Carbon atalyzed Oxidative Dehydrogenation of <i>n during sp³â€toâ€sp² Lattice I

Angewandte Chemie - International Edition 50, 3318-3322 DOI: 10.1002/anie.201006717

Citation Report

#	Article	IF	CITATIONS
1	HNO3-activated mesoporous carbon catalyst for direct dehydrogenation of propane to propylene. Catalysis Communications, 2011, 16, 81-85.	1.6	59
2	Calorimetric Study of Propane and Propylene Adsorption on the Active Surface of Multiwalled Carbon Nanotube Catalysts. ChemPhysChem, 2011, 12, 2709-2713.	1.0	12
4	Oxygen Insertion Catalysis by sp ² Carbon. Angewandte Chemie - International Edition, 2011, 50, 10226-10230.	7.2	118
5	Amino-grafted graphene as a stable and metal-free solid basic catalyst. Journal of Materials Chemistry, 2012, 22, 7456.	6.7	89
6	Solvent-Free and Metal-Free Oxidation of Toluene Using O ₂ and g-C ₃ N ₄ with Nanopores: Nanostructure Boosts the Catalytic Selectivity. ACS Catalysis, 2012, 2, 2082-2086.	5.5	227
7	Catalytic performance of sucrose-derived CMK-3 in oxidative dehydrogenation of propane to propene. Applied Catalysis A: General, 2012, 445-446, 321-328.	2.2	20
8	Site-dependent catalytic activity of graphene oxides towards oxidative dehydrogenation of propane. Physical Chemistry Chemical Physics, 2012, 14, 16558.	1.3	51
9	Nitrogen-Doped Graphene Nanosheets as Metal-Free Catalysts for Aerobic Selective Oxidation of Benzylic Alcohols. ACS Catalysis, 2012, 2, 622-631.	5.5	384
10	Resinâ€Đerived Hierarchical Porous Carbon Spheres with High Catalytic Performance in the Oxidative Dehydrogenation of Ethylbenzene. ChemSusChem, 2012, 5, 687-693.	3.6	23
11	Synthesis of ordered mesoporous carbon materials and their catalytic performance in dehydrogenation of propane to propylene. Catalysis Today, 2012, 186, 35-41.	2.2	46
12	On hip Catalytic Microreactors for Modern Catalysis Research. ChemCatChem, 2013, 5, 2091-2099.	1.8	48
13	First-Principles Studies of the Activation of Oxygen Molecule and Its Role in Partial Oxidation of Methane on Boron-Doped Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2013, 117, 17485-17492.	1.5	17
14	sp2- and sp3-hybridized carbon materials as catalysts for aerobic oxidation of cyclohexane. Catalysis Science and Technology, 2013, 3, 2654.	2.1	46
15	Research progress in metal-free carbon-based catalysts. Chinese Journal of Catalysis, 2013, 34, 508-523.	6.9	111
17	Tuning the catalytic performance of carbon nanotubes by tuning the conjugation between the π orbitals of carbon nanotubes and the active oxygenic functional groups. Chinese Journal of Catalysis, 2013, 34, 1291-1296.	6.9	7
18	Carbocatalysts: Graphene Oxide and Its Derivatives. Accounts of Chemical Research, 2013, 46, 2275-2285.	7.6	477
19	The Role of Palladium Dynamics in the Surface Catalysis of Coupling Reactions. Angewandte Chemie - International Edition, 2013, 52, 2114-2117.	7.2	75
20	Quantum-Chemical Investigation of Hydrocarbon Oxidative Dehydrogenation over Spin-Active Carbon Catalyst Clusters. Journal of Physical Chemistry C, 2013, 117, 6225-6234.	1.5	30

#	Article	IF	CITATIONS
21	Polycondensation of Boron―and Nitrogen odoped Holey Graphene Monoliths from Molecules: Carbocatalysts for Selective Oxidation. Angewandte Chemie - International Edition, 2013, 52, 4572-4576.	7.2	215
22	Carbon-Mediated Catalysis: Oxidative Dehydrogenation on Graphitic Carbon. ACS Symposium Series, 2013, , 247-258.	0.5	7
