Photochemical Reactions as Key Steps in Natural Produ

Angewandte Chemie - International Edition 50, 1000-1045 DOI: 10.1002/anie.201002845

Citation Report

#	Article	IF	CITATIONS
1	Synthesis of natural products based on photochemical key transformations. Pure and Applied Chemistry, 1986, 58, 1233-1238.	0.9	23
2	Arene-alkene cycloadditions and organic synthesis. Pure and Applied Chemistry, 1990, 62, 1597-1602.	0.9	82
3	Photocyclization-fragmentation route to di- and triquinanes: Stereocontrolled asymmetric synthesis of (-)-isocomene. Pure and Applied Chemistry, 1996, 68, 675-678.	0.9	13
4	Asymmetric synthesis of highly functionalized cyclopentanes by a rhodium- and scandium-catalyzed five-step domino sequence. Chemical Science, 2011, 2, 2378.	3.7	54
5	Competitive photocyclization/rearrangement of 4-aryl-1,1-dicyanobutenes controlled by intramolecular charge-transfer interaction. Effect of medium polarity, temperature, pressure, excitation wavelength, and confinement. Photochemical and Photobiological Sciences, 2011, 10, 1405-1414.	1.6	13
6	A Photocycloaddition/Fragmentation Approach toward the 3,12-Dioxatricyclo[8.2.1.0 ^{6,13}]tridecane Skeleton of Terpenoid Natural Products. Organic Letters, 2011, 13, 1892-1895.	2.4	16
7	On the Regioselectivity of the Intramolecular [2 + 2]-Photocycloaddition of Alk-3-enyl Tetronates. Journal of Organic Chemistry, 2011, 76, 5924-5935.	1.7	18
8	Unprecedented influence of remote substituents on reactivity and stereoselectivity in Cu(i)-catalysed [2 + 2] photocycloaddition. An approach towards the synthesis of tricycloclavulone. Organic and Biomolecular Chemistry, 2011, 9, 4903.	1.5	14
9	Recent Advances in Microflow Photochemistry. Molecules, 2011, 16, 7522-7550.	1.7	171
10	Total synthesis of hyacinthacine A2: stereocontrolled 5-aza-cyclooctene photoisomerization and transannular hydroamination with planar-to-point chirality transfer. Chemical Science, 2011, 2, 2162.	3.7	41
11	Microphotochemistry: 4,4'-Dimethoxybenzophenone mediated photodecarboxylation reactions involving phthalimides. Beilstein Journal of Organic Chemistry, 2011, 7, 1055-1063.	1.3	32
12	Continuous flow photolysis of aryl azides: Preparation of 3 <i>H</i> -azepinones. Beilstein Journal of Organic Chemistry, 2011, 7, 1124-1129.	1.3	73
13	Photochemical Electron Transfer Mediated Addition of Naphthylamine Derivatives to Electron-Deficient Alkenes. Journal of Organic Chemistry, 2011, 76, 7104-7118.	1.7	26
14	Intramolecular Butenolide Allene Photocycloadditions and Ensuing Retroâ€Ene Reactions of Some Photoadducts. European Journal of Organic Chemistry, 2011, 2011, 3146-3155.	1.2	23
18	An Expedient Synthesis of a Functionalized Core Structure of Bielschowskysin. Angewandte Chemie - International Edition, 2011, 50, 5149-5152.	7.2	42
19	Intramolecular [2+2] Photocycloaddition of Substituted Isoquinolones: Enantioselectivity and Kinetic Resolution Induced by a Chiral Template. Angewandte Chemie - International Edition, 2011, 50, 8416-8419.	7.2	45
20	Total Synthesis of (+)â€Gliocladinâ€C Enabled by Visibleâ€Light Photoredox Catalysis. Angewandte Chemie - International Edition, 2011, 50, 9655-9659.	7.2	250
22	Recent developments in syntheses of the post-secodine indole alkaloids. Part III: Rearranged alkaloid types. Collection of Czechoslovak Chemical Communications, 2011, 76, 2023-2083.	1.0	30

	Сітатіо	n Report	
#	Article	IF	Citations
23	Diastereoselective [2+2] Photocycloaddition of a Chiral Cyclohexenone with Ethylene in a Continuous Flow Microcapillary Reactor. Journal of Flow Chemistry, 2012, 2, 73-76.	1.2	38
24	Interconversion of the Pallambins through Photoinduced Rearrangement. Organic Letters, 2012, 14, 5624-5627.	2.4	16
25	Directed MetalationCross oupling Strategies. Total Syntheses of the Alleged and the Revised Phenanthrene Natural Product Gymnopusin. Helvetica Chimica Acta, 2012, 95, 2680-2694.	1.0	12
26	Photochemistry of aromatic compounds. Photochemistry, 0, , 106-145.	0.2	0
27	3.7 Acetogenin (Polypriopionate) Derived Auxillaries: Hydroxyacids. , 2012, , 202-213.		0
28	A facile and highly atom-economic approach to biaryl-containing medium-ring bislactones. Chemical Communications, 2012, 48, 1168-1170.	2.2	22
29	Homogeneous Photocatalytic Reactions with Organometallic and Coordination Compounds—Perspectives for Sustainable Chemistry. ChemSusChem, 2012, 5, 352-371.	3.6	119
30	Phenanthrene Synthesis by Eosin Y atalyzed, Visible Light―Induced [4+2] Benzannulation of Biaryldiazonium Salts with Alkynes. Advanced Synthesis and Catalysis, 2012, 354, 3195-3199.	2.1	132
33	A Chiral Dicationic [8]Circulenoid: Photochemical Origin and Facile Thermal Conversion into a Helicene Congener. Angewandte Chemie - International Edition, 2012, 51, 11972-11976.	7.2	21
34	Photooxygenations in a bubble column reactor. Green Chemistry, 2012, 14, 888.	4.6	47
35	Total synthesis of (+)-chloranthalactone F. Chemical Communications, 2012, 48, 3530.	2.2	52
36	Photocatalytic [2 + 2] Cycloadditions of Enones with Cleavable Redox Auxiliaries. Organic Letters, 2012, 14, 1110-1113.	2.4	115
37	Diastereodifferentiating [2+2] photocycloaddition of chiral cyclohexenone carboxylates with cyclopentene by a microreactor. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 242, 13-19.	2.0	29
38	Application of the Rodriguez–Pattenden Photo-Ring Contraction: Total Synthesis and Configurational Reassignment of 11-Gorgiacerol and 11-Epigorgiacerol. Organic Letters, 2012, 14, 2834-2837.	2.4	34
40	Total Synthesis of (â^')â€Jiadifenin. Angewandte Chemie - International Edition, 2012, 51, 9825-9828.	7.2	63
42	Crossed intermolecular [2 + 2] cycloaddition of styrenes by visible light photocatalysis. Chemical Science, 2012, 3, 2807.	3.7	169
43	Application of Microflow Conditions to Visible Light Photoredox Catalysis. Organic Letters, 2012, 14, 2658-2661.	2.4	167
44	Using photolabile protecting groups for the controlled release of bioactive volatiles. Photochemical and Photobiological Sciences, 2012, 11, 446-459.	1.6	59

#	Article	IF	CITATIONS
45	Functionally Diverse Nucleophilic Trapping of Iminium Intermediates Generated Utilizing Visible Light. Organic Letters, 2012, 14, 94-97.	2.4	353
46	Organische Chemie 2011. Nachrichten Aus Der Chemie, 2012, 60, 265-299.	0.0	1
47	Enhanced Photochemical [6Ï€] Electrocyclization within the Lipophilic Protein Binding Site. Organic Letters, 2012, 14, 1788-1791.	2.4	14
48	Photochemical reactions of aromatic compounds and the concept of the photon as a traceless reagent. Photochemical and Photobiological Sciences, 2012, 11, 1613-1641.	1.6	113
52	Allenes in Catalytic Asymmetric Synthesis and Natural Product Syntheses. Angewandte Chemie - International Edition, 2012, 51, 3074-3112.	7.2	900
53	An Efficient Flowâ€Photochemical Synthesis of 5 <i>H</i> â€Furanones Leads to an Understanding of Torquoselectivity in Cyclobutenone Rearrangements. Angewandte Chemie - International Edition, 2012, 51, 4405-4408.	7.2	53
54	A Novel Approach to the Pyridoacridine Ring System: Synthesis of the Topoisomerase Inhibitor 13â€Đeazaascididemin. Archiv Der Pharmazie, 2012, 345, 822-826.	2.1	10
55	Intramolecular [2+2] Photocycloaddition Reactions as an Entry to the 2â€Oxatricyclo[4.2.1.04, 9]nonanâ€3â€one Skeleton of Lactiflorin. Chemistry - an Asian Journal, 2012, 7, 1947-1958.	1.7	11
56	Highlights of Photochemical Reactions in Microflow Reactors. Chemical Engineering and Technology, 2012, 35, 1144-1152.	0.9	169
57	Enantioselective Intramolecular [2+2] Photocycloaddition Reactions of 4â€6ubstituted Coumarins Catalyzed by a Chiral Lewis Acid. Chemistry - A European Journal, 2012, 18, 7552-7560.	1.7	69
58	Recent advances in the total synthesis of cyclopropane-containing natural products. Chemical Society Reviews, 2012, 41, 4631.	18.7	473
59	Evaluation of a flow-photochemistry platform for the synthesis of compact modules. Tetrahedron Letters, 2012, 53, 1363-1366.	0.7	39
60	Regioselective Formation of Silylated Cyclobutenes by the Photochemical [2+2] Cycloaddition of 2(5 <i>H</i>)â€Furanones to Trialkylsilylacetylenes. European Journal of Organic Chemistry, 2012, 2012, 785-791.	1.2	3
61	Synthetic Studies of Sesquiterpenes with the Dunniane Skeleton. European Journal of Organic Chemistry, 2012, 2012, 1404-1417.	1.2	13
62	Total Synthesis of (+)‣actiflorin by an Intramolecular [2+2] Photocycloaddition. Angewandte Chemie - International Edition, 2012, 51, 1261-1264.	7.2	39
63	Diastereoselective [2 + 2] Photocycloaddition of Cyclohexenone Derivative with Olefins in Supercritical Carbon Dioxide. Journal of Organic Chemistry, 2013, 78, 7186-7193.	1.7	8
64	Efficient [2+2] photocycloadditions under equimolar conditions by employing a continuous UV-flow reactor. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 259, 41-46.	2.0	29
65	Total Synthesis of (±)-Anislactone A and (±)-Merrilactone A. Strategies and Tactics in Organic Synthesis, 2013, 9, 105-147.	0.1	1

#	Article	IF	CITATIONS
66	Photochemical activity of a key donor–acceptor complex can drive stereoselective catalytic α-alkylation of aldehydes. Nature Chemistry, 2013, 5, 750-756.	6.6	530
67	Shedding light on BrÃ,nsted acid catalysis – a photocyclization–reduction reaction for the asymmetric synthesis of tetrahydroquinolines from aminochalcones in batch and flow. Chemical Communications, 2013, 49, 7953.	2.2	63
68	Visible Light-Promoted Metal-Free C–H Activation: Diarylketone-Catalyzed Selective Benzylic Mono- and Difluorination. Journal of the American Chemical Society, 2013, 135, 17494-17500.	6.6	471
69	Enantioselective Lewis Acid Catalysis of Intramolecular Enone [2+2] Photocycloaddition Reactions. Science, 2013, 342, 840-843.	6.0	296
70	Stereocontrolled Synthesis and Functionalization of Cyclobutanes and Cyclobutanones. Molecules, 2013, 18, 15541-15572.	1.7	86
71	Diastereoselective [2+2] Photocycloaddition of Chiral Cyclic Enones with Olefins in Aqueous Media Using Surfactants. Molecules, 2013, 18, 1626-1637.	1.7	5
72	Enantioselective Intermolecular [2+2] Photocycloadditions of Isoquinolone Mediated by a Chiral Hydrogen-Bonding Template. Journal of the American Chemical Society, 2013, 135, 14948-14951.	6.6	103
73	Continuous synthesis of pyridocarbazoles and initial photophysical and bioprobe characterization. Chemical Science, 2013, 4, 4067.	3.7	14
74	Complexity from Simplicity: Tricyclic Aziridines from the Rearrangement of Pyrroles by Batch and Flow Photochemistry. Angewandte Chemie - International Edition, 2013, 52, 1499-1502.	7.2	77
75	Visible-Light-Induced Reversible Complexation Mediated Living Radical Polymerization of Methacrylates with Organic Catalysts. Macromolecules, 2013, 46, 96-102.	2.2	159
76	Light on the horizon? Catalytic enantioselective photoreactions. Catalysis Science and Technology, 2013, 3, 1180.	2.1	17
78	Tandem Dienone Photorearrangement–Cycloaddition for the Rapid Generation of Molecular Complexity. Journal of the American Chemical Society, 2013, 135, 17978-17982.	6.6	38
79	Conformationally restricted pyrrolidines by intramolecular [2+2] photocycloaddition reactions. Chemical Communications, 2013, 49, 2989.	2.2	16
80	Photoinduced Hâ€Abstraction in Homo―and Protoadamantylphthalimide Derivatives in Solution and in Organized and Constrained Media. European Journal of Organic Chemistry, 2013, 2013, 929-938.	1.2	7
81	Syntheses of Taiwaniaquinone F and Taiwaniaquinol A via an Unusual Remote C–H Functionalization. Organic Letters, 2013, 15, 1390-1393.	2.4	53
82	Photolysis of Dibenzo[<i>a</i> , <i>d</i>]cycloheptene Dimer. Journal of the Chinese Chemical Society, 2013, 60, 632-638.	0.8	2
83	Approach for Expanding Triterpenoid Complexity via Divergent Norrish-Yang Photocyclization. Journal of Organic Chemistry, 2013, 78, 3821-3831.	1.7	21
84	Visible Light Photocatalysis: The Development of Photocatalytic Radical Ion Cycloadditions. ACS Catalysis, 2013, 3, 895-902.	5.5	258

