switchable Cascade Reaction. Angewandte Chemie - International Edition, 2015, 54, 14133-14136.	13.8	25
111	Diversity-oriented synthesis of analogues of the novel macrocyclic peptide FR-225497 through late stage functionalization. Beilstein Journal of Organic Chemistry, 2015, 11, 2487-2492.	2.2	12
112	QSAR-Assisted Virtual Screening of Lead-Like Molecules from Marine and Microbial Natural Sources for Antitumor and Antibiotic Drug Discovery. Molecules, 2015, 20, 4848-4873.	3.8	22
113	(â^')â€Englerinâ€A is a Potent and Selective Activator of TRPC4 and TRPC5 Calcium Channels. Angewandte Chemie - International Edition, 2015, 54, 3787-3791.	13.8	161
114	Rapid Assembly of Functionalized Hydrodibenzofurans via Semipinacol Rearrangements. Organic Letters, 2015, 17, 4356-4359.	4.6	14
115	Design, synthesis and decoration of molecular scaffolds for exploitation in the production of alkaloid-like libraries. Bioorganic and Medicinal Chemistry, 2015, 23, 2629-2635.	3.0	26
116	Stereoselective synthesis of a natural product inspired tetrahydroindolo[2,3-a]-quinolizine compound library. Bioorganic and Medicinal Chemistry, 2015, 23, 2614-2620.	3.0	15
117	Catalytic Aerobic Oxidation and Tandem Enantioselective Cycloaddition in Cascade Multicomponent Synthesis. Chemistry - A European Journal, 2015, 21, 4913-4917.	3.3	17

#	Article	IF	CITATIONS
118	Divergent Solidâ€Phase Synthesis of Natural Productâ€Inspired Bipartite Cyclodepsipeptides: Total Synthesis of Seragamideâ€A. Chemistry - A European Journal, 2015, 21, 5311-5316.	3.3	19
119	Characterization of DNA-Conjugated Compounds Using a Regenerable Chip. Analytical Chemistry, 2015, 87, 864-868.	6.5	16
120	The re-emergence of natural products for drug discovery in the genomics era. Nature Reviews Drug Discovery, 2015, 14, 111-129.	46.4	1,891
121	One-pot synthesis of a natural product inspired pyrrolocoumarine compound collection by means of an intramolecular 1,3-dipolar cycloaddition as key step. Tetrahedron Letters, 2015, 56, 3358-3360.	1.4	17
122	Combining the Petasis 3-Component Reaction with Multiple Modes of Cyclization: A Build/Couple/Pair Strategy for the Synthesis of Densely Functionalized Small Molecules. ACS Combinatorial Science, 2015, 17, 19-23.	3.8	15
123	Biologyâ€Oriented Synthesis of a Withanolideâ€Inspired Compound Collection Reveals Novel Modulators of Hedgehog Signaling. Angewandte Chemie - International Edition, 2015, 54, 5596-5602.	13.8	52
124	State-of-the-art strategies for targeting protein–protein interactions by small-molecule inhibitors. Chemical Society Reviews, 2015, 44, 8238-8259.	38.1	132
125	Beyond the Diketopiperazine Family with Alternatively Bridged Brevianamide F Analogues. Journal of Organic Chemistry, 2015, 80, 8046-8054.	3.2	5
126	Scaffold Diversity Inspired by the Natural Product Evodiamine: Discovery of Highly Potent and Multitargeting Antitumor Agents. Journal of Medicinal Chemistry, 2015, 58, 6678-6696.	6.4	156
127	Natural Products as Pharmaceuticals and Sources for Lead Structures**Note: This chapter reflects the opinions of the authors, not necessarily those of the US Government., 2015, , 101-139.		13
128	Focused Library with a Core Structure Extracted from Natural Products and Modified: Application to Phosphatase Inhibitors and Several Biochemical Findings. Accounts of Chemical Research, 2015, 48, 1464-1473.	15.6	10
129	Clustered Distribution of Natural Product Leads of Drugs in the Chemical Space as Influenced by the Privileged Target-Sites. Scientific Reports, 2015, 5, 9325.	3.3	20
130	"Pruning of biomolecules and natural products (PBNP)†an innovative paradigm in drug discovery. Organic and Biomolecular Chemistry, 2015, 13, 6432-6448.	2.8	17
132	Neuritogenic Militarinoneâ€Inspired 4â€Hydroxypyridones Target the Stress Pathway Kinase MAP4K4. Angewandte Chemie - International Edition, 2015, 54, 12398-12403.	13.8	45
133	Design and synthesis of analogues of natural products. Organic and Biomolecular Chemistry, 2015, 13, 5302-5343.	2.8	132
134	A general catalytic reaction sequence to access alkaloid-inspired indole polycycles. Chemical Communications, 2015, 51, 7536-7539.	4.1	28
135	A natural product based DOS library of hybrid systems. European Journal of Medicinal Chemistry, 2015, 95, 41-48.	5.5	12
136	Rhodium(II)â€Catalyzed Enantioselective Synthesis of Troponoids. Angewandte Chemie - International Edition, 2015, 54, 7653-7656.	13.8	18

#	Article	IF	CITATIONS
137	Generating Skeletal Diversity from the C ₁₉ â€Diterpenoid Alkaloid Deltaline: A Ringâ€Distortion Approach. Chemistry - A European Journal, 2015, 21, 8946-8950.	3.3	13
138	Highly Stereoselective Synthesis of Naturalâ€Productâ€Like Hybrids by an Organocatalytic/Multicomponent Reaction Sequence. Angewandte Chemie - International Edition, 2015, 54, 7621-7625.	13.8	48
139	Synthesis of hexahydropyrrolo $[2,1-a]$ is oquinoline compound libraries through a Pictetâ \in "Spengler cyclization/metal-catalyzed cross coupling/amidation sequence. Bioorganic and Medicinal Chemistry, 2015, 23, 2646-2649.	3.0	16
140	Biology-oriented development of novel lipophilic antioxidants with neuroprotective activity. RSC Advances, 2015, 5, 15800-15811.	3.6	19
141	Dereplication: racing to speed up the natural products discovery process. Natural Product Reports, 2015, 32, 779-810.	10.3	210
142	Merging Allosteric and Active Site Binding Motifs: De novo Generation of Target Selectivity and Potency via Naturalâ€Productâ€Derived Fragments. ChemMedChem, 2015, 10, 451-454.	3.2	35
143	Synthesis of a hexahydropyrrolo indole (HPI) compound library. Bioorganic and Medicinal Chemistry, 2015, 23, 2636-2645.	3.0	8
144	Progress Toward the Development of Noscapine and Derivatives as Anticancer Agents. Journal of Medicinal Chemistry, 2015, 58, 5699-5727.	6.4	74
145	The discovery of novel antifungal scaffolds by structural simplification of the natural product sampangine. Chemical Communications, 2015, 51, 14648-14651.	4.1	40
146	Construction of Enantiopure Taxoid and Natural Product-like Scaffolds Using a C–C Bond Cleavage/Arylation Reaction. Organic Letters, 2015, 17, 5432-5435.	4.6	35
147	High-Throughput Synthesis of Diverse Compound Collections for Lead Discovery and Optimization. Handbook of Experimental Pharmacology, 2015, 232, 73-89.	1.8	2
148	Design, synthesis and diversification of natural product-inspired hydantoin-fused tetrahydroazepino indoles. RSC Advances, 2015, 5, 73169-73179.	3.6	13
149	Spirochromone-chalcone conjugates as antitubercular agents: synthesis, bio evaluation and molecular modeling studies. RSC Advances, 2015, 5, 106448-106460.	3.6	30
151	Phosphine-catalyzed dearomatizing [3+2] annulations of isoquinolinium methylides with allenes. Chemical Communications, 2015, 51, 1054-1057.	4.1	25
152	Enantioselective, Protecting-Group-Free Total Synthesis of Sarpagine Alkaloids-A Generalized Approach. Angewandte Chemie - International Edition, 2015, 54, 315-317.	13.8	62
153	Synthesis of functionalized 2-salicyloylfurans, furo [3,2-b] chromen-9-ones and 2-benzoyl-8H-thieno [2,3-b] indoles by one-pot cyclizations of 3-halochromones with \hat{l}^2 -ketoamides and 1,3-dihydroindole-2-thiones. Organic and Biomolecular Chemistry, 2015, 13, 729-750.	2.8	26
154	Identification of Novel Human Breast Carcinoma (MDA-MB-231) Cell Growth Modulators from a Carbohydrate-Based Diversity Oriented Synthesis Library. Molecules, 2016, 21, 1405.	3.8	2
155	Enantiodivergent Combination of Natural Product Scaffolds Enabled by Catalytic Enantioselective Cycloaddition. Angewandte Chemie - International Edition, 2016, 55, 7761-7765.	13.8	57

