If CH Bonds Could Talk: Selective CH Bond Oxidat

Angewandte Chemie - International Edition 50, 3362-3374

DOI: 10.1002/anie.201006368

Citation Report

#	Article	IF	CITATIONS
1	Enzyme mimics. Pure and Applied Chemistry, 1990, 62, 1859-1866.	0.9	27
2	Models for non-heme oxidation enzymes. Pure and Applied Chemistry, 1996, 68, 497-504.	0.9	23
3	Computational Study on the Mechanism and Selectivity of Câ€"H Bond Activation and Dehydrogenative Functionalization in the Synthesis of Rhazinilam. Journal of Organic Chemistry, 2011, 76, 7180-7185.	1.7	6
4	Selectivity and Mechanism of Hydrogen Atom Transfer by an Isolable Imidoiron(III) Complex. Journal of the American Chemical Society, 2011, 133, 9796-9811.	6.6	128
5	Regio- and stereoselectivity of P450-catalysed hydroxylation of steroids controlled by laboratory evolution. Nature Chemistry, 2011, 3, 738-743.	6.6	347
6	Synthesis of 7,7′-Dihydroxy-8,8′-biquinolyl (azaBINOL) via Pd-Catalyzed Directed Double C–H Functionalization of 8,8′-Biquinolyl: Emergence of anAtroposfrom aTroposState. Organic Letters, 2011, 13, 4024-4027.	2.4	19
7	Photochemically Induced Radical Transformation of C(sp ³)â€"H Bonds to C(sp ³)â€"CN Bonds. Organic Letters, 2011, 13, 5928-5931.	2.4	157
8	Steric Modifications Tune the Regioselectivity of the Alkane Oxidation Catalyzed by Non-Heme Iron Complexes. Inorganic Chemistry, 2011, 50, 12651-12660.	1.9	51
9	Câ€"H Activation of Cycloalkenes by Dimetallynes (M = Ge, Sn) under Ambient Conditions. Journal of the American Chemical Society, 2011, 133, 11960-11963.	6.6	69
10	Combined C–H Functionalization/Cope Rearrangement with Vinyl Ethers as a Surrogate for the Vinylogous Mukaiyama Aldol Reaction. Journal of the American Chemical Society, 2011, 133, 11940-11943.	6.6	61
11	An Unexpected Oxidation of Unactivated Methylene C–H Using DIB/TBHP Protocol. Organic Letters, 2011, 13, 4308-4311.	2.4	56
12	Lessons and revelations from biomimetic syntheses. Nature Chemical Biology, 2011, 7, 865-875.	3.9	112
13	Synthesis of Dragmacidin D via Direct C–H Couplings. Journal of the American Chemical Society, 2011, 133, 19660-19663.	6.6	146
14	lodonium Salts Are Key Intermediates in Pd-Catalyzed Acetoxylation of Pyrroles. Organic Letters, 2011, 13, 4324-4327.	2.4	43
17	Fused Indolines by Palladiumâ€Catalyzed Asymmetric CC Coupling Involving an Unactivated Methylene Group. Angewandte Chemie - International Edition, 2011, 50, 7438-7441.	7.2	290
18	Copperâ€Catalyzed Aerobic Oxidative CH Functionalizations: Trends and Mechanistic Insights. Angewandte Chemie - International Edition, 2011, 50, 11062-11087.	7.2	1,212
19	P450 _{BM3} on Steroids: The Swiss Army Knife P450 Enzyme Just Gets Better. ChemBioChem, 2011, 12, 2537-2539.	1.3	13
22	Mild Rh(III)-Catalyzed C–H Activation and Annulation with Alkyne MIDA Boronates: Short, Efficient Synthesis of Heterocyclic Boronic Acid Derivatives. Journal of the American Chemical Society, 2012, 134, 19592-19595.	6.6	364

#	Article	IF	CITATIONS
23	Catalytic Enantioselective Allylic Amination of Unactivated Terminal Olefins via an Ene Reaction/[2,3]-Rearrangement. Journal of the American Chemical Society, 2012, 134, 18495-18498.	6.6	82
24	Alkane C–H Oxygenation Catalyzed by Transition Metal Complexes. Catalysis By Metal Complexes, 2012, , 143-228.	0.6	18
25	Controlled Oxidation of Remote sp ³ Câ€"H Bonds in Artemisinin via P450 Catalysts with Fine-Tuned Regio- and Stereoselectivity. Journal of the American Chemical Society, 2012, 134, 18695-18704.	6.6	171
26	Selective oxidation of unactivated C–H bonds by supramolecular control. Organic and Biomolecular Chemistry, 2012, 10, 3122.	1.5	20
27	CATALYTIC ASYMMETRIC INTERMOLECULAR C–H INSERTION OF 1,4-CYCLOHEXADIENE WITH α-ALKYL-α-DIAZOESTERS USING CHIRAL DIRHODIUM(II) CARBOXYLATES. Heterocycles, 2012, 86, 1647.	0.4	11
30	Easy Access to <scp>L</scp> â€Mannosides and <scp>L</scp> â€Galactosides by Using Ci£¿H Activation of the Corresponding 6â€Deoxysugars. Angewandte Chemie - International Edition, 2012, 51, 12285-12288.	7.2	50
31	ORCHEM Prize for Young Investigators: C.â€P.â€R. Hackenberger and A. Jacobiâ€vonâ€Wangelin / Teva Pharmaceuticals Scholar Grant: P.â€S. Baran / Roche Excellence in Chemistry Award: N. Garg and A. Doyle. Angewandte Chemie - International Edition, 2012, 51, 10444-10444.	7.2	0
32	Biocatalysis: Key to Selective Oxidations. ChemCatChem, 2012, 4, 1889-1895.	1.8	39
33	Elements of Regiocontrol in the Direct Heteroarylation of Indoles/Pyrroles: Synthesis of Bi―and Fused Polycyclic Heteroarenes by Twofold or Tandem Fourfold CH Activation. Chemistry - A European Journal, 2012, 18, 16616-16620.	1.7	82
34	The Role of Group 14 Element Hydrides in the Activation of C–H Bonds in Cyclic Olefins. Journal of the American Chemical Society, 2012, 134, 14595-14603.	6.6	50
35	Stereoselective intermolecular Câ€"H amination reactions. Chemical Communications, 2012, 48, 7799.	2.2	70
36	Silver(I)-Catalyzed Insertion of Carbene into Alkane C–H Bonds and the Origin of the Special Challenge of Methane Activation Using DFT as a Mechanistic Probe. ACS Catalysis, 2012, 2, 2066-2078.	5 . 5	61
37	Challenges in C–C bond formation through direct transformations of sp2 C–H bonds. Tetrahedron, 2012, 68, 5130-5136.	1.0	82
38	Laboratory evolution of stereoselective enzymes as a means to expand the toolbox of organic chemists. Tetrahedron, 2012, 68, 7530-7548.	1.0	32
39	Intermolecular C–H Amination of Complex Molecules: Insights into the Factors Governing the Selectivity. Journal of Organic Chemistry, 2012, 77, 7232-7240.	1.7	82
40	Oxidative Aliphatic C-H Fluorination with Fluoride Ion Catalyzed by a Manganese Porphyrin. Science, 2012, 337, 1322-1325.	6.0	478
41	Synthetic methods Part (ii) oxidation and reduction methods. Annual Reports on the Progress of Chemistry Section B, 2012, 108, 29.	0.8	4
42	Pd(II)-Catalyzed Primary-C(sp ³)–H Acyloxylation at Room Temperature. Organic Letters, 2012, 14, 3724-3727.	2.4	166

#	Article	IF	Citations
43	Catalytic Functionalization of Unactivated sp ³ C–H Bonds via ⟨i>exo⟨ i>-Directing Groups: Synthesis of Chemically Differentiated 1,2-Diols. Journal of the American Chemical Society, 2012, 134, 16991-16994.	6.6	203
44	Copper-Catalyzed Aerobic Aliphatic C–H Oxygenation Directed by an Amidine Moiety. Journal of the American Chemical Society, 2012, 134, 11980-11983.	6.6	204
45	Cul Controlled C–C and C–N Bond Formation of Heteroaromatics through C(sp ³)–H Activation. Organic Letters, 2012, 14, 5546-5549.	2.4	115
48	Beyond Directing Groups: Transitionâ€Metalâ€Catalyzed CH Activation of Simple Arenes. Angewandte Chemie - International Edition, 2012, 51, 10236-10254.	7.2	1,515
49	Synthesis of Hexahydroindoles by Intramolecular CH Alkenylation: Application to the Synthesis of the Core of Aeruginosins. Angewandte Chemie - International Edition, 2012, 51, 10399-10402.	7.2	59
50	Combining the Power of Ti ^{III} â€Mediated Processes for Easy Access to Hydroxylated Polycyclic Terpenoids: Synthesis of Sesterstatin 1 and C–D Rings of Aspergilloxide. Chemistry - A European Journal, 2012, 18, 12825-12833.	1.7	29
52	Tuning P450 Enzymes as Oxidation Catalysts. ACS Catalysis, 2012, 2, 647-666.	5 . 5	332
53	Catalytic functionalization of unactivated primary C–H bonds directed by an alcohol. Nature, 2012, 483, 70-73.	13.7	366
54	Enzymatic allylic oxidations with a lyophilisate of the edible fungus Pleurotus sapidus. Green Chemistry, 2012, 14, 639.	4.6	25
55	Nitrate as a redox co-catalyst for the aerobic Pd-catalyzed oxidation of unactivated sp3-C–H bonds. Chemical Science, 2012, 3, 3192.	3.7	156
56	Nickel-catalyzed regiodivergent approach to macrolide motifs. Chemical Science, 2012, 3, 892-895.	3.7	49
57	Highly Efficient Syntheses of Azetidines, Pyrrolidines, and Indolines via Palladium Catalyzed Intramolecular Amination of C(sp ³)–H and C(sp ²)–H Bonds at γ and δPositions. Journal of the American Chemical Society, 2012, 134, 3-6.	6.6	515
58	Radical Amination of C(sp ³)–H Bonds Using <i>N</i> Hydroxyphthalimide and Dialkyl Azodicarboxylate. Journal of Organic Chemistry, 2012, 77, 9959-9969.	1.7	103
59	Catalytic aerobic production of imines en route to mild, green, and concise derivatizations of amines. Chemical Science, 2012, 3, 3249.	3.7	188
60	Advances and perspectives in catalysts for liquid-phase oxidation of cyclohexane. Frontiers of Chemical Science and Engineering, 2012, 6, 356-368.	2.3	27
61	Aromatic Câ \in "N bond formation via simultaneous activation of Câ \in "H and Nâ \in "H bonds: direct oxyamination of benzene to aniline. Green Chemistry, 2012, 14, 1880.	4.6	21
62	Extending the utility of [Pd(NHC)(cinnamyl)Cl] precatalysts: Direct arylation of heterocycles. Beilstein Journal of Organic Chemistry, 2012, 8, 1637-1643.	1.3	58
63	Synthesis of conformationally restricted glutamate and glutamine derivatives from carbonylation of orthopalladated phenylglycine derivatives. Beilstein Journal of Organic Chemistry, 2012, 8, 1569-1575.	1.3	7

#	Article	IF	CITATIONS
64	The Combined C–H Functionalization/Cope Rearrangement: Discovery and Applications in Organic Synthesis. Accounts of Chemical Research, 2012, 45, 923-935.	7.6	284
65	Overcoming the "Oxidant Problem†Strategies to Use O ₂ as the Oxidant in Organometallic C–H Oxidation Reactions Catalyzed by Pd (and Cu). Accounts of Chemical Research, 2012, 45, 851-863.	7.6	738
66	Disguise gets a reaction. Nature, 2012, 483, 42-43.	13.7	9
67	A highly selective vanadium catalyst for benzylic C–H oxidation. Chemical Science, 2012, 3, 2240.	3.7	54
68	Blended hydrogen atom abstraction and proton-coupled electron transfer mechanisms of closed-shell molecules. Chemical Science, 2012, 3, 1903.	3.7	46
69	Controlling Site Selectivity in Palladium-Catalyzed C–H Bond Functionalization. Accounts of Chemical Research, 2012, 45, 936-946.	7.6	1,257
70	Cu-Catalyzed Oxidative C(sp ²)â€"H Cycloetherification of <i>o</i> Preparation of Dibenzofurans. Organic Letters, 2012, 14, 1078-1081.	2.4	122
71	Copperâ€Catalyzed CH Oxidation/Crossâ€Coupling of αâ€Amino Carbonyl Compounds. Angewandte Chemie International Edition, 2012, 51, 3453-3457.	7.2	131
72	Iridium-Catalyzed Borylation of Secondary C–H Bonds in Cyclic Ethers. Journal of the American Chemical Society, 2012, 134, 12422-12425.	6.6	152
73	Heterometallic Co ^{III} ₄ Fe ^{III} ₂ Schiff Base Complex: Structure, Electron Paramagnetic Resonance, and Alkane Oxidation Catalytic Activity. Inorganic Chemistry, 2012, 51, 9110-9122.	1.9	126
74	A One-Pot Double C–H Activation Palladium Catalyzed Route to a Unique Class of Highly Functionalized Thienoisoquinolines. Organic Letters, 2012, 14, 2738-2741.	2.4	18
75	Cationic Ir(III) Alkylidenes Are Key Intermediates in C–H Bond Activation and C–C Bond-Forming Reactions. Journal of the American Chemical Society, 2012, 134, 7165-7175.	6.6	44
76	Palladium-Catalyzed Dehydrogenative β′-Functionalization of β-Keto Esters with Indoles at Room Temperature. Journal of the American Chemical Society, 2012, 134, 5750-5753.	6.6	135
77	Copper-Catalyzed Oxaziridine-Mediated Oxidation of C–H Bonds. Journal of Organic Chemistry, 2012, 77, 7005-7022.	1.7	25
85	Hydrogenâ€Abstraction Reactivity Patterns from Aâ€toâ€Y: The Valence Bond Way. Angewandte Chemie - International Edition, 2012, 51, 5556-5578.	7.2	233
86	Synthesis of Aryl(di)azinyl Ketones through Copper―and Ironâ€catalyzed Oxidation of the Methylene Group of Aryl(di)azinylmethanes. Angewandte Chemie - International Edition, 2012, 51, 2745-2748.	7.2	129
87	An Iron(III)–Monoamidate Complex Catalyst for Selective Hydroxylation of Alkane Cī£¿H Bonds with Hydrogen Peroxide. Angewandte Chemie - International Edition, 2012, 51, 3448-3452.	7.2	138
88	Diversityâ€Oriented Synthesis of Diverse Polycyclic Scaffolds Inspired by the Logic of Sesquiterpene Lactones Biosynthesis. Angewandte Chemie - International Edition, 2012, 51, 5391-5394.	7.2	30

#	Article	IF	Citations
89	Selective Rhodium(III) atalyzed Crossâ€Dehydrogenative Coupling of Furan and Thiophene Derivatives. Angewandte Chemie - International Edition, 2012, 51, 8230-8234.	7.2	185
90	Copperâ€Catalyzed Aerobic Dehydrogenative Cyclization of Nâ€Methylâ€Nâ€phenylhydrazones: Synthesis of Cinnolines. Angewandte Chemie - International Edition, 2012, 51, 8318-8321.	7.2	114
91	Achieving Regio―and Enantioselectivity of P450â€Catalyzed Oxidative CH Activation of Small Functionalized Molecules by Structureâ€Guided Directed Evolution. ChemBioChem, 2012, 13, 1465-1473.	1.3	100
92	A New Dirhodium Catalyst with Hemilabile Tropolonato Ligands for CH Bond Functionalization. Chemistry - A European Journal, 2012, 18, 4854-4858.	1.7	4
93	Double CH Functionalization in Sequential Order: Direct Synthesis of Polycyclic Compounds by a Palladium atalyzed CH Alkenylation–Arylation Cascade. Chemistry - A European Journal, 2012, 18, 5352-5360.	1.7	33
94	Diastereo―and Enantioselective Intramolecular C(sp ³)H Arylation for the Synthesis of Fused Cyclopentanes. Chemistry - A European Journal, 2012, 18, 4480-4484.	1.7	139
95	Direct Oxidative Coupling of Arenes with Olefins by Rhâ€Catalyzed CH Activation in Air: Observation of a Strong Cooperation of the Acid. Chemistry - A European Journal, 2012, 18, 9699-9704.	1.7	37
96	Direct Transformation of Simple Enals to 3,4â€Disubstituted Benzaldehydes under Mild Reaction Conditions via an Organocatalytic Regio―and Chemoselective Dimerization Cascade. Chemistry - A European Journal, 2012, 18, 9770-9774.	1.7	11
97	Copper-catalyzed decarboxylative alkenylation of sp3 Câ \in "H bonds with cinnamic acids via a radical process. Chemical Science, 2012, 3, 2853.	3.7	206
98	Adding Aliphatic C–H Bond Oxidations to Synthesis. Science, 2012, 335, 807-809.	6.0	629
99	Transition-State Metal Aryl Bond Stability Determines Regioselectivity in Palladium Acetate Mediated C–H Bond Activation of Heteroarenes. Organic Letters, 2012, 14, 3680-3683.	2.4	81
100	Chemical Synthesis of the Cardiotonic Steroid Glycosides and Related Natural Products. Chemistry - A European Journal, 2012, 18, 3092-3120.	1.7	82
101	Complementation of Biotransformations with Chemical Câ€"H Oxidation: Copper-Catalyzed Oxidation of Tertiary Amines in Complex Pharmaceuticals. Journal of the American Chemical Society, 2013, 135, 12346-12352.	6.6	60
102	C–H functionalization: thoroughly tuning ligands at a metal ion, a chemist can greatly enhance catalyst's activity and selectivity. Dalton Transactions, 2013, 42, 12794.	1.6	167
103	Merging organocatalysis with transition metal catalysis and using O2 as the oxidant for enantioselective C–H functionalization of aldehydes. Chemical Communications, 2013, 49, 7555.	2.2	50
104	Stereoselective Synthesis of \hat{l}^2 -Alkylated $\hat{l}\pm$ -Amino Acids via Palladium-Catalyzed Alkylation of Unactivated Methylene C(sp ³) $\hat{a}\in\hat{l}$ H Bonds with Primary Alkyl Halides. Journal of the American Chemical Society, 2013, 135, 12135-12141.	6.6	315
105	Pd(ii)-catalyzed alkoxylation of unactivated C(sp3)â€"H and C(sp2)â€"H bonds using a removable directing group: efficient synthesis of alkyl ethers. Chemical Science, 2013, 4, 4187.	3.7	280
106	Employing a robustness screen: rapid assessment of rhodium(III)-catalysed C–H activation reactions. Tetrahedron, 2013, 69, 7817-7825.	1.0	64

#	Article	IF	CITATIONS
107	Rh(III)-Catalyzed Halogenation of Vinylic C–H Bonds: Rapid and General Access to <i>Z</i> Halo Acrylamides. Organic Letters, 2013, 15, 3860-3863.	2.4	116
108	Rh(III)-Catalyzed Synthesis of Multisubstituted Isoquinoline and Pyridine $\langle i \rangle N \langle j \rangle$ -Oxides from Oximes and Diazo Compounds. Journal of the American Chemical Society, 2013, 135, 12204-12207.	6.6	418
109	Use of a Readily Removable Auxiliary Group for the Synthesis of Pyrrolidones by the Palladiumâ€Catalyzed Intramolecular Amination of Unactivated γ C(sp ³)H Bonds. Angewandte Chemie - International Edition, 2013, 52, 11124-11128.	7.2	275
110	Selective activation of secondary C–H bonds by an iron catalyst: insights into possibilities created by the use of a carboxyl-containing bipyridine ligand. New Journal of Chemistry, 2013, 37, 3267.	1.4	9
111	Selectivity in CH Functionalizations. , 2013, , 79-104.		8
112	Hydrocarbon Oxidations Catalyzed by Bio-Inspired Nonheme Iron and Copper Catalysts. , 2013, , 763-778.		13
113	Rhodium(III)-catalyzed ring-opening of strained olefins through $C\hat{a}\in H$ activation of O-acetyl ketoximes: an efficient synthesis of trans-functionalized cyclopentenes and spiro[2.4]heptenes. Tetrahedron Letters, 2013, 54, 7127-7131.	0.7	12
114	An Iron Catalyst for Oxidation of Alkyl CH Bonds Showing Enhanced Selectivity for Methylenic Sites. Chemistry - A European Journal, 2013, 19, 1908-1913.	1.7	98
115	Electronic Tuning of Iron–Oxoâ€Mediated CH Activation: Effect of Electronâ€Donating Ligand on Selectivity. Chemistry - A European Journal, 2013, 19, 14697-14701.	1.7	37
116	Cyclopalladation and Reactivity of Amino Esters through CH Bond Activation: Experimental, Kinetic, and Density Functional Theory Mechanistic Studies. Chemistry - A European Journal, 2013, 19, 17398-17412.	1.7	30
117	\hat{l}_{\pm} -Vinylation of amides with arylacetylenes: synthesis of allylamines under metal-free conditions. Organic and Biomolecular Chemistry, 2013, 11, 7076.	1.5	10
118	Copper-catalyzed ortho-halogenation of protected anilines. Chemical Communications, 2013, 49, 11044.	2.2	88
119	[3]Dendralene Synthesis: Rhodium(III)â€Catalyzed Alkenyl Cï£;H Activation and Coupling Reaction with Allenyl Carbinol Carbonate. Angewandte Chemie - International Edition, 2013, 52, 12430-12434.	7.2	168
120	Ironâ€Catalyzed Generation of αâ€Amino Nitriles from Tertiary Amines. Advanced Synthesis and Catalysis, 2013, 355, 3058-3070.	2.1	37
121	The preparation and properties of Cu doped TS-1 zeolite. RSC Advances, 2013, 3, 21628.	1.7	8
122	C–H Oxidation by H ₂ O ₂ and O ₂ Catalyzed by a Non-Heme Iron Complex with a Sterically Encumbered Tetradentate N-Donor Ligand. Inorganic Chemistry, 2013, 52, 13546-13554.	1.9	29
123	Steric Control of Site Selectivity in the Pd-Catalyzed C–H Acetoxylation of Simple Arenes. Organic Letters, 2013, 15, 5428-5431.	2.4	75
125	Indole Synthesis by Rhodium(III)â€Catalyzed Hydrazineâ€Directed CH Activation: Redoxâ€Neutral and Traceless by NN Bond Cleavage. Angewandte Chemie - International Edition, 2013, 52, 12426-12429.	7.2	341

#	Article	IF	Citations
127	Highly Regioselective αâ€Arylation of Coumarins <i>via</i> Palladium atalyzed CH Activation/Desulfitative Coupling. Advanced Synthesis and Catalysis, 2013, 355, 3407-3412.	2.1	61
128	Pyridineâ€Directed Palladiumâ€Catalyzed Phosphonation of C(sp ²)H Bonds. Angewandte Chemie - International Edition, 2013, 52, 9801-9804.	7.2	173
129	Asymmetric C(sp ²)H Activation. Chemistry - A European Journal, 2013, 19, 14010-14017.	1.7	224
130	Titanocene(III)â€Catalyzed 6â€ <i>exo</i> Versus 7â€ <i>endo</i> Cyclizations of Epoxypolyprenes: Efficient Control and Synthesis of Versatile Terpenic Building Blocks. Chemistry - A European Journal, 2013, 19, 14484-14495.	1.7	14
131	Metal-free, hydroacylation of C and Nî€N bonds via aerobic C–H activation of aldehydes, and reaction of the products thereof. Organic and Biomolecular Chemistry, 2013, 11, 7301.	1.5	51
132	Copper-catalyzed oxidation of arene-fused cyclic amines to cyclic imides. Chemical Communications, 2013, 49, 10650.	2.2	31
133	The Redoxâ€Neutral Approach to CH Functionalization. Chemistry - A European Journal, 2013, 19, 13274-13287.	1.7	278
134	Direct Access to Highly Substituted 1â€Naphthols through Palladiumâ€Catalyzed Oxidative Annulation of Benzoylacetates and Internal Alkynes. Chemistry - A European Journal, 2013, 19, 13322-13327.	1.7	52
135	First synthesis of (+)-myrrhanol C, an anti-prostate cancer lead. Organic and Biomolecular Chemistry, 2013, 11, 559-562.	1.5	14
136	Theoretical Study of Photochemical Hydrogen Abstraction by Triplet Aliphatic Carbonyls by Using Density Functional Theory. Journal of Physical Chemistry A, 2013, 117, 439-450.	1.1	8
137	Multifold Bond Cleavage and Formation between MeOH and Quinoxalines (or Benzothiazoles): Synthesis of Carbaldehyde Dimethyl Acetals. Journal of Organic Chemistry, 2013, 78, 966-980.	1.7	36
139	Aminoâ€Directed Rh ^{lll} â€Catalyzed CH Activation Leading to Oneâ€Pot Synthesis of NH Carbazoles. Chemistry - A European Journal, 2013, 19, 1903-1907.	1.7	85
140	Microwave promoted catalyst-free benzylic Câ€"H functionalization of methyl quinoline and Michael addition to beta-nitro styrene. Tetrahedron Letters, 2013, 54, 1315-1317.	0.7	27
141	An addition of benzylic sp3 C–H to electron-deficient olefins. Tetrahedron Letters, 2013, 54, 858-860.	0.7	30
142	Regioselective Oxidation of Nonactivated Alkyl C–H Groups Using Highly Structured Non-Heme Iron Catalysts. Journal of Organic Chemistry, 2013, 78, 1421-1433.	1.7	112
143	Recent Advances in the Construction of Polycyclic Compounds by Palladiumâ€Catalyzed Atomâ€Economical Cascade Reactions. Asian Journal of Organic Chemistry, 2013, 2, 18-28.	1.3	84
144	Rhodium or Rutheniumâ€Catalyzed Oxidative CH/CH Crossâ€Coupling: Direct Access to Extended Ï€â€Conjugated Systems. Angewandte Chemie - International Edition, 2013, 52, 580-584.	7.2	180
145	Palladium-Catalyzed C(sp ² and sp ³)â€"H Activation/Câ€"O Bond Formation: Synthesis of Benzoxaphosphole 1- and 2-Oxides. Organic Letters, 2013, 15, 5210-5213.	2.4	57