#	Article	IF	Citations
85	Photochemical transformation of a 1,2-dihydropyridin-3-one: an original tandem retro-[4+2]/[2+2] cycloaddition process. Tetrahedron Letters, 2013, 54, 2825-2827.	0.7	2
86	Enantioselective Synthesis of Cyclobutanes via Sequential Rh-catalyzed Bicyclobutanation/Cu-catalyzed Homoconjugate Addition. Journal of the American Chemical Society, 2013, 135, 9283-9286.	6.6	94
87	Toward the ideal synthesis and transformative therapies: the roles ofÂstep economy and function oriented synthesis. Tetrahedron, 2013, 69, 7529-7550.	1.0	101
88	Stereoselective cross aldol condensation of bicyclo[3.2.0]alkanones. Organic and Biomolecular Chemistry, 2013, 11, 4025.	1.5	3
89	Photoinduced Reactions ofpara-Quinones with Bicyclopropylidene Leading to Diverse Polycyclic Compounds with Spirocyclopropanes. Journal of Organic Chemistry, 2013, 78, 6211-6222.	1.7	21
90	Shedding Light on Organocatalysis—Lightâ€Assisted Asymmetric Ionâ€Pair Catalysis for the Enantioselective Hydrogenation of Pyrylium Ions. Chemistry - A European Journal, 2013, 19, 9775-9779.	1.7	78
91	Tetraalkylammonium-Templated Stereoselective Norrish–Yang Cyclization. Organic Letters, 2013, 15, 5994-5997.	2.4	28
92	Spatially Controlled Surface Immobilization of Nonmodified Peptides. Angewandte Chemie - International Edition, 2013, 52, 9714-9718.	7.2	30
94	Microflow photochemistry: UVC-induced [2 + 2]-photoadditions to furanone in a microcapillary reactor. Beilstein Journal of Organic Chemistry, 2013, 9, 2015-2021.	1.3	21
95	Photochemically Induced Proton Transfers Reactions. , 2014, , .		1
96	Microflow Photochemistry—Photodecarboxylations in Microformats. Processes, 2014, 2, 158-166.	1.3	9
98	Silver(I)-Catalyzed Ring-Contractive Rearrangement: A New Entry to 5-Alkylidene-2-cyclopentenones. Organic Letters, 2014, 16, 6378-6381.	2.4	14
101	Aromatics to bis-triquinane: a tandem oxidative dearomatization of bis-phenol, cycloaddition, photorearrangement and a rapid entry into carbocyclic framework of Xeromphalinone E. Tetrahedron, 2014, 70, 4485-4493.	1.0	5
102	Selective Bromination of sp ³ Cī£;H Bonds by Organophotoredox Catalysis. Asian Journal of Organic Chemistry, 2014, 3, 536-544.	1.3	44
103	Lightâ€Mediated Total Synthesis of 17â€Deoxyprovidencin. Angewandte Chemie - International Edition, 2014, 53, 3859-3862.	7.2	29
104	Solar Synthesis: Prospects in Visible Light Photocatalysis. Science, 2014, 343, 1239176.	6.0	2,043
105	Spontaneous Biomimetic Formation of (±)â€Dictazoleâ€B under Irradiation with Artificial Sunlight. Angewandte Chemie - International Edition, 2014, 53, 6419-6424.	7.2	32
106	Multidimensional Reaction Screening for Photochemical Transformations as a Tool for Discovering New Chemotypes. Journal of Organic Chemistry, 2014, 79, 3838-3846.	1.7	34

#	Article	IF	CITATIONS
107	Heterogeneous visible light photocatalysis for selective organic transformations. Chemical Society Reviews, 2014, 43, 473-486.	18.7	1,286
108	The Literature of Heterocyclic Chemistry, Part XII, 2010–2011. Advances in Heterocyclic Chemistry, 2014, , 147-274.	0.9	18
109	Intramolecular Photoassisted Cycloadditions of Azaxylylenes and Postphotochemical Capstone Modifications via Suzuki Coupling Provide Access to Complex Polyheterocyclic Biaryls. Journal of Organic Chemistry, 2014, 79, 1235-1246.	1.7	31
110	Metal-Free Tandem Oxidative Aryl Migration and C–C Bond Cleavage: Synthesis of α-Ketoamides and Esters from Acrylic Derivatives. Organic Letters, 2014, 16, 5772-5775.	2.4	60
111	Enantioselective Catalysis of the Intermolecular [2+2] Photocycloaddition between 2â€Pyridones and Acetylenedicarboxylates. Angewandte Chemie - International Edition, 2014, 53, 7661-7664.	7.2	142
112	Thermal Intramolecular [2+2] Cycloaddition: Synthesis of 3â€Azabicyclo[3.1.1]heptanes from Morita–Baylis–Hillman Adductâ€Derived 4,4â€Diarylâ€1,3â€dienes. Advanced Synthesis and Catalysis, 2014, 3363-3369.	3256,	6
113	1, <i>n</i> â€Hydrogenâ€Atom Transfer (HAT) Reactions in Which <i>n</i> â‰5: An Updated Inventory. Chemistry - A European Journal, 2014, 20, 16034-16059.	1.7	197
114	Tracking a Paternò–Büchi Reaction in Real Time Using Transient Electronic and Vibrational Spectroscopies. Journal of Physical Chemistry A, 2014, 118, 10240-10245.	1.1	8
115	Photodriven Transfer Hydrogenation of Olefins. European Journal of Organic Chemistry, 2014, 2014, 7347-7352.	1.2	15
116	Enantioselective, intermolecular [2+2] photocycloaddition reactions of 3-acetoxyquinolone: total synthesis of (â^')-pinolinone. Chemical Communications, 2014, 50, 3353-3355.	2.2	26
117	Light-mediated, palladium-catalyzed cyclizations of unactivated 1,6-dienes. Organic Chemistry Frontiers, 2014, 1, 919-923.	2.3	2
118	How cyclobutanes are assembled in nature – insights from quantum chemistry. Chemical Society Reviews, 2014, 43, 5042.	18.7	62
119	Phenazinium Salt-Catalyzed Aerobic Oxidative Amidation of Aromatic Aldehydes. Organic Letters, 2014, 16, 5812-5815.	2.4	98
120	Palladium-catalyzed [2+1+1] annulation of norbornenes with (z)-bromostyrenes: synthesis of bismethylenecyclobutanes via twofold C(sp ²)â \in "H bond activation. Chemical Communications, 2014, 50, 15726-15729.	2.2	14
121	Structural and Solvent Control of Nonadiabatic Photochemical Bond Formation: Photocyclization of <i>o</i> -Terphenyl in Solution. Journal of Physical Chemistry A, 2014, 118, 3913-3925.	1.1	24
122	Fast and Efficient [2 + 2] UV Cycloaddition for Polymer Modification via Flow Synthesis. Macromolecules, 2014, 47, 5578-5585.	2.2	34
123	Direct Photocatalysis for Organic Synthesis by Using Plasmonicâ€Metal Nanoparticles Irradiated with Visible Light. Chemistry - an Asian Journal, 2014, 9, 3046-3064.	1.7	95
124	Green Photochemical Processes and Technologies for Research & Development, Scaleâ€up and Chemical Production. Journal of the Chinese Chemical Society, 2014, 61, 743-748.	0.8	19

	Сітатіоі	n Report	
#	Article	IF	Citations
125	5.06 Di-Ï€-methane, Oxa-di-Ï€-methane, and Aza-di-Ï€-methane Photoisomerization. , 2014, , 200-221.		1
126	Catalytic asymmetric reactions in alkaloid and terpenoid syntheses. Tetrahedron Letters, 2014, 55, 5109-5118.	0.7	11
127	Total Syntheses of Parthenolide and Its Analogues with Macrocyclic Stereocontrol. Journal of Medicinal Chemistry, 2014, 57, 7098-7112.	2.9	45
128	9.13 Organic Photochemistry. , 2014, , 330-350.		1
129	Photochemical Transformations Accelerated in Continuousâ€Flow Reactors: Basic Concepts and Applications. Chemistry - A European Journal, 2014, 20, 10562-10589.	1.7	416
130	The Photoâ€Nazarov Reaction: Scope and Application. Chemistry - A European Journal, 2014, 20, 8677-8681	. 1.7	40
131	[2+2] Cycloaddition of 1,3â€Dienes by Visible Light Photocatalysis. Angewandte Chemie - International Edition, 2014, 53, 8991-8994.	7.2	146
132	Photoinduced Skeletal Rearrangement of Diarylethenes Comprising Oxazole and Phenyl Rings. Organic Letters, 2014, 16, 4532-4535.	2.4	50
133	[2+2] Photocycloaddition of 3â€Alkenyloxyâ€2â€cycloalkenones: Enantioselective Lewis Acid Catalysis and Ring Expansion. Angewandte Chemie - International Edition, 2014, 53, 12921-12924.	7.2	78
134	Selective fluorination of alkyl C–H bonds <i>via</i> photocatalysis. Chemical Communications, 2014, 50, 8211-8214.	2.2	143
135	Photochemical reactions applied to the synthesis of helicenes and helicene-like compounds. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 19, 1-19.	5.6	81
136	Progress in the Synthesis and Transformations of Alkylidenecyclopropanes and Alkylidenecyclobutanes. Chemical Reviews, 2014, 114, 7317-7420.	23.0	236
137	Photochemical Reactions of Prop-2-enyl and Prop-2-ynyl Substituted 4-Aminomethyl- and 4-Oxymethyl-2(5H)-furanones. Heterocycles, 2014, 88, 1079.	0.4	7
138	Applications of C–H Functionalization Logic to Cyclobutane Synthesis. Journal of Organic Chemistry, 2014, 79, 2430-2452.	1.7	177
139	Strategies toward the Biomimetic Syntheses of Oligomeric Sesquiterpenoids. Journal of Organic Chemistry, 2014, 79, 3289-3295.	1.7	27
141	[2+2]â€Photocycloaddition von 3â€Alkenyloxyâ€2â€cycloalkenonen: enantioselektive Lewisâ€Säreâ€Kata Ringerweiterung. Angewandte Chemie, 2014, 126, 13135-13138.	lyse und 1.6	33
144	Contrasting Behaviour of Exciplex Ensembles in the Diastereodifferentiating Paternò–Büchi Reaction of Chiral Cyanobenzoate with Naphthyl- and Phenylethenes on Direct or Charge-Transfer Excitation. Australian Journal of Chemistry, 2015, 68, 1693.	0.5	7
145	Visibleâ€Lightâ€Driven Intermolecular [2+2] Cycloadditions between Coumarinâ€3â€Carboxylates and Acrylamide Analogs. Chemistry - A European Journal, 2015, 21, 10326-10329.	1.7	48

#	Article	IF	CITATIONS
146	A Combined Transitionâ€Metalâ€Catalyzed and Photopromoted Process: Synthesis of 2,3â€Fused 4â€Phenylnaphthalenâ€1â€yl Carboxylates from 1,7â€Diarylâ€1,6â€diynes. Chemistry - A European Journal, 2015 9093-9100.	, L7,	16
148	Controlled Photocatalytic Aerobic Oxidation of Thiols to Disulfides in an Energyâ€Efficient Photomicroreactor. Chemical Engineering and Technology, 2015, 38, 1733-1742.	0.9	29
149	Photocyclodehydrofluorination. Chemistry - A European Journal, 2015, 21, 15534-15539.	1.7	61
150	[2+2] Photocycloaddition of Cinnamates in Flow and Development of a Thiourea Catalyst. Angewandte Chemie - International Edition, 2015, 54, 11521-11525.	7.2	66
151	Remazol atalyzed Hydroperoxyarylation of Styrenes. Chemistry - an Asian Journal, 2015, 10, 1618-1621.	1.7	25
152	Cyclobutane and Cyclobutene Synthesis: Catalytic Enantioselective [2+2] Cycloadditions. Angewandte Chemie - International Edition, 2015, 54, 11918-11928.	7.2	244
153	Selective Photocatalytic CC Coupling of Bioethanol into 2,3â€Butanediol over Ptâ€Decorated Hydroxylâ€Groupâ€Tunable TiO ₂ Photocatalysts. ChemCatChem, 2015, 7, 2384-2390.	1.8	18
156	Metalâ€Free Radical [2+2+1] Carbocyclization of Benzene‣inked 1, <i>n</i> â€Enynes: Dual C(sp ³)H Functionalization Adjacent to a Heteroatom. Angewandte Chemie - International Edition, 2015, 54, 9577-9580.	7.2	173
158	Influence of Fluorine Substitution on the Unusual Solid-State [2 + 2] Photo-Cycloaddition Reaction between an Olefin and an Aromatic Ring. Crystal Growth and Design, 2015, 15, 4055-4061.	1.4	30
159	Supramolecular Dimerization and [2 + 2] Photocycloaddition Reactions of Crown Ether Styryl Dyes Containing a Tethered Ammonium Group: Structure–Property Relationships. Journal of Physical Chemistry A, 2015, 119, 13025-13037.	1.1	17
160	Excited-state hydrogen atom abstraction initiates the photochemistry of β-2′-deoxycytidine. Chemical Science, 2015, 6, 2035-2043.	3.7	17
161	[2+2] Photo-cycloadditions for polymer modification and surface decoration. European Polymer Journal, 2015, 62, 273-280.	2.6	40
162	Enantioselective Conjugate Additions of α-Amino Radicals via Cooperative Photoredox and Lewis Acid Catalysis. Journal of the American Chemical Society, 2015, 137, 2452-2455.	6.6	259
163	Influence of the â^'CH2X Substituent on the Regioselectivity of Intramolecular meta-Photocycloaddition Reactions. Journal of Organic Chemistry, 2015, 80, 2017-2023.	1.7	13
164	Organocatalytic Enamine-Activation of Cyclopropanes for Highly Stereoselective Formation of Cyclobutanes. Journal of the American Chemical Society, 2015, 137, 1685-1691.	6.6	111
165	Enantioselective Catalysis of Photochemical Reactions. Angewandte Chemie - International Edition, 2015, 54, 3872-3890.	7.2	534
166	Catalytic Enantioselective Allenoate–Alkene [2 + 2] Cycloadditions. Journal of the American Chemical Society, 2015, 137, 3482-3485.	6.6	87
167	Photochemically induced radical reactions with furanones. Pure and Applied Chemistry, 2015, 87, 569-582.	0.9	11

		CITATION REPORT		
#	Article		IF	CITATIONS
168	A Photobasic Functional Group. Journal of the American Chemical Society, 2015, 137, 9	9764-9767.	6.6	24
169	Photochemically-induced C–C bond formation between tertiary amines and nitrones Biomolecular Chemistry, 2015, 13, 8919-8924.	. Organic and	1.5	5
170	Total Synthesis of Aquatolide. Organic Letters, 2015, 17, 3892-3894.		2.4	45
171	Tailoring flavins for visible light photocatalysis: organocatalytic [2+2] cycloadditions m flavin derivative and visible light. Chemical Communications, 2015, 51, 12036-12039.	ediated by a	2.2	91
172	Highly Rigid Labdane-Type Diterpenoids from a Chinese Liverwort and Light-Driven Stru Diversification. Organic Letters, 2015, 17, 3560-3563.	ıcture	2.4	23
173	Regioselective Chromatic Orthogonality with Lightâ€Activated Metathesis Catalysts. A Chemie - International Edition, 2015, 54, 12384-12388.	ngewandte	7.2	36
174	Convergent Strategies in Total Syntheses of Complex Terpenoids. Chemical Reviews, 2	015, 115, 9207-9231.	23.0	136
175	Structural Control of Nonadiabatic Bond Formation: The Photochemical Formation and Substituted 4a,4b-Dihydrotriphenylenes. Journal of Physical Chemistry A, 2015, 119, 34	l Stability of 972-3985.	1.1	14
176	A compact photomicroreactor design for kinetic studies of gasâ€liquid photocatalytic transformations. AICHE Journal, 2015, 61, 2215-2227.		1.8	70
177	Regioselective Chromatic Orthogonality with Lightâ€Activated Metathesis Catalysts. A Chemie, 2015, 127, 12561-12565.	ngewandte	1.6	26
178	Enantioselective Lewis Acid Catalysis in Intramolecular [2 + 2] Photocycloaddition Read Mechanistic Comparison between Representative Coumarin and Enone Substrates. Jou American Chemical Society, 2015, 137, 5170-5176.	ctions: A ırnal of the	6.6	93
179	General Photoinduced Sequential Electrocyclization/[1,9]-Sigmatropic Rearrangement/ Reaction of Diarylethenes. Journal of Organic Chemistry, 2015, 80, 11491-11500.	Ring-Opening	1.7	42
180	Paternò–Büchi Reaction as a Demonstration of Chemical Kinetics and Synthetic F a Light Emitting Diode Apparatus. Journal of Chemical Education, 2015, 92, 1716-1720	Photochemistry Using).	1.1	16
181	Beyond Organometallic Flow Chemistry: The Principles Behind the Use of Continuous-F for Synthesis. Topics in Organometallic Chemistry, 2015, , 1-41.	low Reactors	0.7	50
182	Total syntheses of natural products containing spirocarbocycles. Organic and Biomoleo Chemistry, 2015, 13, 9907-9933.	cular	1.5	165
183	Supramolecular methods for controlling intermolecular [2+2] photocycloaddition reac unsaturated compounds in solutions. Russian Chemical Reviews, 2015, 84, 787-802.	tions of	2.5	28
184	Direct construction of vicinal all-carbon quaternary stereocenters in natural product sy Natural Product Reports, 2015, 32, 1584-1601.	nthesis.	5.2	207
185	Total Syntheses of Aporphine Alkaloids via Benzyne Chemistry: An Approach to the For Aporphine Cores. Journal of Organic Chemistry, 2015, 80, 10033-10040.	mation of	1.7	46