#	Article	IF	CITATIONS
156	Biomimetic Assembly Lines Producing Natural Product Analogs: Strategies from a Versatile Manifold to Skeletally Diverse Scaffolds. Chemical Record, 2016, 16, 652-666.	5.8	10
157	Engaging Alleneâ€Derived Zwitterions in an Unprecedented Mode of Asymmetric [3+2]â€Annulation Reaction. Angewandte Chemie - International Edition, 2016, 55, 9709-9713.	13.8	113
158	Scaffold Diversity Synthesis and Its Application in Probe and Drug Discovery. Angewandte Chemie - International Edition, 2016, 55, 7586-7605.	13.8	150
159	Design and Synthesis of Fsp ³ -Rich, Bis-Spirocyclic-Based Compound Libraries for Biological Screening. ACS Combinatorial Science, 2016, 18, 330-336.	3.8	25
160	Expanding Diversity without Protecting Groups: (+)-Sclareolide to Indolosesquiterpene Alkaloid Mycoleptodiscin A and Analogues. Organic Letters, 2016, 18, 2684-2687.	4.6	12
161	Novel approaches to map small molecule–target interactions. Bioorganic and Medicinal Chemistry, 2016, 24, 3232-3245.	3.0	20
162	Asymmetric Roadmap to Diverse Polycyclic Benzopyrans via Phosphine-Catalyzed Enantioselective [4 + 2]-Annulation Reaction. Organic Letters, 2016, 18, 2632-2635.	4.6	43
163	Capturing Biological Activity in Natural Product Fragments by Chemical Synthesis. Angewandte Chemie - International Edition, 2016, 55, 3882-3902.	13.8	120
164	Synthetisch gewonnene Naturstofffragmente in der Wirkstoffentwicklung. Angewandte Chemie, 2016, 128, 3948-3970.	2.0	20
166	A regio- and stereo-selective annulation to form the â€inside-out' trans-bicyclo[9.2.1]tetradecane ring system. Tetrahedron Letters, 2016, 57, 2782-2785.	1.4	2
167	Domino Staudinger/ <i>aza</i> â€Wittig/Mannich Reaction: An Approach to Diversity of Di―and Tetrahydropyrrole Scaffolds. Chemistry - A European Journal, 2016, 22, 17967-17971.	3.3	19
169	Chemical Transformation of an Intermediate in the Synthesis of Huperzine A, Leading to a Diverse Array of Molecules. Chemical and Pharmaceutical Bulletin, 2016, 64, 1528-1531.	1.3	1
170	Green chemistry oriented multi-component strategy to hybrid heterocycles. RSC Advances, 2016, 6, 73848-73852.	3.6	23
171	A biosynthesis-inspired approach to over twenty diverse natural product-like scaffolds. Chemical Communications, 2016, 52, 9837-9840.	4.1	27
172	Divergent synthesis and identification of the cellular targets of deoxyelephantopins. Nature Communications, 2016, 7, 12470.	12.8	32
173	Gerüstdiversitäsbasierte Synthese und ihre Anwendung bei der Sonden―und Wirkstoffsuche. Angewandte Chemie, 2016, 128, 7712-7732.	2.0	33
174	Enantioselective Formal Syntheses of 11 Nuphar Alkaloids and Discovery of Potent Apoptotic Monomeric Analogues. Angewandte Chemie, 2016, 128, 3570-3574.	2.0	0
175	Enantiodivergent Combination of Natural Product Scaffolds Enabled by Catalytic Enantioselective Cycloaddition. Angewandte Chemie, 2016, 128, 7892-7896.	2.0	20

#	Article	IF	Citations
176	Enantioselective Formal Syntheses of 11 Nuphar Alkaloids and Discovery of Potent Apoptotic Monomeric Analogues. Angewandte Chemie - International Edition, 2016, 55, 3509-3513.	13.8	16
177	Stereoselective Synthesis of Alkylidene Phthalides. Organic Letters, 2016, 18, 3086-3089.	4.6	10
178	Underexplored Opportunities for Natural Products in Drug Discovery. Journal of Medicinal Chemistry, 2016, 59, 9295-9304.	6.4	94
179	$\langle scp \rangle \langle scp \rangle$ -Isoleucine derived bifunctional phosphine catalyses asymmetric [3 + 2]-annulation of allenyl-esters and -ketones with ketimines. RSC Advances, 2016, 6, 56537-56543.	3.6	35
180	Synthesis of an Iridoid-Inspired Compound Collection and Discovery of Autophagy Inhibitors. Journal of Organic Chemistry, 2016, 81, 10242-10255.	3.2	12
181	Engaging Alleneâ€Derived Zwitterions in an Unprecedented Mode of Asymmetric [3+2]â€Annulation Reaction. Angewandte Chemie, 2016, 128, 9861-9865.	2.0	41
182	Asymmetric BrÃ,nsted Base Catalyzed and Directed [3+2] Cycloaddition of 2â€Acyl Cycloheptatrienes with Azomethine Ylides. Chemistry - A European Journal, 2016, 22, 3259-3263.	3.3	28
183	Copper-Catalyzed Enantioselective Hetero-Diels–Alder Reaction of Danishefsky's Diene with Glyoxals. Journal of Organic Chemistry, 2016, 81, 2993-2999.	3.2	19
184	Rh(II)-catalyzed intramolecular dearomatizing annulation of N-sulfonyl-1,2,3-triazoles: synthesis of polycyclic spiroindolines. Tetrahedron, 2016, 72, 1467-1471.	1.9	15
185	Sarpagan-Ajmalan-Type Indoles. The Alkaloids Chemistry and Biology, 2016, 76, 1-61.	2.0	12
186	Bidentate Lewis Acid Catalyzed Domino Diels–Alder Reaction of Phthalazine for the Synthesis of Bridged Oligocyclic Tetrahydronaphthalenes. Organic Letters, 2016, 18, 1330-1333.	4.6	26
187	Discovery of Novel Cinchonaâ€Alkaloidâ€Inspired Oxazatwistane Autophagy Inhibitors. Angewandte Chemie - International Edition, 2017, 56, 2145-2150.	13.8	60
188	Discovery of Novel Cinchonaâ€Alkaloidâ€Inspired Oxazatwistane Autophagy Inhibitors. Angewandte Chemie, 2017, 129, 2177-2182.	2.0	21
189	Diastereoselective construction of spirocyclic pyrrolidines bearing two quaternary centers via Cu II -P, N-Ligand catalyzed 1,3-dipolar cycloaddition. Tetrahedron, 2017, 73, 923-930.	1.9	12
190	Tetrahydroisoquinolines: New Inhibitors of Neutrophil Extracellular Trap (NET) Formation. ChemBioChem, 2017, 18, 888-893.	2.6	30
191	Acid- and Au(<scp>i</scp>)-mediated synthesis of hexathymidine-DNA-heterocycle chimeras, an efficient entry to DNA-encoded libraries inspired by drug structures. Chemical Science, 2017, 8, 3356-3361.	7.4	44
192	Designed Spiroketal Protein Modulation. Angewandte Chemie - International Edition, 2017, 56, 5480-5484.	13.8	11
193	Natural product inspired compound collections: evolutionary principle, chemical synthesis, phenotypic screening, and target identification. Drug Discovery Today: Technologies, 2017, 23, 75-82.	4.0	45