23	Oxygenâ€Functionalized Few‣ayer Graphene Sheets as Active Catalysts for Oxidative Dehydrogenation Reactions. ChemSusChem, 2013, 6, 840-846.	3.6	61
24	Nanocarbons for the Development of Advanced Catalysts. Chemical Reviews, 2013, 113, 5782-5816.	23.0	1,163
25	Surface Stability of Pt3Ni Nanoparticulate Alloy Electrocatalysts in Hydrogen Adsorption. Langmuir, 2013, 29, 9046-9050.	1.6	17
26	Hydrogen and carbon monoxide generation from laser-induced graphitized nanodiamonds in water. Physical Chemistry Chemical Physics, 2013, 15, 7155.	1.3	11
27	Emission of Highly Activated Soot Particulate—The Other Side of the Coin with Modern Diesel Engines. Angewandte Chemie - International Edition, 2013, 52, 2673-2677.	7.2	67
31	Allotropic Carbon Nanoforms as Advanced Metal-Free Catalysts or as Supports. Advances in Chemistry, 2014, 2014, 1-20.	1.1	12
32	Nanocarbons: Opening New Possibilities for Nano-engineered Novel Catalysts and Catalytic Electrodes. Catalysis Surveys From Asia, 2014, 18, 149-163.	1.0	30
33	Evolution and Reactivity of Active Oxygen Species on sp ² @sp ³ Core–Shell Carbon for the Oxidative Dehydrogenation Reaction. ChemCatChem, 2014, 6, 2270-2275.	1.8	29
34	Diamond-like carbon doped with highly π-conjugated molecules by plasma-assisted CVD. Japanese Journal of Applied Physics, 2014, 53, 010203.	0.8	4
35	Insight into the activation of light alkanes over surface-modified carbon nanotubes from theoretical calculations. Carbon, 2014, 77, 122-129.	5.4	8
36	Transmission Electron Microscopy and the Science of Carbon Nanomaterials. Small, 2014, 10, 222-229.	5.2	26
37	Model Molecules with Oxygenated Groups Catalyze the Reduction of Nitrobenzene: Insight into Carbocatalysis. ChemCatChem, 2014, 6, 1558-1561.	1.8	56
38	Identifying Active Functionalities on Few‣ayered Graphene Catalysts for Oxidative Dehydrogenation of Isobutane. ChemSusChem, 2014, 7, 483-491.	3.6	56
39	Hybrid Nanocarbon as a Catalyst for Direct Dehydrogenation of Propane: Formation of an Active and Selective Core–Shell sp ² /sp ³ Nanocomposite Structure. Chemistry - A European Journal, 2014, 20, 6324-6331.	1.7	107
40	The Nucleophilicity of the Oxygen Functional Groups on Carbon Materials: A DFT Analysis. Chemistry - A European Journal, 2014, 20, 7890-7894.	1.7	46
41	Laser-induced graphitization of colloidal nanodiamonds for excellent oxygen reduction reaction. Physical Chemistry Chemical Physics, 2014, 16, 2411-2416	1.3	14

#	ARTICLE	IF	CITATIONS
42	Nitrobenzene reduction catalyzed by carbon: does the reaction really belong to carbocatalysis?. Catalysis Science and Technology, 2014, 4, 4183-4187.	2.1	42
43	The first principles studies on the reaction pathway of the oxidative dehydrogenation of ethane on the undoped and doped carbon catalyst. Journal of Materials Chemistry A, 2014, 2, 5287.	5.2	45
44	Nanodiamond/carbon nitride hybrid nanoarchitecture as an efficient metal-free catalyst for oxidant- and steam-free dehydrogenation. Journal of Materials Chemistry A, 2014, 2, 13442-13451.	5.2	67
45	Revealing the nature of the active site on the carbon catalyst for C–H bond activation. Chemical Communications, 2014, 50, 11016-11019.	2.2	19
46	Metal-Free Carbon Catalysts for Oxidative Dehydrogenation Reactions. ACS Catalysis, 2014, 4, 3212-3218.	5.5	172
47	A nanodiamond/CNT–SiC monolith as a novel metal free catalyst for ethylbenzene direct dehydrogenation to styrene. Chemical Communications, 2014, 50, 7810-7812.	2.2	82