	CITATION R	EPORT	
#	Article	IF	CITATIONS
186	Reactivity of a Tp–Iridacyclopentene Complex. Organometallics, 2015, 34, 5438-5453.	1.1	6
187	Construction of the 5,6,7-tricyclic skeleton of lancifodilactone F. Tetrahedron Letters, 2015, 56, 3225-3227.	0.7	13
188	Electron and hydrogen transfer in organic photochemical reactions. Journal of Physical Organic Chemistry, 2015, 28, 121-136.	0.9	48
189	Stereoselective Preparation of Spiro[4.4] Cyclic Compounds by the Photochemical Activation of Oxazoles. Organic Letters, 2015, 17, 86-89.	2.4	20
191	Combining Photoredox and Metal Catalysis. ChemCatChem, 2015, 7, 393-394.	1.8	25
192	The Profound Effect of the Ring Size in the Electrocyclic Opening of Cyclobuteneâ€Fused Bicyclic Systems. Angewandte Chemie - International Edition, 2015, 54, 1527-1531.	7.2	36
193	The isolation and synthesis of neodolastane diterpenoids. Natural Product Reports, 2015, 32, 230-255.	5.2	25
194	Photo-induced chemical reaction of trans-resveratrol. Food Chemistry, 2015, 171, 137-143.	4.2	31
195	The structure of electronically excited α,βâ€unsaturated lactones. Journal of Physical Organic Chemistry, 2016, 29, 718-724.	0.9	8
196	UVâ€Induced [2+2] Graftingâ€To Reactions for Polymer Modification of Cellulose. Macromolecular Rapid Communications, 2016, 37, 174-180.	2.0	8
197	Enantioselective Synthesis of Cyclobutylboronates via a Copperâ€Catalyzed Desymmetrization Approach. Angewandte Chemie, 2016, 128, 7083-7086.	1.6	48
198	Photoassisted Synthesis of Complex Molecular Architectures: Dearomatization of Benzenoid Arenes with Azaâ€ <i>o</i> â€xylylenes via an Unprecedented [2+4] Reaction Topology. Angewandte Chemie, 2016, 128, 7102-7105.	1.6	7
199	Metal-Free Visible Light-Mediated Photocatalysis: Controlling Intramolecular [2 + 2] Photocycloaddition of Enones through Axial Chirality. Journal of Organic Chemistry, 2016, 81, 7191-7200.	1.7	12
200	Combined Photoredox and Lewis Acid Catalyzed α-Hydroxyalkylation of Cyclic Ethers with Aromatic Ketones. Journal of Organic Chemistry, 2016, 81, 7211-7216.	1.7	9
201	Enantioselective Synthesis of Cyclobutylboronates via a Copperâ€Catalyzed Desymmetrization Approach. Angewandte Chemie - International Edition, 2016, 55, 6969-6972.	7.2	100
202	Solution-phase synthesis of 1D tubular polymers via preorganization–polymerization. Chemical Communications, 2016, 52, 14396-14399.	2.2	14
203	Eine Synthese von (±)â€Aplydacton. Angewandte Chemie, 2016, 128, 11418-11422.	1.6	7
204	Enantioselective photochemistry through Lewis acid–catalyzed triplet energy transfer. Science, 2016, 354, 1391-1395.	6.0	311

#	Article	IF	CITATIONS
205	Photodecarboxylations in an Advanced Meso cale Continuousâ€Flow Photoreactor. Chemical Engineering and Technology, 2016, 39, 81-87.	0.9	27
206	Light-driven highly efficient glycosylation reactions. Organic Chemistry Frontiers, 2016, 3, 737-743.	2.3	38
207	[2+2] photodimerization of (E)-styrylthiazoles through cationâ€″Ï€-controlled preorientation. Tetrahedron Letters, 2016, 57, 2451-2454.	0.7	9
208	Dual Catalysis Strategies in Photochemical Synthesis. Chemical Reviews, 2016, 116, 10035-10074.	23.0	2,059
209	UV Light Induced Direct Synthesis of Phenanthrene Derivatives from a Linear 3-Aryl- <i>N</i> -(arylsulfonyl) Propiolamides. Organic Letters, 2016, 18, 2280-2283.	2.4	34
210	Photochemical Approaches to Complex Chemotypes: Applications in Natural Product Synthesis. Chemical Reviews, 2016, 116, 9683-9747.	23.0	792
211	Solar Photochemical Synthesis: From the Beginnings of Organic Photochemistry to the Solar Manufacturing of Commodity Chemicals. Chemical Reviews, 2016, 116, 9664-9682.	23.0	200
212	Rapid Covalent Immobilization of Proteins by Phenol-Based Photochemical Cross-Linking. Bioconjugate Chemistry, 2016, 27, 2266-2270.	1.8	9
213	Photoredox Catalysis in Organic Chemistry. Journal of Organic Chemistry, 2016, 81, 6898-6926.	1.7	2,156
214	Photochemical functionalization of diazines: metal-free vinylation and phosphonylation. Tetrahedron, 2016, 72, 7826-7831.	1.0	5
214 215	Photochemical functionalization of diazines: metal-free vinylation and phosphonylation. Tetrahedron, 2016, 72, 7826-7831. Applications of visible light photoredox catalysis to the synthesis of natural products and related compounds. Natural Product Reports, 2016, 33, 1248-1254.	1.0	5
214 215 216	Photochemical functionalization of diazines: metal-free vinylation and phosphonylation. Tetrahedron, 2016, 72, 7826-7831. Applications of visible light photoredox catalysis to the synthesis of natural products and related compounds. Natural Product Reports, 2016, 33, 1248-1254. Lighting the Way to Greener Chemistry: Incandescent Floodlights as a Facile UV Light Source for Classic and Cutting-Edge Photoreactions. ACS Sustainable Chemistry and Engineering, 2016, 4, 5053-5059.	1.0 5.2 3.2	5 128 20
214 215 216 217	Photochemical functionalization of diazines: metal-free vinylation and phosphonylation. Tetrahedron, 2016, 72, 7826-7831. Applications of visible light photoredox catalysis to the synthesis of natural products and related compounds. Natural Product Reports, 2016, 33, 1248-1254. Lighting the Way to Greener Chemistry: Incandescent Floodlights as a Facile UV Light Source for Classic and Cutting-Edge Photoreactions. ACS Sustainable Chemistry and Engineering, 2016, 4, 5053-5059. Regioselective Intermolecular [2 + 2]-Cycloaddition of α-lodo-Unsaturated Ketones Promoted by Diisobutylaluminum Hydride. Organic Letters, 2016, 18, 4554-4557.	1.0 5.2 3.2 2.4	5 128 20 7
214 215 216 217 218	Photochemical functionalization of diazines: metal-free vinylation and phosphonylation. Tetrahedron, 2016, 72, 7826-7831. Applications of visible light photoredox catalysis to the synthesis of natural products and related compounds. Natural Product Reports, 2016, 33, 1248-1254. Lighting the Way to Greener Chemistry: Incandescent Floodlights as a Facile UV Light Source for Classic and Cutting-Edge Photoreactions. ACS Sustainable Chemistry and Engineering, 2016, 4, 5053-5059. Regioselective Intermolecular [2 + 2]-Cycloaddition of α-lodo-Unsaturated Ketones Promoted by Diisobutylaluminum Hydride. Organic Letters, 2016, 18, 4554-4557. Peculiarities of styryl dyes of the benzoselenazole series crystal packings and their influence on solid phase [2 + 2] photocycloaddition reaction with single crystal retention. CrystEngComm, 2016, 18, 7506-7515.	1.0 5.2 3.2 2.4 1.3	5 128 20 7 5
214 215 216 217 218 219	Photochemical functionalization of diazines: metal-free vinylation and phosphonylation. Tetrahedron, 2016, 72, 7826-7831. Applications of visible light photoredox catalysis to the synthesis of natural products and related compounds. Natural Product Reports, 2016, 33, 1248-1254. Lighting the Way to Greener Chemistry: Incandescent Floodlights as a Facile UV Light Source for Classic and Cutting-Edge Photoreactions. ACS Sustainable Chemistry and Engineering, 2016, 4, 5053-5059. Regioselective Intermolecular [2 + 2]-Cycloaddition of α-lodo-Unsaturated Ketones Promoted by Diisobutylaluminum Hydride. Organic Letters, 2016, 18, 4554-4557. Peculiarities of styryl dyes of the benzoselenazole series crystal packings and their influence on solid phase [2 + 2] photocycloaddition reaction with single crystal retention. CrystEngComm, 2016, 18, 7506-7515. Remarkable Improvement of Organic Photoreaction Efficiency in the Flow Microreactor by the Slug Flow Condition Using Water. Organic Process Research and Development, 2016, 20, 1626-1632.	1.0 5.2 3.2 2.4 1.3 1.3	5 128 20 7 5 30
214 215 216 217 218 219	 Photochemical functionalization of diazines: metal-free vinylation and phosphonylation. Tetrahedron, 2016, 72, 7826-7831. Applications of visible light photoredox catalysis to the synthesis of natural products and related compounds. Natural Product Reports, 2016, 33, 1248-1254. Lighting the Way to Greener Chemistry: Incandescent Floodlights as a Facile UV Light Source for Classic and Cutting Edge Photoreactions. ACS Sustainable Chemistry and Engineering, 2016, 4, 5053-5059. Regioselective Intermolecular [2 + 2]-Cycloaddition of α-lodo-Unsaturated Ketones Promoted by Diisobutylaluminum Hydride. Organic Letters, 2016, 18, 4554-4557. Peculiarities of styryl dyes of the benzoselenazole series crystal packings and their influence on solid phase [2 + 2] photocycloaddition reaction with single crystal retention. CrystEngComm, 2016, 18, 7506-7515. Remarkable Improvement of Organic Photoreaction Efficiency in the Flow Microreactor by the Slug Flow Condition Using Water. Organic Process Research and Development, 2016, 20, 1626-1632. Photoinduced Rearrangements of Diarylethenes. Chemistry of Heterocyclic Compounds, 2016, 52, 658-665. 	1.0 5.2 3.2 2.4 1.3 1.3	5 128 20 7 5 30 27
 214 215 216 217 218 219 220 221 	Photochemical functionalization of diazines: metal-free vinylation and phosphonylation. Tetrahedron, 2016, 72, 7826-7831. Applications of visible light photoredox catalysis to the synthesis of natural products and related compounds. Natural Product Reports, 2016, 33, 1248-1254. Lighting the Way to Greener Chemistry: Incandescent Floodlights as a Facile UV Light Source for Classic and Cutting-Edge Photoreactions. ACS Sustainable Chemistry and Engineering, 2016, 4, 5053-5059. Regioselective Intermolecular [2 + 2]-Cycloaddition of 1±-lodo-Unsaturated Ketones Promoted by Dilisobutylaluminum Hydride. Organic Letters, 2016, 18, 4554-4557. Peculiarities of styryl dyes of the benzoselenazole series crystal packings and their influence on solid phase [2 + 2] photocycloaddition reaction with single crystal retention. CrystEngComm, 2016, 18, 7506-7515. Remarkable Improvement of Organic Photoreaction Efficiency in the Flow Microreactor by the Slug Flow Condition Using Water. Organic Process Research and Development, 2016, 20, 1626-1632. Photoinduced Rearrangements of Diarylethenes. Chemistry of Heterocyclic Compounds, 2016, 52, 658-665. A Molybdenum(0) Isocyanide Analogue of Ru(2,28628€Bipyridine) ₃ ²⁺ : A Strong Reductant for Photoredox Catalysis. Angewandte Chemie - International Edition, 2016, 55, 11247-11250.	1.0 5.2 3.2 2.4 1.3 1.3 0.6 7.2	5 128 20 7 5 30 27 111

#	Article	IF	CITATIONS
223	Remarkable acceleration of template-directed photodimerisation of 9-phenylethynylanthracene derivatives assisted by complementary salt bridge formation. Organic and Biomolecular Chemistry, 2016, 14, 10822-10832.	1.5	8
224	Advances of radical and photo reactions in natural products synthesis. Science China Chemistry, 2016, 59, 1093-1108.	4.2	19
225	Ein Molybdä(0)â€Isocyanidâ€Komplex als Ru(2,2′â€Bipyridin) ₃ ²⁺ â€Analogon: ein starkes Reduktionsmittel für die Photoredoxkatalyse. Angewandte Chemie, 2016, 128, 11413-11417.	1.6	28
226	Cyclobutenes: At a Crossroad between Diastereoselective Syntheses of Dienes and Unique Palladium-Catalyzed Asymmetric Allylic Substitutions. Accounts of Chemical Research, 2016, 49, 2444-2458.	7.6	114
227	Photoassisted Synthesis of Complex Molecular Architectures: Dearomatization of Benzenoid Arenes with Azaâ€ <i>o</i> â€xylylenes via an Unprecedented [2+4] Reaction Topology. Angewandte Chemie - International Edition, 2016, 55, 6988-6991.	7.2	40
228	A Mixedâ€Ligand Chiral Rhodium(II) Catalyst Enables the Enantioselective Total Synthesis of Piperarborenineâ€B. Angewandte Chemie, 2016, 128, 5067-5071.	1.6	16
229	Enantioselective Intermolecular [2 + 2] Photocycloaddition Reactions of 2(1 <i>H</i>)-Quinolones Induced by Visible Light Irradiation. Journal of the American Chemical Society, 2016, 138, 7808-7811.	6.6	221
230	Structural rearrangement cascade initiated by irradiation of but-3-enyl orotates. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 331, 60-65.	2.0	1
231	Supramolecular Photochemistry as a Potential Synthetic Tool: Photocycloaddition. Chemical Reviews, 2016, 116, 9914-9993.	23.0	350
232	Structural Control of Nonadiabatic Photochemical Bond Formation: Photocyclization in Structurally Modified ortho-Terphenyls. Journal of Physical Chemistry A, 2016, 120, 3998-4007.	1.1	6
233	Studies in organic and physical photochemistry – an interdisciplinary approach. Organic and Biomolecular Chemistry, 2016, 14, 7392-7442.	1.5	69
234	A Mixedâ€Ligand Chiral Rhodium(II) Catalyst Enables the Enantioselective Total Synthesis of Piperarborenineâ€B. Angewandte Chemie - International Edition, 2016, 55, 4983-4987.	7.2	85
235	A photo-induced C–C bond formation methodology to construct tetrahydrofluorenones and their related structures. Organic Chemistry Frontiers, 2016, 3, 354-358.	2.3	14
236	Metal-free arylation of pyrimidines through a photochemical process. Chemical Communications, 2016, 52, 2326-2329.	2.2	21
237	A Study on the Photoreaction of 2(5 <i>H</i>)â€Furanones with Substituted Acetylenes: Evidence for a Mechanistic Reformulation. Chemistry - A European Journal, 2016, 22, 3835-3845.	1.7	3
238	Recent Advances in the Synthesis of Cyclobutanes by Olefin [2 + 2] Photocycloaddition Reactions. Chemical Reviews, 2016, 116, 9748-9815.	23.0	753
239	Short Flow-Photochemistry Enabled Synthesis of the Cytotoxic Lactone (+)-Goniofufurone. Organic Letters, 2016, 18, 968-971.	2.4	33
240	Hydrogen abstraction by photoexcited benzophenone: consequences for DNA photosensitization. Physical Chemistry Chemical Physics, 2016, 18, 7829-7836.	1.3	24