#	Article	IF	CITATIONS
194	Designed Spiroketal Protein Modulation. Angewandte Chemie, 2017, 129, 5572-5576.	2.0	1
195	Enantioselective Organocatalytic Synthesis of a Secoyohimbaneâ€Inspired Compound Collection with Neuritogenic Activity. ChemBioChem, 2017, 18, 1098-1108.	2.6	8
196	Diversifying Complexity by Domino Benzannulation of Polycyclic Natural Products. Journal of Organic Chemistry, 2017, 82, 5328-5336.	3.2	7
197	A Tryptoline Ringâ€Distortion Strategy Leads to Complex and Diverse Biologically Active Molecules from the Indole Alkaloid Yohimbine. Chemistry - A European Journal, 2017, 23, 4327-4335.	3.3	61
198	"In Water― Organocatalyzed Diastereoselective Multicomponent Reactions toward 2-Azapyrrolizidine Alkaloid Scaffolds. ACS Combinatorial Science, 2017, 19, 455-463.	3.8	13
199	Carbocation Organocatalysis in Interrupted Povarov Reactions to <i>cis</i> eFused Pyrano―and Furanobenzodihydropyrans. European Journal of Organic Chemistry, 2017, 2017, 3996-4003.	2.4	25
200	Enantioselective synthesis of cyclopenta[<i>b</i>]benzofurans <i>via</i> an organocatalytic intramolecular double cyclization. Chemical Science, 2017, 8, 8086-8093.	7.4	21
201	Pharmacological use of a novel scaffold, anomeric N,N-diarylamino tetrahydropyran: molecular similarity search, chemocentric target profiling, and experimental evidence. Scientific Reports, 2017, 7, 12535.	3.3	19
202	Harnessing the potential of natural products in drug discovery from a cheminformatics vantage point. Organic and Biomolecular Chemistry, 2017, 15, 9275-9282.	2.8	30
203	Synthesis and Demonstration of the Biological Relevance of sp ³ â€rich Scaffolds Distantly Related to Natural Product Frameworks. Chemistry - A European Journal, 2017, 23, 15227-15232.	3.3	48
204	Cheminformatic characterization of natural products from Panama. Molecular Diversity, 2017, 21, 779-789.	3.9	28
205	Enantioselective construction of tricyclic pyrrolidine-fused benzo[b]thiophene 1,1-dioxide derivatives via copper(<scp>i</scp>)-catalyzed asymmetric 1,3-dipolar cycloaddition. Organic Chemistry Frontiers, 2017, 4, 2343-2347.	4.5	14
206	Highly Enantioselective Catalytic Vinylogous Propargylation of Coumarins Yields a Class of Autophagy Inhibitors. Angewandte Chemie, 2017, 129, 11384-11388.	2.0	5
207	Highly Enantioselective Catalytic Vinylogous Propargylation of Coumarins Yields a Class of Autophagy Inhibitors. Angewandte Chemie - International Edition, 2017, 56, 11232-11236.	13.8	64
208	Câ^'H Insertion as a Key Step to Spiroâ€Oxetanes, Scaffolds for Drug Discovery. Chemistry - A European Journal, 2017, 23, 13623-13627.	3.3	25
209	Natural product analogues: towards a blueprint for analogue-focused synthesis. Chemical Society Reviews, 2017, 46, 5059-5109.	38.1	39
210	Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nature Reviews Drug Discovery, 2017, 16, 531-543.	46.4	607
211	Leucine rich repeat kinase 2 (LRRK2) inhibitors based on indolinone scaffold: Potential pro-neurogenic agents. European Journal of Medicinal Chemistry, 2017, 138, 328-342.	5.5	24

#	Article	IF	CITATIONS
212	Network Pharmacology., 2017,, 127-164.		61
213	Catalytic Enantioselective Synthesis of a Pyrrolizidine–Alkaloid-Inspired Compound Collection with Antiplasmodial Activity. Journal of Organic Chemistry, 2018, 83, 7033-7041.	3.2	7
214	Unexpected regiochemistry in [3+2] cycloaddition reaction of azomethine ylides of indenoquinoxalinone series to arylidene malononitriles. Chemistry of Heterocyclic Compounds, 2018, 54, 43-50.	1.2	11
215	A (+)‣arixol Congener with High Affinity and Subtype Selectivity toward TRPC6. ChemMedChem, 2018, 13, 1028-1035.	3.2	31
217	Stereoselective Synthesis of Functionalized Benzooxazepino $[5,4-\langle i\rangle a\langle i\rangle]$ isoindolone Derivatives via Cesium Carbonate Catalyzed Formal $[5+2]$ Annulation of 2-(2-Hydroxyphenyl) isoindoline-1,3-dione with Allenoates. Organic Letters, 2018, 20, 2152-2155.	4.6	20
218	Realisation of small molecule libraries based on frameworks distantly related to natural products. Organic and Biomolecular Chemistry, 2018, 16, 3160-3167.	2.8	15
219	Enantioselective Synthesis of the Spirotropanyl Oxindole Scaffold through Bimetallic Relay Catalysis. Angewandte Chemie, 2018, 130, 14701-14705.	2.0	16
220	Chemical probes and drug leads from advances in synthetic planning and methodology. Nature Reviews Drug Discovery, 2018, 17, 333-352.	46.4	182
221	Organocatalytic Oxa-Michael/Michael/Aldol Condensation Quadruple Domino Sequence: Asymmetric Synthesis of Tricyclic Chromanes. Organic Letters, 2018, 20, 1232-1235.	4.6	21
222	Chemical Space Expansion of Bromodomain Ligands Guided by in Silico Virtual Couplings (AutoCouple). ACS Central Science, 2018, 4, 180-188.	11.3	26
223	Enantioselective Synthesis of the Spirotropanyl Oxindole Scaffold through Bimetallic Relay Catalysis. Angewandte Chemie - International Edition, 2018, 57, 14493-14497.	13.8	54
224	Discovery of Novel Muscarinic Receptor Modulators by Integrating a Natural Product Framework and a Bioactive Molecule. ChemMedChem, 2018, 13, 384-395.	3.2	6
225	Ligandengesteuerte divergente Synthese von carbo―und heterocyclischen Ringsystemen. Angewandte Chemie, 2018, 130, 5308-5322.	2.0	27
226	Asymmetric organocatalytic direct Mannich reaction of acetylacetone and isatin derived ketimines: Low catalyst loading in chiral cinchona-squaramides. Tetrahedron Letters, 2018, 59, 541-545.	1.4	17
227	Bioactive Compound Collections: From Design to Target Identification. CheM, 2018, 4, 705-730.	11.7	42
228	Ligandâ€Directed Divergent Synthesis of Carbo―and Heterocyclic Ring Systems. Angewandte Chemie - International Edition, 2018, 57, 5212-5226.	13.8	95
229	Synthesis of polyheterocycles <i>via</i> multicomponent reactions. Organic and Biomolecular Chemistry, 2018, 16, 1402-1418.	2.8	179
230	Automating drug discovery. Nature Reviews Drug Discovery, 2018, 17, 97-113.	46.4	456