48	The Catalytic Pathways of Hydrohalogenation over Metalâ€Free Nitrogenâ€Doped Carbon Nanotubes. ChemSusChem, 2014, 7, 723-728.	3.6	114
49	Growth mechanism of N-doped graphene materials and their catalytic behavior in the selective oxidation of ethylbenzene. Chinese Journal of Catalysis, 2014, 35, 922-928.	6.9	32
50	Low-temperature graphitization of amorphous carbon nanospheres. Chinese Journal of Catalysis, 2014, 35, 869-876.	6.9	43
51	Oxidative dehydrogenation of propane over nanodiamond modified by molybdenum oxide. Journal of Molecular Catalysis A, 2014, 392, 315-320.	4.8	20
53	Metalâ€Free Carbonaceous Materials as Promising Heterogeneous Catalysts. ChemCatChem, 2015, 7, 2765-2787.	1.8	118
55	Stabilization of Palladium Nanoparticles on Nanodiamond–Graphene Core–Shell Supports for CO Oxidation. Angewandte Chemie - International Edition, 2015, 54, 15823-15826.	7.2	74
56	Self-assembled graphene aerogel and nanodiamond hybrids as high performance catalysts in oxidative propane dehydrogenation. Journal of Materials Chemistry A, 2015, 3, 24379-24388.	5.2	46
57	Heterogeneous Catalysis. Angewandte Chemie - International Edition, 2015, 54, 3465-3520.	7.2	754
58	Using Hollow Carbon Nanospheres as a Light-Induced Free Radical Generator To Overcome Chemotherapy Resistance. Journal of the American Chemical Society, 2015, 137, 1947-1955.	6.6	182
59	Nitrogenâ€Doped Annealed Nanodiamonds with Varied sp ² /sp ³ Ratio as Metalâ€Free Electrocatalyst for the Oxygen Reduction Reaction. ChemCatChem, 2015, 7, 2840-2845.	1.8	38
60	Surface Structure of Hydrogenated Diamond-like Carbon: Origin of Run-In Behavior Prior to Superlubricious Interfacial Shear. Langmuir, 2015, 31, 1711-1721.	1.6	61
61	Nanostructured Carbon Materials as Catalysts. RSC Catalysis Series, 2015, , 223-267.	0.1	3

#	Article	IF	Citations
62	Carbon (Nano)materials forÂCatalysis. RSC Catalysis Series, 2015, , 1-45.	0.1	22
63	The role of structure and surface chemistry of carbon nanomaterials in catalytic conversion of 1,2-dichloroethane. Applied Surface Science, 2015, 355, 74-81.	3.1	10
64	Phosphorous-modified ordered mesoporous carbon for catalytic dehydrogenation of propane to propylene. RSC Advances, 2015, 5, 56304-56310.	1.7	28
65	Nitrogen-doped carbon nanotubes via a facile two-step approach as an efficient catalyst for the direct dehydrogenation of ethylbenzene. Physical Chemistry Chemical Physics, 2015, 17, 18895-18899.	1.3	18
66	Macroscopic nanodiamonds/β-SiC composite as metal-free catalysts for steam-free dehydrogenation of ethylbenzene to styrene. Applied Catalysis A: General, 2015, 499, 217-226.	2.2	53
67	Highly dispersed buckybowls as model carbocatalysts for C–H bond activation. Journal of Materials Chemistry A, 2015, 3, 8667-8675.	5.2	2
68	Effect of structure and surface properties on the catalytic activity of nanodiamond in the conversion of 1,2-dichloroethane. Russian Journal of Physical Chemistry A, 2015, 89, 680-687.	0.1	5
69	Insight into the Enhanced Selectivity of Phosphate-Modified Annealed Nanodiamond for Oxidative Dehydrogenation Reactions. ACS Catalysis, 2015, 5, 2436-2444.	5.5	58
70	Direct dehydrogenation of isobutane to isobutene over carbon catalysts. Chinese Journal of Catalysis, 2015, 36, 1214-1222.	6.9	13