#	Article	IF	CITATIONS
146	Highly efficient oxidation of diphenylmethane to benzophenone employing a novel ruthenium catalyst with tert-butylhydroperoxide under mild conditions. Catalysis Communications, 2013, 37, 60-63.	1.6	6
147	Copperâ€Catalyzed Aerobic Intramolecular Dehydrogenative Cyclization of N,Nâ€Disubstituted Hydrazones through CH Functionalization. Angewandte Chemie - International Edition, 2013, 52, 2559-2563.	7.2	66
148	l-Proline derived mimics of the non-haem iron active site catalyse allylic oxidation in acetonitrile solutions. Tetrahedron Letters, 2013, 54, 1236-1238.	0.7	7
149	Multifunctionalization of alkenes via aerobic oxynitration and sp3 C–H oxidation. Chemical Communications, 2013, 49, 2198.	2.2	62
150	Direct Selective Oxidative Crossâ€Coupling of Simple Alkanes with Heteroarenes. Angewandte Chemie - International Edition, 2013, 52, 3267-3271.	7.2	278
151	Enhanced Reactivity in Dioxirane C–H Oxidations via Strain Release: A Computational and Experimental Study. Journal of Organic Chemistry, 2013, 78, 4037-4048.	1.7	74
152	The Future of Purification., 2013,, 91-102.		26
153	Palladium Catalysts Containing Pyridinium-Substituted Pyridine Ligands for the C–H Oxygenation of Benzene with K ₂ S ₂ O ₈ . ACS Catalysis, 2013, 3, 700-703.	5.5	59
154	Non-heme iron catalysis in C C, Câ€"H, and CH2 oxidation reactions. Oxidative transformations on terpenoids catalyzed by Fe(bpmen)(OTf)2. Tetrahedron, 2013, 69, 2977-2986.	1.0	27
155	Pd-catalyzed oxidative C–H/C–H cross-coupling of pyridines with heteroarenes. Chemical Science, 2013, 4, 2163.	3.7	123
156	Protectingâ€Groupâ€Free Diastereoselective CC Coupling of 1,3â€Glycols and Allyl Acetate through Siteâ€Selective Primary Alcohol Dehydrogenation. Angewandte Chemie - International Edition, 2013, 52, 3195-3198.	7.2	76
157	Iron(II)-Catalyzed Benzylic Fluorination. Organic Letters, 2013, 15, 1722-1724.	2.4	145
158	The Mechanism of Stereospecific CH Oxidation by Fe(Pytacn) Complexes: Bioinspired Nonâ€Heme Iron Catalysts Containing <i>cis</i> â€Labile Exchangeable Sites. Chemistry - A European Journal, 2013, 19, 6724-6738.	1.7	88
159	Mild Rhodium(III)â€Catalyzed Direct CH Allylation of Arenes with Allyl Carbonates. Angewandte Chemie - International Edition, 2013, 52, 5386-5389.	7.2	275
160	Mild Rhodium(III) $\hat{a}\in \mathbb{C}$ atalyzed Cyclization of Amides with $\hat{i}\pm,\hat{i}^2\hat{a}\in \mathbb{U}$ nsaturated Aldehydes and Ketones to Azepinones: Application to the Synthesis of the Homoprotoberberine Framework. Angewandte Chemie - International Edition, 2013, 52, 5393-5397.	7.2	180
161	Metal-Free Fluorination of C(sp ³)â€"H Bonds Using a Catalytic <i>N</i> Organic Letters, 2013, 15, 2160-2163.	2.4	157
162	Copper-catalyzed aerobic oxidative functionalization of Câ€"H bonds of alkanes in the presence of acetaldehyde under mild conditions. Tetrahedron Letters, 2013, 54, 2706-2709.	0.7	15
163	Isomerâ€6elective Thermal Activation of Methane in the Gas Phase by [HMO] ⁺ and [M(OH)] ⁺ (M=Ti and V). Angewandte Chemie - International Edition, 2013, 52, 6097-6101.	7.2	38

#	Article	IF	CITATIONS
164	Aerobic Synthesis of Pyrroles and Dihydropyrroles from Imines: Palladium(II) atalyzed Intramolecular CH Dehydrogenative Cyclization. Angewandte Chemie - International Edition, 2013, 52, 4892-4896.	7.2	89
165	Total synthesis of taxane terpenes: cyclase phase. Tetrahedron, 2013, 69, 5685-5701.	1.0	29
166	Carbeneâ€Mediated Functionalization of the Anomeric CH Bond of Carbohydrates: Scope and Limitations. Chemistry - A European Journal, 2013, 19, 6052-6066.	1.7	20
167	Oxidative Addition of a Strained C–C Bond onto Electron-Rich Rhodium(I) at Room Temperature. Journal of the American Chemical Society, 2013, 135, 7142-7145.	6.6	110
168	Completely Regioselective Direct C–H Functionalization of Benzo[<i>b</i>]thiophenes Using a Simple Heterogeneous Catalyst. Journal of the American Chemical Society, 2013, 135, 7450-7453.	6.6	160
169	Tuning hydrogen atom abstraction from the aliphatic C–H bonds of basic substrates by protonation. Control over selectivity by C–H deactivation. Chemical Science, 2013, 4, 3255.	3.7	25
170	TEMPO-Mediated Aliphatic C–H Oxidation with Oximes and Hydrazones. Organic Letters, 2013, 15, 3214-3217.	2.4	116
171	Photochemically induced radical alkynylation of C(sp ³) $\hat{a}\in H$ bonds. Organic and Biomolecular Chemistry, 2013, 11, 164-169.	1.5	85
172	Stereo- and regioselectivity in the P450-catalyzed oxidative tandem difunctionalization of 1-methylcyclohexene. Tetrahedron, 2013, 69, 5306-5311.	1.0	17
173	Photoinduced direct 4-pyridination of C(sp3)–H Bonds. Chemical Science, 2013, 4, 3118.	3.7	121
174	Palladium-Catalyzed Chemoselective Decarboxylative Ortho Acylation of Benzoic Acids with α-Oxocarboxylic Acids. Organic Letters, 2013, 15, 2930-2933.	2.4	95
175	Rh ^{III} /Cu ^{II} -Cocatalyzed Synthesis of 1 <i>I<i>Indazoles through C–H Amidation and N–N Bond Formation. Journal of the American Chemical Society, 2013, 135, 8802-8805.</i></i>	6.6	304
176	Cp* Iridium Precatalysts for Selective C–H Oxidation with Sodium Periodate As the Terminal Oxidant. Organometallics, 2013, 32, 957-965.	1.1	60
177	Direct Terminal Alkylaminoâ€Functionalization <i>via</i> Multistep Biocatalysis in One Recombinant Wholeâ€Cell Catalyst. Advanced Synthesis and Catalysis, 2013, 355, 1693-1697.	2.1	103
178	lodination of Remote <i>Ortho</i> -Câ€"H Bonds of Arenes via Directed S _E Ar: A Streamlined Synthesis of Tetrahydroquinolines. Organic Letters, 2013, 15, 3440-3443.	2.4	48
179	Siteâ€Selective Oxidation of Unactivated CH Bonds with Hypervalent Iodine(III) Reagents. Angewandte Chemie - International Edition, 2013, 52, 8657-8660.	7.2	61
181	Synthesis of Phenanthridinones from <i>N</i> â€Methoxybenzamides and Aryltriethoxysilanes through Rh ^{ill} â€Catalyzed CH and NH Bond Activation. Chemistry - an Asian Journal, 2013, 8, 2175-2181.	1.7	68
182	Meta-Selective C–H Functionalization Using a Nitrile-Based Directing Group and Cleavable Si-Tether. Journal of the American Chemical Society, 2013, 135, 18778-18781.	6.6	222

#	Article	IF	CITATIONS
183	1,5-Rhodium Shift in Rearrangement of $\langle i \rangle N \langle i \rangle$ -Arenesulfonylazetidin-3-ols into Benzosultams. Journal of the American Chemical Society, 2013, 135, 19103-19106.	6.6	82
184	Substituentâ€induced regioselective hydroxylation of the aromatic C–H bond on naphthalene with metachloroperbenzoic acid catalyzed by F ₂₀ TPPMnCl. Journal of Physical Organic Chemistry, 2013, 26, 23-29.	0.9	7
186	Catalytic Alkane Oxidation by Homogeneous and Silica-supported Cobalt(II) Complex Catalysts with a Triazolyl Group-containing Tetradentate Ligand. Chemistry Letters, 2013, 42, 1197-1199.	0.7	21
191	Application of Tertiary Amines Synthesized by Catalytic Dehydrogenation of Enamines as Nucleophilic C ₂ Synthons for 1,4 onjugate Addition with Fluoroalkylated Olefins. Asian Journal of Organic Chemistry, 2013, 2, 239-243.	1.3	15
196	Elucidation of the regio- and chemoselectivity of enzymatic allylic oxidations with Pleurotus sapidus $\hat{a} \in ``conversion of selected spirocyclic terpenoids and computational analysis. Beilstein Journal of Organic Chemistry, 2013, 9, 2233-2241.$	1.3	18
197	Copper-catalyzed aerobic aliphatic C–H oxygenation with hydroperoxides. Beilstein Journal of Organic Chemistry, 2013, 9, 1217-1225.	1.3	21
198	Hyperconjugation in Carbocations, a BLW Study with DFT approximation. Frontiers in Chemistry, 2014, 1, 37.	1.8	11
200	Synthesis of Mono―and Dihydroxylated Amino Acids with New αâ€Ketoglutarateâ€Dependent Dioxygenases: Biocatalytic Oxidation of CïŁ¿H Bonds. ChemCatChem, 2014, 6, 3012-3017.	1.8	46
201	Rapid and Convergent Assembly of Natural Benzo[c]phenanthridines by Palladium/Norbornene Catalysis. Heterocycles, 2014, 88, 807.	0.4	5
203	A room-temperature synthesis of 2,2′-bisoxazoles through palladium-catalyzed oxidative coupling of α-isocyanoacetamides. Organic Chemistry Frontiers, 2014, 1, 1285-1288.	2.3	37
205	One-pot room-temperature conversion of cyclohexane to adipic acid by ozone and UV light. Science, 2014, 346, 1495-1498.	6.0	90
206	Iridium(III)â€Catalyzed CH Amidation of Arylphosphoryls Leading to a <i>P</i> â€Stereogenic Center. Chemistry - A European Journal, 2014, 20, 12421-12425.	1.7	89
207	TEMPO-mediated allylic C–H amination with hydrazones. Organic and Biomolecular Chemistry, 2014, 12, 4567-4570.	1.5	28
208	Synthesis of All Eight <scp>L</scp> â€Glycopyranosyl Donors Using CH Activation. Angewandte Chemie - International Edition, 2014, 53, 13889-13893.	7.2	31
210	Electronic Effects in Carbeneâ€Mediated CH Bond Functionalization: An Experimental and Theoretical Study. Advanced Synthesis and Catalysis, 2014, 356, 2493-2505.	2.1	12
211	Chemoselective Hydroxylation of Aliphatic sp ³ Câ€"H Bonds Using a Ketone Catalyst and Aqueous H ₂ O ₂ . Organic Letters, 2014, 16, 6504-6507.	2.4	44
213	New Siteâ€Selective Organoradical Based on Hypervalent Iodine Reagent for Controlled Alkane sp ³ CH Oxidations. ChemCatChem, 2014, 6, 76-78.	1.8	29
214	Synthesis of Saturated N-Heterocycles. Journal of Organic Chemistry, 2014, 79, 2809-2815.	1.7	242

#	Article	IF	CITATIONS
215	Selective Bromination of sp ³ Cï£; H Bonds by Organophotoredox Catalysis. Asian Journal of Organic Chemistry, 2014, 3, 536-544.	1.3	44
216	Stereospecific ring expansion from orthocyclophanes with central chirality to metacyclophanes with planar chirality. Nature Communications, 2014, 5, 3111.	5.8	53
218	Iron-catalyzed C(sp3)–H functionalization of methyl azaarenes withÂα-oxoesters: a facile approach to lactic acid derivatives. Tetrahedron, 2014, 70, 3056-3060.	1.0	22
219	Ligand promoted Pd-catalyzed dehydrogenative alkenylation of hetereoarenes. Chemical Communications, 2014, 50, 3671-3673.	2.2	44
220	Pd/C as a Catalyst for Completely Regioselective CH Functionalization of Thiophenes under Mild Conditions. Angewandte Chemie - International Edition, 2014, 53, 1809-1813.	7.2	170
221	The Iron(II) Complex [Fe(CF ₃ SO ₃) ₂ (mcp)] as a Convenient, Readily Available Catalyst for the Selective Oxidation of Methylenic Sites in Alkanes. Advanced Synthesis and Catalysis, 2014, 356, 818-830.	2.1	85
222	Hypervalent Iodineâ€Mediated Selective Oxidative Functionalization of (Thio)chromones with Alkanes. Chemistry - A European Journal, 2014, 20, 4568-4572.	1.7	97
223	Copperâ€Catalyzed Siteâ€Selective Intramolecular Amidation of Unactivated C(sp ³)H Bonds. Angewandte Chemie - International Edition, 2014, 53, 3706-3710.	7.2	196
224	Enhancing the Efficiency and Regioselectivity of P450 Oxidation Catalysts by Unnatural Amino Acid Mutagenesis. ChemBioChem, 2014, 15, 1001-1010.	1.3	67
225	αâ€MsO/TsO/Cl Ketones as Oxidized Alkyne Equivalents: Redoxâ€Neutral Rhodium(III)â€Catalyzed CH Activation for the Synthesis of Nâ€Heterocycles. Angewandte Chemie - International Edition, 2014, 53, 2754-2758.	7.2	159
226	C–H nitrogenation and oxygenation by ruthenium catalysis. Chemical Communications, 2014, 50, 29-39.	2.2	359
227	Pd ^{II} â€Catalyzed Mild CH <i>ortho</i> Arylation and Intramolecular Amination Oriented by a Phosphinamide Group. Chemistry - A European Journal, 2014, 20, 3301-3305.	1.7	44
228	Cytochrome P450 Catalyzed Oxidative Hydroxylation of Achiral Organic Compounds with Simultaneous Creation of Two Chirality Centers in a Single Ci£¿H Activation Step. Angewandte Chemie - International Edition, 2014, 53, 8659-8663.	7.2	63
229	Palladiumâ€Catalyzed [2+2+1] Oxidative Annulation of 4â€Hydroxycoumarins with Unactivated Internal Alkynes: Access to Spiro Cyclopentadieneâ€Chromanâ€2,4â€dione Complexes. Advanced Synthesis and Catalysis, 2014, 356, 319-324.	2.1	26
230	Transitionâ€Metalâ€Catalyzed CH Bond Functionalizations: Feasible Access to a Diversityâ€Oriented β <i>à€</i> Carboline Library. Chemistry - A European Journal, 2014, 20, 3408-3414.	1.7	25
231	Copper(II) atalyzed Aerobic Oxidative Coupling between Chalcone and 2â€Aminopyridine <i>via</i> CH Amination: An Expedient Synthesis of 3â€Aroylimidazo[1,2â€ <i>a</i>]pyridines. Advanced Synthesis and Catalysis, 2014, 356, 1105-1112.	2.1	103
232	Direct Synthesis of 1,4â€Diols from Alkenes by Ironâ€Catalyzed Aerobic Hydration and CH Hydroxylation. Angewandte Chemie - International Edition, 2014, 53, 2730-2734.	7.2	80
233	Syntheses of Sulfides and Selenides through Direct Oxidative Functionalization of C(sp ³)–H Bond. Organic Letters, 2014, 16, 3032-3035.	2.4	111

#	Article	IF	CITATIONS
234	Oneâ€Pot Tandem Palladiumâ€Catalyzed Decarboxylative Crossâ€Coupling and CH Activation Route to Thienoisoquinolines. Advanced Synthesis and Catalysis, 2014, 356, 1725-1730.	2.1	16
235	Palladiumâ€Catalyzed Picolinamideâ€Directed Acetoxylation of Unactivated γâ€C(<i>sp</i> ³)H Bonds of Alkylamines. Advanced Synthesis and Catalysis, 2014, 356, 1544-1548.	2.1	80
236	Allylic Functionalization of Unactivated Olefins with Grignard Reagents. Angewandte Chemie - International Edition, 2014, 53, 1664-1668.	7.2	23
237	Palladium and TEMPO as Co atalysts in a Desulfinative Homocoupling Reaction. European Journal of Organic Chemistry, 2014, 2014, 3917-3922.	1.2	22
238	One step C–N bond formation from alkylbenzene and ammonia over Cu-modified TS-1 zeolite catalyst. Catalysis Science and Technology, 2014, 4, 3108-3119.	2.1	3
239	Nickelâ€Catalyzed Decarboxylative Acylation of Heteroarenes by sp ² CH Functionalization. Chemistry - A European Journal, 2014, 20, 7241-7244.	1.7	66
240	Free-Radical Cascade Alkylarylation of Alkenes with Simple Alkanes: Highly Efficient Access to Oxindoles via Selective (sp ³)C–H and (sp ²)C–H Bond Functionalization. Organic Letters, 2014, 16, 382-385.	2.4	238
241	Evidence that steric factors modulate reactivity of tautomeric iron–oxo species in stereospecific alkane C–H hydroxylation. Chemical Communications, 2014, 50, 1408-1410.	2.2	38
242	Origins of Selective C(sp ²)â€"H Activation Using Transition Metal Complexes with N,N-Bidentate Directing Groups: A Combined Theoreticalâ€"Experimental Study. ACS Catalysis, 2014, 4, 649-656.	5.5	51
243	Conversion of 1-alkenes into 1,4-diols through an auxiliary-mediated formal homoallylic C–H oxidation. Nature Chemistry, 2014, 6, 122-125.	6.6	113
244	Palladium-Catalyzed β-Acyloxylation of Simple Amide <i>via</i> sp ³ Câ€"H Activation. Organic Letters, 2014, 16, 508-511.	2.4	62
245	Natural product synthesis in the age of scalability. Natural Product Reports, 2014, 31, 419-432.	5.2	138
246	Palladium catalyzed acetoxylation of benzylic C–H bonds using a bidentate picolinamide directing group. Organic and Biomolecular Chemistry, 2014, 12, 1405.	1.5	41
247	Opening an Aladdin's cave: the Suzuki coupling in a room-temperature ionic liquid. Chemical Communications, 2014, 50, 1515.	2.2	22
248	Cu(OAc) ₂ -catalyzed remote benzylic C(sp ³)â€"H oxyfunctionalization for Cî€O formation directed by the hindered para-hydroxyl group with ambient air as the terminal oxidant under ligand- and additive-free conditions. Green Chemistry, 2014, 16, 1248-1254.	4.6	40
249	Organocatalytic C–H hydroxylation with Oxone [®] enabled by an aqueous fluoroalcohol solvent system. Chemical Science, 2014, 5, 656-659.	3.7	58
250	Total Synthesis of Gracilioetherâ€F: Development and Application of Lewis Acid Promoted Ketene–Alkene [2+2]â€Cycloadditions and Late‧tage CH Oxidation. Angewandte Chemie - International Edition, 2014, 53, 14522-14526.	7.2	58
253	Mechanism of Lewis-acid-catalyzed intramolecular coupling of sp ³ C â€" H bond and alkene: A theoretical investigation. Journal of Theoretical and Computational Chemistry, 2014, 13, 1450015.	1.8	O

#	Article	IF	CITATIONS
254	Nickelâ€Catalyzed Decarboxylative Arylation of Heteroarenes through sp ² C–H Functionalization. European Journal of Organic Chemistry, 2014, 2014, 7586-7589.	1.2	31
255	Ligand-Controlled, Tunable Silver-Catalyzed C–H Amination. Journal of the American Chemical Society, 2014, 136, 16720-16723.	6.6	131
256	Palladium-catalyzed trifluoroacetate-promoted mono-arylation of the β-methyl group of alanine at room temperature: synthesis of β-arylated α-amino acids through sequential C–H functionalization. Chemical Science, 2014, 5, 3952.	3.7	124
257	Copperâ€Promoted Siteâ€Selective Acyloxylation of Unactivated C(sp ³)H Bonds. Chemistry - an Asian Journal, 2014, 9, 2736-2739.	1.7	45
258	Copper-mediated C(sp ²)â€"H amination using TMSN ₃ as a nitrogen source: redox-neutral access to primary anilines. Organic Chemistry Frontiers, 2014, 1, 777-781.	2.3	51
259	Vanadium-catalyzed C(sp ³)–H fluorination reactions. Organic Chemistry Frontiers, 2014, 1, 468-472.	2.3	75
260	Speciation and decomposition pathways of ruthenium catalysts used for selective C–H hydroxylation. Chemical Science, 2014, 5, 3309-3314.	3.7	20
261	A simple and sustainable tetrabutylammonium fluoride (TBAF)-catalyzed synthesis of azaarene-substituted 3-hydroxy-2-oxindoles through sp3 C–H functionalization. RSC Advances, 2014, 4, 19789-19793.	1.7	26
262	CH-activating oxidative hydroxylation of 1-tetralones and related compounds with high regio- and stereoselectivity. Chemical Communications, 2014, 50, 14310-14313.	2.2	39
263	Recent applications of Cp ₂ TiCl in natural product synthesis. Organic Chemistry Frontiers, 2014, 1, 15-33.	2.3	103
264	7.12 Directed Aryl C–H Oxidations with Main Group Metals. , 2014, , 302-312.		1
265	Ruthenium-catalyzed double-fold C–H tertiary alkoxycarbonylation of arenes using di-tert-butyl dicarbonate. Chemical Communications, 2014, 50, 14129-14132.	2.2	29
266	Mild propargylic oxidation using a diacetoxyiodobenzene/tert-butyl hydroperoxide protocol. Tetrahedron Letters, 2014, 55, 4370-4372.	0.7	5
267	Metal-Free Oxidative C(sp3)–H Bond Functionalization of Alkanes and Conjugate Addition to Chromones. Organic Letters, 2014, 16, 5342-5345.	2.4	70
268	Rhodium-catalyzed direct coupling of biaryl pyridine derivatives with internal alkynes. Chemical Communications, 2014, 50, 8204-8207.	2.2	48
270	Palladium-Catalyzed Remote C(<i>sp</i> ³)â€"H Arylation of 3-Pinanamine. Organic Letters, 2014, 16, 4288-4291.	2.4	71
271	Total Synthesis of î" ¹² â€Prostaglandinâ€J ₃ , a Highly Potent and Selective Antileukemic Agent. Angewandte Chemie - International Edition, 2014, 53, 10443-10447.	7.2	39
272	Total photocatalysis conversion from cyclohexane to cyclohexanone by C ₃ N ₄ /Au nanocomposites. Green Chemistry, 2014, 16, 4559-4565.	4.6	78

#	Article	IF	CITATIONS
273	Degradation of phenylurea herbicides by chlorine dioxide and formation of disinfection by-products during subsequent chlor(am)ination. Chemical Engineering Journal, 2014, 258, 210-217.	6.6	48
274	Visible light-promoted metal-free sp ³ -C–H fluorination. Chemical Communications, 2014, 50, 11701-11704.	2.2	116
275	Versatile reactivity of Pd-catalysts: mechanistic features of the mono-N-protected amino acid ligand and cesium-halide base in Pd-catalyzed C–H bond functionalization. Chemical Society Reviews, 2014, 43, 5009-5031.	18.7	148
276	Recent development of direct asymmetric functionalization of inert C–H bonds. RSC Advances, 2014, 4, 6173.	1.7	532
277	Site-Selective Aliphatic C–H Bromination Using <i>N</i> -Bromoamides and Visible Light. Journal of the American Chemical Society, 2014, 136, 14389-14392.	6.6	199
278	Nickelâ€Catalyzed Siteâ€Selective Amidation of Unactivated C(sp ³)H Bonds. Chemistry - A European Journal, 2014, 20, 9530-9533.	1.7	134
279	Metalâ€Free Preparation of Cycloalkyl Aryl Sulfides <i>via</i> Diâ€ <i>tert</i> êbutyl Peroxideâ€Promoted Oxidative C(<i>sp</i> ³)H Bond Thiolation of Cycloalkanes. Advanced Synthesis and Catalysis, 2014, 356, 2719-2724.	2.1	81
280	Using Rh(III)-Catalyzed C–H Activation as a Tool for the Selective Functionalization of Ketone-Containing Molecules. Organic Letters, 2014, 16, 1630-1633.	2.4	67
281	A Free Radical Cascade Cyclization of Isocyanides with Simple Alkanes and Alcohols. Organic Letters, 2014, 16, 3396-3399.	2.4	170
282	Photochemically induced radical alkenylation of C(sp ³)â€"H bonds. Chemical Science, 2014, 5, 4339-4345.	3.7	106
283	Covalently anchored carboxylic acid on uniform spherical silica nanoparticles with narrow slit like mesopores for the synthesis of pyrroloacridinones: Cul-catalyzed further C(sp3)–H oxyfunctionalization for Cî€O formation. RSC Advances, 2014, 4, 15441.	1.7	16
284	The CH Activation/1,3â€Diyne Strategy: Highly Selective Direct Synthesis of Diverse Bisheterocycles by Rh ^{III} Catalysis. Angewandte Chemie - International Edition, 2014, 53, 9650-9654.	7.2	170
285	A cascade alkylarylation reaction of 2-isocyanobiphenyls with simple alkanes for 6-alkyl phenanthridines via dual C(sp ³)â€"H/C(sp ²)â€"H functionalizations. Organic and Biomolecular Chemistry, 2014, 12, 5839.	1.5	55
287	Selective fluorination of alkyl C–H bonds <i>via</i> photocatalysis. Chemical Communications, 2014, 50, 8211-8214.	2.2	143
289	Allylic Oxidation of Alkenes Catalyzed by a Copper–Aluminum Mixed Oxide. Organic Letters, 2014, 16, 1598-1601.	2.4	63
290	Mechanistic Study of a Switch in the Regioselectivity of Hydroheteroarylation of Styrene Catalyzed by Bimetallic Ni–Al through CH Activation. Chemistry - A European Journal, 2014, 20, 8099-8105.	1.7	47
291	Acyloxylation of Cyclic Enones: Synthesis of Densely Oxygenated Guaianolides. Journal of Organic Chemistry, 2014, 79, 6501-6509.	1.7	25
292	sp ³ â€"sp ² vs sp ³ â€"sp ³ Câ€"C Site Selectivity in Rh-Catalyzed Ring Opening of Benzocyclobutenol: A DFT Study. Journal of the American Chemical Society, 2014, 136, 169-178.	6.6	69

#	Article	IF	CITATIONS
293	Palladium-Catalyzed Ortho-Alkoxylation of 2-Aryl-1,2,3-triazoles. Journal of Organic Chemistry, 2014, 79, 6105-6112.	1.7	90
294	sp ³ C–H oxidation by remote H-radical shift with oxygen- and nitrogen-radicals: a recent update. Organic and Biomolecular Chemistry, 2014, 12, 4051-4060.	1.5	221
295	Directing Group-Controlled Regioselectivity in an Enzymatic C–H Bond Oxygenation. Journal of the American Chemical Society, 2014, 136, 4901-4904.	6.6	75
299	Radical-Mediated C―H Bond Activation. , 2015, , 21-58.		1
300	Pd-Catalyzed C―H Functionalization. , 2015, , 59-94.		1
301	Rhodiumâ€Catalyzed Direct Câ€"H Vinylation of Arenes To Access Styrenes with Vinyl Acetate as a Vinyl Source. European Journal of Organic Chemistry, 2015, 2015, 6135-6140.	1.2	24
302	Palladium atalyzed Direct CH Arylation of Isoxazoles at the 5â€Position. Angewandte Chemie - International Edition, 2015, 54, 9572-9576.	7.2	44
303	Oxidation of a Pâ^'C Bond under Mild Conditions. Chemistry - A European Journal, 2015, 21, 18594-18597.	1.7	6
304	Remote Hydroxylation through Radical Translocation and Polar Crossover. Angewandte Chemie - International Edition, 2015, 54, 7837-7841.	7.2	60
305	Cp*Rh ^{llI} â€Catalyzed Arylation of C(sp ³)H Bonds. Angewandte Chemie - International Edition, 2015, 54, 10280-10283.	7.2	86
306	Reactivity of Cationic Agostic and Carbene Structures Derived from Platinum(II) Metallacycles. Chemistry - A European Journal, 2015, 21, 8883-8896.	1.7	45
307	Unprecedented Transformation of a Directing Group Generated In Situ and Its Application in the Oneâ€Pot Synthesis of 2â€Alkenyl Benzonitriles. Chemistry - A European Journal, 2015, 21, 11807-11812.	1.7	17
309	Remote Hydroxylation through Radical Translocation and Polar Crossover. Angewandte Chemie, 2015, 127, 7948-7952.	1.6	20
311	Pd(OAc)2-catalyzed dehydrogenative C–H activation: An expedient synthesis of uracil-annulated β-carbolinones. Beilstein Journal of Organic Chemistry, 2015, 11, 1360-1366.	1.3	8
312	Iron complexes of tetramine ligands catalyse allylic hydroxyamination via a nitroso–ene mechanism. Beilstein Journal of Organic Chemistry, 2015, 11, 2549-2556.	1.3	4
313	Isomerization of Internal Alkynes to Iridium(III) Allene Complexes via C–H Bond Activation: Expanded Substrate Scope, and Progress towards a Catalytic Methodology. Molecules, 2015, 20, 20195-20205.	1.7	4
314	Rh(<scp>iii</scp>)-catalyzed oxime ether-directed heteroarylation of arene through oxidative C–H/C–H cross-coupling. Chemical Communications, 2015, 51, 6190-6193.	2.2	47
315	Acyloxylation of 1,4-Dioxanes and 1,4-Dithianes Catalyzed by a Copper–Iron Mixed Oxide. Journal of Organic Chemistry, 2015, 80, 6814-6821.	1.7	13