#	Article	IF	CITATIONS
231	Densely functionalised spirocyclic oxetane-piperidine scaffolds for drug discovery. Bioorganic and Medicinal Chemistry, 2018, 26, 791-797.	3.0	21
232	LEGOâ€Inspired Drug Design: Unveiling a Class of Benzo[<i>d</i>]thiazoles Containing a 3,4â€Dihydroxyphenyl Moiety as Plasma Membrane H ⁺ â€ATPase Inhibitors. ChemMedChem, 2018, 13, 37-47.	3.2	9
233	From microbial upcycling to biology-oriented synthesis: combining whole-cell production and chemo-enzymatic functionalization for sustainable taxanoid delivery. Green Chemistry, 2018, 20, 5374-5384.	9.0	11
234	Step IIIb: The Drug-Like Chemical Diversity Pool: Diverse and Targeted Compound Collections. , 2018, , 115-177.		O
235	Drug target prediction using chem- and bioinformatics. Physical Sciences Reviews, 2018, 3, .	0.8	2
236	Strategies towards expansion of chemical space of natural product-based compounds to enable drug discovery. Brazilian Journal of Pharmaceutical Sciences, 2018, 54, .	1.2	2
237	New Entries to 3â€Acylchromones: TMâ€Catalysed Decarboxylative Crossâ€Coupling of αâ€Keto Acids with <i>ortho</i> a€Hydroxyarylenaminones, 2,3â€Unsubstituted Chromones and 3â€Iodochromones. European Journal of Organic Chemistry, 2018, 2018, 6867-6875.	2.4	22
238	Three-Component Reactions to Spirocyclic Pyrrolidinonylformimidamides: α-Isocyano Lactams as Two-Atom Unit in Silver-Catalyzed Formal [3 + 2] Cycloaddition Reactions. Organic Letters, 2018, 20, 7192-7196.	4.6	8
239	Gold(I)â€Catalyzed and Nucleophileâ€Guided Ligandâ€Directed Divergent Synthesis. European Journal of Organic Chemistry, 2018, 2018, 5688-5699.	2.4	8
240	Pd(II)-Catalyzed [4 + 2] Heterocyclization Sequence for Polyheterocycle Generation. Organic Letters, 2018, 20, 5877-5880.	4.6	11
241	Preparation of Structurally Diverse Compounds from the Natural Product Lycorine. Organic Letters, 2018, 20, 5894-5898.	4.6	32
242	Opportunities for plant natural products in infection control. Current Opinion in Microbiology, 2018, 45, 189-194.	5.1	54
243	Chromopynones are pseudo natural product glucose uptake inhibitors targeting glucose transporters GLUT-1 and -3. Nature Chemistry, 2018, 10, 1103-1111.	13.6	84
244	Convenient approach to polyoxygenated dibenzo[<i><</i> , <i>e</i>)pyrrolo[1,2- <i>a</i>)azepines from donor–acceptor cyclopropanes. Organic Chemistry Frontiers, 2018, 5, 2829-2834.	4.5	10
245	NCI Program for Natural Product Discovery: A Publicly-Accessible Library of Natural Product Fractions for High-Throughput Screening. ACS Chemical Biology, 2018, 13, 2484-2497.	3.4	89
246	Diastereoselective Synthesis of Highly Substituted, Amino―and Pyrrolidinoâ€Tetrahydrofurans as Lead‣ike Molecular Scaffolds. Chemistry - A European Journal, 2018, 24, 8233-8239.	3.3	11
247	Organocatalytic Enantioselective Construction of Axially Chiral Sulfone-Containing Styrenes. Journal of the American Chemical Society, 2018, 140, 7056-7060.	13.7	207
248	Nitrogenâ€Bridged, Natural Product Like Octahydrobenzofurans and Octahydroindoles: Scope and Mechanism of Bridgeâ€Forming Reductive Amination via Caged Heteroadamantanes. European Journal of Organic Chemistry, 2018, 2018, 4696-4704.	2.4	9

#	Article	IF	CITATIONS
249	Stereoselective and Modular Assembly Method for Heterocycleâ€Fused Daucane Sesquiterpenoids. Chemistry - A European Journal, 2018, 24, 13783-13787.	3.3	10
250	High-Throughput Screening in the Discovery of Small-Molecule Inhibitors of Protein-Protein Interactions. , 2018, , 29-51.		2
251	Simultaneous quantification of lipopeptide isoforms by UPLC-MS in the fermentation broth from Bacillus subtilis CNPMS22. Analytical and Bioanalytical Chemistry, 2018, 410, 6827-6836.	3.7	13
253	Computational Methodologies in the Exploration of Marine Natural Product Leads. Marine Drugs, 2018, 16, 236.	4.6	70
254	Discovery of 2,4-dimethoxypyridines as novel autophagy inhibitors. Tetrahedron, 2018, 74, 4531-4537.	1.9	8
255	Diastereoselective construction of pyrrolo[2,1-a]isoquinoline-based bispirooxindoles through a three-component [3 + 2] cycloaddition. Organic and Biomolecular Chemistry, 2018, 16, 6025-6034.	2.8	21
256	Design and Synthesis of Natural Product Inspired Libraries Based on the Three-Dimensional (3D) Cedrane Scaffold: Toward the Exploration of 3D Biological Space. Journal of Medicinal Chemistry, 2018, 61, 6609-6628.	6.4	20
257	Endophytic Microbes as a Novel Source for Producing Anticancer Compounds as Multidrug Resistance Modulators., 2018,, 343-381.		1
258	Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery. International Journal of Molecular Sciences, 2018, 19, 1578.	4.1	703
259	Scaffold Diversity Synthesis Delivers Complex, Structurally, and Functionally Distinct Tetracyclic Benzopyrones. ChemistryOpen, 2018, 7, 302-309.	1.9	1
260	Antibacterial Mimics of Natural Products by Side-Chain Functionalization of Bicyclic Tetramic Acids. Journal of Organic Chemistry, 2018, 83, 10303-10317.	3.2	8
261	Self-Assembled Glycosylated Chalcone–Boronic Acid Nanodrug Exhibits Anticancer Activity through Mitochondrial Impairment. ACS Applied Bio Materials, 2018, 1, 347-355.	4.6	0
262	Synthesis of Enantiomerically Pure 6-Substituted-Piperazine-2-Acetic Acid Esters as Intermediates for Library Production. Journal of Organic Chemistry, 2018, 83, 6541-6555.	3.2	17
263	Natural products as modulators of the cyclic-AMP pathway: evaluation and synthesis of lead compounds. Organic and Biomolecular Chemistry, 2018, 16, 6372-6390.	2.8	22
264	Traceless Solid-Phase Synthesis of [6,7,8 + 5,6,7]-Fused Molecular Frameworks. Molecules, 2018, 23, 1090.	3.8	3
265	Synthesis of functionalized 2,5-dihydropyrrole derivatives $\langle i \rangle$ via $\langle i \rangle$ a convenient [3 + 2] annulation of azomethine ylides with allenoates. Organic and Biomolecular Chemistry, 2018, 16, 6638-6646.	2.8	17
266	Discovery of a tetrazolyl \hat{l}^2 -carboline with in vitro and in vivo osteoprotective activity under estrogen-deficient conditions. MedChemComm, 2018, 9, 1213-1225.	3.4	4
267	Natural Product Inspired Topology Directed Synthesis of Hybrid Macrocyclic Compounds: A Simple Approach to Natural Product Analogues. ChemistrySelect, 2018, 3, 6262-6266.	1.5	3