71	Nanodiamond decorated few-layer graphene composite as an efficient metal-free dehydrogenation catalyst for styrene production. Catalysis Today, 2015, 249, 167-175.	2.2	45
72	Selective and Stable Ethylbenzene Dehydrogenation to Styrene over Nanodiamonds under Oxygenâ€lean Conditions. ChemSusChem, 2016, 9, 662-666.	3.6	43
73	Catalytic activity of carbon nanotubes in the conversion of aliphatic alcohols. Russian Journal of Physical Chemistry A, 2016, 90, 1128-1131.	0.1	3
74	Modulating the microstructure and surface chemistry of carbocatalysts for oxidative and direct dehydrogenation: A review. Chinese Journal of Catalysis, 2016, 37, 644-670.	6.9	42
75	Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds. Applied Catalysis B: Environmental, 2016, 194, 7-15.	10.8	390
76	Insights into the carbon catalyzed direct dehydrogenation of isobutane by employing modified OMCs. Catalysis Science and Technology, 2016, 6, 4863-4871.	2.1	10
77	Macroporous materials: microfluidic fabrication, functionalization and applications. Chemical Society Reviews, 2017, 46, 855-914.	18.7	126
78	Improving the catalytic efficiency of carbon-based active sites by trace oxide promoters for highly productive olefin synthesis. Catalysis Science and Technology, 2017, 7, 802-806.	2.1	3
79	Carbokatalyse in Flüssigphasenreaktionen. Angewandte Chemie, 2017, 129, 956-985.	1.6	37

#	Article	IF	CITATIONS
80	Revealing the Role of sp ² @sp ³ Structure of Nanodiamond in Direct Dehydrogenation: Insight from DFT study. ACS Catalysis, 2017, 7, 3779-3785.	5.5	29
81	Shear-Induced Structural Changes and Origin of Ultralow Friction of Hydrogenated Diamond-like Carbon (DLC) in Dry Environment. ACS Applied Materials & Interfaces, 2017, 9, 16704-16714.	4.0	127
82	Carbonâ€Đoped BN Nanosheets for the Oxidative Dehydrogenation of Ethylbenzene. Angewandte Chemie - International Edition, 2017, 56, 8231-8235.	7.2	185
83	Carbonâ€Doped BN Nanosheets for the Oxidative Dehydrogenation of Ethylbenzene. Angewandte Chemie, 2017, 129, 8343-8347.	1.6	51
84	Insights into the surface chemistry and electronic properties of sp ² and sp ³ -hybridized nanocarbon materials for catalysis. Chemical Communications, 2017, 53, 4834-4837.	2.2	41
85	A Facile and Efficient Method to Fabricate Highly Selective Nanocarbon Catalysts for Oxidative Dehydrogenation. ChemSusChem, 2017, 10, 353-358.	3.6	19
86	Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: A review on heterogeneous catalysts and applications. Chemosphere, 2017, 189, 224-238.	4.2	320
87	Impact of Carboxyl Groups in Graphene Oxide on Chemoselective Alcohol Oxidation with Ultra-Low Carbocatalyst Loading. Scientific Reports, 2017, 7, 3146.	1.6	22
88	Comprehensive Understanding of the Effects of Carbon Nanostructures on Redox Catalytic Properties and Stability in Oxidative Dehydrogenation. ACS Catalysis, 2017, 7, 5257-5267.	5.5	24
89	Carbocatalysis in Liquidâ€Phase Reactions. Angewandte Chemie - International Edition, 2017, 56, 936-964.	7.2	209
90	Castanea mollissima shell-derived porous carbons as metal-free catalysts for highly efficient dehydrogenation of propane to propylene. Catalysis Today, 2018, 316, 214-222.	2.2	36
91	Oxidative dehydrogenation reaction of short alkanes on nanostructured carbon catalysts: a computational account. Chemical Communications, 2018, 54, 864-875.	2.2	30
92	Few-layer sp2 carbon supported on Al2O3 as hybrid structure for ethylbenzene oxidative dehydrogenation. Catalysis Today, 2018, 301, 32-37.	2.2	9