#	Article	IF	CITATIONS
316	Activation and Oxidation of Mesitylene C–H Bonds by (Phebox)Iridium(III) Complexes. Organometallics, 2015, 34, 2879-2888.	1.1	18
317	Chain Walking as a Strategy for Carbon–Carbon Bond Formation at Unreactive Sites in Organic Synthesis: Catalytic Cycloisomerization of Various 1, <i>n</i>)-Dienes. Journal of the American Chemical Society, 2015, 137, 16163-16171.	6.6	96
318	Studies towards the synthetic applicability of biocatalytic allylic oxidations with the lyophilisate of Pleurotus sapidus. Journal of Molecular Catalysis B: Enzymatic, 2015, 121, 15-21.	1.8	4
320	Siteâ€Selective and Metalâ€Free Aliphatic CH Oxidation Enabled Synthesis of [5,24,25â€D3]â€(25 <i>S</i>)â€Î" ⁷ â€Dafachronic acid. Chemistry - A European Journal, 2015, 21, 5345-5349.	1.7	7
321	Pd-Catalyzed Directed <i>ortho</i> -Câ€"H Alkenylation of Phenylalanine Derivatives. Journal of Organic Chemistry, 2015, 80, 3321-3331.	1.7	39
322	I ₂ - or NBS-Catalyzed Highly Efficient α-Hydroxylation of Ketones with Dimethyl Sulfoxide. Organic Letters, 2015, 17, 876-879.	2.4	133
323	Metal-Free Oxidative Functionalization of C(sp ³)â€"H Bond Adjacent to Oxygen and Radical Addition to Olefins. Organic Letters, 2015, 17, 1160-1163.	2.4	49
324	NIS/CHP-mediated reaction of isocyanides with hydrazones: access to aminopyrazoles. Organic Chemistry Frontiers, 2015, 2, 259-264.	2.3	27
325	Deprotonative C–H Silylation of Functionalized Arenes and Heteroarenes Using Trifluoromethyltrialkylsilane with Fluoride. Organic Letters, 2015, 17, 848-851.	2.4	33
326	Metal-catalysed azidation of tertiary C–H bonds suitable for late-stage functionalization. Nature, 2015, 517, 600-604.	13.7	372
327	Copperâ€Catalyzed Asymmetric Oxidative Crossâ€Coupling of 2â€Naphthols with Aryl Methyl Ketones. European Journal of Organic Chemistry, 2015, 2015, 1569-1574.	1.2	8
328	(Diacetoxyiodo)benzeneâ€Mediated Oxygenation of Benzylic C(sp ³)–H Bonds with <i>N</i> â€Hydroxyamides at Room Temperature. European Journal of Organic Chemistry, 2015, 2015, 1680-1684.	1.2	25
329	Nickel-catalyzed and benzoic acid-promoted direct sulfenylation of unactivated arenes. Chemical Communications, 2015, 51, 3582-3585.	2.2	112
330	Dual Role of Rh(III) Catalyst Enables Regioselective Halogenation of (Electron-Rich) Heterocycles. Journal of the American Chemical Society, 2015, 137, 1448-1451.	6.6	119
331	Rhodium-catalysed direct C–H allylation of N-sulfonyl ketimines with allyl carbonates. Chemical Communications, 2015, 51, 2980-2983.	2.2	49
332	Catalytic behaviour of a novel Fe(<scp>iii</scp>) Schiff base complex in the mild oxidation of cyclohexane. Catalysis Science and Technology, 2015, 5, 1801-1812.	2.1	28
333	Metal-Free Oxidative Functionalization of a C(sp ³)â€"H Bond Adjacent to Nitrogen and Intramolecular Aromatic Cyclization for the Preparation of 6-Amidophenanthridines. Journal of Organic Chemistry, 2015, 80, 3151-3158.	1.7	41
334	Cu-catalyzed selective cascade sp ³ Câ€"H bond oxidative functionalization towards isoxazoline derivatives. Chemical Communications, 2015, 51, 6308-6311.	2.2	33

#	Article	IF	Citations
335	Mechanism of the Palladium-Catalyzed Arene Câ€"H Acetoxylation: A Comparison of Catalysts and Ligand Effects. Journal of the American Chemical Society, 2015, 137, 3109-3118.	6.6	138
336	Copper-catalyzed aerobic cascade cycloamination and acyloxylation: a direct approach to 4-acyloxy-1H-pyrazoles. Organic and Biomolecular Chemistry, 2015, 13, 4642-4646.	1.5	9
337	Stable organoplatinum complexes as intermediates and models inÂhydrocarbon functionalization. Journal of Organometallic Chemistry, 2015, 793, 4-16.	0.8	33
338	Cp*Ir(III)-Catalyzed Mild and Broad Câ^'H Arylation of Arenes and Alkenes with Aryldiazonium Salts Leading to the External Oxidant-Free Approach. Journal of the American Chemical Society, 2015, 137, 8584-8592.	6.6	125
339	Palladium-Catalyzed Intramolecular Insertion of Alkenes into the Carbon–Nitrogen Bond of β-Lactams. Journal of the American Chemical Society, 2015, 137, 8708-8711.	6.6	54
340	Copper-catalyzed oxidative C–H/C–H cross-coupling of benzamides and thiophenes. Chemical Communications, 2015, 51, 12823-12826.	2.2	66
341	Iron(III) acetylacetonate catalyzed tandem oxidative addition/cyclization of simple amides with alkenes: a convenient process toÂsynthesize 3-amido oxindoles. Tetrahedron, 2015, 71, 6997-7002.	1.0	8
342	Dynamic behaviour of monohaptoallylpalladium species: internal coordination as a driving force in allylic alkylation chemistry. Chemical Science, 2015, 6, 5734-5739.	3.7	8
343	Metal-free regioselective C-3 acetoxylation of N-substituted indoles: crucial impact of nitrogen-substituent. RSC Advances, 2015, 5, 57472-57481.	1.7	20
344	DBU-promoted cyclization of vinyl isocyanides with ethers via the functionalization of a C(sp3)–H bond for the synthesis of isoquinolines. RSC Advances, 2015, 5, 64961-64965.	1.7	15
345	Pyridine-enabled copper-promoted cross dehydrogenative coupling of C(sp ²)â€"H and unactivated C(sp ³)â€"H bonds. Chemical Science, 2015, 6, 5978-5983.	3.7	61
346	Study of Sustainability and Scalability in the Cp*Rh(III)-Catalyzed Direct C–H Amidation with 1,4,2-Dioxazol-5-ones. Organic Process Research and Development, 2015, 19, 1024-1029.	1.3	123
347	Copper-catalyzed diastereoselective aerobic intramolecular dehydrogenative coupling of hydrazones <i>via</i> sp ³ Câ€"H functionalization. Chemical Science, 2015, 6, 5882-5890.	3.7	34
348	Rh ^I /Rh ^{III} catalyst-controlled divergent aryl/heteroaryl C–H bond functionalization of picolinamides with alkynes. Chemical Science, 2015, 6, 5802-5814.	3.7	100
349	Enzymatic hydroxylation of an unactivated methylene Câ€"H bond guided by molecular dynamics simulations. Nature Chemistry, 2015, 7, 653-660.	6.6	100
350	Enhanced Reactivity in Hydrogen Atom Transfer from Tertiary Sites of Cyclohexanes and Decalins via Strain Release: Equatorial C–H Activation vs Axial C–H Deactivation. Journal of Organic Chemistry, 2015, 80, 4710-4715.	1.7	28
351	Photocatalyzed Site-Selective C–H to C–C Conversion of Aliphatic Nitriles. Organic Letters, 2015, 17, 1292-1295.	2.4	53
352	Visible-Light-Promoted Remote C(sp ³)–H Amidation and Chlorination. Organic Letters, 2015, 17, 1894-1897.	2.4	187

#	Article	IF	CITATIONS
353	Asymmetric C–H functionalization involving organocatalysis. Tetrahedron Letters, 2015, 56, 3703-3714.	0.7	36
354	Reusable directing groups [8-aminoquinoline, picolinamide, sulfoximine] in C(sp3)–H bond activation: present and future. Tetrahedron, 2015, 71, 4450-4459.	1.0	182
355	Palladiumâ€Catalyzed Domino Mizoroki–Heck/Intermolecular C(sp ³)–H Activation Sequence: An Approach to the Formation of C(sp ³)–C(sp ³) Bonds. European Journal of Organic Chemistry, 2015, 2015, 2579-2584.	1.2	15
356	Palladium-catalyzed oxygenation of C(sp ²)â€"H and C(sp ³)â€"H bonds under the assistance of oxalyl amide. RSC Advances, 2015, 5, 28430-28434.	1.7	33
357	Arene Oxidation with Malonoyl Peroxides. Organic Letters, 2015, 17, 2618-2621.	2.4	41
358	Redox-Neutral Palladium-Catalyzed C–H Functionalization To Form Isoindolinones with Carboxylic Acids or Anhydrides as Readily Available Starting Materials. Organic Letters, 2015, 17, 2764-2767.	2.4	57
359	Cp*Rh(<scp>iii</scp>) and Cp*Ir(<scp>iii</scp>)-catalysed redox-neutral C–H arylation with quinone diazides: quick and facile synthesis of arylated phenols. Chemical Communications, 2015, 51, 10240-10243.	2.2	87
360	Convergent Strategies in Total Syntheses of Complex Terpenoids. Chemical Reviews, 2015, 115, 9207-9231.	23.0	136
361	P450 Biotechnology. , 2015, , 451-520.		7
362	A Unique Alkylation of Azobenzenes with Allyl Acetates by Rh ^{III} -Catalyzed C–H Functionalization. Organic Letters, 2015, 17, 2450-2453.	2.4	46
363	Ruthenium-Catalyzed <i>ortho</i> -C–H Mono- and Di-imidation of Arenes with <i>N</i> -Tosyloxyphthalimide. Organic Letters, 2015, 17, 1886-1889.	2.4	69
364	Palladium(II)-Catalyzed Directed Trifluoromethylthiolation of Unactivated C(sp ³)–H Bonds. Journal of Organic Chemistry, 2015, 80, 4204-4212.	1.7	105
365	Direct Aerobic Carbonylation of C(sp ²)â€"H and C(sp ³)â€"H Bonds through Ni/Cu Synergistic Catalysis with DMF as the Carbonyl Source. Journal of the American Chemical Society, 2015, 137, 4924-4927.	6.6	223
366	Palladiumâ€Catalyzed Regioselective Crossâ€Dehydrogenative Coupling of Benzofurans with Uracils at Room Temperature. European Journal of Organic Chemistry, 2015, 2015, 2796-2800.	1.2	24
367	Mechanistic Studies on the Rh(III)-Mediated Amido Transfer Process Leading to Robust C–H Amination with a New Type of Amidating Reagent. Journal of the American Chemical Society, 2015, 137, 4534-4542.	6.6	371
368	Understanding the Effects of Bidentate Directing Groups: A Unified Rationale for sp2 and sp3 C–H Bond Activations. Journal of Organic Chemistry, 2015, 80, 4672-4682.	1.7	58
369	Total Synthesis of Gelsemoxonine through a Spirocyclopropane Isoxazolidine Ring Contraction. Journal of the American Chemical Society, 2015, 137, 6084-6096.	6.6	77
370	Transition-Metal-Catalyzed Cleavage of C–N Single Bonds. Chemical Reviews, 2015, 115, 12045-12090.	23.0	547

#	Article	IF	Citations
371	From Indoles to Carbazoles: Tandem Cp*Rh(III)-Catalyzed C–H Activation/Brønsted Acid-Catalyzed Cyclization Reactions. ACS Catalysis, 2015, 5, 6453-6457.	5.5	136
372	Cu(<scp>ii</scp>)-catalyzed enantioselective oxygen atom transfer from oxaziridine to oxindole derivatives with chiral phenanthroline. Organic and Biomolecular Chemistry, 2015, 13, 11499-11506.	1.5	24
373	Selective remote Câ€"H sulfonylation of aminoquinolines with arylsulfonyl chlorides via copper catalysis. Chemical Communications, 2015, 51, 16928-16931.	2.2	126
374	Oxidative cyclization of dialdehydes with alcohols and 1,3-dicarbonyl compounds under Rh(III)/Cu(II) conditions. Tetrahedron, 2015, 71, 9264-9270.	1.0	10
375	Oxidative Difunctionalization of Alkynoates through Alkylation and Migration Decarboxylative Arylation. Organic Letters, 2015, 17, 5524-5527.	2.4	52
376	Palladium-catalyzed methylene C(sp3)–H arylation of the adamantyl scaffold. Organic Chemistry Frontiers, 2015, 2, 1374-1378.	2.3	17
377	Phosphorylation of C–H bonds of aromatic compounds using metals and metal complexes. Russian Chemical Reviews, 2015, 84, 917-951.	2.5	56
378	C–H Bond Oxidation Catalyzed by an Imine-Based Iron Complex: A Mechanistic Insight. Inorganic Chemistry, 2015, 54, 10141-10152.	1.9	36
379	Oâ€"H hydrogen bonding promotes H-atom transfer from α Câ€"H bonds for C-alkylation of alcohols. Science, 2015, 349, 1532-1536.	6.0	414
380	Diverse sp3 Câ^'H functionalization through alcohol \hat{l}^2 -sulfonyloxylation. Nature Chemistry, 2015, 7, 829-834.	6.6	98
381	Computational Insight into the Mechanism of Alkane Hydroxylation by Non-heme Fe(PyTACN) Iron Complexes. Effects of the Substrate and Solvent. Inorganic Chemistry, 2015, 54, 8223-8236.	1.9	24
382	Palladium-Catalyzed Oxalyl Amide-Directed Î ³ -Arylation of Aliphatic Amines. Journal of Organic Chemistry, 2015, 80, 9297-9306.	1.7	29
383	Site-Selective Reactions with Peptide-Based Catalysts. Topics in Current Chemistry, 2015, 372, 157-201.	4.0	48
384	Iridium(III)-Catalyzed Direct Arylation of C–H Bonds with Diaryliodonium Salts. Journal of the American Chemical Society, 2015, 137, 12231-12240.	6.6	146
385	Recent Advances in the Selective Oxidation of Alkyl Câ€"H Bonds Catalyzed by Iron Coordination Complexes. Topics in Current Chemistry, 2015, 372, 27-54.	4.0	14
386	Tuning Reactivity and Selectivity in Hydrogen Atom Transfer from Aliphatic C–H Bonds to Alkoxyl Radicals: Role of Structural and Medium Effects. Accounts of Chemical Research, 2015, 48, 2895-2903.	7.6	192
387	A Co(II)-catalyzed aerobic intramolecular C–O bond formation via selective (sp3)C–H bond activation: facile access to dihydro-benzoxazinone derivatives. Tetrahedron Letters, 2015, 56, 482-484.	0.7	26
388	P450-catalyzed regio- and stereoselective oxidative hydroxylation ofÂdisubstituted cyclohexanes: creation of three centers of chirality in a single CH-activation event. Tetrahedron, 2015, 71, 470-475.	1.0	11

#	Article	IF	Citations
389	Silverâ€Catalyzed Arylation of (Hetero)arenes by Oxidative Decarboxylation of Aromatic Carboxylic Acids. Angewandte Chemie - International Edition, 2015, 54, 2199-2203.	7.2	182
390	Bi(OTf)3-catalyzed C–H bond functionalization of azaarenes for the facile access to oxindoles featuring quaternary carbon centers. RSC Advances, 2015, 5, 8285-8288.	1.7	20
391	Transition-metal-catalyzed etherification of unactivated C H bonds. Tetrahedron Letters, 2015, 56, 15-22.	0.7	78
392	Pd-catalyzed direct arylation of electron-deficient polyfluoroarenes with aryliodine(III) diacetates. Tetrahedron Letters, 2015, 56, 123-126.	0.7	12
393	Optimization by Response Surface Methodology (RSM) of the Kharasch–Sosnovsky Oxidation of Valencene. Organic Process Research and Development, 2015, 19, 1662-1666.	1.3	14
394	Application of Two Direct C(sp ³)–H Functionalizations for Total Synthesis of (+)-Lactacystin. Organic Letters, 2015, 17, 90-93.	2.4	43
395	C–H arylation of triphenylene, naphthalene and related arenes using Pd/C. Chemical Science, 2015, 6, 1816-1824.	3.7	87
396	\hat{l}^2 -Cyclodextrin catalysed C–C bond formation via C(sp ³)–H functionalization of 2-methyl azaarenes with diones in aqueous medium. Green Chemistry, 2015, 17, 848-851.	4.6	43
397	Transition metal-catalyzed direct remote C–H functionalization of alkyl groups via C(sp ³)–H bond activation. Organic Chemistry Frontiers, 2015, 2, 169-178.	2.3	161
398	Metal-free oxidative C(sp ³)–H bond functionalization of alkanes and alkylation-initiated radical 1,2-aryl migration in α,α-diaryl allylic alcohols. Chemical Communications, 2015, 51, 599-602.	2.2	91
399	Pd-Catalyzed Monoselective <i>ortho</i> -Câ€"H Alkylation of <i>N</i> -Quinolyl Benzamides: Evidence for Stereoretentive Coupling of Secondary Alkyl Iodides. Journal of the American Chemical Society, 2015, 137, 531-539.	6.6	152
400	Expanding the toolbox of organic chemists: directed evolution of P450 monooxygenases as catalysts in regio- and stereoselective oxidative hydroxylation. Chemical Communications, 2015, 51, 2208-2224.	2.2	135
401	Tandem Catalysis: Rh(III)-Catalyzed C–H Allylation/Pd(II)-Catalyzed <i>N</i> -Allylation Toward the Synthesis of Vinyl-Substituted <i>N</i> -Heterocycles. ACS Catalysis, 2015, 5, 210-214.	5.5	101
402	Palladium-catalyzed oxidative cross-coupling of azole-4-carboxylates with indoles: an approach to the synthesis of pimprinine. Organic and Biomolecular Chemistry, 2015, 13, 1243-1248.	1.5	17
403	Synthesis, characterization and application of iron N-substituted imidazole complexes with the motif ClFeL4OFeCl3. Inorganic Chemistry Communication, 2015, 51, 4-8.	1.8	4
404	Rhodium(<scp>iii</scp>)-catalyzed C–H/C–C activation sequence: vinylcyclopropanes as versatile synthons in direct C–H allylation reactions. Chemical Communications, 2015, 51, 77-80.	2.2	106
405	CH Bond Activation as a Powerful Tool in the Construction of Biologically Active Nitrogen-Containing Heterocycles. Studies in Natural Products Chemistry, 2016, , 299-340.	0.8	6
406	New Trends in Oxidative Functionalization of Carbon–Hydrogen Bonds: A Review. Catalysts, 2016, 6, 50.	1.6	167

#	Article	IF	CITATIONS
407	Direct Selective Oxidative Functionalization of Câ€"H Bonds with H2O2: Mn-Aminopyridine Complexes Challenge the Dominance of Non-Heme Fe Catalysts. Molecules, 2016, 21, 1454.	1.7	35
408	Cascade alkylarylation of substituted $\langle i \rangle N \langle i \rangle$ -allylbenzamides for the construction of dihydroisoquinolin-1(2 $\langle i \rangle H \langle i \rangle$)-ones and isoquinoline-1,3(2 $\langle i \rangle H \langle i \rangle$,4 $\langle i \rangle H \langle i \rangle$)-diones. Beilstein Journal of Organic Chemistry, 2016, 12, 301-308.	1.3	31
409	Regioselective, Asymmetric Formal Hydroamination of Unactivated Internal Alkenes. Angewandte Chemie - International Edition, 2016, 55, 776-780.	7.2	122
410	Readily Accessible Bulky Iron Catalysts exhibiting Site Selectivity in the Oxidation of Steroidal Substrates. Angewandte Chemie - International Edition, 2016, 55, 5776-5779.	7.2	90
411	1,1,1,3,3,3â€Hexafluoroisopropanol as a Remarkable Medium for Atroposelective Sulfoxideâ€Directed Fujiwara–Moritani Reaction with Acrylates and Styrenes. Chemistry - A European Journal, 2016, 22, 1735-1743.	1.7	111
412	Microwaveâ€Assisted Copperâ€Catalyzed Oxidative Cyclization of Acrylamides with Nonâ€Activated Ketones. Chemistry - A European Journal, 2016, 22, 5878-5882.	1.7	36
413	Total Synthesis of Δ ¹² â€Prostaglandin J ₃ : Evolution of Synthetic Strategies to a Streamlined Process. Chemistry - A European Journal, 2016, 22, 8559-8570.	1.7	22
416	Generation of Alkoxyl Radicals by Photoredox Catalysis Enables Selective C(sp ³)â^'H Functionalization under Mild Reaction Conditions. Angewandte Chemie, 2016, 128, 1904-1907.	1.6	88
417	Readily Accessible Bulky Iron Catalysts exhibiting Site Selectivity in the Oxidation of Steroidal Substrates. Angewandte Chemie, 2016, 128, 5870-5873.	1.6	67
418	A Hydrazoneâ€Based <i>exo</i> à€Directingâ€Group Strategy for βâ€Câ°'H Oxidation of Aliphatic Amines. Angewandte Chemie, 2016, 128, 5385-5389.	1.6	18
419	A Formal Enantiospecific Synthesis of 7,20â€Diisocyanoadociane. Angewandte Chemie, 2016, 128, 7296-7299.	1.6	9
420	A Formal Enantiospecific Synthesis of 7,20â€Diisocyanoadociane. Angewandte Chemie - International Edition, 2016, 55, 7180-7183.	7.2	21
421	Functionalization of tetra- and octahydroacridine derivatives through Michael addition. Tetrahedron Letters, 2016, 57, 3485-3487.	0.7	11
422	An Iminium Salt Organocatalyst for Selective Aliphatic C–H Hydroxylation. Organic Letters, 2016, 18, 3826-3829.	2.4	30
423	A silver triflate-catalyzed cascade of in situ-oxidation and allylation of arylbenzylamines. Tetrahedron Letters, 2016, 57, 3444-3448.	0.7	11
424	Peroxygenaseâ€Catalyzed Oxyfunctionalization Reactions Promoted by the Complete Oxidation of Methanol. Angewandte Chemie - International Edition, 2016, 55, 798-801.	7.2	128
425	Gold Nanoparticle–Polydopamine–Reduced Graphene Oxide Ternary Nanocomposite as an Efficient Catalyst for Selective Oxidation of Benzylic C(sp ³)â^'H Bonds Under Mild Conditions. ChemCatChem, 2016, 8, 1825-1835.	1.8	46
426	Beyond the Dimer and Trimer: Tetraspiro[2.1.2 5 .1.2 9 .1.2 13 .1 3] hexadecaneâ€1,3,5,7â€tetraone—the Cycli Tetramer of Carbonylcyclopropane. Chemistry - A European Journal, 2016, 22, 3996-3999.	c _{1.7}	6

#	Article	IF	CITATIONS
427	C–H Functionalization on Carbohydrates. European Journal of Organic Chemistry, 2016, 2016, 2740-2756.	1.2	34
428	Nonâ€Heme Imineâ€Based Iron Complexes as Catalysts for Oxidative Processes. Advanced Synthesis and Catalysis, 2016, 358, 843-863.	2.1	91
429	Die Erschließung von Wirkstoffmetaboliten durch übergangsmetallkatalysierte Câ€Hâ€Oxidation: die Leber als Inspiration für die Synthese. Angewandte Chemie, 2016, 128, 14430-14451.	1.6	23
430	Synthesis of Lactones via C–H Functionalization of Nonactivated C(sp ³)–H Bonds. Organic Letters, 2016, 18, 6472-6475.	2.4	54
431	Chiral-Substituted Poly- <i>N</i> -vinylpyrrolidinones and Bimetallic Nanoclusters in Catalytic Asymmetric Oxidation Reactions. Journal of the American Chemical Society, 2016, 138, 16839-16848.	6.6	49
432	Enhanced Structural Variety of Nonplanar <i>N</i> -Oxyl Radical Catalysts and Their Application to the Aerobic Oxidation of Benzylic C–H Bonds. Chemical and Pharmaceutical Bulletin, 2016, 64, 737-753.	0.6	20
433	Copper-Catalyzed Oxidative Cyclization of Carboxylic Acids. Organic Letters, 2016, 18, 6308-6311.	2.4	47
434	Oxidative Entry into the <i>Illicium</i> Sesquiterpenes: Enantiospecific Synthesis of (+)-Pseudoanisatin. Journal of the American Chemical Society, 2016, 138, 16616-16619.	6.6	67
435	Asymmetric C–H activation as a modern strategy towards expedient synthesis of steganone. Tetrahedron, 2016, 72, 5238-5245.	1.0	23
436	The activation of C H bonds using an EmimAc/MWCNTs composite: a comparison of the composite used as electrolyte and electrode in aqueous media. Electrochimica Acta, 2016, 207, 308-312.	2.6	2
437	A breathing MOF: direct crystallographic observation of the site-selective C(sp ³)–H functionalization. RSC Advances, 2016, 6, 51936-51940.	1.7	9
438	Mild metal-catalyzed C–H activation: examples and concepts. Chemical Society Reviews, 2016, 45, 2900-2936.	18.7	1,526
439	Directing activator-assisted regio- and oxidation state-selective aerobic oxidation of secondary C(sp ³)â€"H bonds in aliphatic alcohols. Organic and Biomolecular Chemistry, 2016, 14, 4378-4381.	1.5	16
440	Native functionality in triple catalytic cross-coupling: sp ³ C–H bonds as latent nucleophiles. Science, 2016, 352, 1304-1308.	6.0	501
441	Undirected, Homogeneous C–H Bond Functionalization: Challenges and Opportunities. ACS Central Science, 2016, 2, 281-292.	5. 3	614
442	An Approach to Tetraphenylenes via Pd-Catalyzed C–H Functionalization. Organic Letters, 2016, 18, 2032-2035.	2.4	59
443	Palladium-catalyzed sp3 C–H oxidation using oxime as directing group—applications in total synthesis. Tetrahedron Letters, 2016, 57, 2692-2696.	0.7	33
444	Hydrogen atom transfer from tertiary alkanamides to the cumyloxyl radical. The role of substrate structure on alkali and alkaline earth metal ion induced C–H bond deactivation. Tetrahedron, 2016, 72, 7757-7763.	1.0	6