#	Article	IF	CITATIONS
268	Copper-catalyzed direct Câ€"H arylselenation of 4-nitro-pyrazoles and other heterocycles with selenium powder and aryl iodides. Access to unsymmetrical heteroaryl selenides. RSC Advances, 2019, 9, 25368-25376.	3.6	27
269	Inverseâ€Electronâ€Demand Palladiumâ€Catalyzed Asymmetric [4+2] Cycloadditions Enabled by Chiral P,Sâ€Ligand and Hydrogen Bonding. Angewandte Chemie, 2019, 131, 11129-11133.	2.0	15
270	A diversity-oriented synthesis of polyheterocycles <i>via</i> the cyclocondensation of azomethine imine. New Journal of Chemistry, 2019, 43, 13721-13724.	2.8	8
271	Benchmark study of benzamide derivatives and four novel theoretically designed (L1, L2, L3, and L4) ligands and evaluation of their biological properties by DFT approaches. Journal of Molecular Modeling, 2019, 25, 223.	1.8	25
272	Design, Synthesis, and Phenotypic Profiling of Pyranoâ€Furoâ€Pyridone Pseudo Natural Products. Angewandte Chemie - International Edition, 2019, 58, 14715-14723.	13.8	71
273	Design, Synthesis, and Phenotypic Profiling of Pyranoâ€Furoâ€Pyridone Pseudo Natural Products. Angewandte Chemie, 2019, 131, 14857-14865.	2.0	20
274	Synthesis of Indomorphan Pseudoâ€Natural Product Inhibitors of Glucose Transporters GLUTâ€1 and â€3. Angewandte Chemie, 2019, 131, 17172-17181.	2.0	22
275	Synthesis of Indomorphan Pseudoâ€Natural Product Inhibitors of Glucose Transporters GLUTâ€1 and â€3. Angewandte Chemie - International Edition, 2019, 58, 17016-17025.	13.8	61
276	Development of DNA-Compatible Van Leusen Three-Component Imidazole Synthesis. Organic Letters, 2019, 21, 9001-9004.	4.6	43
277	Copperâ€Catalyzed Radical Crossâ€Coupling of Oxime Esters and Sulfinates for Synthesis of Cyanoalkylated Sulfones. ChemCatChem, 2019, 11, 5300-5305.	3.7	42
278	Synthesis and Anticancer Activity of Structure Simplified Naturally Inspired Dimeric Chromenone Derivatives. European Journal of Organic Chemistry, 2019, 2019, 6917-6929.	2.4	8
279	Synthesis of novel isoindoloneâ€based mediumâ€sized macromolecules and triazole containing heterocyclic compounds. Journal of Heterocyclic Chemistry, 2019, 56, 3197-3205.	2.6	2
280	A general strategy for diversifying complex natural products to polycyclic scaffolds with medium-sized rings. Nature Communications, 2019, 10, 4015.	12.8	68
281	Diversity-Oriented Synthesis of Bioactive Azaspirocycles. Tetrahedron, 2019, 75, 130637.	1.9	13
282	The Pseudo Natural Product Myokinasib Is a Myosin Light Chain Kinase 1 Inhibitor with Unprecedented Chemotype. Cell Chemical Biology, 2019, 26, 512-523.e5.	5.2	35
283	Bicyclic acetals: biological relevance, scaffold analysis, and applications in diversity-oriented synthesis. Organic and Biomolecular Chemistry, 2019, 17, 1037-1052.	2.8	32
284	Thermal-mediated catalyst-free heterolytic cleavage of 3-halooxindoles: rapid access to 3-functionalized-2-oxindoles. Organic Chemistry Frontiers, 2019, 6, 256-262.	4.5	19
285	Diversity-Oriented Synthesis toward Fused and Bridged Benzobicyclic Piperidin(on)es. Journal of Organic Chemistry, 2019, 84, 8046-8066.	3.2	7

#	Article	IF	CITATIONS
286	Regio- and stereoselective $[3+2]$ cycloaddition reaction: access to isoxazole-dispirobisoxindoles featuring three contiguous stereocenters. Organic and Biomolecular Chemistry, 2019, 17, 6551-6556.	2.8	21
287	Combined Scaffold Evaluation and Systemsâ€Level Transcriptomeâ€Based Analysis for Accelerated Lead Optimization Reveals Ribosomal Targeting Spirooxindole Cyclopropanes. ChemMedChem, 2019, 14, 1653-1661.	3.2	11
288	Inverseâ€Electronâ€Demand Palladiumâ€Catalyzed Asymmetric [4+2] Cycloadditions Enabled by Chiral P,Sâ€Ligand and Hydrogen Bonding. Angewandte Chemie - International Edition, 2019, 58, 11013-11017.	13.8	77
289	Structural simplification: an efficient strategy in lead optimization. Acta Pharmaceutica Sinica B, 2019, 9, 880-901.	12.0	49
290	Synthetic approach to skeletally diverse nitrogen heterocycles from dicyano-2-methylenebut-3-enoates. Organic Chemistry Frontiers, 2019, 6, 3321-3326.	4.5	9
291	Traceless Solid-Phase Synthesis of Ketones via Acid-Labile Enol Ethers: Application in the Synthesis of Natural Products and Derivatives. Molecules, 2019, 24, 1406.	3.8	5
293	Structureâ€Patternâ€Based Total Synthesis. Chemistry - A European Journal, 2019, 25, 10782-10791.	3.3	11
294	Dissecting celastrol with machine learning to unveil dark pharmacology. Chemical Communications, 2019, 55, 6369-6372.	4.1	10
295	Stereocontrolled Synthesis of Bispirooxindole-Based Hexahydroxanthones with Five Contiguous Stereocenters. Organic Letters, 2019, 21, 2528-2531.	4.6	47
296	Structural Simplification of Natural Products. Chemical Reviews, 2019, 119, 4180-4220.	47.7	157
297	Diversityâ€Oriented Synthesis of Complex Pyrroleâ€Based Architectures from Very Simple Starting Materials. Advanced Synthesis and Catalysis, 2019, 361, 2054-2074.	4.3	13
298	Catalyzed Synthesis of Natural Products. Catalysts, 2019, 9, 884.	3.5	0
299	Traceless Solid-Phase Organic Synthesis. Chemical Reviews, 2019, 119, 12089-12207.	47.7	21
300	A regio- and stereocontrolled approach to the synthesis of 4-CF ₃ -substituted spiro[chromeno[3,4- <i>c/i>]pyrrolidine-oxindoles]<i>via</i>reversible [3+2] cycloaddition of azomethine ylides generated from isatins and sarcosine to 3-nitro-2-(trifluoromethyl)-2<i>H</i>-chromenes. New Journal of Chemistry, 2019, 43, 18495-18504.</i>	2.8	19
301	Screening of metal ions and organocatalysts on solid support-coupled DNA oligonucleotides guides design of DNA-encoded reactions. Chemical Science, 2019, 10, 10481-10492.	7.4	37
302	Smart Design of Smallâ€Molecule Libraries: When Organic Synthesis Meets Cheminformatics. ChemBioChem, 2019, 20, 1115-1123.	2.6	10
303	Harnessing the Chemistry of the Indole Heterocycle to Drive Discoveries in Biology and Medicine. ChemBioChem, 2019, 20, 2273-2297.	2.6	73
304	Nature Inspired Small Molecules for Chemical Biology. Israel Journal of Chemistry, 2019, 59, 41-51.	2.3	6