#	Article	IF	CITATIONS
241	Solid-state polymerisation via [2+2] cycloaddition reaction involving coordination polymers. Chemical Communications, 2016, 52, 3989-4001.	2.2	125
242	Rapid and Scalable Access into Strained Scaffolds through Continuous Flow Photochemistry. Organic Process Research and Development, 2016, 20, 409-413.	1.3	34
243	A convenient numbering-up strategy for the scale-up of gas–liquid photoredox catalysis in flow. Reaction Chemistry and Engineering, 2016, 1, 73-81.	1.9	166
244	Complete ¹ H NMR assignment of cedranolides. Magnetic Resonance in Chemistry, 2017, 55, 169-176.	1.1	13
245	Photoinduced Intermolecular [4+2] Cycloaddition Reaction for Construction of Benzobicyclo[2.2.2]octane Skeletons. Journal of Organic Chemistry, 2017, 82, 1389-1402.	1.7	5
247	Synthesis of Briarane Diterpenoids: Biomimetic Transannular Oxa-6Ï€ electrocyclization Induced by a UVA/UVC Photoswitch. Organic Letters, 2017, 19, 576-579.	2.4	21
248	Total Synthesis of Zaragozic Acid C: Implementation of Photochemical C(sp ³)–H Acylation. Journal of the American Chemical Society, 2017, 139, 1814-1817.	6.6	38
249	Divergent Photocyclization/1,4-Sigmatropic Rearrangements for the Synthesis of Sesquiterpenoid Derivatives. Organic Letters, 2017, 19, 484-487.	2.4	7
250	Self-assembly through hydrogen bonding and photochemical properties of supramolecular complexes of bis(18-crown-6)stilbene with alkanediammonium ions. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 340, 80-87.	2.0	10
251	Protonâ€Coupled Electron Transfer in Photoredox Catalytic Reactions. European Journal of Organic Chemistry, 2017, 2017, 1982-1992.	1.2	100
252	Towards More Efficient, Greener Syntheses through Flow Chemistry. Chemical Record, 2017, 17, 667-680.	2.9	68
253	Visible light photocatalysis with benzophenone for radical thiol-ene reactions. Tetrahedron Letters, 2017, 58, 2206-2208.	0.7	32
254	Radical C(sp ³)–H alkenylation, alkynylation and allylation of ethers and amides enabled by photocatalysis. Green Chemistry, 2017, 19, 2530-2534.	4.6	99
255	Intramolecular Photoredox Reaction of Naphthoquinone Derivatives. Synlett, 2017, 28, e4-e4.	1.0	1
256	Visible Light Induced Organic Transformations Using Metalâ€Organicâ€Frameworks (MOFs). Chemistry - A European Journal, 2017, 23, 11189-11209.	1.7	176
257	A Short Synthesis of (±)â€3â€Demethoxyerythratidinone by Ligand ontrolled Selective Heck Cyclization of Equilibrating Enamines. Angewandte Chemie, 2017, 129, 6713-6716.	1.6	9
258	Chiral Template-Directed Regio-, Diastereo-, and Enantioselective Photodimerization of an Anthracene Derivative Assisted by Complementary Amidinium–Carboxylate Salt Bridge Formation. Journal of the American Chemical Society, 2017, 139, 7388-7398.	6.6	31
259	A Short Synthesis of (±)â€3â€Demethoxyerythratidinone by Ligand ontrolled Selective Heck Cyclization of Equilibrating Enamines. Angewandte Chemie - International Edition, 2017, 56, 6613-6616.	7.2	38

#	Article	IF	CITATIONS
260	Photochemical Approaches to the Bilobalide Core. European Journal of Organic Chemistry, 2017, 2017, 3362-3372.	1.2	7
261	Regio- and stereoselective [2+2] photocycloaddition in Ba 2+ templated supramolecular dimers of styryl-derivatized aza-heterocycles. Dyes and Pigments, 2017, 139, 397-402.	2.0	9
262	Flavinâ€Mediated Visibleâ€Light [2+2] Photocycloaddition of Nitrogen―and Sulfurâ€Containing Dienes. European Journal of Organic Chemistry, 2017, 2017, 2139-2146.	1.2	28
264	Synthesis of multi-substituted cyclobutenes: Cyclic strategy for [2 + 2] cycloaddition of ketene silyl acetals with propiolates. Tetrahedron Letters, 2017, 58, 2944-2947.	0.7	8
265	Photochemical Generation of Nitrogen-Centered Amidyl, Hydrazonyl, and Imidyl Radicals: Methodology Developments and Catalytic Applications. ACS Catalysis, 2017, 7, 4999-5022.	5.5	334
266	Mechanistic Investigation of Visible-Light-Induced Intermolecular [2 + 2] Photocycloaddition Catalyzed with Chiral Thioxanthone. Journal of Physical Chemistry A, 2017, 121, 4552-4559.	1.1	9
267	Photochemical reactions of metal complexes in the solid state. Dalton Transactions, 2017, 46, 7120-7140.	1.6	70
268	Cycloaddition of Spiroepoxycyclohexa-2,4-dienones, Radical Cyclization and 1,3-Acyl Shift in Excited State: Aromatics to Sterpuren-4-one. Journal of Organic Chemistry, 2017, 82, 6268-6278.	1.7	7
269	Total Synthesis of (+)â€Chinensiolide B from <i>α</i> â€Santonin. Chinese Journal of Chemistry, 2017, 35, 1284-1288.	2.6	5
270	Tricyclic Sesquiterpenes from Marine Origin. Chemical Reviews, 2017, 117, 6110-6159.	23.0	99
271	Seven-Membered Ring-Forming Cyclopolymerization of 1,8-Nonadiyne Derivatives Using Grubbs Catalysts: Rational Design of Monomers and Insights into the Mechanism for Olefin Metathesis Polymerizations. Macromolecules, 2017, 50, 2724-2735.	2.2	20
272	BrÃ,nsted Acid Catalysis in Visibleâ€Lightâ€Induced [2+2]â€Photocycloaddition Reactions of Enone Dithianes. Angewandte Chemie - International Edition, 2017, 56, 4337-4341.	7.2	38
273	Towards a Total Synthesis of Phenalinolactone Core Diterpenoid 6: Synthesis of a Racemic Decahydrobenzocyclobutaisobenzofuran with a <i>transâ€antiâ€cis</i> Junction of the Isocyclic Rings. European Journal of Organic Chemistry, 2017, 2017, 2950-2963.	1.2	3
274	BrÃnsted‣äreâ€Katalyse der [2+2]â€Photocycloaddition von Enondithianen bei Bestrahlung mit sichtbarem Licht. Angewandte Chemie, 2017, 129, 4401-4405.	1.6	17
275	Palladium-catalyzed cascade reaction of haloalkynes with unactivated alkenes for assembly of functionalized oxetanes. Organic Chemistry Frontiers, 2017, 4, 373-376.	2.3	37
276	Exploring the Photophysical and Photochemical Properties of <i>N</i> -(Thioalkyl)-saccharins as an Alternative Route to the Synthesis of Tricyclic Sultams. Journal of Organic Chemistry, 2017, 82, 101-108.	1.7	3
277	The Paternò-Büchi reaction—Mechanisms and application to organic synthesis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 33, 83-108.	5.6	81
278	Enantioselective Excited-State Photoreactions Controlled by a Chiral Hydrogen-Bonding Iridium Sensitizer, Journal of the American Chemical Society, 2017, 139, 17186-17192	6.6	153

#	Article	IF	CITATIONS
279	Studies on synthesis and photoreaction of tricycloundecanes endowed with β,γ-enone chromophore: Towards angular triquinanes and annulated bicyclo[4.2.0]octanes. Tetrahedron, 2017, 73, 6515-6522.	1.0	3
280	General and Efficient Intermolecular [2+2] Photodimerization of Chalcones and Cinnamic Acid Derivatives in Solution through Visible‣ight Catalysis. Angewandte Chemie - International Edition, 2017, 56, 15407-15410.	7.2	128
281	General and Efficient Intermolecular [2+2] Photodimerization of Chalcones and Cinnamic Acid Derivatives in Solution through Visible‣ight Catalysis. Angewandte Chemie, 2017, 129, 15609-15612.	1.6	30
282	Total Syntheses of the Isomeric Aglain Natural Products Foveoglinâ€A and Perviridisinâ€B: Selective Excitedâ€State Intramolecular Protonâ€Transfer Photocycloaddition. Angewandte Chemie, 2017, 129, 14671-14674.	1.6	2
283	Total Syntheses of the Isomeric Aglain Natural Products Foveoglinâ€A and Perviridisinâ€B: Selective Excited‣tate Intramolecular Protonâ€Transfer Photocycloaddition. Angewandte Chemie - International Edition, 2017, 56, 14479-14482.	7.2	26
284	Synthesis of Benzoaryl-5-yl(2-hydroxyphenyl)methanones via Photoinduced Rearrangement of (<i>E</i>)-3-Arylvinyl-4 <i>H</i> -chromen-4-ones. Organic Letters, 2017, 19, 5984-5987.	2.4	44
285	Heteromultimetallic catalysis for sustainable organic syntheses. Chemical Society Reviews, 2017, 46, 7399-7420.	18.7	135
286	A personal perspective on the future of flow photochemistry. Journal of Flow Chemistry, 2017, 7, 87-93.	1.2	85
287	β-Cyclodextrin-Mediated Enantioselective Photochemical Electrocyclization of 1,3-Dihydro-2H-azepin-2-one. Journal of Organic Chemistry, 2017, 82, 9832-9836.	1.7	10
288	Photochemical [2+2] Cyclization of Helical Phosphinamides in Solution and in the Solid State. ChemPhotoChem, 2017, 1, 535-538.	1.5	6
289	Harnessing sunlight without a photosensitizer for highly efficient consecutive [3+2]/[4+2] annulation to synthesize fused benzobicyclic skeletons. Chemical Communications, 2017, 53, 10707-10710.	2.2	20
290	Sceptrin – Enantioselective Synthesis of a Tetrasubstituted allâ€≺i>trans Cyclobutane Key Intermediate. European Journal of Organic Chemistry, 2017, 2017, 4566-4571.	1.2	4
291	A theoretical study on [2+2] cycloaddition reactions under visible light irradiation induced by energy transfer. Computational and Theoretical Chemistry, 2017, 1117, 47-54.	1.1	2
292	A New Synthetic Approach to <i>C₂</i> â€Symmetric Octacyclic Cage Diol via Claisen Rearrangement and Ringâ€Closing Metathesis as Key Steps. ChemistrySelect, 2017, 2, 6877-6881.	0.7	9
293	Photoinduced Carboborative Ring Contraction Enables Regio- and Stereoselective Synthesis of Multiply Substituted Five-Membered Carbocycles and Heterocycles. Journal of the American Chemical Society, 2017, 139, 11365-11368.	6.6	24
295	Synthesis of Oxatricyclooctanes via Photoinduced Intramolecular Oxa-[4+2] Cycloaddition of Substituted <i>o</i> -Divinylbenzenes. Journal of Organic Chemistry, 2017, 82, 7856-7868.	1.7	7
296	The merger of transition metal and photocatalysis. Nature Reviews Chemistry, 2017, 1, .	13.8	1,591
297	Intramolecular Crossed [2+2] Photocycloaddition through Visible Light-Induced Energy Transfer. Journal of the American Chemical Society, 2017, 139, 9807-9810.	6.6	103

#	Article	IF	CITATIONS
298	Intramolecular Chirality Transfer [2 + 2] Cycloadditions of Allenoates and Alkenes. Organic Letters, 2017, 19, 3703-3706.	2.4	31
299	Phosphorylation of Alkenyl and Aryl C–O Bonds via Photoredox/Nickel Dual Catalysis. Organic Letters, 2017, 19, 3735-3738.	2.4	92
300	Enhanced Reaction Efficiency in Continuous Flow. Israel Journal of Chemistry, 2017, 57, 218-227.	1.0	48
301	Enantioselective Intermolecular [2+2] Photocycloaddition Reaction of Cyclic Enones and Its Application in a Synthesis of (â^)-Grandisol. Journal of the American Chemical Society, 2018, 140, 3228-3231.	6.6	94
302	Reductive Carbocyclization of Homoallylic Alcohols to <i>syn</i> yclobutanes by a Boron atalyzed Dual Ring losing Pathway. Angewandte Chemie, 2018, 130, 2722-2726.	1.6	8
303	Dual C(sp ³)â^'H Bond Functionalization of Nâ€Heterocycles through Sequential Visibleâ€Light Photocatalyzed Dehydrogenation/[2+2] Cycloaddition Reactions. Angewandte Chemie - International Edition, 2018, 57, 5110-5114.	7.2	79
304	Process Analysis on Preparation of Cyclobutanetetracarboxylic Dianhydride in a Photomicroreactor within Gas–Liquid Taylor Flow. Industrial & Engineering Chemistry Research, 2018, 57, 2476-2485.	1.8	17
305	Photochemical Reaction Cascade from <i>O</i> -Pent-4-enyl-Substituted Salicylates to Complex Multifunctional Scaffolds. Journal of Organic Chemistry, 2018, 83, 3069-3077.	1.7	25
309	Dual C(sp ³)â^'H Bond Functionalization of Nâ€Heterocycles through Sequential Visibleâ€Light Photocatalyzed Dehydrogenation/[2+2] Cycloaddition Reactions. Angewandte Chemie, 2018, 130, 5204-5208.	1.6	21
310	Photocatalysis applied to organic synthesis – A green chemistry approach. Current Opinion in Green and Sustainable Chemistry, 2018, 10, 40-45.	3.2	52
311	Homogeneous Lightâ€Driven Catalytic Direct Carboxylation with CO ₂ . Chinese Journal of Chemistry, 2018, 36, 545-554.	2.6	53
312	Preparation of Cyclobutene Acetals and Tricyclic Oxetanes through Photochemical Tandem and Cascade Reactions. Angewandte Chemie - International Edition, 2018, 57, 6592-6596.	7.2	25
313	Short, Gram-Scale Syntheses of β- and γ-Lycorane Using Two Distinct Photochemical Approaches. Organic Letters, 2018, 20, 1272-1274.	2.4	23
315	Illumination of Nanoliter-NMR Spectroscopy Chips for Real-Time Photochemical Reaction Monitoring. Analytical Chemistry, 2018, 90, 1542-1546.	3.2	16
316	A Kinetic Dearomatization Strategy for an Expedient Biomimetic Route to the Bielschowskysin Skeleton. Angewandte Chemie, 2018, 130, 1330-1335.	1.6	4
317	Photochemically Induced Intramolecular Radical Cyclization Reactions with Imines. Journal of Organic Chemistry, 2018, 83, 1867-1875.	1.7	16
319	Reductive Carbocyclization of Homoallylic Alcohols to <i>syn</i> â€Cyclobutanes by a Boronâ€Catalyzed Dual Ringâ€Closing Pathway. Angewandte Chemie - International Edition, 2018, 57, 2692-2696.	7.2	28
320	Preparation of Cyclobutene Acetals and Tricyclic Oxetanes through Photochemical Tandem and Cascade Reactions. Angewandte Chemie, 2018, 130, 6702-6706.	1.6	10