#	Article	IF	CITATIONS
445	New chemistry from natural product biosynthesis. Biochemical Society Transactions, 2016, 44, 738-744.	1.6	7
446	Amide-directed photoredox-catalysed C–C bond formation at unactivated sp3 C–H bonds. Nature, 2016, 539, 272-275.	13.7	469
447	Catalytic alkylation of remote C–H bonds enabled by proton-coupled electron transfer. Nature, 2016, 539, 268-271.	13.7	623
448	Accessing Drug Metabolites via Transitionâ€Metal Catalyzed Câ^'H Oxidation: The Liver as Synthetic Inspiration. Angewandte Chemie - International Edition, 2016, 55, 14218-14238.	7.2	94
449	Stereoselective oxidation of alkanes with m-CPBA as an oxidant and cobalt complex with isoindole-based ligands as catalysts. RSC Advances, 2016, 6, 93756-93767.	1.7	31
450	Fine Control over Site and Substrate Selectivity in Hydrogen Atom Transfer-Based Functionalization of Aliphatic C–H Bonds. Journal of Organic Chemistry, 2016, 81, 9269-9278.	1.7	25
451	Versatile Cp*Rh(III)-Catalyzed Selective <i>Ortho</i> -Chlorination of Arenes and Heteroarenes. ACS Catalysis, 2016, 6, 7839-7843.	5.5	48
452	Combinations of Aminocatalysts and Metal Catalysts: A Powerful Cooperative Approach in Selective Organic Synthesis. Chemical Reviews, 2016, 116, 13512-13570.	23.0	384
453	Aliphatic C–H azidation through a peroxydisulfate induced radical pathway. Organic Chemistry Frontiers, 2016, 3, 1326-1330.	2.3	24
454	$\langle i \rangle N \langle i \rangle$ -lodosuccinimide-Initiated Spirocyclopropanation of Styrenes with 1,3-Dicarbonyl Compound for the Synthesis of Spirocyclopropanes. Journal of Organic Chemistry, 2016, 81, 6546-6553.	1.7	33
455	Palladium-Catalyzed Carbonylative Cyclization of Amines via γ-C(sp ³)–H Activation: Late-Stage Diversification of Amino Acids and Peptides. ACS Catalysis, 2016, 6, 6868-6882.	5 . 5	121
457	Free-Radical Triggered Ordered Domino Reaction: An Approach to C–C Bond Formation via Selective Functionalization of α-Hydroxyl-(sp ³)C–H in Fluorinated Alcohols. Organic Letters, 2016, 18, 4470-4473.	2.4	44
458	A Free-Radical-Promoted Site-Specific Cross-Dehydrogenative-Coupling of <i>N</i> -Heterocycles with Fluorinated Alcohols. Organic Letters, 2016, 18, 4662-4665.	2.4	40
459	Radicals: Reactive Intermediates with Translational Potential. Journal of the American Chemical Society, 2016, 138, 12692-12714.	6.6	754
460	Catalytic Multisite-Selective Acetoxylation Reactions at sp ² vs sp ³ C–H Bonds in Cyclic Olefins. Organic Letters, 2016, 18, 5014-5017.	2.4	42
461	Synthesis and evaluation of phenylalanine-derived trifluoromethyl ketones for peptide-based oxidation catalysis. Bioorganic and Medicinal Chemistry, 2016, 24, 4871-4874.	1.4	12
462	Câ^'H Acetoxylationâ€Based Chemical Synthesis of 17 βâ€Hydroxymethylâ€17 αâ€methylâ€18â€norai Chemistry - A European Journal, 2016, 22, 14171-14174.	ndrostâ€1	3â €e ne Sterc
463	Air activation by a metal-free photocatalyst for "totally-green―hydrocarbon selective oxidation. Catalysis Science and Technology, 2016, 6, 7252-7258.	2.1	32

#	Article	IF	CITATIONS
464	C–H Xanthylation: A Synthetic Platform for Alkane Functionalization. Journal of the American Chemical Society, 2016, 138, 13854-13857.	6.6	117
465	Terminalâ€Selective Functionalization of Alkyl Chains by Regioconvergent Crossâ€Coupling. Angewandte Chemie, 2016, 128, 15013-15017.	1.6	46
466	Synthesis of Atisine, Ajaconine, Denudatine, and Hetidine Diterpenoid Alkaloids by a Bioinspired Approach. Angewandte Chemie, 2016, 128, 15896-15900.	1.6	14
467	Synthesis of Atisine, Ajaconine, Denudatine, and Hetidine Diterpenoid Alkaloids by a Bioinspired Approach. Angewandte Chemie - International Edition, 2016, 55, 15667-15671.	7.2	55
468	Radical-promoted site-specific cross dehydrogenative coupling of heterocycles with nitriles. Chemical Communications, 2016, 52, 14278-14281.	2.2	44
469	Terminalâ€Selective Functionalization of Alkyl Chains by Regioconvergent Crossâ€Coupling. Angewandte Chemie - International Edition, 2016, 55, 14793-14797.	7.2	99
470	Enantiopure Sulfinyl Aniline as a Removable and Recyclable Chiral Auxiliary for Asymmetric C(sp ³)â~H Bond Activation. Chemistry - A European Journal, 2016, 22, 17397-17406.	1.7	50
471	Room-temperature direct benzylic oxidation catalyzed by cobalt(II) perchlorate. Tetrahedron Letters, 2016, 57, 5278-5280.	0.7	15
472	Palladiumâ€Catalyzed Remote <i>ortho</i> â€Cï£;H Alkenylation of Alkyl Aryl Sulfones: Access to Densely Functionalized Indane Derivatives. Advanced Synthesis and Catalysis, 2016, 358, 1065-1072.	2.1	18
473	Rhodiumâ€Catalyzed Intramolecular Câ^'H Bond Activation with Triazoles: Preparation of Stereodefined Pyrrolidines and Other Related Cyclic Compounds. Chemistry - A European Journal, 2016, 22, 890-895.	1.7	26
474	Generation of Alkoxyl Radicals by Photoredox Catalysis Enables Selective C(sp ³)â^H Functionalization under Mild Reaction Conditions. Angewandte Chemie - International Edition, 2016, 55, 1872-1875.	7.2	248
475	A Hydrazoneâ€Based <i>exo</i> àêDirectingâ€Group Strategy for βâ€Câ^'H Oxidation of Aliphatic Amines. Angewandte Chemie - International Edition, 2016, 55, 5299-5303.	7.2	83
476	Copper-Catalyzed Aerobic Enantioselective Cross-Dehydrogenative Coupling of N-Aryl Glycine Esters with Terminal Alkynes. Organic Letters, 2016, 18, 2982-2985.	2.4	84
477	Directed alkynylation of unactivated C(sp ³)â€"H bonds with ethynylbenziodoxolones mediated by DTBP. Green Chemistry, 2016, 18, 4185-4188.	4.6	23
478	Enantioselective Intermolecular C–H Functionalization of Allylic and Benzylic sp3 C–H Bonds Using N-Sulfonyl-1,2,3-triazoles. Organic Letters, 2016, 18, 3118-3121.	2.4	53
479	Concise access toward chiral hydroxy phenylpropanoids: formal synthesis of virolongin B; kigelin; kurasoin A; 4-hydroxysattabacin, and actinopolymorphol A. Tetrahedron Letters, 2016, 57, 3371-3375.	0.7	5
480	Ag ₃ PW ₁₂ O ₄₀ /C ₃ N ₄ nanocomposites as an efficient photocatalyst for hydrocarbon selective oxidation. RSC Advances, 2016, 6, 60394-60399.	1.7	12
481	Pd-Catalyzed Coupling of γ-C(sp ³)–H Bonds of Oxalyl Amide-Protected Amino Acids with Heteroaryl and Aryl Iodides. Journal of Organic Chemistry, 2016, 81, 5681-5689.	1.7	23

#	Article	IF	CITATIONS
482	Benzylic C(sp ³) $\hat{a}\in H$ Functionalization for C $\hat{a}\in N$ and C $\hat{a}\in D$ Bond Formation via Visible Light Photoredox Catalysis. Journal of Organic Chemistry, 2016, 81, 7161-7171.	1.7	89
483	lridium(<scp>iii</scp>)-catalyzed regioselective direct arylation of sp ² C–H bonds with diaryliodonium salts. Organic and Biomolecular Chemistry, 2016, 14, 7109-7113.	1.5	27
485	A visible-light-promoted radical reaction system for azidation and halogenation of tertiary aliphatic C–H bonds. Chemical Science, 2016, 7, 2679-2683.	3.7	159
486	Direct difunctionalization of activated alkynes via domino oxidative benzylation/1,4-aryl migration/decarboxylation reactions under metal-free conditions. Chemical Communications, 2016, 52, 3175-3178.	2.2	34
487	Recent Advances in C–H Functionalization. Journal of Organic Chemistry, 2016, 81, 343-350.	1.7	504
488	Pd(<scp>ii</scp>)-catalyzed β-C–H arylation of O-methyl ketoximes with iodoarenes. Organic Chemistry Frontiers, 2016, 3, 380-384.	2.3	25
489	Directing group assisted meta-hydroxylation by C–H activation. Chemical Science, 2016, 7, 3147-3153.	3.7	140
490	Evolution of C–H Bond Functionalization from Methane to Methodology. Journal of the American Chemical Society, 2016, 138, 2-24.	6.6	632
491	From DNA to catalysis: a thymine-acetate ligated non-heme iron(<scp>iii</scp>) catalyst for oxidative activation of aliphatic C–H bonds. Chemical Communications, 2016, 52, 2043-2046.	2.2	25
492	A DFT Study on Rh-Catalyzed Asymmetric Dearomatization of 2-Naphthols Initiated with C–H Activation: A Refined Reaction Mechanism and Origins of Multiple Selectivity. ACS Catalysis, 2016, 6, 262-271.	5.5	63
493	Palladium-catalyzed decarboxylative alkoxycarbonylation of potassium aryltrifluoroborates with potassium oxalate monoesters. Organic Chemistry Frontiers, 2016, 3, 243-250.	2.3	13
494	Nineteen-step total synthesis of (+)-phorbol. Nature, 2016, 532, 90-93.	13.7	185
495	Palladium atalyzed Câ^'H Bond <i>Ortho</i> Acylation/Annulation with Toluene Derivatives. Asian Journal of Organic Chemistry, 2016, 5, 62-65.	1.3	20
496	Synthesis, isolation and characterization of dinuclear oxidodiiron(III) complexes modified by monodentate pyridines. Inorganic Chemistry Communication, 2016, 66, 73-78.	1.8	0
497	Spirocyclic Sultam and Heterobiaryl Synthesis through Rh-Catalyzed Cross-Dehydrogenative Coupling of <i>N</i> -Sulfonyl Ketimines and Thiophenes or Furans. Organic Letters, 2016, 18, 1088-1091.	2.4	62
498	Collaborative Total Synthesis: Routes to (±)-Hippolachnin A Enabled by Quadricyclane Cycloaddition and Late-Stage C–H Oxidation. Journal of the American Chemical Society, 2016, 138, 2437-2442.	6.6	54
499	Copper-catalyzed oxidative carbon–heteroatom bond formation: a recent update. Chemical Society Reviews, 2016, 45, 4504-4523.	18.7	155
500	Trends in applying C–H oxidation to the total synthesis of natural products. Natural Product Reports, 2016, 33, 562-581.	5.2	105

#	Article	IF	CITATIONS
501	A remarkable solvent effect of fluorinated alcohols on transition metal catalysed C–H functionalizations. Organic Chemistry Frontiers, 2016, 3, 394-400.	2.3	172
502	Ferrous iron and α-ketoglutarate-dependent dioxygenases in the biosynthesis of microbial natural products. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 453-470.	1.1	93
503	Mechanism and Regioselectivity of Rh(III)-Catalyzed Intermolecular Annulation of Aryl-Substituted Diazenecarboxylates and Alkenes: DFT Insights. Organometallics, 2016, 35, 450-455.	1.1	11
504	Triazole-Directed Pd-Catalyzed C(sp ²)–H Oxygenation of Arenes and Alkenes. Organic Letters, 2016, 18, 1080-1083.	2.4	57
505	Cascade Oxidative Coupling/Cyclization: A Gateway to 3-Amino Polysubstituted Five-Membered Heterocycles. Journal of Organic Chemistry, 2016, 81, 2327-2339.	1.7	30
506	A photosensitizing decatungstate-based MOF as heterogeneous photocatalyst for the selective C–H alkylation of aliphatic nitriles. Chemical Communications, 2016, 52, 4714-4717.	2.2	49
507	Recent Advances in Non-directed C(sp3)–H Bond Functionalization. Springer Briefs in Molecular Science, 2016, , 25-59.	0.1	4
508	Direct Oxidation of Aliphatic C–H Bonds in Amino-Containing Molecules under Transition-Metal-Free Conditions. Organic Letters, 2016, 18, 1234-1237.	2.4	34
509	Iron-catalyzed arylation of α-aryl-α-diazoesters. Organic and Biomolecular Chemistry, 2016, 14, 5516-5519.	1.5	39
510	Ligand-Promoted Pd(II)-Catalyzed Functionalization of Unactivated C(sp ³)–H Bond: Regioand Stereoselective Synthesis of Arylated Rimantadine Derivatives. ACS Catalysis, 2016, 6, 769-774.	5.5	24
511	Chemo- and regioselective oxygenation of C(sp ³)â€"H bonds in aliphatic alcohols using a covalently bound directing activator and atmospheric oxygen. Chemical Science, 2016, 7, 1904-1909.	3.7	38
512	Intramolecular hydrogen transfer reactions catalyzed by pentamethylcyclopentadienyl rhodium and cobalt olefin complexes: Mechanistic studies. Polyhedron, 2016, 103, 51-57.	1.0	1
513	The medicinal chemist's toolbox for late stage functionalization of drug-like molecules. Chemical Society Reviews, 2016, 45, 546-576.	18.7	1,243
514	Metal-free tandem oxidative C(sp ³)â€"H bond functionalization of alkanes and dearomatization of N-phenyl-cinnamamides: access to alkylated 1-azaspiro[4.5]decanes. Chemical Communications, 2016, 52, 477-480.	2.2	43
515	Alkane oxidation catalysed by a self-folded multi-iron complex. Supramolecular Chemistry, 2017, 29, 120-128.	1.5	2
516	Visibleâ€Lightâ€Mediated Remote Aliphatic Câ°'H Functionalizations through a 1,5â€Hydrogen Transfer Cascade. Angewandte Chemie - International Edition, 2017, 56, 1881-1884.	7.2	216
517	Copper–Oxygen Complexes Revisited: Structures, Spectroscopy, and Reactivity. Chemical Reviews, 2017, 117, 2059-2107.	23.0	505
518	Visibleâ€Lightâ€Mediated Remote Aliphatic Câ^'H Functionalizations through a 1,5â€Hydrogen Transfer Cascade. Angewandte Chemie, 2017, 129, 1907-1910.	1.6	66

#	Article	IF	CITATIONS
519	Controllable Remote Câ^'H Bond Functionalization by Visible‣ight Photocatalysis. Angewandte Chemie - International Edition, 2017, 56, 1960-1962.	7.2	226
520	Oxidation of alkane and alkene moieties with biologically inspired nonheme iron catalysts and hydrogen peroxide: from free radicals to stereoselective transformations. Journal of Biological Inorganic Chemistry, 2017, 22, 425-452.	1.1	153
521	P450 BM3 atalyzed Regio―and Stereoselective Hydroxylation Aiming at the Synthesis of Phthalides and Isocoumarins. ChemBioChem, 2017, 18, 676-684.	1.3	8
522	Multiple Enone-Directed Reactivity Modes Lead to the Selective Photochemical Fluorination of Polycyclic Terpenoid Derivatives. Journal of the American Chemical Society, 2017, 139, 2208-2211.	6.6	64
523	A 11â€Steps Total Synthesis of Magellanine through a Gold(I) atalyzed Dehydro Diels–Alder Reaction. Angewandte Chemie - International Edition, 2017, 56, 6280-6283.	7.2	35
524	Expeditious diastereoselective synthesis of elaborated ketones via remote Csp3–H functionalization. Nature Communications, 2017, 8, 13832.	5.8	68
525	Total Synthesis of Zaragozic Acid C: Implementation of Photochemical C(sp ³)–H Acylation. Journal of the American Chemical Society, 2017, 139, 1814-1817.	6.6	38
526	Rutheniumâ€Catalyzed <i>meta</i> å€Selective Câ°'H Mono―and Difluoromethylation of Arenes through <i>ortho</i> å€Metalation Strategy. Chemistry - A European Journal, 2017, 23, 3285-3290.	1.7	101
527	Visible-light-induced dual C–C bond formation via selective C(sp ³)–H bond cleavage: efficient access to alkylated oxindoles from activated alkenes and simple ethers under metal-free conditions. Green Chemistry, 2017, 19, 1732-1739.	4.6	62
528	Manganese-catalyzed allylation via sequential C–H and C–C/C–Het bond activation. Chemical Science, 2017, 8, 3379-3383.	3.7	157
529	Steuerbare Câ€Hâ€Funktionalisierung durch Photokatalyse mit sichtbarem Licht. Angewandte Chemie, 2017, 129, 1988-1990.	1.6	60
530	Setting Cyclohexane Stereochemistry with Oxidation. ACS Central Science, 2017, 3, 161-162.	5.3	0
531	TBHP-promoted direct oxidation reaction of benzylic C _{sp3} â€"H bonds to ketones. RSC Advances, 2017, 7, 15176-15180.	1.7	52
532	lterative Câ^'H Functionalization Leading to Multiple Amidations of Anilides. Angewandte Chemie - International Edition, 2017, 56, 4256-4260.	7.2	72
533	The Essential Role of Bond Energetics in C–H Activation/Functionalization. Chemical Reviews, 2017, 117, 8622-8648.	23.0	369
534	A 11â€Steps Total Synthesis of Magellanine through a Gold(I)â€Catalyzed Dehydro Diels–Alder Reaction. Angewandte Chemie, 2017, 129, 6377-6380.	1.6	9
535	Transition-Metal-Free Amine Oxidation: A Chemoselective Strategy for the Late-Stage Formation of Lactams. Organic Letters, 2017, 19, 870-873.	2.4	51
536	Highly Enantioselective Oxidation of Nonactivated Aliphatic C–H Bonds with Hydrogen Peroxide Catalyzed by Manganese Complexes. ACS Central Science, 2017, 3, 196-204.	5.3	148

#	ARTICLE	IF	CITATIONS
537	Experimental and Theoretical Studies on Rhodium-Catalyzed Coupling of Benzamides with 2,2-Difluorovinyl Tosylate: Diverse Synthesis of Fluorinated Heterocycles. Journal of the American Chemical Society, 2017, 139, 3537-3545.	6.6	229
538	Recyclable Dirhodium(II) Catalyst Rh ₂ (esp) ₂ for the Allylic Oxidation of î" ⁵ -Steroids. Journal of Organic Chemistry, 2017, 82, 4729-4736.	1.7	13
539	Oxidation chemistry of C–H bond by mononuclear iron complexes derived from tridentate ligands containing phenolato function. Inorganica Chimica Acta, 2017, 464, 195-203.	1.2	8
540	A Bioinspired Catalytic Aerobic Functionalization of Phenols: Regioselective Construction of Aromatic Câ \in "N and Câ \in "O Bonds. ACS Catalysis, 2017, 7, 3477-3482.	5.5	35
541	Cp*Rh(III)/Bicyclic Olefin Cocatalyzed C–H Bond Amidation by Intramolecular Amide Transfer. Journal of the American Chemical Society, 2017, 139, 6506-6512.	6.6	107
542	Scalable, Electrochemical Oxidation of Unactivated C–H Bonds. Journal of the American Chemical Society, 2017, 139, 7448-7451.	6.6	353
543	Total Synthesis of Echinosideâ€A, a Representative Triterpene Glycoside of Sea Cucumbers. Angewandte Chemie - International Edition, 2017, 56, 7648-7652.	7.2	27
544	Mangan(I)â€katalysierte regioselektive Câ€Hâ€Allenierung: direkte Synthese von 2â€Allenylindolen. Angewandte Chemie, 2017, 129, 6760-6764.	1.6	56
545	Manganese(I)â€Catalyzed Regioselective Câ^'H Allenylation: Direct Access to 2â€Allenylindoles. Angewandte Chemie - International Edition, 2017, 56, 6660-6664.	7.2	157
546	Total Syntheses of Naucleamides A–C and E, Geissoschizine, Geissoschizol, (<i>E</i>)-Isositsirikine, and 16- <i>epi</i> -(<i>E</i>)-Isositsirikine. Organic Letters, 2017, 19, 2642-2645.	2.4	39
547	Polycyclization Enabled by Relay Catalysis: Oneâ€Pot Manganeseâ€Catalyzed Câ^'H Allylation and Silverâ€Catalyzed Povarov Reaction. ChemSusChem, 2017, 10, 2360-2364.	3.6	72
548	Studies towards Bioinspired Synthesis of Hetidine‶ype <scp>C₂₀</scp> â€Diterpenoid Alkaloids. Chinese Journal of Chemistry, 2017, 35, 991-1000.	2.6	12
549	Rhodium-catalyzed C–H functionalization with N-acylsaccharins. Organic and Biomolecular Chemistry, 2017, 15, 536-540.	1.5	58
550	α-Zirconium phosphate supported metal–salen complex: synthesis, characterization and catalytic activity for cyclohexane oxidation. Journal of Porous Materials, 2017, 24, 855-866.	1.3	16
551	Bioinspired total syntheses of terpenoids. Organic and Biomolecular Chemistry, 2017, 15, 12-16.	1.5	15
552	Collective Syntheses of Icetexane Natural Products Based on Biogenetic Hypotheses. Chemistry - A European Journal, 2017, 23, 120-127.	1.7	31
553	Selective C–H bond hydroxylation of cyclohexanes in water by supramolecular control. RSC Advances, 2017, 7, 30886-30893.	1.7	5
554	γâ€Functionalizations of Amines through Visibleâ€Lightâ€Mediated, Redoxâ€Neutral Câ^'C Bond Cleavage. Angewandte Chemie, 2017, 129, 10657-10660.	1.6	37

#	Article	IF	CITATIONS
555	γâ€Functionalizations of Amines through Visibleâ€Lightâ€Mediated, Redoxâ€Neutral Câ^'C Bond Cleavage. Angewandte Chemie - International Edition, 2017, 56, 10521-10524.	7.2	89
556	Manganese(I)â€Catalyzed Regio―and Stereoselective 1,2â€Diheteroarylation of Allenes: Combination of Câ^'H Activation and Smiles Rearrangement. Angewandte Chemie, 2017, 129, 10071-10075.	1.6	56
557	Manganese(I)â€Catalyzed Regio―and Stereoselective 1,2â€Diheteroarylation of Allenes: Combination of Câ^'H Activation and Smiles Rearrangement. Angewandte Chemie - International Edition, 2017, 56, 9939-9943.	7.2	137
558	Total Synthesis of Echinosideâ€A, a Representative Triterpene Glycoside of Sea Cucumbers. Angewandte Chemie, 2017, 129, 7756-7760.	1.6	3
559	cis-Decalin oxidation as a stereochemical probe of in-MOF versus on-MOF catalysis. Chemical Communications, 2017, 53, 7377-7380.	2.2	28
560	Transition metal-catalyzed site- and regio-divergent C–H bond functionalization. Chemical Society Reviews, 2017, 46, 4299-4328.	18.7	426
561	Manganese(I)-Catalyzed C–H 3,3-Difluoroallylation of Pyridones and Indoles. Organic Letters, 2017, 19, 3159-3162.	2.4	82
562	Copper-Catalyzed Arylation of Benzylic C–H bonds with Alkylarenes as the Limiting Reagents. Journal of the American Chemical Society, 2017, 139, 7709-7712.	6.6	134
563	Lipophilic <i>N</i> àêHydroxyphthalimide Catalysts for the Aerobic Oxidation of Cumene: Towards Solventâ€Free Conditions and Back. Chemistry - A European Journal, 2017, 23, 10616-10625.	1.7	30
564	Selective oxidation of aliphatic C–H bonds in alkylphenols by a chemomimetic biocatalytic system. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5129-E5137.	3.3	19
565	Oxidative functionalization of adamantanes (review). Petroleum Chemistry, 2017, 57, 183-197.	0.4	22
566	Copper-Catalyzed Oxidation of Alkanes under Mild Conditions. Synlett, 2017, 28, 1237-1243.	1.0	12
567	Catalyst-Controlled Nitrene Transfer by Tuning Metal:Ligand Ratios: Insight into the Mechanisms of Chemoselectivity. Organometallics, 2017, 36, 1649-1661.	1.1	51
568	Navigating the Chiral Pool in the Total Synthesis of Complex Terpene Natural Products. Chemical Reviews, 2017, 117, 11753-11795.	23.0	228
569	Iterative Câ^'H Functionalization Leading to Multiple Amidations of Anilides. Angewandte Chemie, 2017, 129, 4320-4324.	1.6	20
570	Catalytic Arene <i>meta </i> -C–H Functionalization Exploiting a Quinoline-Based Template. ACS Catalysis, 2017, 7, 3162-3168.	5.5	90
571	Asymmetric Autoamplification in the Oxidative Kinetic Resolution of Secondary Benzylic Alcohols Catalyzed by Manganese Complexes. ChemCatChem, 2017, 9, 2599-2607.	1.8	37
572	Catalyst-Controlled Site-Selective Bond Activation. Accounts of Chemical Research, 2017, 50, 549-555.	7.6	167

#	Article	IF	CITATIONS
573	Pursuit of Noncovalent Interactions for Strategic Site-Selective Catalysis. Accounts of Chemical Research, 2017, 50, 609-615.	7.6	188
574	Palladium-Catalyzed β-Mesylation of Simple Amide via Primary sp ³ C–H Activation. Organic Letters, 2017, 19, 1768-1771.	2.4	30
575	Transition metal catalysisâ€"a unique road map in the stereoselective synthesis of 1,3-polyols. Organic and Biomolecular Chemistry, 2017, 15, 733-761.	1.5	33
576	C–H imidation: a distinct perspective of C–N bond formation. Organic and Biomolecular Chemistry, 2017, 15, 1282-1293.	1.5	55
577	Rational design of model Pd(<scp>ii</scp>)-catalysts for C–H activation involving ligands with charge-shift bonding characteristics. Physical Chemistry Chemical Physics, 2017, 19, 2417-2424.	1.3	8
578	Evidence That Trimethyllysine Hydroxylase Catalyzes the Formation of (2 <i>S</i> ,3 <i>S</i>)-3-Hydroxy- <i>N</i> ^ε -trimethyllysine. Organic Letters, 2017, 19, 400-403.	2.4	10
579	Mild and Regioselective Benzylic C–H Functionalization: Ni-Catalyzed Reductive Arylation of Remote and Proximal Olefins. Journal of the American Chemical Society, 2017, 139, 1061-1064.	6.6	276
580	Recent progress in mild Csp ³ â€"H bond dehydrogenative or (mono-) oxidative functionalization. Organic and Biomolecular Chemistry, 2017, 15, 1294-1312.	1.5	62
581	Combination of Cp*Rh ^{III} â€Catalyzed Câ^'H Activation and a Wagnerâ€"Meerweinâ€Type Rearrangement. Angewandte Chemie - International Edition, 2017, 56, 1381-1384.	7.2	83
582	Bimodal Evans–Polanyi Relationships in Dioxirane Oxidations of sp ³ C–H: Non-perfect Synchronization in Generation of Delocalized Radical Intermediates. Journal of the American Chemical Society, 2017, 139, 16650-16656.	6.6	27
583	Rapid assembly of the procyanidin A skeleton. Tetrahedron Letters, 2017, 58, 4609-4611.	0.7	5
584	Microwave-assisted synthesis of hydroxyl-containing isoquinolines by metal-free radical cyclization of vinyl isocyanides with alcohols. Organic and Biomolecular Chemistry, 2017, 15, 10044-10052.	1.5	17
585	Alkane oxidation reactivity of homogeneous and heterogeneous metal complex catalysts with mesoporous silica-immobilized (2-pyridylmethyl)amine type ligands. Molecular Catalysis, 2017, 443, 14-24.	1.0	18
586	Transition-Metal-Free Radical C(sp ³)–C(sp ²) and C(sp ³)–C(sp ³) Coupling Enabled by 2-Azaallyls as Super-Electron-Donors and Coupling-Partners. Journal of the American Chemical Society, 2017, 139, 16327-16333.	6.6	77
587	H-Bonding-promoted radical addition of simple alcohols to unactivated alkenes. Green Chemistry, 2017, 19, 5230-5235.	4.6	28
588	Oxyfunctionalization of the Remote Câ^'H Bonds of Aliphatic Amines by Decatungstate Photocatalysis. Angewandte Chemie - International Edition, 2017, 56, 15274-15278.	7.2	109
589	Supramolecular Recognition Allows Remote, Siteâ€6elective Câ^'H Oxidation of Methylenic Sites in Linear Amines. Angewandte Chemie - International Edition, 2017, 56, 16347-16351.	7.2	85
590	Oxyfunctionalization of the Remote Câ^'H Bonds of Aliphatic Amines by Decatungstate Photocatalysis. Angewandte Chemie, 2017, 129, 15476-15480.	1.6	25