93	Nanodiamonds in sp 2 /sp 3 configuration for radical to nonradical oxidation: Core-shell layer dependence. Applied Catalysis B: Environmental, 2018, 222, 176-181.	10.8	214
94	Catalysis by hybrid sp ² /sp ³ nanodiamonds and their role in the design of advanced nanocarbon materials. Chemical Society Reviews, 2018, 47, 8438-8473.	18.7	130
95	Catalytic approach to the estimation of the influence of carbon nanomaterial structures on surface functional groups. Mendeleev Communications, 2018, 28, 646-647.	0.6	2
97	Bean dregsâ€derived hierarchical porous carbons as metalâ€free catalysts for efficient dehydrogenation of propane to propylene. Journal of Chemical Technology and Biotechnology, 2018, 93, 3410-3417.	1.6	16
98	Bambooâ€Like Nitrogenâ€Doped Carbon Nanotube Forests as Durable Metalâ€Free Catalysts for Selfâ€Powered Flexible Li–CO ₂ Batteries. Advanced Materials, 2019, 31, e1903852.	11.1	141

#	Article	IF	CITATIONS
99	Mesoporous carbons as metal-free catalysts for propane dehydrogenation: Effect of the pore structure and surface property. Chinese Journal of Catalysis, 2019, 40, 1385-1394.	6.9	30
100	sp ² /sp ³ Framework from Diamond Nanocrystals: A Key Bridge of Carbonaceous Structure to Carbocatalysis. ACS Catalysis, 2019, 9, 7494-7519.	5.5	86
101	Preserved in a Shell: Highâ€Performance Grapheneâ€Confined Ruthenium Nanoparticles in Acetylene Hydrochlorination. Angewandte Chemie, 2019, 131, 12425-12432.	1.6	5
102	Hydrogen surface modification of a carbon nanotube catalyst for the improvement of ethane oxidative dehydrogenation. Carbon, 2019, 152, 924-931.	5.4	12
103	Preserved in a Shell: Highâ€Performance Grapheneâ€Confined Ruthenium Nanoparticles in Acetylene Hydrochlorination. Angewandte Chemie - International Edition, 2019, 58, 12297-12304.	7.2	53
104	Construction of a sp ³ /sp ² Carbon Interface in 3D Nâ€Doped Nanocarbons for the Oxygen Reduction Reaction. Angewandte Chemie, 2019, 131, 15233-15241.	1.6	49
105	Construction of a sp ³ /sp ² Carbon Interface in 3D Nâ€Doped Nanocarbons for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2019, 58, 15089-15097.	7.2	215
106	Defective graphene@diamond hybrid nanocarbon material as an effective and stable metal-free catalyst for acetylene hydrochlorination. Chemical Communications, 2019, 55, 1430-1433.	2.2	41
107	Investigating the Effect of Reaction Time on Carbon Dot Formation, Structure, and Optical Properties. ACS Omega, 2019, 4, 21658-21665.	1.6	63
108	Probing the origin of the enhanced catalytic performance of sp3@sp2 nanocarbon supported Pd catalyst for CO oxidation. Carbon, 2020, 156, 463-469.	5.4	5
109	Cobalt–carbon/silica nanocomposites prepared by pyrolysis of a cobalt 2,2′-bipyridine terephthalate complex for remediation of cationic dyes. RSC Advances, 2020, 10, 17660-17672.	1.7	18
110	Coordinating mechanical performance and fire safety of epoxy resin via functionalized nanodiamond. Diamond and Related Materials, 2020, 108, 107964.	1.8	9
111	Catalytic conversion of propan-2-ol and butan-2-ol on carbon nanotubes with different carbon structures. Mendeleev Communications, 2020, 30, 355-358.	0.6	2
112	Computational and Experimental Analysis of Carbon Functional Nanomaterials. , 2020, , 269-311.		0
113	Inâ€situ Transmission Electron Microscope Techniques for Heterogeneous Catalysis. ChemCatChem, 2020, 12, 1853-1872.	1.8	60