#	Article	IF	CITATIONS
321	Organocatalytic Strategies to Stereoselectively Trap Photochemically Generated Hydroxyâ€ <i>o</i> â€quinodimethanes. European Journal of Organic Chemistry, 2018, 2018, 2884-2891.	1.2	31
322	Eosin Y–Yb(OTf)3 catalyzed visible light mediated electrocyclization/indole ring opening towards the synthesis of heterobiaryl-pyrazolo[3,4-b]pyridines. New Journal of Chemistry, 2018, 42, 6617-6620.	1.4	15
323	Enhancement of Suzuki–Miyaura coupling reaction by photocatalytic palladium nanoparticles anchored to TiO2 under visible light irradiation. Catalysis Communications, 2018, 111, 10-15.	1.6	47
324	Photochemical tuning of materials: A click chemistry perspective. Materials Today Chemistry, 2018, 8, 56-84.	1.7	49
325	Photochemical Nickel-Catalyzed Reductive Migratory Cross-Coupling of Alkyl Bromides with Aryl Bromides. Organic Letters, 2018, 20, 1880-1883.	2.4	104
326	Energy transfer or electron transfer?—DFT study on the mechanism of [2+2] cycloadditions induced by visible light photocatalysts. Tetrahedron Letters, 2018, 59, 1651-1660.	0.7	6
327	Strategies to diversify natural products for drug discovery. Medicinal Research Reviews, 2018, 38, 1255-1294.	5.0	187
328	Synthesis of polyheterocycles <i>via</i> multicomponent reactions. Organic and Biomolecular Chemistry, 2018, 16, 1402-1418.	1.5	179
329	A Kinetic Dearomatization Strategy for an Expedient Biomimetic Route to the Bielschowskysin Skeleton. Angewandte Chemie - International Edition, 2018, 57, 1316-1321.	7.2	17
330	Visible-light-promoted organic-dye-catalyzed three-component coupling of aldehydes, hydrazines and bromodifluorinated reagents. Organic Chemistry Frontiers, 2018, 5, 1003-1007.	2.3	34
331	Diterpenoids from Croton crassifolius include a novel skeleton possibly generated via an intramolecular [2+2]-photocycloaddition reaction. Phytochemistry, 2018, 145, 103-110.	1.4	24
332	Annelated tricyclic thiophenes and their photophysical properties. Mendeleev Communications, 2018, 28, 543-545.	0.6	7
333	Photosensitization and Photocatalysis—Perspectives in Organic Synthesis. ACS Catalysis, 2018, 8, 12046-12055.	5.5	157
334	Eine elektrophile Bromâ€Redoxkatalyse zur Synthese von Alkaloidbausteinen durch selektive aliphatische Câ€Hâ€Aminierung. Angewandte Chemie, 2018, 130, 16118-16122.	1.6	9
335	An Electrophilic Bromine Redox Catalysis for the Synthesis of Indole Alkaloid Building Blocks by Selective Aliphatic Câ^'H Amination. Angewandte Chemie - International Edition, 2018, 57, 15891-15895.	7.2	28
336	Synthesis of seven and higher membered nitrogen containing heterocycles using photochemical irradiation. Synthetic Communications, 2018, 48, 2815-2849.	1.1	47
337	Development of an Alkyne Analogue of the deâ€Mayo Reaction: Synthesis of Mediumâ€ s ized Carbacycles and Cyclohepta[<i>b</i>]indoles. Angewandte Chemie - International Edition, 2018, 57, 15553-15557.	7.2	31
338	From Acenaphthenes to (+)â€Delavatine A: Visibleâ€Lightâ€Induced Ring Closure of Methyl (αâ€Naphthyl) Acrylates. Chemistry - A European Journal, 2018, 24, 17686-17690.	1.7	9

#	Article	IF	CITATIONS
339	Intermolecular [2+2] photocycloaddition of chalcones with 2,3-dimethyl-1,3-butadiene under neat reaction conditions. Tetrahedron, 2018, 74, 6694-6703.	1.0	7
340	Photochemical irradiation: Seven and higher membered <i>O</i> -heterocycles. Synthetic Communications, 2018, 48, 2935-2964.	1.1	50
341	Development of an Alkyne Analogue of the deâ€Mayo Reaction: Synthesis of Medium‧ized Carbacycles and Cyclohepta[b]indoles. Angewandte Chemie, 2018, 130, 15779-15783.	1.6	10
342	Chromophoraktivierung von α,βâ€ungesÃ∉igten Carbonylverbindungen und ihre Anwendung in enantioselektiven Photoreaktionen. Angewandte Chemie, 2018, 130, 14536-14547.	1.6	23
343	Chromophore Activation of α,βâ€Unsaturated Carbonyl Compounds and Its Application to Enantioselective Photochemical Reactions. Angewandte Chemie - International Edition, 2018, 57, 14338-14349.	7.2	82
344	Photochemical reactions as key steps in five-membered <i>N-</i> heterocycle synthesis. Synthetic Communications, 2018, 48, 1259-1284.	1.1	59
345	Photooxygenation in an advanced led-driven flow reactor module: Experimental investigations and modelling. Chemical Engineering and Processing: Process Intensification, 2018, 130, 214-228.	1.8	25
346	DNAâ€Templated [2+2] Photocycloaddition: A Straightforward Entry into the Aplysinopsin Family of Natural Products. Angewandte Chemie - International Edition, 2018, 57, 11786-11791.	7.2	23
347	Flow-photochemical synthesis of the functionalized benzobicyclo[3.2.1]octadiene skeleton. Journal of Molecular Structure, 2018, 1168, 165-174.	1.8	9
348	DNAâ€Templated [2+2] Photocycloaddition: A Straightforward Entry into the Aplysinopsin Family of Natural Products. Angewandte Chemie, 2018, 130, 11960-11965.	1.6	8
349	Visibleâ€Lightâ€Induced Organic Photochemical Reactions through Energyâ€Transfer Pathways. Angewandte Chemie - International Edition, 2019, 58, 1586-1604.	7.2	739
350	Mit sichtbarem Licht induzierte, organische photochemische Reaktionen über Energietransferrouten. Angewandte Chemie, 2019, 131, 1600-1619.	1.6	137
351	6â€Methylenebicyclo[3.2.1]octâ€1â€enâ€3â€one: A Twisted Olefin as Diels–Alder Dienophile for Expedited Syntheses of Four Kaurane Diterpenoids. Angewandte Chemie - International Edition, 2019, 58, 15731-15735.	7.2	25
352	NaOH-Promoted Chemoselective Cascade Cyclization of Cyclopropyl Esters with Unsaturated Imines: Access to Bioactive Cyclopenta[c]pyridine Derivatives. Organic Letters, 2019, 21, 6624-6627.	2.4	13
353	Total Syntheses of Xiamycinsâ€A, C, F, H and Oridamycinâ€A and Preliminary Evaluation of their Antiâ€Fungal Properties. Angewandte Chemie - International Edition, 2019, 58, 15304-15308.	7.2	21
354	BODIPY‣abeled Cyclobutanes by Secondary C(sp 3)â~H Arylations for Live ell Imaging. Chemistry - A European Journal, 2019, 25, 12712-12718.	1.7	11
355	Stereocontrolled Preparation of Diversely Trifunctionalized Cyclobutanes. Journal of Organic Chemistry, 2019, 84, 10518-10525.	1.7	8
356	Photochemical reactions in five and six-membered polyheterocycles synthesis. Synthetic Communications, 2019, 49, 2281-2318.	1.1	54

#	Article	IF	CITATIONS
357	Aggreganoids A–F, Carbon-Bridged Sesquiterpenoid Dimers and Trimers from <i>Lindera aggregata</i> . Organic Letters, 2019, 21, 5753-5756.	2.4	29
358	Concise Access to the Skeleton of Protoilludane Sesquiterpenes through a Photochemical Reaction Cascade: Total Synthesis of Atlanticoneâ€C. Angewandte Chemie, 2019, 131, 14771-14774.	1.6	14
359	Photochemical Synthesis of Fused Five-membered O-heterocycles. Current Green Chemistry, 2019, 6, 155-183.	0.7	17
360	Controlling Photooxygenation with a Bifunctional Quinineâ€BODIPY Catalyst: towards Asymmetric Hydroxylation of βâ€Dicarbonyl Compounds. European Journal of Organic Chemistry, 2019, 2019, 6352-6358.	1.2	15
363	Concise Access to the Skeleton of Protoilludane Sesquiterpenes through a Photochemical Reaction Cascade: Total Synthesis of Atlanticoneâ€C. Angewandte Chemie - International Edition, 2019, 58, 14629-14632.	7.2	44
364	Total Syntheses of Xiamycinsâ€A, C, F, H and Oridamycinâ€A and Preliminary Evaluation of their Antiâ€Fungal Properties. Angewandte Chemie, 2019, 131, 15448-15452.	1.6	5
365	6â€Methylenebicyclo[3.2.1]octâ€1â€enâ€3â€one: A Twisted Olefin as Diels–Alder Dienophile for Expedited Syntheses of Four Kaurane Diterpenoids. Angewandte Chemie, 2019, 131, 15878-15882.	1.6	11
366	Accelerated Organic Photoreactions in Flow Microreactors under Gas-Liquid Slug Flow Conditions Using N2 Gas as an Unreactive Substance. Bulletin of the Chemical Society of Japan, 2019, 92, 1467-1473.	2.0	10
367	Endergonic addition of <i>N</i> -methylamines to aromatic ketones driven by photochemical offset of the entropic cost. Chemical Communications, 2019, 55, 11683-11686.	2.2	5
368	Crystallographic Approach to the [2 + 2] Photocycloaddition Topochemical Reactions of Unsaturated Compounds with Single Crystal Retention. Crystallography Reports, 2019, 64, 691-712.	0.1	10
369	Unexpected photochemical transformation of imidazole derivatives containing the 5-hydroxy-2-methyl-4H-pyran-4-one moiety. Environmentally friendly method for the synthesis of substituted imidazo[1,5-a]pyridine-5,8-diones. Tetrahedron Letters, 2019, 60, 151080.	0.7	11
370	A modular approach to prepare enantioenriched cyclobutanes: synthesis of (+)-rumphellaone A. Chemical Science, 2019, 10, 2315-2319.	3.7	50
371	Towards a Scalable Synthesis of 2â€Oxabicyclo[2.2.0]hexâ€5â€enâ€3â€one Using Flow Photochemistry. ChemPhotoChem, 2019, 3, 229-232.	1.5	15
372	Transition-metal-free, visible-light-mediated regioselective C–H trifluoromethylation of imidazo[1,2-a]pyridines. Tetrahedron Letters, 2019, 60, 734-738.	0.7	28
373	One-step green conversion of benzyl bromide to aldehydes on NaOH-modified g-C ₃ N ₄ with dioxygen under LED visible light. Catalysis Science and Technology, 2019, 9, 3270-3278.	2.1	15
374	Visible-Light-Triggered Selective Intermolecular [2+2] Cycloaddition of Extended Enones: 2-Oxo-3-enoates and 2,4-Dien-1-ones with Olefins. Journal of Organic Chemistry, 2019, 84, 9257-9269.	1.7	12
375	The Paternò–Büchi reaction –a comprehensive review. Photochemical and Photobiological Sciences, 2019, 18, 2297-2362.	1.6	94
376	Synthesis of Naphthocyclobutenes from α-Naphthyl Acrylates by Visible-Light Energy-Transfer Catalysis. Organic Letters, 2019, 21, 4365-4369.	2.4	12

#	Article	IF	CITATIONS
377	Metalâ€Free Carbocyclization of Homoallylic Silyl Ethers Leading to Cyclopropanes and Cyclobutanes. Asian Journal of Organic Chemistry, 2019, 8, 1637-1640.	1.3	5
378	Photocatalyzed transfer hydrogenation and deuteriation of cyclic <i>N</i> -sulfonylimines. Organic Chemistry Frontiers, 2019, 6, 2410-2414.	2.3	23
379	Bioprocess-inspired fabrication of materials with new structures and functions. Progress in Materials Science, 2019, 105, 100571.	16.0	76
380	Phase-selective modulation of TiO2 for visible light-driven C H arylation: Tuning of absorption and adsorptivity. Molecular Catalysis, 2019, 471, 71-76.	1.0	5
381	Combining Bidentate Lewis Acid Catalysis and Photochemistry: Formal Insertion of o-Xylene into an Enamine Double Bond. Organic Letters, 2019, 21, 3927-3930.	2.4	11
382	The tetraalkylammonium-accelerated Norrish-Yang photocyclization of 2-substituted acetophenones. Tetrahedron Letters, 2019, 60, 1543-1546.	0.7	2
383	Approaches for the isolation and identification of hydrophilic, light-sensitive, volatile and minor natural products. Natural Product Reports, 2019, 36, 981-1004.	5.2	15
384	Photoinduced Skeletal Rearrangements Reveal Radical-Mediated Synthesis of Terpenoids. CheM, 2019, 5, 1671-1681.	5.8	47
385	The Role of Photochemical Reactions in the Development of Advanced Soft Materials for Biomedical Applications. Advanced Optical Materials, 2019, 7, 1900215.	3.6	8
386	Thioallenoates in catalytic enantioselective [2+2]-cycloadditions with unactivated alkenes. Tetrahedron, 2019, 75, 3265-3271.	1.0	10
387	The photochemical ring-opening of 1,3-cyclohexadiene imaged by ultrafast electron diffraction. Nature Chemistry, 2019, 11, 504-509.	6.6	157
388	Intramolecular [2+2] Photocycloaddition of Cyclic Enones: Selectivity Control by Lewis Acids and Mechanistic Implications. Chemistry - A European Journal, 2019, 25, 8135-8148.	1.7	45
389	Introduction of Cyclopropyl and Cyclobutyl Ring on Alkyl Iodides through Cobalt-Catalyzed Cross-Coupling. Organic Letters, 2019, 21, 2285-2289.	2.4	30
390	Milestones in Early Evolution. , 2019, , 31-52.		0
391	Regulatory Mechanism and Kinetic Assessment of Energy Transfer Catalysis Mediated by Visible Light. ACS Catalysis, 2019, 9, 3672-3684.	5.5	31
392	16 Photocatalytic Cycloadditions. , 2019, , .		1
393	Nickel(II) Tetraphenylporphyrin as an Efficient Photocatalyst Featuring Visible Light Promoted Dual Redox Activities. Advanced Synthesis and Catalysis, 2019, 361, 3200-3209.	2.1	56
394	Construction of 4-substituted 2-(pyrrolidine-3-yl)acetic acid derivatives as cyclic γ-aminobutyric acid analogues employing intermolecular [2+2]-photocycloaddition as key steps. Tetrahedron, 2019, 75, 2755-2762.	1.0	3