#	Article	IF	CITATIONS
591	Diastereoselective Synthesis of Functionalized Diketopiperazines through Post-transformational Reactions. Journal of Organic Chemistry, 2017, 82, 12141-12152.	1.7	30
592	Supramolecular Recognition Allows Remote, Siteâ€Selective Câ^'H Oxidation of Methylenic Sites in Linear Amines. Angewandte Chemie, 2017, 129, 16565-16569.	1.6	29
593	Stereoselective Postassembly CH Oxidation of Self-Assembled Metal–Ligand Cage Complexes. Inorganic Chemistry, 2017, 56, 11435-11442.	1.9	25
594	Organocatalytic, Dioxirane-Mediated C–H Hydroxylation under Mild Conditions Using Oxone. Organic Letters, 2017, 19, 4790-4793.	2.4	28
595	Selective C–H Bond Oxidation Catalyzed by the Fe-bTAML Complex: Mechanistic Implications. Inorganic Chemistry, 2017, 56, 10852-10860.	1.9	29
596	Rhodium(<scp>iii</scp>)-catalyzed regio- and stereoselective benzylic α-fluoroalkenylation with gem-difluorostyrenes. Chemical Communications, 2017, 53, 10326-10329.	2.2	75
598	Tuning Selectivity in Aliphatic C–H Bond Oxidation of <i>N</i> holdsplay by Manganese Complexes. ACS Catalysis, 2017, 7, 5903-5911.	5.5	50
599	A Concise Enantioselective Total Synthesis of (â^')â€Virosaineâ€A. Angewandte Chemie - International Edition, 2017, 56, 10830-10834.	7.2	42
600	Group 9 Transition Metalâ€Catalyzed Câ^'H Halogenations. Israel Journal of Chemistry, 2017, 57, 945-952.	1.0	42
601	Palladium catalyzed C(sp ³)–H acetoxylation of aliphatic primary amines to γ-amino alcohol derivatives. Organic Chemistry Frontiers, 2017, 4, 2097-2101.	2.3	65
602	A Concise Enantioselective Total Synthesis of (â^')â€Virosaineâ€A. Angewandte Chemie, 2017, 129, 10970-109	7 4. 6	13
603	Silicon-Tethered Strategies for C–H Functionalization Reactions. Accounts of Chemical Research, 2017, 50, 2038-2053.	7.6	107
604	Kombination von Cp*Rh III â€katalysierter Câ€Hâ€Aktivierung mit einer Variante der Wagnerâ€Meerweinâ€Umlagerung. Angewandte Chemie, 2017, 129, 1401-1405.	1.6	21
605	Approach to Comparing the Functional Group Tolerance of Reactions. Journal of Organic Chemistry, 2017, 82, 9154-9159.	1.7	93
606	Redoxneutrale Mangan(I)â€katalysierte Câ€Hâ€Aktivierung: regioselektive Anellierung mithilfe einer spurlosen dirigierenden Gruppe. Angewandte Chemie, 2017, 129, 12954-12958.	1.6	41
607	Redoxâ€Neutral Manganese(I)â€Catalyzed Câ°'H Activation: Traceless Directing Group Enabled Regioselective Annulation. Angewandte Chemie - International Edition, 2017, 56, 12778-12782.	7.2	160
608	<i>N</i> -Radical Initiated Aminosulfonylation of Unactivated C(sp ³)â€"H Bond through Insertion of Sulfur Dioxide. Organic Letters, 2017, 19, 4472-4475.	2.4	77
609	Mechanistic analysis of a copper-catalyzed C–H oxidative cyclization of carboxylic acids. Chemical Science, 2017, 8, 7003-7008.	3.7	34

#	Article	IF	CITATIONS
610	Reductive Eliminations from Diarylpalladium(II) Complexes: A Combined Experimental and Computational Investigation. Chemistry - A European Journal, 2017, 23, 15116-15123.	1.7	9
611	Ketones as directing groups in photocatalytic sp ³ C–H fluorination. Chemical Science, 2017, 8, 6918-6923.	3.7	75
612	Naphthol synthesis: annulation of nitrones with alkynes via rhodium(⟨scp⟩iii⟨/scp⟩)-catalyzed C–H activation. Chemical Communications, 2017, 53, 9640-9643.	2,2	32
613	Diastereoselective Synthesis of Spirocyclopropaneâ€Linked Pyrazolones from Azomethine Ylides via C(sp ³)â€H Activation. ChemistrySelect, 2017, 2, 11370-11375.	0.7	8
614	Total Syntheses of Scaparvins B, C, and D Enabled by a Key C–H Functionalization. Journal of the American Chemical Society, 2017, 139, 18428-18431.	6.6	45
615	Chemoselective Aliphatic C–H Bond Oxidation Enabled by Polarity Reversal. ACS Central Science, 2017, 3, 1350-1358.	5.3	121
616	Visible Light Organic Photoredox-Catalyzed C–H Alkoxylation of Imidazopyridine with Alcohol. Journal of Organic Chemistry, 2017, 82, 13722-13727.	1.7	73
617	Singlet oxygen-mediated selective C–H bond hydroperoxidation of ethereal hydrocarbons. Nature Communications, 2017, 8, 1812.	5.8	96
618	Electronic and Torsional Effects on Hydrogen Atom Transfer from Aliphatic C–H Bonds: A Kinetic Evaluation via Reaction with the Cumyloxyl Radical. Journal of Organic Chemistry, 2017, 82, 13542-13549.	1.7	12
619	Synthesis of Diverse 11- and 12-Membered Macrolactones from a Common Linear Substrate Using a Single Biocatalyst. ACS Central Science, 2017, 3, 1304-1310.	5.3	21
621	Discovery of Lysine Hydroxylases in the Clavaminic Acid Synthase-Like Superfamily for Efficient Hydroxylysine Bioproduction. Applied and Environmental Microbiology, 2017, 83, .	1.4	20
622	Decoding the Mechanism of Intramolecular Cu-Directed Hydroxylation of sp ³ C–H Bonds. Journal of Organic Chemistry, 2017, 82, 7887-7904.	1.7	61
623	Applications of Nonenzymatic Catalysts to the Alteration of Natural Products. Chemical Reviews, 2017, 117, 11894-11951.	23.0	166
624	Heterolytic (2 e) vs Homolytic (1 e) Oxidation Reactivity: Nâ^'H versus Câ^'H Switch in the Oxidation of Lactams by Dioxirans. Chemistry - A European Journal, 2017, 23, 259-262.	1.7	21
625	Synthesis, crystal structures and catalytic activity of Cu(II) and Mn(III) Schiff base complexes: Influence of additives on the oxidation catalysis of cyclohexane and 1-phenylehanol. Journal of Molecular Catalysis A, 2017, 426, 506-515.	4.8	47
626	Catalytic C-H oxidations by nonheme mononuclear Fe(II) complexes of two pentadentate ligands: Evidence for an Fe(IV) oxo intermediate. Journal of Molecular Catalysis A, 2017, 426, 350-356.	4.8	27
627	Recent Advances of Oxidative Radical Crossâ€Coupling Reactions: Direct αâ€C(<i>sp</i> ³)–H Bond Functionalization of Ethers and Alcohols. Advanced Synthesis and Catalysis, 2017, 359, 2-25.	2.1	146
628	Characterization of non-heme iron aliphatic halogenase WelO5* from Hapalosiphon welwitschii IC-52-3: Identification of a minimal protein sequence motif that confers enzymatic chlorination specificity in the biosynthesis of welwitindolelinones. Beilstein Journal of Organic Chemistry, 2017, 13, 1168-1173.	1.3	26

#	Article	IF	CITATIONS
629	Iron-Catalyzed C(sp ³)–H Acyloxylation of Aryl-2 <i>H</i> Azirines with Hypervalent Iodine(III) Reagents. Organic Letters, 2018, 20, 1663-1666.	2.4	27
630	Nickelâ€Catalyzed Alkylarylation of Activated Alkenes with Benzylâ€amines via Câ^'N Bond Activation. Chemistry - A European Journal, 2018, 24, 7114-7117.	1.7	19
631	P450-Catalyzed Regio- and Diastereoselective Steroid Hydroxylation: Efficient Directed Evolution Enabled by Mutability Landscaping. ACS Catalysis, 2018, 8, 3395-3410.	5.5	128
632	Chemo- and Regioselective Lysine Modification on Native Proteins. Journal of the American Chemical Society, 2018, 140, 4004-4017.	6.6	217
633	Comparison of the Reactivities and Selectivities of Group 9 [Cp*M ^{III}] Catalysts in Câ^'H Functionalization Reactions. Chemistry - an Asian Journal, 2018, 13, 1089-1102.	1.7	82
634	A General Strategy for Aliphatic C–H Functionalization Enabled by Organic Photoredox Catalysis. Journal of the American Chemical Society, 2018, 140, 4213-4217.	6.6	175
635	Simulation-Guided Design of Cytochrome P450 for Chemo- and Regioselective Macrocyclic Oxidation. Journal of Chemical Information and Modeling, 2018, 58, 848-858.	2.5	14
636	Hydrogen Atom Transfer from Alkanols and Alkanediols to the Cumyloxyl Radical: Kinetic Evaluation of the Contribution of α-C–H Activation and β-C–H Deactivation. Journal of Organic Chemistry, 2018, 83, 5539-5545.	1.7	13
637	Aliphatic Câ€"H Bond Oxidation with Hydrogen Peroxide Catalyzed by Manganese Complexes: Directing Selectivity through Torsional Effects. Organic Letters, 2018, 20, 2720-2723.	2.4	29
638	Mechanistic Analysis of the C–H Amination Reaction of Menthol by CuBr ₂ and Selectfluor. Journal of Organic Chemistry, 2018, 83, 5681-5687.	1.7	15
639	Visible light mediated oxidation of benzylic sp ³ C–H bonds using catalytic 1,4-hydroquinone, or its biorenewable glucoside, arbutin, as a pre-oxidant. Green Chemistry, 2018, 20, 2242-2249.	4.6	38
640	Total Synthesis of (±)-Cephanolides B and C via a Palladium-Catalyzed Cascade Cyclization and Late-Stage sp ³ Câ€"H Bond Oxidation. Journal of the American Chemical Society, 2018, 140, 5653-5658.	6.6	82
641	Harnessing the β-Silicon Effect for Regioselective and Stereoselective Rhodium(II)-Catalyzed C–H Functionalization by Donor/Acceptor Carbenes Derived from 1-Sulfonyl-1,2,3-triazoles. Organic Letters, 2018, 20, 2168-2171.	2.4	35
642	Mechanistic Insights into the Enantioselective Epoxidation of Olefins by Bioinspired Manganese Complexes: Role of Carboxylic Acid and Nature of Active Oxidant. ACS Catalysis, 2018, 8, 4528-4538.	5 . 5	72
643	Selective C(sp ³)â^'H Aerobic Oxidation Enabled by Decatungstate Photocatalysis in Flow. Angewandte Chemie - International Edition, 2018, 57, 4078-4082.	7.2	179
644	Nickel-Catalyzed Remote Arylation of Alkenyl Aldehydes Initiated by Radical Alkylation with Tertiary α-Carbonyl Alkyl Bromides. Organic Letters, 2018, 20, 1435-1438.	2.4	25
645	Macrolide Synthesis through Intramolecular Oxidative Crossâ€Coupling of Alkenes. Angewandte Chemie, 2018, 130, 564-568.	1.6	13
646	Synthetic Studies toward the Tetrapetalones: Diastereoselective Construction of a Putative Intermediate. Organic Letters, 2018, 20, 901-904.	2.4	10

#	Article	IF	Citations
647	Controlling Selectivity in Aliphatic Câ^'H Oxidation through Supramolecular Recognition. Chemistry - A European Journal, 2018, 24, 5042-5054.	1.7	58
648	Total Synthesis of (â^')-Xylogranatopyridine B via a Palladium-Catalyzed Oxidative Stannylation of Enones. Journal of the American Chemical Society, 2018, 140, 2062-2066.	6.6	56
649	Highly Enantioselective Oxidation of Spirocyclic Hydrocarbons by Bioinspired Manganese Catalysts and Hydrogen Peroxide. ACS Catalysis, 2018, 8, 2479-2487.	5.5	75
650	Tertiaryâ€Alcoholâ€Directed Functionalization of Remote C(sp ³)â^'H Bonds by Sequential Hydrogen Atom and Heteroaryl Migrations. Angewandte Chemie - International Edition, 2018, 57, 1640-1644.	7.2	179
651	Tertiaryâ€Alcoholâ€Directed Functionalization of Remote C(sp ³)â^'H Bonds by Sequential Hydrogen Atom and Heteroaryl Migrations. Angewandte Chemie, 2018, 130, 1656-1660.	1.6	46
652	Katalytische, positions―und enantioselektive Câ€Hâ€Oxygenierung durch einen chiralen Manganâ€Porphyrinâ€Komplex mit einer entfernten Bindungsstelle. Angewandte Chemie, 2018, 130, 3003-3007.	1.6	26
653	Remote C–H Hydroxylation by an α-Ketoglutarate-Dependent Dioxygenase Enables Efficient Chemoenzymatic Synthesis of Manzacidin C and Proline Analogs. Journal of the American Chemical Society, 2018, 140, 1165-1169.	6.6	96
654	Direct Oxidation of Cyclopropanated Cyclooctanes as a Synthetic Approach to Polycyclic Cyclopropyl Ketones. European Journal of Organic Chemistry, 2018, 2018, 879-884.	1.2	5
655	IBX as a catalyst for dehydration of hydroperoxides: green entry to $\hat{l}\pm,\hat{l}^2$ -unsaturated ketones <i>via</i> oxygenative allylic transposition. Chemical Communications, 2018, 54, 798-801.	2.2	11
656	Site―and Enantioselective Câ^'H Oxygenation Catalyzed by a Chiral Manganese Porphyrin Complex with a Remote Binding Site. Angewandte Chemie - International Edition, 2018, 57, 2953-2957.	7.2	94
657	P450-Catalyzed Regio- and Stereoselective Oxidative Hydroxylation of 6-lodotetralone: Preparative-Scale Synthesis of a Key Intermediate for Pd-Catalyzed Transformations. Journal of Organic Chemistry, 2018, 83, 7504-7508.	1.7	20
658	Regioselective direct arylation of indoles on the benzenoid moiety. Chemical Communications, 2018, 54, 1676-1685.	2.2	132
659	Total Synthesis of the Caged Indole Alkaloid Arboridinine Enabled by <i>aza</i> -Prins and Metal-Mediated Cyclizations. Journal of the American Chemical Society, 2018, 140, 919-925.	6.6	53
660	Cyanthiwigin Natural Product Core as a Complex Molecular Scaffold for Comparative Late-Stage C–H Functionalization Studies. Journal of Organic Chemistry, 2018, 83, 3023-3033.	1.7	20
661	Total synthesis of conosilane A <i>via</i> a site-selective C–H functionalization strategy. Chemical Communications, 2018, 54, 912-915.	2.2	14
662	Sensitized Aliphatic Fluorination Directed by Terpenoidal Enones: A "Visible Light―Approach. Journal of Organic Chemistry, 2018, 83, 1565-1575.	1.7	26
663	Visible light mediated aerobic photocatalytic activation of C H bond by riboflavin tetraacetate and N -hydroxysuccinimide. Tetrahedron Letters, 2018, 59, 658-662.	0.7	29
664	Subnanometric Gold Clusters on CeO ₂ with Maximized Strong Metal–Support Interactions for Aerobic Oxidation of Carbon–Hydrogen Bonds. ACS Sustainable Chemistry and Engineering, 2018, 6, 6418-6424.	3.2	15

#	Article	IF	CITATIONS
665	Development of a Flow Photochemical Aerobic Oxidation of Benzylic C–H Bonds. Organic Letters, 2018, 20, 1987-1990.	2.4	46
666	Selective Heteroaryl N-Oxidation of Amine-Containing Molecules. Organic Letters, 2018, 20, 2011-2014.	2.4	14
667	Selective C(sp ³)â^H Aerobic Oxidation Enabled by Decatungstate Photocatalysis in Flow. Angewandte Chemie, 2018, 130, 4142-4146.	1.6	45
668	Efficient hydroxylation of cycloalkanes by co-addition of decoy molecules to variants of the cytochrome P450 CYP102A1. Journal of Inorganic Biochemistry, 2018, 183, 137-145.	1.5	12
669	Cobaltâ€Catalyzed Diastereoselective [4+2] Annulation of Phosphinamides with Heterobicyclic Alkenes at Room Temperature. Advanced Synthesis and Catalysis, 2018, 360, 255-260.	2.1	48
670	Organic Synthesis: Wherefrom and Whither? (Some Very Personal Reflections). Israel Journal of Chemistry, 2018, 58, 61-72.	1.0	10
671	Macrolide Synthesis through Intramolecular Oxidative Crossâ€Coupling of Alkenes. Angewandte Chemie - International Edition, 2018, 57, 555-559.	7.2	74
672	Mangan(I)â€katalysierte Câ€Hâ€(2â€IndolyI)methylierung: ein einfacher Zugang zu Diheteroarylmethanâ€Derivaten. Angewandte Chemie, 2018, 130, 1413-1417.	1.6	22
673	Manganese(I)â€Catalyzed Câ^H (2â€Indolyl)methylation: Expedient Access to Diheteroarylmethanes. Angewandte Chemie - International Edition, 2018, 57, 1399-1403.	7.2	85
674	Photoinduced Remote Functionalisations by Iminyl Radical Promoted Câ^'C and Câ^'H Bond Cleavage Cascades. Angewandte Chemie - International Edition, 2018, 57, 744-748.	7.2	319
675	Photoinduced Remote Functionalisations by Iminyl Radical Promoted Câ^'C and Câ^'H Bond Cleavage Cascades. Angewandte Chemie, 2018, 130, 752-756.	1.6	87
676	Applications of Oxygenases in the Chemoenzymatic Total Synthesis of Complex Natural Products. Biochemistry, 2018, 57, 403-412.	1.2	45
677	Intermolecular Rhodium(II)â€Catalyzed Allylic C(<i>sp</i> ³)–H Amination of Cyclic Enamides. Advanced Synthesis and Catalysis, 2018, 360, 513-518.	2.1	11
678	Hochselektive Mangan(I)/Lewisâ€Säreâ€cokatalysierte direkte Câ€Hâ€Propargylierung unter Verwendung von Bromallenen. Angewandte Chemie, 2018, 130, 445-449.	1.6	17
679	Resolving a Reactive Organometallic Intermediate from Dynamic Directing Group Systems by Selective Câ^'H Activation. Chemistry - A European Journal, 2018, 24, 101-104.	1.7	6
680	Rh(III)-Catalyzed Redox-Neutral Unsymmetrical C–H Alkylation and Amidation Reactions of <i>N</i> -Phenoxyacetamides. Journal of the American Chemical Society, 2018, 140, 42-45.	6.6	120
681	Plausible Rh(V) Intermediates in Catalytic C–H Activation Reactions. ACS Catalysis, 2018, 8, 242-257.	5.5	134
682	Site-selective bromination of sp ³ C–H bonds. Chemical Science, 2018, 9, 100-104.	3.7	61

#	Article	IF	Citations
683	Recent Advances in Radical-Initiated C(sp ³)â€"H Bond Oxidative Functionalization of Alkyl Nitriles. ACS Catalysis, 2018, 8, 258-271.	5 . 5	158
684	Resonance Raman studies of Bacillus megaterium cytochrome P450 BM3 and biotechnologically important mutants. Journal of Raman Spectroscopy, 2018, 49, 287-297.	1.2	3
685	Highly Selective Manganese(I)/Lewis Acid Cocatalyzed Direct Câ^'H Propargylation Using Bromoallenes. Angewandte Chemie - International Edition, 2018, 57, 437-441.	7.2	69
686	Recent advances in the sulfonylation of C–H bonds with the insertion of sulfur dioxide. Chemical Communications, 2018, 54, 12561-12569.	2.2	171
687	Palladium-Catalyzed Asymmetric C–H Arylation for the Synthesis of Planar Chiral Benzothiophene-Fused Ferrocenes. ACS Catalysis, 2018, 8, 11735-11740.	5.5	47
688	Direct Oxidation of Csp ³ â^'H bonds using in Situ Generated Trifluoromethylated Dioxirane in Flow. Chemistry - A European Journal, 2019, 25, 1203-1207.	1.7	18
689	Photoredox-Mediated Minisci-type Alkylation of $\langle i \rangle N \langle i \rangle$ -Heteroarenes with Alkanes with High Methylene Selectivity. ACS Catalysis, 2018, 8, 11847-11853.	5.5	97
694	Desymmetrization of cyclohexanes by site- and stereoselective C–H functionalization. Nature, 2018, 564, 395-399.	13.7	100
695	Selective oxidation of cyclohexane: Ce promotion of nanostructured manganese tungstate. Applied Catalysis A: General, 2018, 568, 95-104.	2.2	25
696	Hydroxylation of Eleuthoside Synthetic Intermediates by P450 _{BM3} (CYP102A1). European Journal of Organic Chemistry, 2018, 2018, 6369-6378.	1.2	12
697	Total Synthesis of C30 Botryococcene and <i>epi</i> epiepiopening of Alkenylcyclopropanes. Angewandte Chemie, 2018, 130, 13421-13425.	1.6	8
698	Visibleâ€Lightâ€Induced Pyridylation of Remote C(sp ³)â^'H Bonds by Radical Translocation of Nâ€Alkoxypyridinium Salts. Angewandte Chemie - International Edition, 2018, 57, 15517-15522.	7.2	141
699	Direct C–C Bond Formation from Alkanes Using Ni-Photoredox Catalysis. Journal of the American Chemical Society, 2018, 140, 14059-14063.	6.6	182
700	Visibleâ€Lightâ€Induced Pyridylation of Remote C(sp 3)â^'H Bonds by Radical Translocation of Nâ€Alkoxypyridinium Salts. Angewandte Chemie, 2018, 130, 15743-15748.	1.6	38
701	Organic Synthesis: New Vistas in the Brazilian Landscape. Anais Da Academia Brasileira De Ciencias, 2018, 90, 895-941.	0.3	4
702	Copper-Catalyzed Radical Relay for Asymmetric Radical Transformations. Accounts of Chemical Research, 2018, 51, 2036-2046.	7.6	422
703	Aliphatic C–H Oxidations for Late-Stage Functionalization. Journal of the American Chemical Society, 2018, 140, 13988-14009.	6.6	322
704	<i>>sp</i> ³ C–H Arylation and Alkylation Enabled by the Synergy of Triplet Excited Ketones and Nickel Catalysts. Journal of the American Chemical Society, 2018, 140, 12200-12209.	6.6	271

#	Article	IF	CITATIONS
705	Electrochemical-Oxidation-Induced Site-Selective Intramolecular C(sp ³)–H Amination. ACS Catalysis, 2018, 8, 9370-9375.	5.5	140
706	Benzylic C(sp ³) $\hat{a}\in H$ bond sulfonylation of 4-methylphenols with the insertion of sulfur dioxide under photocatalysis. Chemical Communications, 2018, 54, 11172-11175.	2.2	60
707	Regio- and chemoselective Csp ³ â€"H arylation of benzylamines by single electron transfer/hydrogen atom transfer synergistic catalysis. Chemical Science, 2018, 9, 8453-8460.	3.7	91
708	(Benz)Imidazoleâ€Directed Cobalt(III) atalyzed C–H Activation of Arenes: A Facile Strategy to Access Polyheteroarenes by Oxidative Annulation. European Journal of Organic Chemistry, 2018, 2018, 5512-5519.	1.2	23
709	Iminyl Radicalâ€Mediated Controlled Hydroxyalkylation of Remote C(<i>sp</i> ³)â€H Bond via Tandem 1,5â€HAT and Difunctionalization of Aryl Alkenes. Advanced Synthesis and Catalysis, 2018, 360, 4341-4347.	2.1	37
710	Mechanistic insights into the SN2-type reactivity of aryl-Co(iii) masked-carbenes for C–C bond forming transformations. Chemical Science, 2018, 9, 5736-5746.	3.7	14
711	Magnetic nano-structured cobalt–cobalt oxide/nitrogen-doped carbon material as an efficient catalyst for aerobic oxidation of p -cresols. Molecular Catalysis, 2018, 453, 121-131.	1.0	24
712	Evolution of Biocatalytic and Chemocatalytic C–H Functionalization Strategy in the Synthesis of Manzacidin C. Journal of Organic Chemistry, 2018, 83, 7407-7415.	1.7	42
713	Transient imines as †next generation' directing groups for the catalytic functionalisation of C†Honds in a single operation. Organic and Biomolecular Chemistry, 2018, 16, 4582-4595.	1.5	116
714	Cobalt(III) atalyzed [4+2] Annulation of Heterobicyclic Alkenes by <i>sp</i> < ^{<i>2</i>} Câ^'H Activation. Asian Journal of Organic Chemistry, 2018, 7, 1362-1367.	1.3	30
715	Manganeseâ€Catalyzed Câ^'H Annulation of Ketimines with Allenes: Stereoselective Synthesis of 1â€Aminoindanes. Advanced Synthesis and Catalysis, 2018, 360, 2952-2958.	2.1	14
716	Mn I /Ag I â€Kaskadenkatalyse: spurlose diazoassistierte C(sp 2)â€H/C(sp 3)â€Hâ€Kupplung für βâ€(Hetero)arylâ€∮βâ€Alkenylketone. Angewandte Chemie, 2018, 130, 10892-10896.	1.6	14
717	Mn I /Ag I Relay Catalysis: Traceless Diazoâ€Assisted C(sp 2)â€"H/C(sp 3)â€"H Coupling to βâ€(Hetero)Aryl/Alkenyl Ketones. Angewandte Chemie - International Edition, 2018, 57, 10732-10736.	7. 2	39
718	Nickelâ€catalyzed Câ^'H bond Alkoxylation of Amides with Alcohols. Asian Journal of Organic Chemistry, 2018, 7, 1368-1371.	1.3	16
719	Transitionâ€Metalâ€Free, TsOHâ€Mediated Direct Câ°'H Allylation of 1,4â€Benzoquinone with Allylic Alcohols. Asian Journal of Organic Chemistry, 2018, 7, 1385-1389.	1.3	7
720	Merging " <i>Anti</i> -Baldwin―3- <i>Exo-Dig</i> Cyclization with 1,2-Alkynyl Migration for Radical Alkylalkynylation of Unactivated Olefins. Organic Letters, 2018, 20, 3596-3600.	2.4	39
721	Rhodium(III)-Catalyzed Cascade [5 + 1] Annulation/5-exo-Cyclization Initiated by C–H Activation: 1,6-Diynes as One-Carbon Reaction Partners. Organic Letters, 2018, 20, 3245-3249.	2.4	39
722	Reagent-dictated site selectivity in intermolecular aliphatic C–H functionalizations using nitrogen-centered radicals. Chemical Science, 2018, 9, 5360-5365.	3.7	53