114	Boron nitride for enhanced oxidative dehydrogenation of ethylbenzene. Journal of Energy Chemistry, 2021, 57, 477-484.	7.1	23
115	CO _x â€Resistant Oxidative Dehydrogenation of Cyclohexane Catalyzed by sp ³ @sp ² Nanodiamonds towards Highly Selective Cyclohexene Production. ChemCatChem, 2021, 13, 610-616.	1.8	5
116	Nitrogenâ€doped mesoporous carbon materials for oxidative dehydrogenation of propane. Surface and Interface Analysis, 2021, 53, 100-107.	0.8	8

#	Article	IF	CITATIONS
117	Oxidative dehydrogenation of light alkanes to olefins on metal-free catalysts. Chemical Society Reviews, 2021, 50, 1438-1468.	18.7	96
118	Status and prospects of the decentralised valorisation of natural gas into energy and energy carriers. Chemical Society Reviews, 2021, 50, 2984-3012.	18.7	40
119	Conversion of Secondary C3-C4 Aliphatic Alcohols on Carbon Nanotubes Consolidated by Spark Plasma Sintering. Nanomaterials, 2021, 11, 352.	1.9	13
121	A Career in Catalysis: Robert Schlögl. ACS Catalysis, 2021, 11, 6243-6260.	5.5	2
122	Anodic Transformation of a Coreâ€Shell Prussian Blue Analogue to a Bifunctional Electrocatalyst for Water Splitting. Advanced Functional Materials, 2021, 31, 2106835.	7.8	47
123	Quo vadis carbocatalysis?. Journal of Energy Chemistry, 2021, 61, 219-227.	7.1	3
124	Linking the Defective Structure of Boron-Doped Carbon Nano-Onions with Their Catalytic Properties: Experimental and Theoretical Studies. ACS Applied Materials & Interfaces, 2021, 13, 51628-51642.	4.0	5
125	Bio-applications and biotechnological applications of nanodiamonds. Journal of Materials Research and Technology, 2021, 15, 6175-6189.	2.6	10
126	Boron-Doped Nanocarbon Catalysts for Oxidative Dehydrogenation of Ethane to Ethylene. SSRN Electronic Journal, 0, , .	0.4	0
127	Predicting the Optimal Chemical Composition of Functionalized Carbon Catalysts Towards Oxidative Dehydrogenation of Ethanol to Acetaldehyde. SSRN Electronic Journal, 0, , .	0.4	Ο
128	A Selfâ€Reconstructed Bifunctional Electrocatalyst of Pseudoâ€Amorphous Nickel Carbide @ Iron Oxide Network for Seawater Splitting. Advanced Science, 2022, 9, e2200146.	5.6	35
129	Boron-doped nanocarbon catalysts for oxidative dehydrogenation of ethane to ethylene. Carbon, 2022, 193, 381-393.	5.4	6
131	Assessing the Nature of Active Sites on Nanodiamonds as Metal-Free Catalysts for the EB-to-ST Direct Dehydrogenation Using a Catalytic Approach. ACS Catalysis, 2022, 12, 6119-6131.	5.5	6
132	Predicting the optimal chemical composition of functionalized carbon catalysts towards oxidative dehydrogenation of ethanol to acetaldehyde. Nano Today, 2022, 44, 101508.	6.2	4
133	Boron and nitrogen co-doped porous carbon nanospheres for oxidative dehydrogenation of ethane to ethylene. Carbon, 2022, 197, 120-128.	5.4	7
134	Fully Exposed Metal Clusters: Fabrication and Application in Alkane Dehydrogenation. ACS Catalysis, 2022, 12, 12720-12743.	5.5	32
135	Steering Carbon Hybridization State in Carbon-Based Metal-free Catalysts for Selective and Durable CO ₂ Electroreduction. ACS Catalysis, 2022, 12, 15218-15229.	5.5	8
136	Preparation and Characterization of Sisal Fibre Carbon Catalyst for Propane Oxidative Dehydrogenation. Catalysis Letters, 0, , .	1.4	0

#	Article	IF	CITATIONS
137	Insights into carbon-based materials for catalytic dehydrogenation of low-carbon alkanes and ethylbenzene. Frontiers of Chemical Science and Engineering, 0, , .	2.3	1