ARTICLE IF CITATIONS Catalystâ€Free Deaminative Functionalizations of Primary Amines by Photoinduced Singleâ€Electron 395 7.2 250 Transfer. Angewandte Chemie - International Edition, 2019, 58, 5697-5701. Diastereoselective Photocycloaddition Reaction of Vinyl Ether Tethered to 1,4â€Naphthoquinone. 1.5 ChemPhotoChem, 2019, 3, 243-250. Recent Advances on Diverse Decarboxylative Reactions of Amino Acids. Advanced Synthesis and 397 2.1 67 Catalysis, 2019, 361, 2161-2214. Catalystâ€Free Deaminative Functionalizations of Primary Amines by Photoinduced Singleâ€Electron Transfer. Angewandte Chemie, 2019, 131, 5753-5757. Synthesis of Threeâ€Membered and Fourâ€Membered Heterocycles with the Assistance of Photochemical 399 1.4 47 Réactions. Journal of Heterocyclic Chemistry, 2019, 56, 1141-1167. Synthesis of Chromenoisoxazolidines from Substituted Salicylic Nitrones via Visible-Light Photocatalysis. Organic Letters, 2019, 21, 1388-1392. 2.4 Stereoselective Construction of Methylenecyclobutane-Fused Indolines through Photosensitized 401 2.4 31 [2+2] Cycloaddition of Allene-Tethered Indole Derivatives. Organic Letters, 2019, 21, 1506-1510. Photochemically Produced Aminocyclobutanes as Masked Dienes in Thermal Electrocyclic Cascade 2.4 16 Reactions. Organic Letters, 2019, 21, 1463-1466. Biosynthesis of Providencin: Understanding Photochemical Cyclobutane Formation with Density 403 2.4 14 Functional Theory. Organic Letters, 2019, 21, 1243-1247. 404 Blue Light Induced Difluoroalkylation of Alkynes and Alkenes. Organic Letters, 2019, 21, 9914-9918. 2.4 Spatial and temporal control of chemical processes. Nature Reviews Chemistry, 2019, 3, 706-722. 405 13.8 66 Oxidative dearomatization and retro-Diels-Alder/Diels-Alder cascade: Synthesis and photoreactions of azepane annulated bicyclo[2.2.2]octenone. Tetrahedron Letters, 2019, 60, 306-309. Synthesis of Cyclobutane-Fused Angular Tetracyclic Spiroindolines via Visible-Light-Promoted Intramolecular Dearomatization of Indole Derivatives. Journal of the American Chemical Society, 2019, 407 6.6 177 141, 2636-2644. Mechanistic study on the intramolecular oxa-[4 + 2] cycloaddition of substituted o-divinylbenzenes. 408 0.8 Journal of Molecular Modeling, 2019, 25, 14. Exploration of Light-Controlled Chemical Behavior and Mechanism in a Macrocyclic Copper Complex 409 0 1.6 Catalyst–Acetone–Glucose–Bromate–Sulfuric Acid Oscillation System. Catalysts, 2019, 9, 65. [6]€] Photocyclization to cis-Hexahydrocarbazol-4-ones: Substrate Modification, Mechanism, and 23 Scope. Journal of Organic Chemistry, 2019, 84, 1139-1153. Construction of Cyclobutanes by Multicomponent Cascade Reactions in Homogeneous Solution 411 1.7 13 through Visibleâ€Light Catalysis. Chemistry - A European Journal, 2019, 25, 879-884. Stereospecific [2â€⁻+â€²]-cross-photocycloaddition in a supramolecular donor–acceptor complex. Tetrahedron Letters, 2019, 60, 150-153.

#	Article	IF	CITATIONS
413	Photochemical Rearrangements in Heterocyclic Chemistry. European Journal of Organic Chemistry, 2020, 2020, 1393-1404.	1.2	30
414	Organic Photocatalysis: Carbon Nitride Semiconductors vs. Molecular Catalysts. European Journal of Organic Chemistry, 2020, 2020, 1294-1309.	1.2	59
415	Pseudodimeric complexes of 4-styrylpyridine derivatives: Structure–property relationships and a stereospecific [2+2]-cross-photocycloaddition in solution. Dyes and Pigments, 2020, 172, 107825.	2.0	6
416	[2+2] Photochemical Cycloaddition in Organic Synthesis. European Journal of Organic Chemistry, 2020, 2020, 1310-1326.	1.2	119
417	Naphthochromenones: Organic Bimodal Photocatalysts Engaging in Both Oxidative and Reductive Quenching Processes. Angewandte Chemie - International Edition, 2020, 59, 1302-1312.	7.2	48
418	Coordination-Driven Stereospecific Control Strategy for Pure Cycloisomers in Solid-State Diene Photocycloaddition. Journal of the American Chemical Society, 2020, 142, 700-704.	6.6	90
419	Complex Carbocyclic Skeletons from Aryl Ketones through a Threeâ€Photon Cascade Reaction. Angewandte Chemie - International Edition, 2020, 59, 5656-5659.	7.2	25
420	Naphthochromenones: Organic Bimodal Photocatalysts Engaging in Both Oxidative and Reductive Quenching Processes. Angewandte Chemie, 2020, 132, 1318-1328.	1.6	9
421	Total Synthesis of Rhodonoids A, B, E, and F, Enabled by Singlet Oxygen Ene Reactions. Journal of Organic Chemistry, 2020, 85, 2260-2265.	1.7	13
422	Nâ€Heterocyclic Carbene Catalyzed Photoenolization/Diels–Alder Reaction of Acid Fluorides. Angewandte Chemie - International Edition, 2020, 59, 3190-3194.	7.2	109
423	Selective C-C Bond Scission of Ketones via Visible-Light-Mediated Cerium Catalysis. CheM, 2020, 6, 266-279.	5.8	94
424	Radical ationâ€Induced Crossed [2+2] Cycloaddition of Electronâ€Deficient Anetholes Initiated by Iron(III) Salt. Advanced Synthesis and Catalysis, 2020, 362, 960-963.	2.1	12
425	Durch Nâ€heterocyclische Carbene katalysierte Photoenolisierungsâ€Dielsâ€Alderâ€Reaktion von Särefluoriden. Angewandte Chemie, 2020, 132, 3216-3220.	1.6	20
426	Designing with Light: Advanced 2D, 3D, and 4D Materials. Advanced Materials, 2020, 32, e1903850.	11.1	125
427	Photochemical Synthesis of Solvatochromic Fluorophore from the C–C Coupling Reaction for Undergraduate Laboratory Experiment. Journal of Chemical Education, 2020, 97, 4469-4474.	1.1	4
428	Synthesis of 1H-pyrano[4,3-b]benzofuran-1-one derivatives via photochemical cyclization of substituted 4H-furo[3,2-c]pyran-4-ones. Tetrahedron Letters, 2020, 61, 152469.	0.7	15
429	Visible-Light-Induced Dearomatization via [2+2] Cycloaddition or 1,5-Hydrogen Atom Transfer: Divergent Reaction Pathways of Transient Diradicals. ACS Catalysis, 2020, 10, 12618-12626.	5.5	50
430	Inhibitory activities of indolizine derivatives: a patent review. Expert Opinion on Therapeutic Patents, 2020, 30, 695-714.	2.4	31

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
431	Photosensitized Intramolecular [2+2] Cycloaddition of 1 <i>H</i> -Pyrrolo[2,3- <i>b</i>)pyridines Enabled by the Assistance of Lewis Acids. Journal of Organic Chemistry, 2020, 85, 15717-15725.	1.7	11
432	Triplet Energy Transfer Photocatalysis: Unlocking the Next Level. CheM, 2020, 6, 1888-1903.	5.8	304
433	Light opens a new window for N-heterocyclic carbene catalysis. Chemical Science, 2020, 11, 10605-10613.	3.7	114
434	Stereoselective total synthesis of (S)- and (R)-nuciferine using benzyne chemistry. Tetrahedron, 2020, 76, 131461.	1.0	9
435	Design of a Multiuse Photoreactor To Enable Visible‣ight Photocatalytic Chemical Transformations and Labeling in Live Cells. ChemBioChem, 2020, 21, 3555-3562.	1.3	12
436	Rational Design of Triplet Sensitizers for the Transfer of Excited State Photochemistry from UV to Visible. Journal of the American Chemical Society, 2020, 142, 14947-14956.	6.6	72
437	Spiro 1,3-indandiones: intramolecular photochemical reactions of carbonyl groups with carbon–carbon double bonds. New Journal of Chemistry, 2020, 44, 14373-14378.	1.4	1
438	Computational Modeling of Selected Photoactivated Processes. Topics in Organometallic Chemistry, 2020, , 131-152.	0.7	0
439	Enantioselective 1,2-Addition of α-Aminoalkyl Radical to Aldehydes via Visible-Light Photoredox Initiated Chiral Oxazaborolidinium Ion Catalysis. ACS Catalysis, 2020, 10, 10585-10591.	5.5	24
440	Gold-Catalyzed Synthesis of Small Rings. Chemical Reviews, 2021, 121, 8613-8684.	23.0	142
441	Formation of Tetrahydrothiophenes via a Thia-Paternò–Büchi-Initiated Domino Photochemical Reaction. Organic Letters, 2020, 22, 8522-8527.	2.4	7
442	Visible light driven perovskite-based photocatalysts: A new candidate for green organic synthesis by photochemical protocol. Current Research in Green and Sustainable Chemistry, 2020, 3, 100031.	2.9	33
443	Enantioselective Synthesis of (+)-Hippolide J and Reevaluation of Antifungal Activity. Organic Letters, 2020, 22, 7743-7746.	2.4	4
444	LiO <i>t</i> Bu-promoted stereoselective deconjugation of α,β-unsaturated diesters probed using density functional theory. Organic Chemistry Frontiers, 2020, 7, 3427-3433.	2.3	4
445	Synthesis of Decahydrocyclobuta[cd]indene Skeletons: Rhodium(III)â€Catalyzed Hydroarylation and Relay Thiopheneâ€Promoted Intramolecular [2+2] Cycloaddition. Advanced Synthesis and Catalysis, 2020, 362, 4384-4390.	2.1	5
446	Catalytic Enantioselective [2+2] Cycloaddition of αâ€Halo Acroleins: Construction of Cyclobutanes Containing Two Tetrasubstituted Stereocenters. Angewandte Chemie, 2020, 132, 22074-22078.	1.6	4
447	Catalytic Enantioselective [2+2] Cycloaddition of αâ€Halo Acroleins: Construction of Cyclobutanes Containing Two Tetrasubstituted Stereocenters. Angewandte Chemie - International Edition, 2020, 59, 21890-21894.	7.2	17
448	Stereoretention in styrene heterodimerisation promoted by one-electron oxidants. Chemical Science, 2020, 11, 9309-9324.	3.7	8

#	Article	IF	CITATIONS
449	Efficient Photooxygenation Process of Biosourced α-Terpinene by Combining Controlled LED-Driven Flow Photochemistry and Rose Bengal-Anchored Polymer Colloids. ACS Sustainable Chemistry and Engineering, 2020, 8, 18568-18576.	3.2	20
450	Gold-Catalyzed Synthetic Strategies towards Four-Carbon Ring Systems. Catalysts, 2020, 10, 1178.	1.6	5
451	Enantioselective intramolecular [2 + 2] photocycloaddition using phosphoric acid as a chiral template. Organic and Biomolecular Chemistry, 2020, 18, 9261-9267.	1.5	10
452	Flow Photochemistry as a Tool in Organic Synthesis. Chemistry - A European Journal, 2020, 26, 16952-16974.	1.7	77
453	Regulation of an Ambient‣ightâ€Induced Photocyclization Pathway (Norrish–Yang Versus 6Ï€) by Substituent Choice. Chemistry - A European Journal, 2020, 26, 12418-12430.	1.7	4
454	New approaches to antibacterial drug discovery. , 2020, , 223-248.		1
455	Blue Light Promoted Difluoroalkylation of Aryl Ketones: Synthesis of Quaternary Alkyl Difluorides and Tetrasubstituted Monofluoroalkenes. Organic Letters, 2020, 22, 4261-4265.	2.4	30
456	Photochemically Driven Tandem Process in the Construction of a Biscyclopropylcage from 2,5-Dimethoxy- <i>p</i> -benzoquinone and Terminal Acetylenes. Organic Letters, 2020, 22, 4527-4531.	2.4	6
457	Switching the Mallory Reaction to Synthesis of Naphthalenes, Benzannulated Heterocycles, and Their Derivatives. Journal of Organic Chemistry, 2020, 85, 8749-8759.	1.7	23
458	Recent advances in photoelectrochemical cells (PECs) for organic synthesis. Organic Chemistry Frontiers, 2020, 7, 1895-1902.	2.3	67
459	Lasing Properties Activation by Constitutional Isomerism of an Electron-Accepting Group. Journal of Physical Chemistry C, 2020, 124, 13845-13857.	1.5	0
460	Synthesis of substituted naphtho[1,2- <i>b</i>]benzofuran-7(8 <i>H</i>)-ones <i>via</i> photoinduced rearrangement of 4 <i>H</i> -chromen-4-one derivatives. Organic and Biomolecular Chemistry, 2020, 18, 2501-2509.	1.5	18
461	Visible-Light-Mediated [2+2+1] Carbocyclization Reactions of 1,7-Enynes with Bromofluoroacetate to Form Fused Monofluorinated Cyclopenta[<i>c</i>]quinolin-4-ones. Journal of Organic Chemistry, 2020, 85, 5379-5389.	1.7	8
462	Photochemical rearrangement of diarylethenes: synthesis of functionalized phenanthrenes. Organic and Biomolecular Chemistry, 2020, 18, 3098-3103.	1.5	15
463	Total synthesis of natural products using photocycloaddition reactions of arenes. Organic and Biomolecular Chemistry, 2020, 18, 5558-5566.	1.5	29
464	Strategies for the construction of γ-spirocyclic butenolides in natural product synthesis. Organic and Biomolecular Chemistry, 2020, 18, 5287-5314.	1.5	28
465	Solidâ€State [2+2] Photodimerization of 1â€Arylâ€4â€pyridylbutadienes in Cationâ€Ï€â€Controlled Crystals. Chemistry - an Asian Journal, 2020, 15, 581-584.	1.7	6
466	Total Synthesis of (â^)-Rhodomollanol A. Journal of the American Chemical Society, 2020, 142, 4592-4597.	6.6	54

#	Article	IF	CITATIONS
467	Gadolinium Photocatalysis: Dearomative [2+2] Cycloaddition/Ringâ€Expansion Sequence with Indoles. Angewandte Chemie, 2020, 132, 9726-9732.	1.6	18
468	Gadolinium Photocatalysis: Dearomative [2+2] Cycloaddition/Ringâ€Expansion Sequence with Indoles. Angewandte Chemie - International Edition, 2020, 59, 9639-9645.	7.2	68
469	Continuous Flow Photochemistry for the Preparation of Bioactive Molecules. Molecules, 2020, 25, 356.	1.7	72
470	Photochemical C–N bond forming reactions for the synthesis of five-membered fused <i>N-</i> heterocycles. Synthetic Communications, 2020, 50, 1286-1334.	1.1	28
471	Complex Carbocyclic Skeletons from Aryl Ketones through a Threeâ€Photon Cascade Reaction. Angewandte Chemie, 2020, 132, 5705-5708.	1.6	2
472	On-demand acid-gated fluorescence switch-on in photo-generated nanospheres. Chemical Communications, 2020, 56, 4986-4989.	2.2	10
473	Scale-up Design of a Fluorescent Fluid Photochemical Microreactor by 3D Printing. ACS Omega, 2020, 5, 7666-7674.	1.6	12
474	A Rational Approach to Organoâ€Photocatalysis: Novel Designs and Structureâ€Property Relationships. Angewandte Chemie - International Edition, 2021, 60, 1082-1097.	7.2	151
475	A Rational Approach to Organoâ€Photocatalysis: Novel Designs and Structureâ€Property Relationships. Angewandte Chemie, 2021, 133, 1096-1111.	1.6	32
476	Photoinduced Hydroarylation and Cyclization of Alkenes with Luminescent Platinum(II) Complexes. Angewandte Chemie, 2021, 133, 1403-1409.	1.6	9
477	Olefin‧upported Cationic Copper Catalysts for Photochemical Synthesis of Structurally Complex Cyclobutanes. Angewandte Chemie - International Edition, 2021, 60, 3989-3993.	7.2	14
478	Photoinduced Hydroarylation and Cyclization of Alkenes with Luminescent Platinum(II) Complexes. Angewandte Chemie - International Edition, 2021, 60, 1383-1389.	7.2	38
479	Strain Release Chemistry of Photogenerated Smallâ€Ring Intermediates. Chemistry - A European Journal, 2021, 27, 4500-4516.	1.7	21
480	Olefin‣upported Cationic Copper Catalysts for Photochemical Synthesis of Structurally Complex Cyclobutanes. Angewandte Chemie, 2021, 133, 4035-4039.	1.6	2
481	Accurate Molecular Geometries in Complex Excited-State Potential Energy Surfaces from Time-Dependent Density Functional Theory. Journal of Chemical Theory and Computation, 2021, 17, 357-366.	2.3	8
482	Highly Efficient Iridium-Based Photosensitizers for Thia-Paternò–Büchi Reaction and Aza-Photocyclization. ACS Catalysis, 2021, 11, 446-455.	5.5	33
483	Photochemical Synthesis of 1,4-Dicarbonyl Bifluorene Compounds via Oxidative Radical Coupling Using TEMPO as the Oxygen Atom Donor. Journal of Organic Chemistry, 2021, 86, 3656-3666.	1.7	3
484	Photochemical rearrangements in organic synthesis and the concept of the photon as a traceless reagent. , 2021, , 283-328.		7