#	ARTICLE	IF	CITATIONS
723	Metal-Free C(sp ³)â€"H Allylation via Aryl Carboxyl Radicals Enabled by Donorâ€"Acceptor Complex. Organic Letters, 2018, 20, 3296-3299.	2.4	67
724	Metalâ€free crossâ€dehydrogenative coupling approach for Câ€H bond functionalization of 2â€phenyl pyridine derivatives in water. Heteroatom Chemistry, 2018, 29, .	0.4	3
725	Regioselective Copper-Catalyzed Oxidative Coupling of \hat{l}_{\pm} -Alkylated Styrenes with Tertiary Alkyl Radicals. Organic Letters, 2018, 20, 4032-4035.	2.4	22
726	Diverse secondary C(sp ³)â€"H bond functionalization <i>via</i> site-selective trifluoroacetoxylation of aliphatic amines. Chemical Science, 2018, 9, 6374-6378.	3.7	30
727	B/N co-doped carbon derived from the sustainable chitin for C H bond oxidation. Applied Surface Science, 2018, 457, 439-448.	3.1	22
728	Metalâ€Catalyzed C–H Functionalization Processes with "Clickâ€â€Triazole Assistance. European Journal of Organic Chemistry, 2018, 2018, 6034-6049.	1.2	21
729	Palladium atalyzed γ (sp ³)â^'H Arylation of Thiols by a Detachable Protecting/Directing Group. Angewandte Chemie - International Edition, 2018, 57, 12352-12355.	7.2	41
731	Palladiumâ€Catalyzed γâ€C(sp ³)â^'H Arylation of Thiols by a Detachable Protecting/Directing Group. Angewandte Chemie, 2018, 130, 12532-12535.	1.6	10
732	The Quest for Selectivity in Hydrogen Atom Transfer Based Aliphatic C–H Bond Oxygenation. Accounts of Chemical Research, 2018, 51, 1984-1995.	7.6	122
733	Computational chemistry strategies in natural product synthesis. Chemical Society Reviews, 2018, 47, 7830-7844.	18.7	26
734	Photoinduced Remote Functionalization of Amides and Amines Using Electrophilic Nitrogen Radicals. Angewandte Chemie - International Edition, 2018, 57, 12945-12949.	7.2	207
735	Advances in Enantioselective C–H Activation/Mizoroki-Heck Reaction and Suzuki Reaction. Catalysts, 2018, 8, 90.	1.6	21
736	Rhodium-Catalyzed Intermolecular C–H Functionalization as a Key Step in the Synthesis of Complex Stereodefined l²-Arylpyrrolidines. Organic Letters, 2018, 20, 3771-3775.	2.4	37
737	Glycal Metallanitrenes for 2-Amino Sugar Synthesis: Amidoglycosylation of Gulal-, Allal-, Glucal-, and Galactal 3-Carbamates. Journal of Organic Chemistry, 2018, 83, 8054-8080.	1.7	15
738	Epimerization of Tertiary Carbon Centers via Reversible Radical Cleavage of Unactivated C(sp ³)–H Bonds. Journal of the American Chemical Society, 2018, 140, 9678-9684.	6.6	49
739	Silver-catalyzed remote Csp3-H functionalization of aliphatic alcohols. Nature Communications, 2018, 9, 2625.	5.8	95
740	Iron(II)â€Catalyzed Siteâ€Selective Functionalization of Unactivated C(sp ³)â^'H Bonds Guided by Alkoxyl Radicals. Angewandte Chemie, 2018, 130, 11583-11587.	1.6	38
741	Iron(II)â€Catalyzed Siteâ€Selective Functionalization of Unactivated C(sp ³)â^'H Bonds Guided by Alkoxyl Radicals. Angewandte Chemie - International Edition, 2018, 57, 11413-11417.	7.2	96

#	Article	IF	CITATIONS
742	Enantioselective aliphatic C–H bond oxidation catalyzed by bioinspired complexes. Chemical Communications, 2018, 54, 9559-9570.	2.2	69
743	Visible Lightâ€Induced Câ^'H Bond Functionalization: A Critical Review. Advanced Synthesis and Catalysis, 2018, 360, 4652-4698.	2.1	131
744	Siteâ€Selective C–H Bond Activation/Functionalization of Alphaâ€Amino Acids and Peptideâ€Like Derivatives. European Journal of Organic Chemistry, 2018, 2018, 6050-6067.	1.2	84
745	Redox-neutral C–H cyanation of tetrahydroisoquinolines under photoredox catalysis. Tetrahedron Letters, 2018, 59, 3258-3261.	0.7	26
746	Photoinduced Remote Functionalization of Amides and Amines Using Electrophilic Nitrogen Radicals. Angewandte Chemie, 2018, 130, 13127-13131.	1.6	60
747	Metal-free alcohol-directed regioselective heteroarylation of remote unactivated C(sp3)–H bonds. Nature Communications, 2018, 9, 3343.	5.8	152
748	Total Synthesis of C30 Botryococcene and <i>epi</i> à€Botryococcene by a Diastereoselective Ring Opening of Alkenylcyclopropanes. Angewandte Chemie - International Edition, 2018, 57, 13237-13241.	7.2	18
749	Remote C-H bond activation/transformations: A continuous growing synthetic tool; Part II. Catalysis Reviews - Science and Engineering, 2018, 60, 497-565.	5.7	32
750	Activation and Deactivation Strategies Promoted by Medium Effects for Selective Aliphatic Câ^'H Bond Functionalization. Angewandte Chemie - International Edition, 2018, 57, 16618-16637.	7.2	77
751	Anwendung von Mediumeffekten in Aktivierungs―und Deaktivierungsstrategien zur selektiven Funktionalisierung aliphatischer Câ€Hâ€Bindungen. Angewandte Chemie, 2018, 130, 16858-16878.	1.6	19
752	Total Synthesis of Septedine and 7-Deoxyseptedine. Journal of the American Chemical Society, 2018, 140, 9025-9029.	6.6	44
753	C–H oxygenation at tertiary carbon centers using iodine oxidant. Chemical Communications, 2018, 54, 7609-7612.	2.2	20
754	Catalyzed and Promoted Aliphatic Fluorination. Journal of Organic Chemistry, 2018, 83, 8803-8814.	1.7	40
755	Free-radical anti-Markovnikov hydroalkylation of unactivated alkenes with simple alkanes. Green Chemistry, 2018, 20, 3432-3435.	4.6	7
756	Organic chemistry at anodes and photoanodes. Sustainable Energy and Fuels, 2018, 2, 1905-1927.	2.5	76
757	Catalytic Aerobic Oxidation of C(sp ³)â^H Bonds. Angewandte Chemie - International Edition, 2019, 58, 7946-7970.	7.2	202
758	Katalytische, aerobe Oxidation von C(sp ³)â€Hâ€Bindungen. Angewandte Chemie, 2019, 131, 8028-8055.	1.6	35
759	Construction of Quaternary Stereocenters by Palladiumâ€Catalyzed Carbopalladationâ€Initiated Cascade Reactions. Angewandte Chemie, 2019, 131, 1576-1587.	1.6	64

#	Article	IF	CITATIONS
760	Construction of Quaternary Stereocenters by Palladium atalyzed Carbopalladationâ€Initiated Cascade Reactions. Angewandte Chemie - International Edition, 2019, 58, 1562-1573.	7.2	294
761	An overview of late-stage functionalization in today's drug discovery. Expert Opinion on Drug Discovery, 2019, 14, 1137-1149.	2.5	140
762	Dissecting the Temperature Dependence of Electron–Proton Transfer Reactivity. Journal of Physical Chemistry C, 2019, 123, 21422-21428.	1.5	6
763	Direct β-C(sp ³)–H Acetoxylation of Aliphatic Carboxylic Acids. Organic Letters, 2019, 21, 7154-7157.	2.4	55
764	Total Synthesis and Structure Revision of (â^')-Illisimonin A, a Neuroprotective Sesquiterpenoid from the Fruits of <i>Illicium simonsii</i> . Journal of the American Chemical Society, 2019, 141, 13295-13300.	6.6	54
765	Recent Advances in Ru-Catalyzed Olefin and C–H Bond Oxidation. ACS Symposium Series, 2019, , 85-101.	0.5	0
766	Merging Photochemistry with Electrochemistry: Functionalâ€Group Tolerant Electrochemical Amination of C(sp 3)â^'H Bonds. Angewandte Chemie, 2019, 131, 6451-6456.	1.6	50
767	Identifying Amidyl Radicals for Intermolecular C–H Functionalizations. Journal of Organic Chemistry, 2019, 84, 12983-12991.	1.7	38
768	C(sp ³)â€"H hydroxylation of fluorenes, oxindoles and benzofuranones with a Mg(NO ₃) ₂ â€"HP(O)Ph ₂ oxidation system. Organic Chemistry Frontiers, 2019, 6, 3167-3171.	2.3	8
769	Direct Arylation of Unactivated Alkanes with Heteroarenes by Visible-Light Catalysis. Journal of Organic Chemistry, 2019, 84, 12904-12912.	1.7	39
770	Copperâ€Promoted Oxidative Intramolecular C–H Amination of Hydrazones to Synthesize 1 <i>H</i> â€Indazoles and 1 <i>H</i> â€Pyrazoles Using a Cleavable Directing Group. European Journal of Organic Chemistry, 2019, 2019, 5801-5806.	1.2	14
771	Recent advances in alkoxy radical-promoted C–C and C–H bond functionalization starting from free alcohols. Chemical Communications, 2019, 55, 9747-9756.	2.2	154
772	Bioinspired Manganese and Iron Complexes for Enantioselective Oxidation Reactions: Ligand Design, Catalytic Activity, and Beyond. Accounts of Chemical Research, 2019, 52, 2370-2381.	7.6	102
773	Ruthenium(<scp>ii</scp>)-catalysed selective C(sp ²)â€"H bond benzoxylation of biologically appealing <i>N</i> -arylisoindolinones. Organic and Biomolecular Chemistry, 2019, 17, 7517-7525.	1.5	15
774	$\langle i \rangle \hat{I}^3 \langle i \rangle$ -Alkylation of Alcohols Enabled by Visible-Light Induced 1,6-Hydrogen Atom Transfer. Organic Letters, 2019, 21, 6107-6111.	2.4	21
775	Controllable α- or β-Functionalization of α-Diazoketones with Aromatic Amides via Cobalt-Catalyzed C–H Activation: A Regioselective Approach to Isoindolinones. Organic Letters, 2019, 21, 6264-6269.	2.4	21
776	Minisci C–H alkylation of N-heteroarenes with aliphatic alcohols <i>via</i> l²-scission of alkoxy radical intermediates. Organic Chemistry Frontiers, 2019, 6, 3205-3209.	2.3	36
777	Iron-Catalyzed Carbamoylation of Enamides with Formamides as a Direct Approach to <i>N</i> -Acyl Enamine Amides. ACS Catalysis, 2019, 9, 8128-8135.	5.5	42

#	Article	IF	CITATIONS
778	Green oxidant H ₂ O ₂ as a hydrogen atom transfer reagent for visible light-mediated Minisci reaction. New Journal of Chemistry, 2019, 43, 12533-12537.	1.4	37
779	Mild and Practical Dirhodium(II)/NHPlâ€Mediated Allylic and Benzylic Oxidations with Air as the Oxidant. Chemistry - A European Journal, 2019, 25, 14273-14277.	1.7	16
780	Total Synthesis and Structural Establishment/Revision of Antibiotics A54145. Organic Letters, 2019, 21, 5639-5644.	2.4	19
781	Copperâ€Catalyzed Alkynylation of C(<i>sp</i> ³)â^H Bonds in <i>N</i> â€Fluoroâ€sulfonamides. Advanced Synthesis and Catalysis, 2019, 361, 5478-5482.	2.1	38
782	Diamondoids in Oil and Gas Condensates (Review). Petroleum Chemistry, 2019, 59, 1108-1117.	0.4	9
784	lridium complex immobilization on covalent organic framework for effective C—H borylation. APL Materials, 2019, 7, .	2.2	24
785	Mechanistic study of the solvent-controlled Pd(ii)-catalyzed chemoselective intermolecular 1,2-aminooxygenation and 1,2-oxyamination of conjugated dienes. Organic Chemistry Frontiers, 2019, 6, 486-492.	2.3	18
786	Controllable, Sequential, and Stereoselective C–H Allylic Alkylation of Alkenes. Journal of the American Chemical Society, 2019, 141, 17305-17313.	6.6	28
787	Ironâ€Electrocatalyzed Câ^'H Arylations: Mechanistic Insights into Oxidationâ€Induced Reductive Elimination for Ferraelectrocatalysis. Chemistry - A European Journal, 2019, 25, 16382-16389.	1.7	48
788	Hydrogen Atom Transfer Induced Boron Retaining Coupling of Organoboronic Esters and Organolithium Reagents. Journal of the American Chemical Society, 2019, 141, 14126-14130.	6.6	51
790	Oxidation of Tetrahydro-Î ² -carbolines by Persulfate. Organic Letters, 2019, 21, 7475-7477.	2.4	11
791	The sustainable room temperature conversion of <i>p</i> -xylene to terephthalic acid using ozone and UV irradiation. Green Chemistry, 2019, 21, 6082-6088.	4.6	24
792	Regioselective Alkylative Cross-Coupling of Remote Unactivated C(⟨i⟩sp⟨ i⟩⟨sup⟩3⟨ sup⟩)–H Bonds. Journal of the American Chemical Society, 2019, 141, 14062-14067.	6.6	72
793	Enantioselective Divergent Syntheses of (+)-Bulleyanaline and Related Isoquinoline Alkaloids from the Genus <i>Corydalis</i> . Journal of the American Chemical Society, 2019, 141, 16085-16092.	6.6	13
794	Cercosporin-bioinspired selective photooxidation reactions under mild conditions. Green Chemistry, 2019, 21, 6073-6081.	4.6	41
795	A Continuing Career in Biocatalysis: Frances H. Arnold. ACS Catalysis, 2019, 9, 9775-9788.	5.5	26
796	Understanding the Activity and Enantioselectivity of Acetyl-Protected Aminoethyl Quinoline Ligands in Palladium-Catalyzed β-C(sp ³)–H Bond Arylation Reactions. Journal of the American Chemical Society, 2019, 141, 16726-16733.	6.6	27
797	An efficient synthesis of 2,3,5-trimethylbenzoquinone by metal-free oxidation of 1,2,4-trimethylbenzene. Journal of Chemical Research, 2019, 43, 565-568.	0.6	2

#	ARTICLE	IF	CITATIONS
798	Photoredox-mediated remote C(sp ³) $\hat{a}\in H$ heteroarylation of free alcohols. Chemical Science, 2019, 10, 688-693.	3.7	111
799	Catalyst-controlled positional-selectivity in C–H functionalizations. Organic and Biomolecular Chemistry, 2019, 17, 1007-1026.	1.5	50
800	Cobalt(<scp>iii</scp>)-catalyzed Câ€"H amidation of weakly coordinating sulfoxonium ylides and α-benzoylketene dithioacetals. Organic Chemistry Frontiers, 2019, 6, 741-745.	2.3	41
801	lminyl Radical-Triggered Intermolecular Distal C(sp ³)–H Heteroarylation via 1,5-Hydrogen-Atom Transfer (HAT) Cascade. Organic Letters, 2019, 21, 917-920.	2.4	77
802	Controllable Intramolecular Unactivated C(sp3)-H Amination and Oxygenation of Carbamates. Organic Letters, 2019, 21, 880-884.	2.4	35
803	Development of a Terpene Feedstock-Based Oxidative Synthetic Approach to the <i>Illicium</i> Sesquiterpenes. Journal of the American Chemical Society, 2019, 141, 3083-3099.	6.6	67
804	NiCl2-catalyzed radical cross decarboxylative coupling between arylpropiolic acids and cyclic ethers. Tetrahedron Letters, 2019, 60, 613-616.	0.7	7
805	Copperâ€Catalyzed C(sp ³)â^'H Amidation: Sterically Driven Primary and Secondary Câ^'H Siteâ€Selectivity. Angewandte Chemie - International Edition, 2019, 58, 3421-3425.	7.2	61
806	Double Cuâ€Catalyzed Direct Csp ³ â^'H Azidation/CuAAC Reaction: A Direct Approach towards Demanding Triazole Conjugates. Chemistry - A European Journal, 2019, 25, 4077-4086.	1.7	20
807	Evaluation of Polar Effects in Hydrogen Atom Transfer Reactions from Activated Phenols. Journal of Organic Chemistry, 2019, 84, 1778-1786.	1.7	16
808	Copperâ€Catalyzed C(sp ³)â^'H Amidation: Sterically Driven Primary and Secondary Câ^'H Siteâ€Selectivity. Angewandte Chemie, 2019, 131, 3459-3463.	1.6	15
809	Iridium-catalyzed silylation of unactivated C–H bonds. Tetrahedron, 2019, 75, 4059-4070.	1.0	29
810	Visible Light Driven Alkylation of C(sp ³)â€"H Bonds Enabled by 1,6-Hydrogen Atom Transfer/Radical Relay Addition. Organic Letters, 2019, 21, 5500-5504.	2.4	37
811	N â€Methoxybenzamide: A Versatile Directing Group for Palladiumâ€, Rhodium†and Ruthenium†Catalyzed Câ^'H Bond Activations. Advanced Synthesis and Catalysis, 2019, 361, 4149-4195.	2.1	42
812	Regioselective Sulfonylvinylation of the Unactivated C(sp ³)â€"H Bond via a C-Centered Radical-Mediated Hydrogen Atom Transfer (HAT) Process. Organic Letters, 2019, 21, 4837-4841.	2.4	38
813	Regio- and Stereoselective Rhodium(II)-Catalyzed C–H Functionalization of Organosilanes by Donor/Acceptor Carbenes Derived from Aryldiazoacetates. Organic Letters, 2019, 21, 4910-4914.	2.4	26
814	Continued Progress towards Efficient Functionalization of Natural and Nonâ€natural Targets under Mild Conditions: Oxygenation by Câ°'H Bond Activation with Dioxirane. Chemistry - A European Journal, 2019, 25, 12003-12017.	1.7	17
815	Mild, Metal-Free Oxidative Ring-Expansion Approach for the Synthesis of Benzo[<i>b</i>)azepines. Organic Letters, 2019, 21, 4535-4539.	2.4	25

#	Article	IF	Citations
816	Bio-inspired iron-catalyzed oxidation of alkylarenes enables late-stage oxidation of complex methylarenes to arylaldehydes. Nature Communications, 2019, 10, 2425.	5.8	64
817	Direct Observation of Primary Câ^'H Bond Oxidation by an Oxidoâ€Iron(IV) Porphyrin Ï€â€Radical Cation Complex in a Fluorinated Carbon Solvent. Angewandte Chemie, 2019, 131, 10979-10982.	1.6	2
818	Practical, metal-free remote heteroarylation of amides <i>via</i> unactivated C(sp ³)–H bond functionalization. Chemical Science, 2019, 10, 6915-6919.	3.7	78
819	Oxidative mono- and di- vinylation of 1-phenylpyrazole: Aqueous Rh(III)-catalyzed cross dehydrogenative coupling reactions. Catalysis Communications, 2019, 129, 105727.	1.6	8
820	Direct Observation of Primary Câ^'H Bond Oxidation by an Oxidoâ€Iron(IV) Porphyrin Ï€â€Radical Cation Complex in a Fluorinated Carbon Solvent. Angewandte Chemie - International Edition, 2019, 58, 10863-10866.	7.2	20
821	Total Synthesis of (â^')-Clavicipitic Acid via γ,γ-Dimethylallyltryptophan (DMAT) and Chemoselective C–H Hydroxylation. Journal of Organic Chemistry, 2019, 84, 8027-8034.	1.7	15
822	Palladium-Catalyzed Template Directed C-5 Selective Olefination of Thiazoles. Journal of Organic Chemistry, 2019, 84, 8315-8321.	1.7	35
823	Visible Light-Promoted Aliphatic C–H Arylation Using Selectfluor as a Hydrogen Atom Transfer Reagent. Organic Letters, 2019, 21, 6179-6184.	2.4	87
824	Site-selective enzymatic Câ€'H amidation for synthesis of diverse lactams. Science, 2019, 364, 575-578.	6.0	53
825	Dirhodium tetracarboxylates as catalysts for selective intermolecular C–H functionalization. Nature Reviews Chemistry, 2019, 3, 347-360.	13.8	233
826	Catalyst-Controlled C–H Functionalization of Adamantanes Using Selective H-Atom Transfer. ACS Catalysis, 2019, 9, 5708-5715.	5 . 5	68
827	Cobalt-Catalyzed Annulation Reactions of Alkylidenecyclopropanes: Access to Spirocyclopropanes at Room Temperature. Organic Letters, 2019, 21, 3871-3875.	2.4	45
828	Recent advances of allenes in the first-row transition metals catalyzed C H activation reactions. Chinese Chemical Letters, 2019, 30, 1495-1502.	4.8	45
829	Selective Oneâ€Step Aerobic Oxidation of Cyclohexane to ϵâ€Caprolactone Mediated by <i>N</i> å€Hydroxyphthalimide (NHPI). ChemCatChem, 2019, 11, 2260-2264.	1.8	26
830	Late-stage C–H amination of abietane diterpenoids. Organic and Biomolecular Chemistry, 2019, 17, 4736-4746.	1.5	5
831	Copperâ€Catalyzed Aerobic Oxidative Cyclization Cascade to Construct Bridged Skeletons: Total Synthesis of (â´')â€Suaveoline. Angewandte Chemie, 2019, 131, 6486-6490.	1.6	9
832	Pd(II)-Catalyzed Enantioselective Alkynylation of Unbiased Methylene C(sp ³)–H Bonds Using 3,3′-Fluorinated-BINOL as a Chiral Ligand. Journal of the American Chemical Society, 2019, 141, 4558-4563.	6.6	109
833	Palladium-Catalyzed <i>meta</i> -C–H Olefination of Arene-Tethered Diols Directed by Well-Designed Pyrimidine-Based Group. Organic Letters, 2019, 21, 1841-1844.	2.4	22

#	Article	IF	Citations
834	Copper-Catalyzed Amide Radical-Directed Cyanation of Unactivated C _{sp} ³ –H Bonds. Organic Letters, 2019, 21, 1921-1925.	2.4	53
835	Copperâ€Catalyzed Aerobic Oxidative Cyclization Cascade to Construct Bridged Skeletons: Total Synthesis of (â´´)â€Suaveoline. Angewandte Chemie - International Edition, 2019, 58, 6420-6424.	7.2	45
836	Chemoenzymatic Total Synthesis of Deoxyâ€, <i>epi</i> epieli>â€, and Podophyllotoxin and a Biocatalytic Kinetic Resolution of Dibenzylbutyrolactones. Angewandte Chemie - International Edition, 2019, 58, 8226-8230.	7.2	56
837	Redesign and engineering of a dioxygenase targeting biocatalytic synthesis of 5-hydroxyl leucine. Catalysis Science and Technology, 2019, 9, 1825-1834.	2.1	16
838	Visible-Light-Induced C(sp ³)–H Oxidative Arylation with Heteroarenes. Organic Letters, 2019, 21, 2441-2444.	2.4	89
839	Iridium-Catalyzed Silylation of C–H Bonds in Unactivated Arenes: A Sterically Encumbered Phenanthroline Ligand Accelerates Catalysis. Journal of the American Chemical Society, 2019, 141, 7063-7072.	6.6	57
840	Photochemical C–H oxygenation of side-chain methyl groups in polypropylene with chlorine dioxide. Chemical Communications, 2019, 55, 4723-4726.	2.2	20
841	Chemoenzymatische Totalsynthese von Deoxyâ€, <i>epi</i> epili>―und Podophyllotoxin sowie biokatalytische kinetische Racematspaltung von Dibenzylbutyrolactonen. Angewandte Chemie, 2019, 131, 8310-8315.	1.6	14
842	Selective biocatalytic hydroxylation of unactivated methylene Câ€"H bonds in cyclic alkyl substrates. Chemical Communications, 2019, 55, 5029-5032.	2.2	13
843	Efficient and selective photocatalytic oxidation of cyclohexane using O2 as oxidant in VOCl2 solution and mechanism insight. Chemical Engineering Science, 2019, 203, 163-172.	1.9	27
844	Regio- and stereoselective C–H functionalization of brassinosteroids. Steroids, 2019, 146, 92-98.	0.8	4
845	Divergent C–H Oxidative Radical Functionalization of Olefins to Install Tertiary Alkyl Motifs Enabled by Copper Catalysis. Organic Letters, 2019, 21, 1607-1611.	2.4	23
846	Rhodium atalyzed Copperâ€Assisted Intermolecular Domino Câ^'H Annulation of 1,3â€Diynes with Picolinamides: Access to Pentacyclic Ï€â€Extended Systems. Chemistry - A European Journal, 2019, 25, 5733-5742.	1.7	22
847	Electrochemical C(sp3)–H Fluorination. Synlett, 2019, 30, 1178-1182.	1.0	66
848	Cuâ€Catalyzed [4+1] Annulation toward Indolo[2,1â€ <i>a</i>]isoquinolines through Oxidative C(sp ⁾³)/C(sp ²)â^'H Bond Bifunctionalization. Chemistry - an Asian Journal, 2019, 14, 1042-1049.	1.7	12
849	Merging Photochemistry with Electrochemistry: Functionalâ€Group Tolerant Electrochemical Amination of C(sp ³)â^H Bonds. Angewandte Chemie - International Edition, 2019, 58, 6385-6390.	7.2	187
850	Total synthesis of $(\hat{A}\pm)$ -cephanolides B and C enabled by palladium-catalyzed cascade cyclization and late-stage sp Câ \in H bond oxidation. Strategies and Tactics in Organic Synthesis, 2019, , 159-185.	0.1	0
851	Enantioselective Copper-Catalyzed Cyanation of Remote C(sp3)-H Bonds Enabled by 1,5-Hydrogen Atom Transfer. IScience, 2019, 21, 490-498.	1.9	35