#	Article	IF	CITATIONS
305	Configuration-Dependent Medium-Sized Ring Formation: Chiral Molecular Framework with Three-Dimensional Architecture. Journal of Organic Chemistry, 2019, 84, 636-644.	3.2	2
306	The Symbiotic Relationship Between Drug Discovery and Organic Chemistry. Chemistry - A European Journal, 2020, 26, 1196-1237.	3.3	97
307	Asymmetric [3+2] cycloaddition reaction of a chiral cyclic nitrone for the synthesis of new tropane alkaloids. Tetrahedron, 2020, 76, 130764.	1.9	8
308	Cyclocondensation of coumarin-3-thioformates with 3-hydroxyoxindoles and 3-aminooxindoles for the synthesis of spiro-fused pentaheterocyclic compounds. Organic Chemistry Frontiers, 2020, 7, 499-506.	4.5	14
309	Enantioselective Synthesis of a Tricyclic, sp 3 â€Rich Diazatetradecanedione: an Amino Acidâ€Based Natural Productâ€Like Scaffold. Chemistry - A European Journal, 2020, 26, 4677-4681.	3.3	5
310	Chemoinformatic Approach: The Case of Natural Products of Panama. , 2020, , .		4
311	Building blocks from monosaccharides for synthesis of scaffolds, including macrocycles. Application of allylic azide rearrangement, azide-alkyne cycloaddition and ring closing metathesis. Tetrahedron, 2020, 76, 131495.	1.9	2
312	Cation Triggered Domino Aza-Piancatelli Rearrangement/Friedel–Crafts Alkylation of Indole-Tethered Furfuyl Alcohols to Access Cycloocta[<i>b</i>]indole Core of Alkaloids. Organic Letters, 2020, 22, 8555-8560.	4.6	9
313	DMAP-catalyzed decarboxylative [3+2] cycloadditions: A strategy for diastereoselective synthesis of trifluoromethylated chromanone-fused pyrrolidinyl spirooxindoles. Tetrahedron, 2020, 76, 131678.	1.9	14
314	Guided by evolution: from biology oriented synthesis to pseudo natural products. Natural Product Reports, 2020, 37, 1497-1510.	10.3	41
315	Re-engineering natural products to engage new biological targets. Natural Product Reports, 2020, 37, 1395-1403.	10.3	38
316	Inorganic nanoparticles for natural product delivery: a review. Environmental Chemistry Letters, 2020, 18, 2107-2118.	16.2	32
317	Construction of a meroterpenoid-like compound collection by precursor-assisted biosynthesis. Organic and Biomolecular Chemistry, 2020, 18, 5850-5856.	2.8	2
318	Cheminformatics in Natural Productâ€based Drug Discovery. Molecular Informatics, 2020, 39, e2000171.	2.5	81
319	Bridging the gap between natural product synthesis and drug discovery. Natural Product Reports, 2020, 37, 1436-1453.	10.3	45
320	Water-triggered union of multi-component reactions towards the synthesis of a 4 <i>H</i> chromene hybrid scaffold. RSC Advances, 2020, 10, 29109-29113.	3.6	9
321	Actinobacteria from Antarctica as a source for anticancer discovery. Scientific Reports, 2020, 10, 13870.	3.3	38
322	Nature-inspired remodeling of (aza)indoles to meta-aminoaryl nicotinates for late-stage conjugation of vitamin B3 to (hetero)arylamines. Nature Communications, 2020, 11 , 6308.	12.8	19

#	Article	IF	CITATIONS
323	Pseudo-natural products and natural product-inspired methods in chemical biology and drug discovery. Current Opinion in Chemical Biology, 2020, 56, 111-118.	6.1	45
324	Diversity-oriented synthesis of 17-spirosteroids. Beilstein Journal of Organic Chemistry, 2020, 16, 880-887.	2.2	1
325	Photoredox Functionalization of 3-Halogenchromones, 3-Formylchromones, and Chromone-3-carboxylic Acids: Routes to 3-Acylchromones. Journal of Organic Chemistry, 2020, 85, 7152-7174.	3.2	13
326	Remarkable Potential of Zerumbone to Generate a Library with Six Natural Product-like Skeletons by Natural Material-Related Diversity-Oriented Synthesis. Journal of Organic Chemistry, 2020, 85, 8371-8386.	3.2	5
327	A transition metal-free approach towards the regioselective synthesis of \hat{l}^2 -carboline tethered pyrroles and 2,3-dihydro-1 <i>H</i> -pyrroles. New Journal of Chemistry, 2020, 44, 12370-12383.	2.8	6
328	Synthetic approaches toward small molecule libraries. , 2020, , 1-34.		3
329	Centrocountins—synthesis and chemical biology of nature inspired indoloquinolizines. , 2020, , 247-265.		1
330	Organocatalyzed asymmetric cascade Mannich/cyclization of 3-isothiocyanato oxindoles with cyclic ketimines for the synthesis of polycyclic spiro-thioimidazolidine-oxindoles. Tetrahedron, 2020, 76, 131116.	1.9	11
331	Phenotyping Reveals Targets of a Pseudoâ€Naturalâ€Product Autophagy Inhibitor. Angewandte Chemie, 2020, 132, 12570-12576.	2.0	19
333	Engineering of fluorescent or photoactive Trojan probes for detection and eradication of \hat{l}^2 -Amyloids. Drug Delivery, 2020, 27, 917-926.	5.7	1
334	Phenotyping Reveals Targets of a Pseudoâ€Naturalâ€Product Autophagy Inhibitor. Angewandte Chemie - International Edition, 2020, 59, 12470-12476.	13.8	39
335	Striking essential oil: tapping into a largely unexplored source for drug discovery. Scientific Reports, 2020, 10, 2867.	3.3	17
336	Re-Engineering of Yohimbine's Biological Activity through Ring Distortion: Identification and Structure–Activity Relationships of a New Class of Antiplasmodial Agents. ACS Infectious Diseases, 2020, 6, 159-167.	3.8	20
337	Visible-light-mediated arylation of <i>ortho</i> -hydroxyarylenaminones: direct access to isoflavones. Chemical Communications, 2020, 56, 2606-2609.	4.1	54
338	Library Design Strategies To Accelerate Fragmentâ€Based Drug Discovery. Chemistry - A European Journal, 2020, 26, 11391-11403.	3.3	24
339	Design, Synthesis, and Biological Evaluation of Chemically and Biologically Diverse Pyrroquinoline Pseudo Natural Products. Angewandte Chemie - International Edition, 2021, 60, 4648-4656.	13.8	34
340	Synthesis, characterization and crystal structure of bis-(methylsulfonylmethyl) sulfone, a symmetric acyclic trisulfone. Journal of Molecular Structure, 2021, 1230, 129655.	3.6	1
341	Expanding the antibacterial selectivity of polyether ionophore antibiotics through diversity-focused semisynthesis. Nature Chemistry, 2021, 13, 47-55.	13.6	21

#	Article	IF	Citations
342	Design, Synthesis, and Biological Evaluation of Chemically and Biologically Diverse Pyrroquinoline Pseudo Natural Products. Angewandte Chemie, 2021, 133, 4698-4706.	2.0	10
343	Natural product-informed exploration of chemical space to enable bioactive molecular discovery. RSC Medicinal Chemistry, 2021, 12, 353-362.	3.9	17
344	Organocatalytic Asymmetric Cyclopropanation of 3-Acylcoumarins with 3-Halooxindoles: Access to Spirooxindole-cyclopropa[<i><i><i><i i="">)coumarin Compounds. Journal of Organic Chemistry, 2021, 86, 2534-2544.</i></i></i></i>	3.2	19
345	Validation of an LC-MS/MS Method to Quantify the New TRPC6 Inhibitor SH045 (Larixyl) Tj ETQq1 1 0.784314 rgB Pharmaceuticals, 2021, 14, 259.	T /Overloo 3.8	ck 10 Tf 50 3
346	Organocatalytic Enantioselective Synthesis of Tetrahydroâ€Furanyl Spirooxindoles via [3+2] Annulations of 3â€Hydroxyoxindoles and Cyclic Ketolactams. Advanced Synthesis and Catalysis, 2021, 363, 2177-2182.	4.3	9
347	Arylation of <i>ortho</i> -Hydroxyarylenaminones by Sulfonium Salts and Arenesulfonyl Chlorides: An Access to Isoflavones. Journal of Organic Chemistry, 2021, 86, 4896-4916.	3.2	20
348	Pseudo Natural Productsâ€"Chemical Evolution of Natural Product Structure. Angewandte Chemie, 2021, 133, 15837-15855.	2.0	18
349	Pseudo Natural Productsâ€"Chemical Evolution of Natural Product Structure. Angewandte Chemie - International Edition, 2021, 60, 15705-15723.	13.8	73
350	Synthesis of \hat{I}^3 -carboline N-oxide under gold(I)-catalysis and C-1 amino and fluoro \hat{I}^3 -carboline. Tetrahedron, 2021, , 132154.	1.9	1
351	Construction and Biological Evaluation of Small Libraries Based on the Intermediates within the Total Synthesis of Uvaretin. ChemMedChem, 2021, 16, 1631-1639.	3.2	O
352	Focused Libraries for Epigenetic Drug Discovery: The Importance of Isosteres. Journal of Medicinal Chemistry, 2021, 64, 7231-7240.	6.4	12
353	Diversity-oriented functionalization of 2-pyridones and uracils. Nature Communications, 2021, 12, 2988.	12.8	22
354	Synthesis of Threeâ€Dimensional (Di)Azatricyclododecene Scaffold and Its Application to Peptidomimetics. Chemistry - A European Journal, 2021, 27, 11888-11894.	3.3	7
355	Ring Distortion of Vincamine Leads to the Identification of Re-Engineered Antiplasmodial Agents. ACS Omega, 2021, 6, 20455-20470.	3.5	4
356	Diversity-oriented synthesis as a tool to expand the chemical space of DNA-encoded libraries. Bioorganic and Medicinal Chemistry, 2021, 41, 116218.	3.0	16
357	Access to Indoleâ€Fused Benzannulated Mediumâ€Sized Rings through a Gold(I)â€Catalyzed Cascade Cyclization of Azidoâ€Alkynes. Chemistry - A European Journal, 2021, 27, 12992-12997.	3.3	15
358	Enantioselective synthesis of pyrro[3,4-c]quinoline pseudo-natural products. Tetrahedron Letters, 2021, 76, 153228.	1.4	6
359	Combination of Pseudoâ€Natural Product Design and Formal Natural Product Ring Distortion Yields Stereochemically and Biologically Diverse Pseudoâ€Sesquiterpenoid Alkaloids. Angewandte Chemie, 2021, 133, 21554-21565.	2.0	8