#	Article	IF	CITATIONS
485	Photochemistry in Flow for Drug Discovery. Topics in Medicinal Chemistry, 2021, , 71-119.	0.4	1
486	Construction of polycyclic structures with vicinal all-carbon quaternary stereocenters <i>via</i> an enantioselective photoenolization/Diels–Alder reaction. Chemical Science, 2021, 12, 7575-7582.	3.7	15
487	Photochemical synthesis of 3-hydroxyphenanthro[9,10-c]furan-1(3H)-ones from α-keto acids and alkynes. Organic Chemistry Frontiers, 2021, 8, 975-982.	2.3	8
488	Photochemical radical cyclization reactions with imines, hydrazones, oximes and related compounds. Chemical Society Reviews, 2021, 50, 7418-7435.	18.7	80
489	Green synthetic approaches for medium ring–sized heterocycles of biological and pharmaceutical interest. , 2021, , 617-653.		4
490	A photoinduced arene–alkyne [3 + 2] cycloaddition cascade of 1-alkynylnaphthalen-2-ols for tunable synthesis of skeletally diverse bridged hexacycles. Organic Chemistry Frontiers, 2021, 8, 1952-1958.	2.3	11
491	Biosynthetically Inspired Divergent Syntheses of Merocytochalasans. CheM, 2021, 7, 212-223.	5.8	18
492	Visible-Light-Mediated Synthesis of Cyclobutene-Fused Indolizidines and Related Structural Analogs. CCS Chemistry, 2021, 3, 652-664.	4.6	48
493	Pseudodimeric Complexes of an (18-Crown-6)stilbene with Styryl Dyes Containing an Ammonioalkyl Group: Synthesis, Structure, and Stereospecific [2 + 2] Cross-Photocycloaddition. Journal of Organic Chemistry, 2021, 86, 3164-3175.	1.7	8
494	Visibleâ€Lightâ€Induced Intramolecular Double Dearomative Cycloaddition of Arenes. Angewandte Chemie - International Edition, 2021, 60, 7036-7040.	7.2	44
495	Visibleâ€Lightâ€Induced Intramolecular Double Dearomative Cycloaddition of Arenes. Angewandte Chemie, 2021, 133, 7112-7116.	1.6	7
496	Photocyclization synthesis of phenanthridine and its derivatives under direct dehydrogenation conditions. Tetrahedron Letters, 2021, 64, 152734.	0.7	7
497	Direct Carboxylation with Carbon Dioxide via Cooperative Photoredox and Transitionâ€Metal Dual Catalysis. Advanced Synthesis and Catalysis, 2021, 363, 1583-1596.	2.1	47
498	Biosynthesis of Pellucidin A in Peperomia pellucida (L.) HBK. Frontiers in Plant Science, 2021, 12, 641717.	1.7	6
499	Taming Radical Pairs in the Crystalline Solid State: Discovery and Total Synthesis of Psychotriadine. Journal of the American Chemical Society, 2021, 143, 4043-4054.	6.6	24
500	Rapid continuous photoflow synthesis of naturally occurring arylnaphthalene lignans and their analogs. Natural Product Research, 2022, 36, 5086-5090.	1.0	3
501	Visibleâ€lightâ€induced Reactions Driven by Photochemical Activity of Quinolinone and Coumarin Scaffolds. Asian Journal of Organic Chemistry, 2021, 10, 1012-1023.	1.3	10
502	A Unifying Bioinspired Synthesis of (â^')-Asperaculin A and (â^')-Penifulvin D. Organic Letters, 2021, 23, 3536-3540.	2.4	4

TATION P

CITATION	DEDODT
CHAHON	REPORT

#	Article	IF	CITATIONS
503	Direct Activation of a Remote C(sp ³)–H Bond Enabled by a Visibleâ€Light Photosensitized Allene Moiety. Angewandte Chemie - International Edition, 2021, 60, 12053-12059.	7.2	14
504	Dual organic dyes as a pseudo-redox mediation system to promotion of tandem oxidation /[3+2] cycloaddition reactions under visible light. Tetrahedron, 2021, 89, 132166.	1.0	11
505	Catalytic chemodivergent annulations between α-diketones and alkynyl α-diketones. Science China Chemistry, 2021, 64, 991-998.	4.2	7
506	Direct Activation of a Remote C(sp 3)–H Bond Enabled by a Visibleâ€Light Photosensitized Allene Moiety. Angewandte Chemie, 2021, 133, 12160-12166.	1.6	0
507	Unusual Behavior of Ketoximes: Reagentless Photochemical Pathway to Alkynyl Sulfides. Journal of Organic Chemistry, 2021, 86, 5908-5921.	1.7	5
508	Heteroleptic copper(I) complexes as energy transfer photocatalysts for the intermolecular [2Â+Â2] photodimerization of chalcones, cinnamates and cinnamamides. Tetrahedron Letters, 2021, 72, 153091.	0.7	7
509	Scalability of photochemical reactions in continuous flow mode. Journal of Flow Chemistry, 2021, 11, 223-241.	1.2	80
510	General approach to substituted naphtho[1,2-b]benzofurans via photochemical 6Ï€-electrocyclization of benzofuranyl containing cinnamonitriles. Tetrahedron, 2021, 90, 132207.	1.0	10
511	Construction of Spiro-Î ³ -butyrolactone Core via Cascade Photochemical Reaction of 3-Hydroxypyran-4-one Derivatives. Organic Letters, 2021, 23, 5266-5270.	2.4	18
512	A revised 1D equivalent model for the determination of incident photon flux density in a continuous-flow LED-driven spiral-shaped microreactor using the actinometry method with Reinecke's salt. Journal of Flow Chemistry, 2021, 11, 357-367.	1.2	2
513	Pd-Catalyzed Cascade Reactions of Aziridines: One-Step Access to Complex Tetracyclic Amines. Organic Letters, 2021, 23, 4986-4990.	2.4	5
514	Chemo- and stereoselective intermolecular [2Â+ 2] photocycloaddition of conjugated dienes using colloidal nanocrystal photocatalysts. Chem Catalysis, 2021, 1, 106-116.	2.9	28
515	Iron-Catalyzed Photoinduced LMCT: A 1° C–H Abstraction Enables Skeletal Rearrangements and C(sp ³)–H Alkylation. ACS Catalysis, 2021, 11, 7442-7449.	5.5	100
516	Photocyclization of Diarylethenes: The Effect of Electron and Proton Acceptors as Additives. Journal of Organic Chemistry, 2021, 86, 10023-10031.	1.7	10
517	ДОСЛІДЖЕÐÐÐ⁻ Ð Ð žÐ¢ÐžÐ¥Ð†ÐœÐ†Ð§ÐОЇ ДÐ~МЕÐÐ⁻ЗÐЦІЇ 3-ГЕТЕÐĐžÐÐÐ~Л	(Đ Đ ∄ĐĐ~ [)>, ∂ ¢Ð†ÐžÐ €
518	Visible-Light-Induced Dearomatization of Indoles/Pyrroles with Vinylcyclopropanes: Expedient Synthesis of Structurally Diverse Polycyclic Indolines/Pyrrolines. Journal of the American Chemical Society, 2021, 143, 13441-13449.	6.6	50
519	Oxidation of Silanes to Silanols with Oxygen via Photoredox Catalysis. ChemistrySelect, 2021, 6, 8345-8348.	0.7	8
520	Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chemical Reviews, 2022, 122, 2752-2906.	23.0	330

#	ARTICLE	IF	CITATIONS
521	Advances in the <i>E â†' Z </i> Isomerization of Alkenes Using Small Molecule Photocatalysts. Chemical Reviews, 2022, 122, 2650-2694.	4 . 8 23.0	35
523	Studies on The Application of The Paternòâ€Büchi Reaction to The Synthesis of Novel Fluorinated Scaffolds. Chemistry - A European Journal, 2021, 27, 15722-15729.	1.7	8
524	Concise Total Synthesis of Agarozizanolâ€B via a Strained Photocascade Intermediate. Angewandte Chemie, 2021, 133, 24241-24244.	1.6	5
525	Applications of Norrish type I and II reactions in the total synthesis of natural products: a review. Photochemical and Photobiological Sciences, 2021, 20, 1357-1378.	1.6	26
526	Multiphoton Control of 6ï€ Photocyclization via State-Dependent Reactant–Product Correlations. Journal of Physical Chemistry Letters, 2021, 12, 9493-9500.	2.1	3
527	LED Light Sources in Organic Synthesis: An Entry to a Novel Approach. Letters in Organic Chemistry, 2022, 19, 283-292.	0.2	6
528	Photocycloadditions of Arenes Derived from Lignin. Journal of Organic Chemistry, 2021, 86, 13310-13321.	1.7	6
529	Template-Directed Photochemical Homodimerization and Heterodimerization Reactions of Cinnamic Acids. Journal of Organic Chemistry, 2021, 86, 13118-13128.	1.7	6
530	Concise Total Synthesis of Agarozizanolâ€B via a Strained Photocascade Intermediate. Angewandte Chemie - International Edition, 2021, 60, 24039-24042.	7.2	18
531	Probing the origin of the stereoselectivity and enantioselectivity of cobalt-catalyzed [2 + 2] cyclization of ethylene and enynes. Organic Chemistry Frontiers, 2021, 8, 1531-1543.	2.3	8
532	Photochemical synthesis of novel naphtho[1,2-b]benzofuran derivatives from 2,3-disubstituted benzofurans. Chemistry of Heterocyclic Compounds, 2021, 57, 13-19.	0.6	9
533	Tunable photochemical 6ï€ heterocyclization reactions mediated by a boron Lewis acid. New Journal of Chemistry, 2021, 45, 18924-18932.	1.4	2
534	Green organic synthesis by photochemical protocol. , 2020, , 155-198.		4
535	Catalyst-free Organic Synthesis: An Introduction. RSC Green Chemistry, 2017, , 1-10.	0.0	4
536	Photocatalysts as Photoinitiators. RSC Polymer Chemistry Series, 2018, , 200-243.	0.1	4
537	CHAPTER 7. Continuous-flow Photooxygenations: An Advantageous and Sustainable Oxidation Methodology with a Bright Future. RSC Catalysis Series, 2020, , 181-251.	0.1	2
538	Construction of Unique Heterocyclic Frameworks by Photochemical Reaction of 5- and 6-Membered Heteroaromatics. Heterocycles, 2018, 96, 997.	0.4	3

#	Article	IF	CITATIONS
539	Highly Efficient and Selective Diastereodifferentiating Organic Photoreactions Using Flow Microreactor. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2015, 73, 460-468.	0.0	2
540	Photoinduced Reaction of Triarylphosphines with Alkenes Forming Fused Tricyclic Phosphonium Salts. Organic Letters, 2021, 23, 8445-8449.	2.4	6
541	Energy-Transfer-Mediated Photocatalysis by a Bioinspired Organic Perylenephotosensitizer HiBRCP. Journal of Organic Chemistry, 2021, 86, 15284-15297.	1.7	6
542	Chiral Photocatalyst Structures in Asymmetric Photochemical Synthesis. Chemical Reviews, 2022, 122, 1654-1716.	23.0	179
543	Conformer-specific photochemistry imaged in real space and time. Science, 2021, 374, 178-182.	6.0	20
544	Dolabrane Diterpenoids from the Chinese Liverwort <i>Notoscyphus lutescens</i> . Journal of Natural Products, 2021, 84, 2929-2936.	1.5	1
545	Photoinduced 6ï€-Electrocyclization of a 1,3,5-Hexatriene System Containing an Allomaltol Fragment. Journal of Organic Chemistry, 2021, 86, 15345-15356.	1.7	17
546	Norrish type II reactions of acyl azolium salts. Tetrahedron, 2021, 100, 132497.	1.0	7
547	Development of Methods for Construction of Heterocyclic Frameworks by Photochemical Activation of Molecules. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2016, 74, 360-371.	0.0	0
548	Lewis Acid Catalysis in Intermolecular [2+2] Photocycloaddition of Coumarin-3-carboxamide Bearing 2-Oxazolidinone Auxiliary with n-Propyl Vinyl Ether and Vinyl Pivalate. Heterocycles, 2018, 97, 591.	0.4	0
549	Advances Towards the Synthesis of Aporphine Alkaloids: Câ€Ring Formation via Approaches Based on One―and Twoâ€Bond Disconnections. Chemical Record, 2022, 22, .	2.9	4
550	The development of luminescent solar concentrator-based photomicroreactors: a cheap reactor enabling efficient solar-powered photochemistry. Photochemical and Photobiological Sciences, 2022, 21, 705-717.	1.6	16
551	Dynamische kinetische Sensibilisierung von βâ€Dicarbonylâ€verbindungen – Zugang zu mittelgroßen Ringen durch eine Deâ€Mayoâ€artige Ringerweiterung. Angewandte Chemie, 2022, 134, .	1.6	4
552	Dynamic Kinetic Sensitization of βâ€Dicarbonyl Compounds—Access to Medium‣ized Rings by Deâ€Mayoâ Ring Expansion. Angewandte Chemie - International Edition, 2022, 61, .	ì€Type 7.2	30
553	Enantioselective synthesis of heterocyclic compounds using photochemical reactions. Photochemical and Photobiological Sciences, 2021, 20, 1657-1674.	1.6	6
554	Mechanisms of the Cu(I)-Catalyzed Intermolecular Photocycloaddition Reaction Revealed by Optical and X-ray Transient Absorption Spectroscopies. Journal of the American Chemical Society, 2021, 143, 19356-19364.	6.6	7
555	Ternary Electron Donor–Acceptor Complex Enabled Enantioselective Radical Additions to α, β-Unsaturated Carbonyl Compounds. ACS Catalysis, 2021, 11, 14811-14818.	5.5	14
557	Photoinduced assembly of the 3,4,4a,7a-tetrahydro-1 <i>H</i> -cyclopenta[<i>b</i>]pyridine-2,7-dione core on the basis of allomaltol derivatives. Organic and Biomolecular Chemistry, 2021, 19, 9975-9985.	1.5	11