#	Article	IF	Citations
852	Combining Flavin Photocatalysis and Organocatalysis: Metal-Free Aerobic Oxidation of Unactivated Benzylic Substrates. Organic Letters, 2019, 21, 114-119.	2.4	79
853	Mechanistic Study of Ruthenium-Catalyzed C–H Hydroxylation Reveals an Unexpected Pathway for Catalyst Arrest. Journal of the American Chemical Society, 2019, 141, 972-980.	6.6	20
854	Synthesis, structural characterization and C H activation property of a tetra-iron(III) cluster. Journal of Molecular Structure, 2019, 1180, 220-226.	1.8	12
855	Origins of chemoselectivity of Rh(III)-Catalyzed C–H activation of N-(pivaloyloxy)benzamide: Insights from density functional theory calculations. Journal of Organometallic Chemistry, 2019, 880, 163-169.	0.8	4
856	Cyanohydrin-Mediated Cyanation of Remote Unactivated C(sp ³)–H Bonds. Organic Letters, 2019, 21, 821-825.	2.4	42
857	Regioselective Vinylation of Remote Unactivated C(sp ³)â^'H Bonds: Access to Complex Fluoroalkylated Alkenes. Angewandte Chemie, 2019, 131, 1513-1517.	1.6	16
858	Ru-Catalyzed Selective C–H Bond Hydroxylation of Cyclic Imides. Journal of Organic Chemistry, 2019, 84, 1898-1907.	1.7	25
859	Manganese-Catalyzed Asymmetric Oxidation of Methylene C–H of Spirocyclic Oxindoles and Dihydroquinolinones with Hydrogen Peroxide. Organic Letters, 2019, 21, 618-622.	2.4	48
860	Amidyl Radical Directed Remote Allylation of Unactivated sp 3 Câ^'H Bonds by Organic Photoredox Catalysis. Angewandte Chemie, 2019, 131, 1788-1792.	1.6	17
861	Amidyl Radical Directed Remote Allylation of Unactivated sp ³ Câ^'H Bonds by Organic Photoredox Catalysis. Angewandte Chemie - International Edition, 2019, 58, 1774-1778.	7.2	94
862	CeO2-l´-Modified CuFe2 O4 with Enhanced Oxygen Transfer as Efficient Catalysts for Selective Oxidation of Fluorene under Mild Conditions. European Journal of Inorganic Chemistry, 2019, 2019, 91-97.	1.0	11
863	Synthesis of Benzofused $\langle i\rangle N\langle i\rangle$ -Heterocycles via Rh(III)-Catalyzed Direct Benzannulation with 1,3-Dienes. ACS Catalysis, 2019, 9, 556-564.	5.5	37
864	Regioselective Vinylation of Remote Unactivated C(sp ³)â^'H Bonds: Access to Complex Fluoroalkylated Alkenes. Angewandte Chemie - International Edition, 2019, 58, 1499-1503.	7.2	77
865	Emerging fluorination methods in organic chemistry relevant for life science application. , 2019, , 1-90.		7
866	NH4-exchanged zeolites: Unexpected catalysts for cyclohexane selective oxidation. Microporous and Mesoporous Materials, 2020, 294, 109873.	2.2	16
867	Ruthenium(II)-Catalyzed Regioselective Ortho C–H Allenylation of Electron-Rich Aniline and Phenol Derivatives. Journal of Organic Chemistry, 2020, 85, 2048-2058.	1.7	8
868	Recent trends in catalytic sp ³ C–H functionalization of heterocycles. Organic and Biomolecular Chemistry, 2020, 18, 606-617.	1.5	35
869	Catalytic oxidation of cyclic hydrocarbons with hydrogen peroxide using Fe complexes immobilized into montmorillonite. Catalysis Today, 2020, 352, 243-249.	2.2	1

#	Article	IF	CITATIONS
870	Nitrene Transfer Reactions for Asymmetric C–H Amination: Recent Development. European Journal of Organic Chemistry, 2020, 2020, 909-916.	1.2	102
871	Transition-metal-free radical relay cyclization of vinyl azides with 1,4-dihydropyridines involving a 1,5-hydrogen-atom transfer: access to α-tetralone scaffolds. Organic Chemistry Frontiers, 2020, 7, 3638-3647.	2.3	20
872	Dual-Functional Enone-Directing Group/Electrophile for Sequential C–C Bond Formation with α-Diazomalonates: A Short Synthesis of Chiral 3,4-Fused Tricyclic Indoles. ACS Catalysis, 2020, 10, 11971-11979.	5.5	32
873	Chiral Transient Directing Groups in Transition-Metal-Catalyzed Enantioselective C–H Bond Functionalization. ACS Catalysis, 2020, 10, 12898-12919.	5.5	88
874	Development of new and efficient copper(<scp>ii</scp>) complexes of hexyl bis(pyrazolyl)acetate ligands as catalysts for allylic oxidation. Dalton Transactions, 2020, 49, 15622-15632.	1.6	10
875	Redox-Triggered Ruthenium-Catalyzed Remote C–H Acylation with Primary Alcohols. ACS Catalysis, 2020, 10, 12987-12995.	5.5	20
876	Mechanistic insights into the allylic oxidation of aliphatic compounds by tetraamido iron(<scp>v</scp>) species: A C–H <i>vs.</i> O–H bond activation. New Journal of Chemistry, 2020, 44, 19103-19112.	1.4	11
877	Silver-Catalyzed, Chemo- and Enantioselective Intramolecular Dearomatization of Indoles to Access Sterically Congested Azaspiro Frameworks. Journal of Organic Chemistry, 2020, 85, 10934-10950.	1.7	26
878	Two-Phase Total Synthesis of Taxanes: Tactics and Strategies. Journal of Organic Chemistry, 2020, 85, 10293-10320.	1.7	39
879	Catalytic oxyfunctionalization of saturated hydrocarbons by non-heme oxo-bridged diiron(III) complexes: role of acetic acid on oxidation reaction. Transition Metal Chemistry, 2020, 45, 583-588.	0.7	2
880	Synthesis of amino-diamondoid pharmacophores <i>via</i> photocatalytic C–H aminoalkylation. Chemical Communications, 2020, 56, 9699-9702.	2.2	29
881	Visible Light-Induced α-C(sp3)–H Acetalization of Saturated Heterocycles Catalyzed by a Dimeric Gold Complex. Organic Letters, 2020, 22, 5844-5849.	2.4	27
882	Palladium-Catalyzed C(sp ³)â€"H Nitrooxylation with <i>tert</i> -Butyl Nitrite and Molecular Oxygen. Organic Letters, 2020, 22, 9719-9723.	2.4	19
883	2-Ketoglutarate-Generated In Vitro Enzymatic Biosystem Facilitates Fe(II)/2-Ketoglutarate-Dependent Dioxygenase-Mediated C–H Bond Oxidation for (2s,3r,4s)-4-Hydroxyisoleucine Synthesis. International Journal of Molecular Sciences, 2020, 21, 5347.	1.8	5
884	Intramolecular C(sp ³)–H Bond Oxygenation by Transitionâ€Metal Acylnitrenoids. Angewandte Chemie, 2020, 132, 21890-21894.	1.6	5
885	When metal-catalyzed C–H functionalization meets visible-light photocatalysis. Beilstein Journal of Organic Chemistry, 2020, 16, 1754-1804.	1.3	66
886	Intramolecular C(sp ³)–H Bond Oxygenation by Transitionâ€Metal Acylnitrenoids. Angewandte Chemie - International Edition, 2020, 59, 21706-21710.	7.2	26
887	Carbonyl-Directed Aliphatic Fluorination: A Special Type of Hydrogen Atom Transfer Beats Out Norrish II. Journal of the American Chemical Society, 2020, 142, 14710-14724.	6.6	37

#	Article	IF	CITATIONS
888	Complementary and selective oxidation of hydrocarbon derivatives by two cytochrome P450 enzymes of the same family. Catalysis Science and Technology, 2020, 10, 5983-5995.	2.1	5
889	Site-Selective and Chemoselective C–H Functionalization for the Synthesis of Spiroaminals via a Silver-Catalyzed Nitrene Transfer Reaction. ACS Catalysis, 2020, 10, 13296-13304.	5.5	16
890	Site-selective C-H hydroxylation of pentacyclic triterpenoids directed by transient chiral pyridine-imino groups. Nature Communications, 2020, 11, 4371.	5.8	19
891	On the Mechanism of Cross-Dehydrogenative Couplings between <i>N</i> -aryl Glycinates and Indoles: A Computational Study. Journal of Organic Chemistry, 2020, 85, 13133-13140.	1.7	17
892	Metalâ€Free, Visibleâ€Light Promoted Intramolecular Azole Câ^'H Bond Amination Using Catalytic Amount of I 2 : A Route to 1,2,3â€Triazolo[1,5―a]quinazolinâ€5(4 H)â€ones. Advanced Synthesis and Catalysis, 2020, 362, 5124-5129.	2.1	10
893	Rhodium(III)â€Catalyzed Cross Coupling of Sulfoxonium Ylides and 1,3â€Diynes to Produce Naphtholâ€Indole Derivatives: An Arene ortho Câ°'H Activation/Annulation Cascade. ChemCatChem, 2020, 12, 5903-5906.	1.8	12
894	Effect of Ligand Topology on the Reactivity of Chiral Tetradentate Aminopyridine Manganese Complexes. ACS Catalysis, 2020, 10, 11857-11863.	5. 5	9
895	Ligand regulation for manganese-catalyzed enantioselective epoxidation of olefins without acid. Chemical Communications, 2020, 56, 13101-13104.	2.2	17
896	Copper-catalyzed oxidative benzylic C(sp ³)â€"H amination: direct synthesis of benzylic carbamates. Chemical Communications, 2020, 56, 13013-13016.	2.2	27
897	Iron-catalyzed remote functionalization of inert C(sp ³)â€"H bonds of alkenes ⟨i>via⟨ i>1,⟨i>n⟨ i>-hydrogen-atom-transfer by C-centered radical relay. Chemical Science, 2020, 11, 10437-10443.	3.7	43
898	Characterizing the Metal–Ligand Bond Strength via Vibrational Spectroscopy: The Metal–Ligand Electronic Parameter (MLEP). Topics in Organometallic Chemistry, 2020, , 227-269.	0.7	3
899	Site- and Enantiodifferentiating C(sp ³)â€"H Oxidation Enables Asymmetric Access to Structurally and Stereochemically Diverse Saturated Cyclic Ethers. Journal of the American Chemical Society, 2020, 142, 19346-19353.	6.6	16
900	Rhodium-catalyzed <i>ortho</i> -acrylation of aryl ketone <i>O</i> -methyl oximes with cyclopropenones. Organic and Biomolecular Chemistry, 2020, 18, 3823-3826.	1.5	7
901	Application of Relay Câ^'H Oxidation Logic to Polyhydroxylated Oleanane Triterpenoids. CheM, 2020, 6, 1183-1189.	5.8	19
902	Electrochemical Ruthenium-Catalyzed C–H Hydroxylation of Amine Derivatives in Aqueous Acid. Organic Letters, 2020, 22, 7060-7063.	2.4	16
903	Recent progress in the synthesis of limonoids and limonoid-like natural products. Organic Chemistry Frontiers, 2020, 7, 1903-1947.	2.3	23
904	Palladiumâ€Catalyzed Secondary C(sp 3)â^'H Arylation of 2â€Alkylpyridines. Advanced Synthesis and Catalysis, 2020, 362, 2637-2641.	2.1	9
905	Light-Promoted Bromine-Radical-Mediated Selective Alkylation and Amination of Unactivated C(sp3)–H Bonds. CheM, 2020, 6, 1766-1776.	5.8	80

#	Article	IF	CITATIONS
906	Design of Bowlâ€Shaped <i>N</i> â€Hydroxyimide Derivatives as New Organoradical Catalysts for Siteâ€Selective C(sp ³)â'H Bond Functionalization Reactions. Angewandte Chemie - International Edition, 2020, 59, 14261-14264.	7.2	15
907	Überwindung der intrinsischen Reaktivitäbei aliphatischer Câ€Hâ€Oxidation: Bevorzugte C3/C4â€Oxidation von aliphatischen Ammoniumsubstraten. Angewandte Chemie, 2020, 132, 12486-12490.	1.6	5
908	Homobenzylic Oxygenation Enabled by Dual Organic Photoredox and Cobalt Catalysis. Journal of the American Chemical Society, 2020, 142, 10325-10330.	6.6	58
909	Overriding Intrinsic Reactivity in Aliphatic Câ^'H Oxidation: Preferential C3/C4 Oxidation of Aliphatic Ammonium Substrates. Angewandte Chemie - International Edition, 2020, 59, 12387-12391.	7.2	16
910	Site-selective, catalytic, and diastereoselective sp ³ Câ€"H hydroxylation and alkoxylation of vicinally functionalized lactams. RSC Advances, 2020, 10, 20264-20271.	1.7	6
911	Remote γ-C(sp ³)–H Alkylation of Aliphatic Carboxamides via an Unexpected Regiodetermining Pd Migration Process: Reaction Development and Mechanistic Study. ACS Catalysis, 2020, 10, 8212-8222.	5.5	32
912	Site-Selective Copper-Catalyzed Azidation of Benzylic C–H Bonds. Journal of the American Chemical Society, 2020, 142, 11388-11393.	6.6	112
913	A site-selective amination catalyst discriminates between nearly identical Câ€"H bonds of unsymmetrical disubstituted alkenes. Nature Chemistry, 2020, 12, 725-731.	6.6	66
914	Iron- and cobalt-catalyzed C(sp ³)â€"H bond functionalization reactions and their application in organic synthesis. Chemical Society Reviews, 2020, 49, 5310-5358.	18.7	119
915	Copperâ€Mediated Intramolecular Oxidative αâ€Functionalization of Ugi Precursor: An Efficient Synthesis of Highly Functionalized 2Hâ€Benzo[e][1,3]oxazinâ€4(3H)â€one Derivatives. ChemistrySelect, 2020, 5, 6780-6785.	0.7	3
916	[1,5]-Hydride Shift-Cyclization versus C(sp2)-H Functionalization in the Knoevenagel-Cyclization Domino Reactions of 1,4- and 1,5-Benzoxazepines. Molecules, 2020, 25, 1265.	1.7	4
917	Cerium-Catalyzed C–H Functionalizations of Alkanes Utilizing Alcohols as Hydrogen Atom Transfer Agents. Journal of the American Chemical Society, 2020, 142, 6216-6226.	6.6	138
918	Oxoiron(V) Complexes of Relevance in Oxidation Catalysis of Organic Substrates. Israel Journal of Chemistry, 2020, 60, 1004-1018.	1.0	21
919	Freeâ€Radicalâ€Promoted Alkenylation of C(sp 3)â^'H Bond in Chloroalkane with Cinnamic Acid and β â€Nitrostyrene. Advanced Synthesis and Catalysis, 2020, 362, 2195-2199.	2.1	15
920	Rational Design of Bioinspired Catalysts for Selective Oxidations. ACS Catalysis, 2020, 10, 8611-8631.	5 . 5	115
921	Remote azidation of C(sp ³)–H bonds to synthesize Î-azido sulfonamides <i>via</i> iron-catalyzed radical relay. Organic and Biomolecular Chemistry, 2020, 18, 5354-5358.	1.5	12
922	Artificial nonheme iron and manganese oxygenases for enantioselective olefin epoxidation and alkane hydroxylation reactions. Coordination Chemistry Reviews, 2020, 421, 213443.	9.5	82
923	Design of Bowlâ€Shaped N â€Hydroxyimide Derivatives as New Organoradical Catalysts for Siteâ€Selective C(sp 3)â^'H Bond Functionalization Reactions. Angewandte Chemie, 2020, 132, 14367-14370.	1.6	0

#	Article	IF	Citations
924	Copper/Silver Cocatalyzed Regioselective C5–H Functionalization of 8-Aminoquinoline Amides with 1,3-Dicarbonyl Compounds. Synthesis, 0, 52, .	1.2	7
925	Pushing the boundaries of C–H bond functionalization chemistry using flow technology. Journal of Flow Chemistry, 2020, 10, 13-71.	1.2	76
926	Ru(<scp>ii</scp>)-catalyzed C6-selective C–H acylmethylation of pyridones using sulfoxonium ylides as carbene precursors. RSC Advances, 2020, 10, 6351-6355.	1.7	24
927	Nebulization prior to ionization for mechanistic studies of chemical reactions. Analytica Chimica Acta, 2020, 1107, 107-112.	2.6	2
928	Highly Active and Robust Ruthenium Complexes Based on Hemilability of Hybrid Ligands for C–H Oxidation. Journal of Organic Chemistry, 2020, 85, 4324-4334.	1.7	27
929	Harnessing the biocatalytic potential of iron- and \hat{l}_{\pm} -ketoglutarate-dependent dioxygenases in natural product total synthesis. Natural Product Reports, 2020, 37, 1065-1079.	5.2	47
930	Cp*Rh ^{III} atalyzed Sterically Controlled C(sp ³)â^'H Selective Mono―and Diarylation of 8â€Methylquinolines with Organoborons**. Chemistry - A European Journal, 2020, 26, 4396-4402.	1.7	19
931	Regioselective C–H hydroxylation of <i>n</i> -alkanes using Shilov-type Pt catalysis in perfluorinated micro-emulsions. Catalysis Science and Technology, 2020, 10, 1264-1272.	2.1	8
932	Selective aerobic oxidation of cyclic ethers to lactones over Au/CeO2 without any additives. Chemical Communications, 2020, 56, 2638-2641.	2.2	6
933	Direct Oxygenation of C–H Bonds through Photoredox and Palladium Catalysis. Journal of Organic Chemistry, 2020, 85, 3426-3439.	1.7	27
934	Enantioselective oxygenation of exocyclic methylene groups by a manganese porphyrin catalyst with a chiral recognition site. Chemical Science, 2020, 11, 2121-2129.	3.7	46
935	Photocatalytic hydrogen atom transfer: the philosopher's stone for late-stage functionalization?. Green Chemistry, 2020, 22, 3376-3396.	4.6	157
936	Kinetics of Electrophilic Fluorination of Steroids and Epimerisation of Fluorosteroids. Chemistry - A European Journal, 2020, 26, 12027-12035.	1.7	3
937	Photocatalytic Remote Oxyfluoroalkylation of Heteroalkynes: Regio-, Stereo-, and Site-Selective Access to Complex Fluoroalkylated (<i>Z</i>)-Alkenes. Organic Letters, 2020, 22, 3667-3672.	2.4	37
938	Enhanced reactivity of the pyrimidine peroxyl radical towards the Câ€"H bond in duplex DNA â€" a theoretical study. Organic and Biomolecular Chemistry, 2020, 18, 3536-3543.	1.5	4
939	Late-Stage Diversification of Natural Products. ACS Central Science, 2020, 6, 622-635.	5.3	203
940	Photoinduced site-selective alkenylation of alkanes and aldehydes with aryl alkenes. Nature Communications, 2020, 11, 1956.	5.8	116
941	Using the Thiyl Radical for Aliphatic Hydrogenâ€Atom Transfer: Thiolation of Unactivated Câ^'H Bonds. Angewandte Chemie - International Edition, 2021, 60, 2849-2854.	7.2	50

#	Article	IF	CITATIONS
942	Using the Thiyl Radical for Aliphatic Hydrogenâ€Atom Transfer: Thiolation of Unactivated Câ^'H Bonds. Angewandte Chemie, 2021, 133, 2885-2890.	1.6	7
943	Î-Regioselective heteroarylation of free alcohols through 1,5-hydrogen-atom transfer. Organic Chemistry Frontiers, 2021, 8, 101-105.	2.3	10
944	Dual-Role Catalysis by Thiobenzoic Acid in Cα–H Arylation under Photoirradiation. ACS Catalysis, 2021, 11, 82-87.	5.5	41
945	Remote methylene C(sp ³)–H functionalization enabled by organophosphine-catalyzed alkyne isomerization. Organic Chemistry Frontiers, 2021, 8, 1125-1131.	2.3	6
946	Oxidative Kinetic Resolution of Cyclic Benzylic Ethers. Angewandte Chemie, 2021, 133, 178-182.	1.6	5
947	Siteâ€Selective Alkenylation of Unactivated C(sp ³)â^'H Bonds Mediated by Compact Sulfate Radical. Angewandte Chemie - International Edition, 2021, 60, 3545-3550.	7.2	24
948	Oxidative Kinetic Resolution of Cyclic Benzylic Ethers. Angewandte Chemie - International Edition, 2021, 60, 176-180.	7.2	17
949	Siteâ€Selective Alkenylation of Unactivated C(sp 3)â^'H Bonds Mediated by Compact Sulfate Radical. Angewandte Chemie, 2021, 133, 3587-3592.	1.6	4
950	Intermolecular Câ^'H Activation at the Allylic/Benzylic and Homoallylic/Homobenzylic Positions of Cyclic Hydrocarbons by a Stable Divalent Silicon Species. Chemistry - A European Journal, 2021, 27, 724-734.	1.7	2
951	Synthetic Studies on Didymeline Using Spirocyclization of Phenols with Diazo Functionality. Heterocycles, 2021, 103, 687.	0.4	1
952	Stereoelectronic power of oxygen in control of chemical reactivity: the anomeric effect is not alone. Chemical Society Reviews, 2021, 50, 10253-10345.	18.7	80
953	Highly economical and direct amination of sp ³ carbon using low-cost nickel pincer catalyst. RSC Advances, 2021, 11, 1862-1874.	1.7	3
955	Recent Advances in Copper Promoted Inert C(sp ³)â€"H Functionalization. ACS Catalysis, 2021, 11, 967-984.	5.5	32
956	New horizons for catalysis disclosed by supramolecular chemistry. Chemical Society Reviews, 2021, 50, 7681-7724.	18.7	117
957	Precious Metal-Free LaMnO $<$ sub $>3sub> Perovskite Catalyst with an Optimized Nanostructure for Aerobic Câ\in H Bond Activation Reactions: Alkylarene Oxidation and Naphthol Dimerization. ACS Applied Materials & Diterfaces, 2021, 13, 5099-5110.$	4.0	15
958	Hydroxylation of Unactivated C(sp ³)–H Bonds with <i>m</i> -Chloroperbenzoic Acid Catalyzed by an Iron(III) Complex Supported by a Trianionic Planar Tetradentate Ligand. Inorganic Chemistry, 2021, 60, 7641-7649.	1.9	11
959	Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp ³)–H Cross-Coupling. Accounts of Chemical Research, 2021, 54, 988-1000.	7.6	144
961	Photocatalytic (Het)arylation of C(sp ³)–H Bonds with Carbon Nitride. ACS Catalysis, 2021, 11, 1593-1603.	5.5	74

#	Article	IF	CITATIONS
962	Synthetic utility of oxygenases in site-selective terpenoid functionalization. Journal of Industrial Microbiology and Biotechnology, 2021, 48, .	1.4	9
963	Regiospecific and site-selective C–H allylation of phenols with vinyldiazo compounds catalyzed by In(<scp>iii</scp>). Organic Chemistry Frontiers, 2021, 8, 6252-6258.	2.3	6
964	Practical and Selective sp ³ Câ^'H Bond Chlorination via Aminium Radicals. Angewandte Chemie, 2021, 133, 7208-7215.	1.6	1
965	Practical and Selective sp ³ Câ^H Bond Chlorination via Aminium Radicals. Angewandte Chemie - International Edition, 2021, 60, 7132-7139.	7.2	34
966	Copper Catalyzed C(sp ³)â€"H Bond Alkylation via Photoinduced Ligand-to-Metal Charge Transfer. Journal of the American Chemical Society, 2021, 143, 2729-2735.	6.6	168
967	Co(III), Rh(III) & Catalyzed Direct Câ^'H Alkylation/Alkenylation/Arylation with Carbene Precursors. Chemistry - an Asian Journal, 2021, 16, 443-459.	1.7	62
969	An Efficient Polymer Supported Palladium Catalyst for <i>ortho</i> Selective Câ^'H Olefination of Anilides. ChemistrySelect, 2021, 6, 2615-2620.	0.7	5
970	Rapid Synthesis of Functionalized Hydrocarbazolones via Indole C2â^'H Activation Using Enone Functionality as a Directing Group/Electrophilic Species. Advanced Synthesis and Catalysis, 2021, 363, 2189-2198.	2.1	4
971	Cobalt-Catalyzed Intermolecular C–H Amidation of Unactivated Alkanes. Journal of the American Chemical Society, 2021, 143, 5191-5200.	6.6	50
972	C–H Functionalization via Electrophotocatalysis and Photoelectrochemistry: Complementary Synthetic Approach. ACS Sustainable Chemistry and Engineering, 2021, 9, 4324-4340.	3.2	29
973	Site Selective Chlorination of C(sp ³)â^'H Bonds Suitable for Lateâ€Stage Functionalization. Angewandte Chemie - International Edition, 2021, 60, 8276-8283.	7.2	28
974	Ironâ€Catalyzed Tertiary Alkylation of Terminal Alkynes with 1,3â€Diesters via a Functionalized Alkyl Radical. Angewandte Chemie, 2021, 133, 9792-9797.	1.6	2
975	Site Selective Chlorination of C(sp ³)â^'H Bonds Suitable for Lateâ€Stage Functionalization. Angewandte Chemie, 2021, 133, 8357-8364.	1.6	9
977	Cu-Catalyzed Direct C–H Alkylation of Polyfluoroarenes via Remote C(sp ³)–H Functionalization in Carboxamides. Organic Letters, 2021, 23, 2693-2698.	2.4	20
978	Iron atalyzed Tertiary Alkylation of Terminal Alkynes with 1,3â€Điesters via a Functionalized Alkyl Radical. Angewandte Chemie - International Edition, 2021, 60, 9706-9711.	7.2	13
979	Efficient and selective oxidation of cyclohexane to cyclohexanone over flake hexagonal boron nitride/titanium dioxide hybrid photocatalysts. Molecular Catalysis, 2021, 505, 111530.	1.0	4
980	Stereoselective construction of fused cyclopropane from ynamide and its application to synthesis of small drug candidate molecules. Tetrahedron Letters, 2021, 70, 152985.	0.7	4
981	Catalytic Intermolecular C(sp ³)â€"H Amination: Selective Functionalization of Tertiary Câ€"H Bonds vs Activated Benzylic Câ€"H Bonds. Journal of the American Chemical Society, 2021, 143, 6407-6412.	6.6	36