#	Article	IF	Citations
360	Combination of Pseudoâ€Natural Product Design and Formal Natural Product Ring Distortion Yields Stereochemically and Biologically Diverse Pseudoâ€Sesquiterpenoid Alkaloids. Angewandte Chemie - International Edition, 2021, 60, 21384-21395.	13.8	25
361	Azidoâ€Alkynes in Gold(I)â€Catalyzed Indole Syntheses. Chemical Record, 2021, 21, 3897-3910.	5.8	21
362	Diastereoselective construction of structurally diverse trifluoromethyl bispiro-[oxindole-pyrrolidine-chromanone]s through [3+2] cycloaddition reactions. Tetrahedron, 2021, 98, 132297.	1.9	4
363	The Role of Natural Products as Sources of Therapeutic Agents for Innovative Drug Discovery. , 2022, , 408-422.		42
364	Catalytic asymmetric dearomative $[4+2]$ annulation of 2-nitrobenzofurans and 5H-thiazol-4-ones: stereoselective construction of dihydrobenzofuran-bridged polycyclic skeletons. Organic Chemistry Frontiers, 0 , , .	4.5	28
365	Nonbiomimetic total synthesis of indole alkaloids using alkyne-based strategies. Organic and Biomolecular Chemistry, 2021, 19, 3551-3568.	2.8	8
366	A Toolbox for the Identification of Modes of Action of Natural Products. Progress in the Chemistry of Organic Natural Products, 2019, 110, 73-97.	1.1	2
367	Inorganic Particles for Delivering Natural Products. Sustainable Agriculture Reviews, 2020, , 205-241.	1.1	2
368	Principle and design of pseudo-natural products. Nature Chemistry, 2020, 12, 227-235.	13.6	134
369	Synthesis of the B- <i>seco</i> limonoid core scaffold. Beilstein Journal of Organic Chemistry, 2014, 10, 194-208.	2.2	3
370	Development of an Artificial Assembly Line Generating Skeletally Diverse Indole Alkaloids Inspired by Biogenetic Strategy. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2016, 74, 854-865.	0.1	1
371	Identification of Inhibitors of Cholesterol Transport Proteins Through the Synthesis of a Diverse, Sterolâ€Inspired Compound Collection. Angewandte Chemie - International Edition, 2021, 60, 26755-26761.	13.8	14
372	Late-Stage Diversification: A Motivating Force in Organic Synthesis. Journal of the American Chemical Society, 2021, 143, 16890-16901.	13.7	52
374	Identification of Inhibitors of Cholesterol Transport Proteins Through the Synthesis of a Diverse, Sterolâ€nspired Compound Collection. Angewandte Chemie, 2021, 133, 26959-26965.	2.0	2
375	An Expedient General Synthesis of Quinolino and Pyrrolocycloocta[b] Indoles., 2016, 5,.		0
376	Development of Dual-specificity Protein Phosphatases Inhibitors based on Focused Library Approach: Modification of a Core Structure and Unique Inhibition Mechanism. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2016, 74, 532-540.	0.1	O
377	Biomimetic Assembly Lines Producing Natural Product Analogs: Strategies from a Versatile Manifold to Skeletally Diverse Scaffolds. Chemical Record, 2016, , n/a-n/a.	5.8	0
378	Cheminformatic Analysis of Natural Product Fragments. Progress in the Chemistry of Organic Natural Products, 2019, 110, 143-175.	1.1	1

#	Article	IF	CITATIONS
379	Medicinal Plants as a Reservoir of New Structures for Anti-infective Compounds. , 2019, , 277-298.		1
380	Application of Biotechnology in Producing Plant Bio-active Compounds. , 2019, , 59-78.		3
381	OBSOLETE: Topical Chemical Space in Relation to Biological Space. , 2019, , .		0
382	Discovery and optimization of lead molecules in drug designing. , 2022, , 253-267.		3
383	Asymmetric synthesis of N-bridged [3.3.1] ring systems by phosphonium salt/Lewis acid relay catalysis. Nature Communications, 2022, 13, 357.	12.8	19
384	ldentification of stomatal-regulating molecules from de novo arylamine collection through aromatic C–H amination. Scientific Reports, 2022, 12, 949.	3.3	5
385	Asymmetric catalysis with chiral cyclopentadienyl complexes to access privileged scaffolds. Trends in Chemistry, 2022, 4, 318-330.	8.5	21
386	Ring opening and skeletal reconstruction of 3-vinyl benzofuranone-chromone synthons: catalyst-free access to skeletally-diverse 2-pyridone and optically active imidazoline derivatives. Organic and Biomolecular Chemistry, 2022, 20, 2227-2232.	2.8	3
387	3-Vinyl oxindole-chromone synthon as a skeletal reconstruction reactant for the synthesis of 2-hydroxy benzoyl pyridones. New Journal of Chemistry, 2022, 46, 5474-5478.	2.8	3
388	Chemical Evolution of Natural Product Structure. Journal of the American Chemical Society, 2022, 144, 3314-3329.	13.7	68
389	Evodiamine: A Privileged Structure with Broad-ranging Biological Activities. Mini-Reviews in Medicinal Chemistry, 2022, 22, 2680-2701.	2.4	7
390	Harnessing Natural Products by a Pharmacophoreâ€Oriented Semisynthesis Approach for the Discovery of Potential Antiâ€SARSâ€CoVâ€2 Agents. Angewandte Chemie - International Edition, 2022, 61, .	13.8	7
391	Harnessing Natural Products by a Pharmacophoreâ€Oriented Semisynthesis Approach for the Discovery of Potential Antiâ€SARSâ€CoVâ€2 Agents. Angewandte Chemie, 0, , .	2.0	0
392	Diastereoselective construction of a library of structural bispiro[butyrolactone/valerolactone–pyrrolidine–indanedione] hybrids ⟨i⟩via⟨/i⟩ 1,3-dipolar cycloaddition reactions. New Journal of Chemistry, 2022, 46, 11975-11979.	2.8	1
393	Diversityâ€Oriented Synthesis and Chemoinformatics: A Fruitful Synergy towards Better Chemical Libraries. European Journal of Organic Chemistry, 0, , .	2.4	8
394	Limitations and future challenges of computer-aided drug design methods. , 2022, , 283-297.		5
395	Three New Stigmatellin Derivatives Reveal Biosynthetic Insights of Its Side Chain Decoration. Molecules, 2022, 27, 4656.	3.8	2
396	Mechanochemical Ni atalysed Arylation of <i>ortho</i> òâ€Hydroxyarylenaminones: Synthesis of Isoflavones. Advanced Synthesis and Catalysis, 2022, 364, 3512-3521.	4.3	6

#	Article	IF	CITATIONS
397	Electrooxidative tandem cyclization of enaminones to give 3-arylthiochromone derivatives. Tetrahedron, 2022, 124, 133018.	1.9	3
398	Recent ring distortion reactions for diversifying complex natural products. Natural Product Reports, 2022, 39, 1970-1992.	10.3	9
399	Regio- and stereoselective synthesis and evaluation of densely functionalized bispiro[oxindole-isoxazole-indandione] hybrids as anticancer agents. New Journal of Chemistry, 0, , .	2.8	0
400	Rapid assembly of 1,3-indanedione-based spirocyclic tetrahydroquinolines for inducing human lung cancer cell apoptosis. Green Synthesis and Catalysis, 2022, 3, 357-372.	6.8	2
401	Unprecedented Combination of Polyketide Natural Product Fragments Identifies the New Hedgehog Signaling Pathway Inhibitor Grismonone. Chemistry - A European Journal, 2022, 28, .	3.3	11
402	Design, combinatorial synthesis and cytotoxic activity of 2-substituted furo [2,3-d] pyrimidinone and pyrrolo [2,3-d] pyrimidinone library. Molecular Diversity, 2023, 27, 1767-1783.	3.9	7
403	Synthesis and Conformational Analysis of Hydantoin-Based Universal Peptidomimetics. Journal of Organic Chemistry, 0, , .	3.2	3
404	The Time and Place for Nature in Drug Discovery. Jacs Au, 2022, 2, 2400-2416.	7.9	34
405	Computational Approaches to Enzyme Inhibition by Marine Natural Products in the Search for New Drugs. Marine Drugs, 2023, 21, 100.	4.6	4
406	Scaffold Remodelling of Diazaspirotricycles Enables Synthesis of Diverse sp ³ â€Rich Compounds With Distinct Phenotypic Effects. Chemistry - A European Journal, 2023, 29, .	3.3	1
407	Design, synthesis and evaluation of multi-pharmacophore-containing spiropolycyclic harmaline-based hybrids as anticancer agents. New Journal of Chemistry, 2023, 47, 6073-6085.	2.8	0
409	Fischer's base-triggered formal (3+2) cycloadditions with 3-isothiocyanato oxindoles as acceptor–donor synthons. Chemical Communications, 2023, 59, 4652-4655.	4.1	0
410	Recent Progress in Heterocycle Synthesis: Cyclization Reaction with Pyridinium and Quinolinium 1,4-Zwitterions. Molecules, 2023, 28, 3059.	3.8	3
411	An attempt to construct an indole-fused azabicyclo[3.3.1]nonane framework <i>via</i> radical cyclization. Organic and Biomolecular Chemistry, 0, , .	2.8	2
412	A Common <i>C</i> ₂ â€Symmetric 2,2'â€Biphenol Building Block and its Application in the Synthesis of (+)â€diâ€ <i>epi</i> â€Gonytolide A. Chemistry - A European Journal, 2023, 29, .	3.3	1
413	Total synthesis: an enabling science. Beilstein Journal of Organic Chemistry, 0, 19, 474-476.	2.2	1
414	Advanced Methods for Natural Products Discovery: Bioactivity Screening, Dereplication, Metabolomics Profiling, Genomic Sequencing, Databases and Informatic Tools, and Structure Elucidation. Marine Drugs, 2023, 21, 308.	4.6	16
415	Diversity-oriented synthesis of diterpenoid alkaloids yields a potent anti-inflammatory agent. Phytomedicine, 2023, 117, 154907.	5. 3	0

#	Article	IF	CITATIONS
417	$\mbox{\sc b}>\mbox{\sc A}$ highly enantioselective intramolecular 1,3-dipolar cycloaddition yields novel pseudo-natural product inhibitors of the Hedgehog signaling pathway $\mbox{\sc /b}>$. Chemical Science, 0, , .	7.4	0
418	Alkoxymigration onto αâ€lmino Gold Carbenes for Constructing Propellaneâ€Type Indolines. Asian Journal of Organic Chemistry, 0, , .	2.7	0
419	Câ \in "H modification of natural products: a minimalist enabling tactic for drug discovery, API processing and bioconjugation. Chemical Communications, 0, , .	4.1	0
420	Drug Design Methods to Regulate Protein–Protein Interactions. , 2023, , 265-341.		0
421	Artificial Intelligence and Discovery of Microbial Natural Products. , 2023, , 37-78.		0
422	Enantioselective synthesis of tryptanthrin derivatives enabled by an asymmetric aza-Friedel–Crafts reaction. Organic Chemistry Frontiers, 2023, 10, 5421-5427.	4.5	7
423	Umpolung α-regioselective 1,3-dipolar cycloaddition and internal recycle of byproduct as two key strategies: access to diverse chiral bipyridines. Organic Chemistry Frontiers, 2023, 10, 5428-5434.	4. 5	2
424	Atherton–Todd Reaction-Guided Enantioselective Synthesis of Axially Chiral Olefins via Bifunctional Phosphonium Salt-Regulating Ketone-Enol Tautomerism. ACS Catalysis, 2023, 13, 13077-13088.	11.2	2
425	Exploring the Potential of Anthraquinoneâ€Based Hybrids for Identifying a Novel Generation of Antagonists for the Smoothened Receptor in HHâ€Dependent Tumour. Chemistry - A European Journal, 2023, 29, .	3.3	0
426	Substrateâ€controlled chemoselective synthesis of 1â€sulfonylquinazolineâ€2,4(1H,3H)â€diones and 2â€sulfonamidobenzonitriles. Journal of Heterocyclic Chemistry, 2023, 60, 1938-1944.	2.6	0
427	Recent Advances in Domino Synthesis of Fused Polycyclic <i>N</i> àâ€Heterocycles Based on Intramolecular Alkyne Hydroamination under Copper Catalysis. Chinese Journal of Chemistry, 2023, 41, 3751-3771.	4.9	4
428	Natural product-inspired synthesis of coumarin–chalcone hybrids as potential anti-breast cancer agents. Frontiers in Pharmacology, 0, 14, .	3.5	O
429	Collective Synthesis of Sarpagine and Macroline Alkaloidâ€Inspired Compounds. Chemistry - A European Journal, 0, , .	3.3	0
430	De novo design of pimarane diterpenoid compounds as potential alternatives to sarecycline for acne vulgaris treatment. Pharmacia, 2023, 70, 1167-1176.	1.2	0
431	Challenges in natural product-based drug discovery assisted with <i>in silico </i> based methods. RSC Advances, 2023, 13, 31578-31594.	3.6	1
432	The polypharmacology of natural products in drug discovery and development. Annual Reports in Medicinal Chemistry, 2023, , 55-100.	0.9	2
433	Chemical evolution of natural product structure for drug discovery. Annual Reports in Medicinal Chemistry, 2023, , 1-53.	0.9	0
434	Visible light-driven highly atom-economical divergent synthesis of substituted fluorenols and cyclopropylcarbaldehydes. Green Chemistry, 0 , , .	9.0	0

#	ARTICLE	IF	CITATIONS
435	Screening Ultra-Large Encoded Compound Libraries Leads to Novel Protein–Ligand Interactions and High Selectivity. Journal of Medicinal Chemistry, 2024, 67, 864-884.	6.4	0
436	Chiral phosphoric acid-catalyzed enantioselective synthesis of functionalized pyrrolinones containing a geminal diamine core ⟨i⟩via⟨ i⟩ an aza-Friedel–Crafts reaction of newly developed pyrrolinone ketimines. Organic Chemistry Frontiers, 2024, 11, 1437-1443.	4.5	0
437	Nitro-sulfinate Reductive Coupling to Access (Hetero)aryl Sulfonamides. Journal of Organic Chemistry, 2024, 89, 1898-1909.	3.2	0
438	A divergent intermediate strategy yields biologically diverse pseudo-natural products. Nature Chemistry, 0, , .	13.6	0