#	Article	IF	Citations
982	Transitionâ€Metalâ€Free α Csp ³ â^'H Cyanation of Sulfonamides. Chemistry - A European Journal, 2021, 27, 7103-7107.	1.7	6
983	Visibleâ€Lightâ€Driven Selective Airâ€Oxygenation of Câ^'H Bond via CeCl ₃ Catalysis in Water. ChemSusChem, 2021, 14, 2689-2693.	3.6	16
984	Halide Perovskite Materials for Photo(Electro)Chemical Applications: Dimensionality, Heterojunction, and Performance. Advanced Energy Materials, 2022, 12, 2004002.	10.2	68
985	<i>N</i> -Ammonium Ylide Mediators for Electrochemical C–H Oxidation. Journal of the American Chemical Society, 2021, 143, 7859-7867.	6.6	62
986	Experimental and Computational Studies of Palladium-Catalyzed Spirocyclization via a Narasaka–Heck/C(sp ³ or sp ²)–H Activation Cascade Reaction. Journal of the American Chemical Society, 2021, 143, 7868-7875.	6.6	31
987	Deciphering Reactivity and Selectivity Patterns in Aliphatic C–H Bond Oxygenation of Cyclopentane and Cyclohexane Derivatives. Journal of Organic Chemistry, 2021, 86, 9925-9937.	1.7	6
988	Engineering P450 Taml as an Iterative Biocatalyst for Selective Late-Stage C–H Functionalization and Epoxidation of Tirandamycin Antibiotics. ACS Catalysis, 2021, 11, 8304-8316.	5.5	18
989	Electrochemical Oxidative Coupling Between Benzylic C(sp ³)â€"H and Nâ€"H of Secondary Amines: Rapid Synthesis of α-Amino α-Aryl Esters. Journal of Organic Chemistry, 2021, 86, 9682-9691.	1.7	12
990	Iron-Catalyzed Photoinduced LMCT: A 1° C–H Abstraction Enables Skeletal Rearrangements and C(sp ³)–H Alkylation. ACS Catalysis, 2021, 11, 7442-7449.	5.5	100
991	Synthesis of <i>Ortho</i> -Functionalized 1,4-Cubanedicarboxylate Derivatives through Photochemical Chlorocarbonylation. Organic Letters, 2021, 23, 5164-5169.	2.4	12
992	Ceria-Based Materials for Thermocatalytic and Photocatalytic Organic Synthesis. ACS Catalysis, 2021, 11, 9618-9678.	5.5	146
993	Ferric ion concentration-controlled aerobic photo-oxidation of benzylic C–H bond with high selectivity and conversion. Tetrahedron, 2021, 93, 132298.	1.0	7
994	Copper-Catalyzed Cross-Nucleophile Coupling of β-Allenyl Silanes with Tertiary C–H Bonds: A Radical Approach to Branched 1,3-Dienes. Organic Letters, 2021, 23, 6041-6045.	2.4	7
995	TEMPOâ€Mediated Selective Synthesis of Isoxazolines, 5â€Hydroxyâ€2â€isoxazolines, and Isoxazoles via Aliphatic <i>δ</i> àê€C(sp3)â€H Bond Oxidation of Oximes. Chemistry - an Asian Journal, 2021, 16, 2439-2446.	1.7	7
996	Benzylic C _{sp³} â€"H Bond Oxidation on the (111) Facets of Octahedral Cu ₂ O Nanocrystals. ACS Applied Nano Materials, 2021, 4, 7840-7855.	2.4	4
997	Transition Metalâ€Catalyzed Câ^'H Oxidation of Saturated Hydrocarbons with Molecular Oxygen. Chemical Record, 2021, 21, 1928-1940.	2.9	9
998	Recent Advances in Visible Light-mediated Fluorination. Journal of Fluorine Chemistry, 2021, 247, 109794.	0.9	28
999	Catalystâ€Controlled Chemoselective Nitrene Transfers. Helvetica Chimica Acta, 2021, 104, e2100140.	1.0	16

#	Article	IF	CITATIONS
1000	Direct Photocatalyzed Hydrogen Atom Transfer (HAT) for Aliphatic C–H Bonds Elaboration. Chemical Reviews, 2022, 122, 1875-1924.	23.0	442
1001	Efficient Aliphatic C–H Oxidation and Câ•C Epoxidation Catalyzed by Porous Organic Polymer-Supported Single-Site Manganese Catalysts. ACS Catalysis, 2021, 11, 10964-10973.	5 . 5	23
1002	Photoinduced intermolecular hydrogen atom transfer reactions in organic synthesis. Chem Catalysis, 2021, 1, 523-598.	2.9	191
1003	Mechanistic Guidance Leads to Enhanced Site-Selectivity in C–H Oxidation Reactions Catalyzed by Ruthenium bis(Bipyridine) Complexes. ACS Catalysis, 2021, 11, 10479-10486.	5 . 5	17
1004	Merging Halogen-Atom Transfer (XAT) and Cobalt Catalysis to Override E2-Selectivity in the Elimination of Alkyl Halides: A Mild Route toward <i>contra</i> -Thermodynamic Olefins. Journal of the American Chemical Society, 2021, 143, 14806-14813.	6.6	68
1005	Hydrogen Atom Abstraction by Heterogeneous–Homogeneous Hybrid Catalyst of CeO ₂ and 2-Cyanopyridine via Redox of CeO ₂ for C–H Bond Oxidation with Air. ACS Catalysis, 2021, 11, 11867-11872.	5.5	5
1006	Hydrogen radical-shuttle (HRS)-enabled photoredox synthesis of indanones via decarboxylative annulation. Nature Communications, 2021, 12, 5257.	5.8	12
1007	Construction of Indium Oxide/N-Doped Titanium Dioxide Hybrid Photocatalysts for Efficient and Selective Oxidation of Cyclohexane to Cyclohexanone. Journal of Physical Chemistry C, 2021, 125, 19791-19801.	1.5	21
1008	γ-Selective C(sp3)–H amination via controlled migratory hydroamination. Nature Communications, 2021, 12, 5657.	5.8	56
1009	Structural and Biochemical Studies Enlighten the Unspecific Peroxygenase from <i>Hypoxylon</i> sp. EC38 as an Efficient Oxidative Biocatalyst. ACS Catalysis, 2021, 11, 11511-11525.	5.5	39
1010	Change of Selectivity in C–H Functionalization Promoted by Nonheme Iron(IV)-oxo Complexes by the Effect of the <i>N</i> -hydroxyphthalimide HAT Mediator. ACS Omega, 2021, 6, 26428-26438.	1.6	4
1011	Functionalization of C(sp3)-H bonds adjacent to heterocycles catalyzed by earth abundant transition metals. Tetrahedron, 2021, 98, 132415.	1.0	11
1012	Photo-induced copper-catalyzed alkynylation and amination of remote unactivated C(sp ³)-H bonds. Chemical Science, 2021, 12, 4836-4840.	3.7	30
1013	Chiral Primary Amine/Ketone Cooperative Catalysis for Asymmetric α-Hydroxylation with Hydrogen Peroxide. Journal of the American Chemical Society, 2021, 143, 1078-1087.	6.6	34
1014	Direct synthetic routes to functionalised crown ethers. Organic Chemistry Frontiers, 2021, 8, 5531-5549.	2.3	29
1015	<i>O</i> -Directed Câ€"H functionalization <i>via</i> cobaltacycles: a sustainable approach for Câ€"C and Câ€"heteroatom bond formations. Chemical Communications, 2021, 57, 3630-3647.	2.2	29
1017	Recent advances in Rh(<scp>iii</scp>)/Ir(<scp>iii</scp>)-catalyzed C–H functionalization/annulation <i>via</i>) carbene migratory insertion. Organic and Biomolecular Chemistry, 2021, 19, 1438-1458.	1.5	77
1018	Iron-Catalyzed Csp3 - H Oxidation with H2O2: Converting a Radical Reaction into a Selective and Efficient Synthetic Tool., 0,, 157-174.		1

#	Article	IF	CITATIONS
1019	Asymmetric Intramolecular Dearomatization of Nonactivated Arenes with Ynamides for Rapid Assembly of Fused Ring System under Silver Catalysis. Journal of the American Chemical Society, 2021, 143, 604-611.	6.6	58
1020	Asymmetric Functionalization of C–H Bonds <i>via</i> a Transient Carbon–Metal (C–M) Species. RSC Catalysis Series, 2015, , 141-213.	0.1	20
1021	A unified photoredox-catalysis strategy for C(sp ³)–H hydroxylation and amidation using hypervalent iodine. Chemical Science, 2017, 8, 7180-7185.	3.7	97
1022	Dual ligand-promoted palladium-catalyzed nondirected C–H alkenylation of aryl ethers. Chemical Communications, 2020, 56, 3293-3296.	2.2	23
1023	Advances in the catalyst- and reagent-controlled site-divergent intermolecular functionalization of C(⟨i⟩sp⟨ i⟩ ⟨sup⟩)â€"H bonds. Pure and Applied Chemistry, 2020, 92, 1987-2003.	0.9	4
1025	Radical Functionalization of Remote C(sp ³)–H Bonds Mediated by Unprotected Alcohols and Amides. CCS Chemistry, 2020, 2, 813-828.	4.6	54
1026	Recent advance in direct sp3 carbon-hydrogen bond functionalizations. European Journal of Chemistry, 2016, 7, 248-270.	0.3	5
1027	A New Dimeric Copper(II) Complex of Hexyl Bis(pyrazolyl)acetate Ligand as an Efficient Catalyst for Allylic Oxidations. Molecules, 2021, 26, 6271.	1.7	3
1028	Site and Enantioselective Aliphatic Câ^'H Oxidation with Bioinspired Chiral Complexes. Chemical Record, 2021, 21, 4000-4014.	2.9	27
1029	Radical Transformation of Aliphatic C–H Bonds to Oxime Ethers via Hydrogen Atom Transfer. Organic Letters, 2021, 23, 8353-8358.	2.4	20
1030	Controlling the Site-Selectivity in C(sp ³)-H Activation Reaction. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2016, 74, 71-72.	0.0	0
1031	Discontent is the First Step in Progressâ€"Learning from the Total Synthesis of Ryanodine. Yuki Gosei Kagaku Kyokaishi∥ournal of Synthetic Organic Chemistry, 2018, 76, 494-497.	0.0	0
1032	Palladium-Catalyzed β-C(sp ³)–H Nitrooxylation of Ketones and Amides Using Practical Oxidants. ACS Catalysis, 2021, 11, 14188-14193.	5.5	20
1033	Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chemical Reviews, 2022, 122, 2017-2291.	23.0	211
1034	Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. Chemical Reviews, 2022, 122, 3180-3218.	23.0	173
1035	Different Geometric Requirements for Cytochrome P450-Catalyzed Aliphatic Versus Aromatic Hydroxylation Results in Chemoselective Oxidation. ACS Catalysis, 2022, 12, 1258-1267.	5.5	14
1036	Peroxide activation by selenium-doped graphite. Catalysis Science and Technology, 2022, 12, 1296-1312.	2.1	4
1037	Recent advances in γ-C(sp3)–H bond activation of amides, aliphatic amines, sulfanilamides and amino acids. Coordination Chemistry Reviews, 2022, 455, 214255.	9.5	18

#	Article	IF	CITATIONS
1038	Photoinduced remote regioselective radical alkynylation of unactivated C–H bonds. Chemical Communications, 2022, 58, 2295-2298.	2.2	4
1039	Phase-dependent photocatalytic selective oxidation of cyclohexane over copper vanadates. New Journal of Chemistry, 2022, 46, 4082-4089.	1.4	9
1040	Synthetic Applications of Carbene and Nitrene C H Insertion. , 2022, , .		0
1041	Mechanistically Guided Workflow for Relating Complex Reactive Site Topologies to Catalyst Performance in C–H Functionalization Reactions. Journal of the American Chemical Society, 2022, 144, 1881-1898.	6.6	15
1042	Preparation of Bimetallic CuZn@mSiO ₂ Yolkâ€Shell Catalyst for the Selective Oxidation of Cumene to Acetophenone. ChemNanoMat, 2022, 8, .	1.5	0
1043	Controlled and Predictably Selective Oxidation of Activated and Unactivated C(sp ³)–H Bonds Catalyzed by a Molybdenum-Based Metallomicellar Catalyst in Water. Journal of Organic Chemistry, 2022, 87, 4061-4077.	1.7	12
1044	Strategies for the De Novo Synthesis of Highly Substituted Pyridine Scaffolds: Unified Total Synthesis of the Limonoid Alkaloids. SSRN Electronic Journal, 0, , .	0.4	0
1045	Reinforcing the supply chain of umifenovir and other antiviral drugs with retrosynthetic software. Nature Communications, 2021, 12, 7327.	5.8	11
1046	Electronic control over site-selectivity in hydrogen atom transfer (HAT) based C(sp ³)–H functionalization promoted by electrophilic reagents. Chemical Society Reviews, 2022, 51, 2171-2223.	18.7	57
1047	Kinetic resolution of cyclic benzylic azides enabled by site- and enantioselective C(sp3)–H oxidation. Nature Communications, 2022, 13, 1621.	5.8	5
1048	Amine Organocatalysis of Remote, Chemoselective C(sp ³)–H Hydroxylation. ACS Catalysis, 2022, 12, 4302-4309.	5.5	14
1049	Cu ₂ Oâ^'CD nanosuperstructures as a Biomimetic Catalyst for Oxidation of Benzylic <i>sp</i> ^{<i>3</i>} Câ^'H bonds and Secondary Amines using Molecular Oxygen: First Total Synthesis of proposed Swerilactone O. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	3
1050	Probing the Mechanism of Isonitrile Formation by a Non-Heme Iron(II)-Dependent Oxidase/Decarboxylase. Journal of the American Chemical Society, 2022, 144, 5893-5901.	6.6	9
1051	Methane Monooxygenase Mimic Asymmetric Oxidation: Self-Assembling \hat{l}^{1} 4-Hydroxo, Carboxylate-Bridged Diiron(III)-Catalyzed Enantioselective Dehydrogenation. Journal of the American Chemical Society, 2022, 144, 5976-5984.	6.6	12
1052	Hydrogen Abstraction by Alkoxyl Radicals: Computational Studies of Thermodynamic and Polarity Effects on Reactivities and Selectivities. Journal of the American Chemical Society, 2022, 144, 6802-6812.	6.6	21
1053	Beyond the cyclopropyl ring formation: fungal Aj_EasH catalyzes asymmetric hydroxylation of ergot alkaloids. Applied Microbiology and Biotechnology, 2022, 106, 2981-2991.	1.7	2
1054	A diâ \in iron(III) ν-oxido complex as catalyst precursor in the oxidation of alkanes and alkenes. Journal of Inorganic Biochemistry, 2022, 231, 111769.	1.5	2
1055	Site-selective coupling of remote C(sp ³)â€"H/ <i>meta</i> -C(sp ²)â€"H bonds enabled by Ru/photoredox dual catalysis and mechanistic studies. Chemical Science, 2022, 13, 5382-5389.	3.7	24

#	ARTICLE	IF	CITATIONS
1056	Recent progress in rare-earth metal-catalyzed sp ² and sp ³ Câ \in "H functionalization to construct Câ \in "C and Câ \in "heteroelement bonds. Organic Chemistry Frontiers, 2022, 9, 3102-3141.	2.3	20
1057	Bioinspired Synthesis of Pinoxaden Metabolites Using a Site-Selective C–H Oxidation Strategy. Journal of Organic Chemistry, 2022, 87, 6202-6211.	1.7	3
1058	C(sp ³)â€"H 1,3-diamination of cumene derivatives catalyzed by a dirhodium(<scp>ii</scp>) catalyst. Organic Chemistry Frontiers, 0, , .	2.3	5
1059	Synergistic Approach for Decarboxylative <i>Ortho</i> Câ^'H Aroylation of 2â€Arylâ€pyrido[1,2â€a]pyrimidinâ€4â€ones and Thiazolopyrimidinones by Merging Palladium Catalysis with Photocatalysis. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	2
1060	Biocatalytic Enantioselective βâ€Hydroxylation of Unactivated C–H Bonds in Aliphatic Carboxylic Acids. Angewandte Chemie, 0, , .	1.6	0
1061	Biocatalytic Enantioselective βâ€Hydroxylation of Unactivated Câ^'H Bonds in Aliphatic Carboxylic Acids. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
1062	Chemoselective Oxyfunctionalization of Functionalized Benzylic Compounds with a Manganese Catalyst. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
1063	Self-photocatalyzed regulable alkylation of 2 <i>H</i> -benzothiazoles with diverse aliphatic C–H donors. Green Chemistry, 2022, 24, 4606-4613.	4.6	14
1064	Factors Governing Reactivity and Selectivity in Hydrogen Atom Transfer from C(sp ³)–H Bonds of Nitrogen-Containing Heterocycles to the Cumyloxyl Radical. Journal of Organic Chemistry, 0, , .	1.7	6
1065	Hydroxy-directed fluorination of remote unactivated C(sp ³)–H bonds: a new age of diastereoselective radical fluorination. Chemical Science, 2022, 13, 7007-7013.	3.7	14
1066	Chemoselective Oxyfunctionalization of Functionalized Benzylic Compounds with a Manganese Catalyst. Angewandte Chemie, 2022, 134, .	1.6	0
1067	Non-heme iron coordination complexes for alkane oxidation using hydrogen peroxide (H ₂ O ₂) as powerful oxidant. Journal of Coordination Chemistry, 2022, 75, 937-971.	0.8	3
1068	Applications of Oxone \hat{A}^{\circledcirc} in Organic Synthesis: An Emerging Green Reagent of Modern Era. ChemistrySelect, 2022, 7, .	0.7	13
1069	Mechanistic Study for the Reaction of B ₁₂ Complexes with <i>m</i> -Chloroperbenzoic Acid in Catalytic Alkane Oxidations. Inorganic Chemistry, 2022, 61, 9710-9724.	1.9	11
1070	Efficient and reusable catalysis of benzylic Câ€"H oxidation over layered [Co ₅ (OH) ₆] ⁴⁺ derivatives. Chemical Communications, 2022, 58, 8444-8447.	2.2	1
1071	C(sp ³)â€"H oxidation and chlorination catalysed by a bioinspired pincer iron(<scp>iii</scp>) complex. Dalton Transactions, 2022, 51, 11620-11624.	1.6	2
1072	Copper(Ii) Complexes Based on Isopropyl Ester Derivatives of Bis(Pyrazol-1-Yl)Acetate Ligands with Catalytic Potency in Organic Macro(Molecules) Synthesis. SSRN Electronic Journal, 0, , .	0.4	0
1073	Research Progress on Density Functional Theory Study of Palladium-Catalyzed C—H Functionalization to Form C—X (X=O, N, F, I, …) Bonds. Chinese Journal of Organic Chemistry, 2022, 42, 1346.	0.6	0

#	Article	IF	CITATIONS
1074	Radical addition to the C bond meets (1, <i>n</i>)-HAT: recent advances in the remote C(sp ^{)â€"H or C(sp^{)â€"H functionalization of alkenes. Organic Chemistry Frontiers, 2022, 9, 4490-4506.}}	2.3	13
1075	Oleic acid based experimental evolution of Bacillus megaterium yielding an enhanced P450 BM3 variant. BMC Biotechnology, 2022, 22, .	1.7	0
1076	Metal-free radical cascade cyclization of 2-isocyanoaryl thioethers with alcohols: Synthesis of 2-hydroxyalkyl benzothiazoles. Tetrahedron, 2022, , 132927.	1.0	1
1077	Pd-Catalyzed Atroposelective C–H Acyloxylation Enabling Access to an Axially Chiral Biaryl Phenol Organocatalyst. Organic Letters, 2022, 24, 5143-5148.	2.4	10
1078	Copperâ€Catalyzed Oxidative 1,2â€Alkylarylation of Styrenes with Unactivated C(<i>sp</i> ³)â€H Alkanes and Electronâ€Rich Aromatics via C(<i>sp</i> ³)â€H/C(<i>sp</i> ²)â€H Functionalization. Advanced Synthesis and Catalysis, 2022, 364, 2772-2782.	2.1	6
1079	Investigation on the Synthesis, Application and Structural Features of Heteroaryl 1,2-Diketones. ACS Omega, 2022, 7, 26650-26660.	1.6	2
1080	Design, Synthesis, and Evaluation of Extended C ₄ –Symmetric Dirhodium Tetracarboxylate Catalysts. ACS Catalysis, 2022, 12, 10841-10848.	5.5	5
1081	The interplay of polar effects in controlling the selectivity of radical reactions. , 2022, 1, 682-695.		38
1082	Site-Selective \hat{I}_{\pm} -Alkylation of 1,3-Butanediol Using a Thiophosphoric Acid Hydrogen Atom Transfer Catalyst. Chemical and Pharmaceutical Bulletin, 2022, 70, 540-543.	0.6	4
1083	Leveraging Regio- and Stereoselective C(sp ³)â€"H Functionalization of Silyl Ethers to Train a Logistic Regression Classification Model for Predicting Site-Selectivity Bias. Journal of the American Chemical Society, 2022, 144, 15549-15561.	6.6	14
1084	Silverâ€Free Câ^'H Activation: Strategic Approaches towards Realizing the Full Potential of Câ^'H Activation in Sustainable Organic Synthesis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	17
1085	Sustainable Wackerâ€Type Oxidations. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
1087	Ni―and Pdâ€based homogeneous catalyst systems for direct oxygenation of C(sp ³)â€H groups. Applied Organometallic Chemistry, 2023, 37, .	1.7	2
1088	Sustainable Wackerâ€Type Oxidations. Angewandte Chemie, 2022, 134, .	1.6	0
1089	Silberfreie Câ^'Hâ€Aktivierung: Strategische AnsÃ⊯e zur Erschließung des vollen Potenzials von Câ^'Hâ€Aktivierungen in der nachhaltigen organischen Synthese. Angewandte Chemie, 2022, 134, .	1.6	2
1090	Enabling Aromatic Hydroxylation in a Cytochrome P450 Monooxygenase Enzyme through Protein Engineering. Chemistry - A European Journal, 2022, 28, .	1.7	7
1092	Unified total synthesis of the limonoid alkaloids: Strategies for the de novo synthesis of highly substituted pyridine scaffolds. CheM, 2022, 8, 2856-2887.	5.8	3
1095	Copper(II) complexes based on isopropyl ester derivatives of bis(pyrazol-1-yl)acetate ligands with catalytic potency in organic macro(molecules) synthesis. Inorganica Chimica Acta, 2023, 544, 121234.	1.2	3

#	ARTICLE	IF	Citations
1099	Electrochemical quinuclidine-mediated Câ€"H activation: Intermediates and mechanism. Journal of Electroanalytical Chemistry, 2022, 924, 116835.	1.9	1
1100	A divergent photocatalysis strategy for selective aerobic oxidation of C(sp ³)–H bonds promoted by disulfides. Green Chemistry, 2022, 24, 8503-8511.	4.6	7
1101	Transitionâ€Metalâ€Free Methods for the Remote Câ^'H Bond Functionalization of Cyclic Amines. Asian Journal of Organic Chemistry, 2023, 12, .	1.3	6
1102	Direct Hydroxylation of Benzene with Hydrogen Peroxide Using Fe Complexes Encapsulated into Mesoporous Y-Type Zeolite. Molecules, 2022, 27, 6852.	1.7	O
1103	Carboxylic Acid Directed γ-Lactonization of Unactivated Primary C–H Bonds Catalyzed by Mn Complexes: Application to Stereoselective Natural Product Diversification. Journal of the American Chemical Society, 2022, 144, 19542-19558.	6.6	26
1104	General Synthetic Approach to Diverse Taxane Cores. Journal of the American Chemical Society, 2022, 144, 21398-21407.	6.6	10
1105	lodonium ylides: an emerging and alternative carbene precursor for C–H functionalizations. Organic and Biomolecular Chemistry, 2022, 21, 24-38.	1.5	11
1106	Ultrasound-promoted synthesis of a copper–iron-based catalyst for the microwave-assisted acyloxylation of 1,4-dioxane and cyclohexene. Organic and Biomolecular Chemistry, 2023, 21, 590-599.	1.5	O
1109	Distal Functionalization via Transition Metal Catalysis., 0,,.		0
1110	Ru3(CO)12â€Catalyzed Modular Assembly of Hemilabile Ligands by C–H Activation of Phosphines with Isocyanates. Angewandte Chemie, 0, , .	1.6	O
1111	Ru ₃ (CO) ₁₂ atalyzed Modular Assembly of Hemilabile Ligands by CⰒH Activation of Phosphines with Isocyanates. Angewandte Chemie - International Edition, 2023, 62, .	7.2	10
1112	Metal and Metal Oxide Nanoparticles Catalyzed C–H Activation for C–O and C–X (X = Halogen, B, P, S,) Tj E	ETQq1	1 0.784314 rg
1113	Nickelâ€mediated Ortho C(sp ²)â^'H Alkoxylation of Amides. ChemistrySelect, 2022, 7, .	0.7	1
1114	1,3â€Diynes: A Versatile Precursor in Transitionâ€Metal Catalyzed (Mediated) Câ^'H Functionalizations. Chemical Record, 2023, 23, .	2.9	4
1115	Two-Dimensional Bimetallic Hydroxide Nanostructures for Catalyzing Low-Temperature Aerobic C–H Bond Activation in Alkylarene and Alcohol Partial Oxidation. ACS Applied Nano Materials, 2022, 5, 18855-18870.	2.4	0
1116	Tweezerâ€Based Câ^'H Oxidation Catalysts Overriding the Intrinsic Reactivity of Aliphatic Ammonium Substrates. Chemistry - A European Journal, 2023, 29, .	1.7	2
1117	Access to α-Hydroxy Amides via a Practical Metal-Free "One-Pot―Tandem Reaction Involving Aerobic C(sp ³)–H Hydroxylation and C(sp ²)–C(sp ³) Cleavage. Journal of Organic Chemistry, 2022, 87, 16263-16275.	1.7	2
1118	Recent Advances on the Carboxylations of C(sp3)–H Bonds Using CO2 as the Carbon Source. Synlett, 2023, 34, 1327-1342.	1.0	8

#	Article	IF	CITATIONS
1119	Site-selective methylene Câ€"H oxidation of an alkyl diamine enabled by supramolecular recognition using a bioinspired manganese catalyst. Faraday Discussions, 0, 244, 51-61.	1.6	3
1120	Polyoxometalate-encapsulated metal-organic frameworks with diverse cages for the C–H bond oxidation of alkylbenzenes. , 2023, 42, 100011.		2
1121	Discovery and Heterologous Expression of Unspecific Peroxygenases. Catalysts, 2023, 13, 206.	1.6	10
1122	Radical Decarboxylative Cyanomethylation of Aliphatic Carboxylic Acids and Uronic Acids via Vinyl Azide Cascade Fragmentation. Chinese Journal of Chemistry, 2023, 41, 1191-1197.	2.6	4
1123	DTBP-Mediated Controlled Oxidative C-S Bond Cleavage/Annulation Cascade: Construction of Indenones. New Journal of Chemistry, 0, , .	1.4	0
1124	Anaerobic Hydroxylation of C(sp ³)–H Bonds Enabled by the Synergistic Nature of Photoexcited Nitroarenes. Journal of the American Chemical Society, 2023, 145, 2794-2799.	6.6	23
1125	Frontier nanoarchitectonics of graphitic carbon nitride based plasmonic photocatalysts and photoelectrocatalysts for energy, environment and organic reactions. Materials Chemistry Frontiers, 2023, 7, 1197-1247.	3.2	18
1126	Electrochemical oxidative C(sp3)–H cross-coupling with hydrogen evolution. , 0, , .		6
1127	Transition metal-catalyzed C–H/C–C activation and coupling with 1,3-diyne. Organic and Biomolecular Chemistry, 2023, 21, 2842-2869.	1.5	6
1128	Peracid oxidation of unactivated sp3 C—H bonds: An important solvent effect. Chemistry - A European Journal, 0, , .	1.7	1
1129	Selective Oxidation of Alkylarene in H $<$ sub $>$ 2 $<$ /sub $>$ 0 Catalyzed by the Polyoxometalate Supported Chromium Catalyst. ChemCatChem, 2023, 15, .	1.8	1
1130	Iron-Catalyzed C(Sp ³)–H Borylation, Thiolation, and Sulfinylation Enabled by Photoinduced Ligand-to-Metal Charge Transfer. Journal of the American Chemical Society, 2023, 145, 7600-7611.	6.6	41
1131	Relay Câ€"H Functionalization Enables De Novo Synthesis of Pyridines and Pyridones. ACS Catalysis, 2023, 13, 5795-5807.	5. 5	2
1132	Photoexcited Nitroarenes as Anaerobic Oxygen Atom Transfer ÂReagents. Synlett, 2023, 34, 1655-1661.	1.0	4
1137	Resurgence and advancement of photochemical hydrogen atom transfer processes in selective alkane functionalizations. Chemical Science, 2023, 14, 6841-6859.	3.7	13
1157	Aliphatic C–H arylation with heteroarenes without photocatalysts. Green Chemistry, 2023, 25, 8500-8504.	4.6	2
1176	Decarboxylative Photoinduced Ligand-to-Metal Charge Transfer Reaction: Synthesis of 2-Substituted Chroman-4-ones. Chemical Communications, 0, , .	2.2	0