#		IE	CITATIONS
#	A facile synthesis of pyrrolo[2.3â€ <i>i</i>)phenanthridines via the cascade reaction of indoleanilines	IF	CHATIONS
558	and aldehydes. Journal of Heterocyclic Chemistry, 2022, 59, 1116-1122.	1.4	4
559	UV light-driven asymmetric vinylogous aldol reaction of isatins with 2-alkylbenzophenones and enantioselective synthesis of 3-hydroxyoxindoles. Organic Chemistry Frontiers, 2022, 9, 643-648.	2.3	4
560	Photoredox-Catalyzed Cascade of <i>o-</i> Hydroxyarylenaminones to Access 3-Aminated Chromones. Journal of Organic Chemistry, 2022, 87, 1477-1484.	1.7	23
561	Enantioselective crossed intramolecular [2+2] photocycloaddition reactions mediated by a chiral chelating Lewis acid. Chemical Science, 2022, 13, 2378-2384.	3.7	16
562	Cyclobutane based "overbred intermediates―and their exploration in organic synthesis. Organic and Biomolecular Chemistry, 2022, 20, 1582-1622.	1.5	4
563	Demonstration of a Stereospecific Photochemical Meta Effect. Photochem, 2022, 2, 69-76.	1.3	0
564	Enantioselective one-carbon expansion of aromatic rings by simultaneous formation and chromoselective irradiation of a transient coloured enolate. Chemical Science, 2022, 13, 2079-2085.	3.7	6
565	Recent advances of visible-light photocatalysis in the functionalization of organic compounds. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 50, 100488.	5.6	64
566	One-pot synthesis of oxoaporphines as potent antitumor agents and investigation of their mechanisms of actions. European Journal of Medicinal Chemistry, 2022, 231, 114141.	2.6	6
567	[2+2] cycloadditon or β-hydrogen elimination ? a DFT study on the reactions of propylene catalyzed by (PDI)Fe-metallacycle. New Journal of Chemistry, 0, , .	1.4	0
568	A vinylogous Norrish reaction as a strategy for light-mediated ring expansion. Chemical Communications, 2022, 58, 2910-2913.	2.2	1
569	Continuous microflow synthesis of dimethyl-substituted cyclobutanetetracarboxylic dianhydrides and its application on polyimide films. Journal of Flow Chemistry, 2022, 12, 91.	1.2	1
570	Recent Advances in Photochemical Reactions on Singleâ€Molecule Electrical Platforms. Macromolecular Rapid Communications, 2022, 43, e2200017.	2.0	8
571	Total syntheses of strained polycyclic terpenes. Chemical Communications, 2022, 58, 4941-4953.	2.2	3
572	Design of new visible light Pt photocatalyst based on the TDDFT study of properties of transition metal complexes. Applied Organometallic Chemistry, 0, , .	1.7	0
573	Transition metal-catalyzed (remote) deconjugative isomerization of α,β-unsaturated carbonyls. Tetrahedron Letters, 2022, 96, 153756.	0.7	6
574	Diels–Alder Reaction of Photochemically Generated (<i>E</i>)-Cyclohept-2-enones: Diene Scope, Reaction Pathway, and Synthetic Application. Journal of Organic Chemistry, 2022, 87, 4838-4851.	1.7	9
575	Using Restricted Bond Rotations to Enforce Excited-State Behavior of Organic Molecules. Synlett, 2022, 33, 1123-1134.	1.0	4

#	Article	IF	Citations
576	Naphthalenyl-phenylacrylonitrile-based supramolecular aqueous artificial light-harvesting system for photochemical catalysis. Dyes and Pigments, 2022, 201, 110257.	2.0	8
577	Photocatalytic Radical Addition to Levoglucosenone. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
578	Photoinduced 6ï€-Electrocyclization of 1,3,5-hexatriene system containing allomaltol fragment: A convenient approach to polycondensed pyrrole derivatives. Tetrahedron, 2022, 114, 132780.	1.0	7
579	Supramolecular-controlled regioselective photochemical [4 + 4] cycloaddition within Cp*Rh-based metallarectangles. Dalton Transactions, 2022, 51, 8743-8748.	1.6	6
580	Advanced Synthesis Using Photocatalysis Involved Dual Catalytic System. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
581	A study of the photochemical behavior of terarylenes containing allomaltol and pyrazole fragments. Beilstein Journal of Organic Chemistry, 0, 18, 588-596.	1.3	8
582	Generation of Fused Seven-Membered Polycyclic Systems via Ring Expansion and Application to the Total Synthesis of Sesquiterpenoids. Organic Letters, 2022, 24, 4034-4039.	2.4	10
583	Visible Light-Induced Regio- and Enantiodifferentiating [2 + 2] Photocycloaddition of 1,4-Naphthoquinones Mediated by Oppositely Coordinating 1,3,2-Oxazaborolidine Chiral Lewis Acid. Journal of Organic Chemistry, 2022, 87, 8071-8083.	1.7	3
584	Recent advances in visible-light-mediated functionalization of olefins and alkynes using copper catalysts. Chemical Communications, 2022, 58, 7850-7873.	2.2	14
585	Photoinduced 6ï€-Electrocyclization of 2,5-Dichlorothiophene Containing Benzofuranylacrylonitriles as Efficient Method for the Generation of Hydrogen Chloride. SSRN Electronic Journal, 0, , .	0.4	0
586	Device for automated screening of irradiation wavelength and intensity – investigation of the wavelength dependence of photoreactions with an arylazo sulfone in continuous flow. Reaction Chemistry and Engineering, 0, , .	1.9	1
587	Nickel ^{II} -catalyzed asymmetric photoenolization/Mannich reaction of (2-alkylphenyl) ketones. Chemical Science, 2022, 13, 8576-8582.	3.7	8
589	Vergleichende Evaluierung lichtgetriebener Katalyse: Ein Rahmenkonzept für das standardisierte Berichten von Daten**. Angewandte Chemie, 0, , .	1.6	0
590	Comparative Evaluation of Lightâ€Ðriven Catalysis: A Framework for Standardized Reporting of Data**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32
591	Construction of Benzocyclobutenes Enabled by Visibleâ€Lightâ€Induced Triplet Biradical Atom Transfer of Olefins. Angewandte Chemie, 2022, 134, .	1.6	2
592	Construction of Benzocyclobutenes Enabled by Visibleâ€Lightâ€Induced Triplet Biradical Atom Transfer of Olefins. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
593	Photochemical Ring Contraction of 5,5-Dialkylcyclopent-2-enones and <i>in situ</i> Trapping by Primary Amines. Journal of Organic Chemistry, 2023, 88, 6294-6303.	1.7	4
594	Arene Activation through Iminium Ions: Product Diversity from Intramolecular Photocycloaddition Reactions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10

#	Article	IF	CITATIONS
595	Arene Activation through Iminium Ions: Product Diversity from Intramolecular Photocycloaddition Reactions. Angewandte Chemie, 2022, 134, .	1.6	2
596	Nonenzymatic Reactions in Natural Product Formation. Chemical Reviews, 2022, 122, 14815-14841.	23.0	12
597	Total Synthesis of (â~')-Antroalbocin A Enabled by a Strain Release-Controlled Photochemical 1,3-Acyl Shift. Organic Letters, 2022, 24, 5812-5816.	2.4	4
598	Stereoselective [2+2]-Cycloadditions of chiral allenic ketones and alkenes: Applications towards the synthesis of benzocyclobutenes and endiandric acids. Tetrahedron, 2022, 122, 132932.	1.0	3
599	Photoinduced 6Ï€â€electrocyclization of 2,5â€dichlorothiophene containing benzofuranylacrylonitriles as efficient method for the generation of hydrogen chloride. Journal of Heterocyclic Chemistry, 0, , .	1.4	1
600	Investigation of photochemical behavior of furan derivatives containing an allomaltol fragment. Tetrahedron, 2022, 124, 133012.	1.0	5
601	Tuning the photoreactivity of photocycloaddition by halochromismâ€. Australian Journal of Chemistry, 2022, , .	0.5	2
602	Ring contraction in synthesis of functionalized carbocycles. Chemical Society Reviews, 2022, 51, 8652-8675.	18.7	8
603	Perspective: Mechanistic investigations of photocatalytic processes with time-resolved optical spectroscopy. Journal of Chemical Physics, 2022, 157, .	1.2	4
604	Iridiumâ€Catalyzed Asymmetric Allylic Benzylation with Photogenerated Hydroxyâ€oâ€Quinodimethanes. Angewandte Chemie, 0, , .	1.6	0
605	Formation of <scp>antiâ€Bredt</scp> â€ŧype azabicyclo[4.2.0]octene frameworks through photochemical intramolecular [2+2] cycloaddition between indole and a distal double bond of allene. Journal of Heterocyclic Chemistry, 0, , .	1.4	1
606	Photochemical 1,3â€Acyl Shifts in Natural Product Synthesis. European Journal of Organic Chemistry, 0, , .	1.2	0
607	Enantioselective [2+2]-cycloadditions with triplet photoenzymes. Nature, 2022, 611, 715-720.	13.7	54
608	Iridiumâ€Catalyzed Asymmetric Allylic Benzylation with Photogenerated Hydroxyâ€ <i>o</i> â€Quinodimethanes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	8
609	Fast Screening of Minimum Energy Crossing Points with Semiempirical Tight-Binding Methods. Journal of Chemical Theory and Computation, 2022, 18, 6370-6385.	2.3	6
610	Visible-light promoted de Mayo reaction by zirconium catalysis. Chemical Communications, 2022, 58, 12979-12982.	2.2	5
611	Cannabinoid Photochemistry: An Underexplored Opportunity. Cannabis and Cannabinoid Research, 0, , .	1.5	0
612	Regio- and Stereoselectivity of the Norrish–Yang Photocyclization of Dialkyl 1,2-Diketones: Solution versus Solid State Photochemistry of Two Polymorphs. Journal of Organic Chemistry, 0, , .	1.7	0

#	Article	IF	CITATIONS
613	Lowâ€Toxicity ZnSe/ZnS Quantum Dots as Potent Photoreductants and Triplet Sensitizers for Organic Transformations. Angewandte Chemie - International Edition, 2022, 61, .	7.2	7
614	Lowâ€Toxicity ZnSe/ZnS Quantum Dots as Potent Photoreductants and Triplet Sensitizers for Organic Transformations. Angewandte Chemie, 2022, 134, .	1.6	2
615	Triplet Sensitized Photoâ€Dehydroâ€Dielsâ€Alder Reaction. ChemistrySelect, 2022, 7, .	0.7	0
616	Organophotocatalytic [2+2] Cycloaddition of Electronâ€Đeficient Styrenes**. Chemistry - A European Journal, 2023, 29, .	1.7	8
617	Investigations of an Unexpected [2+2] Photocycloaddition in the Synthesis of (â^')-Scabrolide A from Quantum Mechanics Calculations. Journal of Organic Chemistry, 2022, 87, 14115-14124.	1.7	3
618	Ionic Liquidâ€Catalyzed Câ^'C Bond Formation for the Synthesis of Polysubstituted Olefins. European Journal of Organic Chemistry, 2022, 2022, .	1.2	2
619	Site-Selective, Photocatalytic Vinylogous Amidation of Enones. Organic Letters, 2022, 24, 8120-8124.	2.4	7
620	Hydroxy Group-directed Diastereoselective Paternò-Büchi Reaction between Arylglyoxylates and Furfuryl Alcohols. Chemistry Letters, 2022, 51, 1143-1145.	0.7	0
621	Consecutive photochemical reactions enabled by a dual flow reactor coil strategy. Chemical Communications, 2022, 58, 13274-13277.	2.2	2
622	Theoretical Exploration of Energy Transfer and Single Electron Transfer Mechanisms to Understand the Generation of Triplet Nitrene and the C(sp ³)–H Amidation with Photocatalysts. Jacs Au, 2022, 2, 2596-2606.	3.6	4
623	4a,7a-Dihydroxy-1-(2-hydroxyethyl)-5-methyl-2′,3′,4a,5′,6′,7a-hexahydrospiro[cyclopenta[b]pyridine-4 MolBank, 2022, 2022, M1481.	4,4′-pyr 0.2	an]-2,7(1H,3
624	Synthesis of Isoxazolidines from Substituted Vinylnitrones and Conjugated Carbonyls via Visible‣ight Photocatalysis. ChemPhotoChem, 2023, 7, .	1.5	3
625	Preparation of Thietane Derivatives through Domino Photochemical Norrish Type II/Thia-Paternò–Büchi Reactions. Organic Letters, 2022, 24, 8375-8380.	2.4	6
626	Stereospecific Formation of the <i>rctt</i> Isomer of Bis-crown-Containing Cyclobutane upon [2 + 2] Photocycloaddition of an (18-Crown-6)stilbene Induced by Self-Assembly via Hydrogen Bonding. ACS Omega, 0, , .	1.6	1
628	Catalytic Enantioselective 6ï€ Photocyclization of Acrylanilides. Journal of the American Chemical Society, 2023, 145, 171-178.	6.6	14
629	Photochemical Synthesis of Tetrahydroâ€6 <i>H</i> â€cyclopenta[<i>b</i>]furanâ€6â€ones from Substituted Allomaltols. ChemistrySelect, 2022, 7, .	0.7	3
630	Light-induced phosphine-catalyzed asymmetric functionalization of benzylic C-H bonds. Science China Chemistry, 2023, 66, 127-132.	4.2	7

631	Development of an Automated Platform for C(sp ³)â^'C(sp ³) Bond Formation via XAT Chemistry. ChemCatChem, 2023, 15, .	1.8	4
-----	---	-----	---

#	Article	IF	CITATIONS
632	Visible Light-Triggered and Catalyst- and Template-Free <i>syn</i> -Selective [2 + 2] Cycloaddition of Chalcones: Solid-State Suspension Reaction in Water to Access <i>syn</i> -Cyclobutane Diastereomers. ACS Sustainable Chemistry and Engineering, 2022, 10, 16399-16407.	3.2	4
633	Photoinduced Acylations Via Azolium-Promoted Intermolecular Hydrogen Atom Transfer. Journal of the American Chemical Society, 2023, 145, 1535-1541.	6.6	29
634	The game between molecular photoredox catalysis and hydrogen: The golden age of hydrogen budge. Molecular Catalysis, 2023, 537, 112921.	1.0	0
635	A Simple, Fast, and Facile Demonstration of a Photochemical Redox Reaction Using Visible Light. Journal of Chemical Education, 2023, 100, 1076-1080.	1.1	1
636	Free Radical-Mediated Intramolecular Photocyclization of AlEgens Based on 2,3-Diphenylbenzo[b]thiophene <i>S,S</i> -Dioxide. Journal of the American Chemical Society, 2023, 145, 7837-7844.	6.6	8
637	Cocrystals for photochemical solid-state reactions: An account on crystal engineering perspective. Coordination Chemistry Reviews, 2023, 483, 215095.	9.5	10
638	Visibleâ€Light Promoted Intramolecular <i>para</i> ycloadditions on Simple Aromatics. Angewandte Chemie, 2023, 135, .	1.6	0
639	Solar Photochemical Manufacturing of Fine Chemicals: Historical Background, Modern Solar Technologies, Recent Applications and Future Challenges. , 2014, , 158-191.		0
640	Visibleâ€Light Promoted Intramolecular <i>para</i> ycloadditions on Simple Aromatics. Angewandte Chemie - International Edition, 2023, 62, .	7.2	15
641	Polypyridine Iridium(III) and Ruthenium(II) Complexes for Homogeneous and Grapheneâ€Supported Photoredox Catalysis. ChemCatChem, 2023, 15, .	1.8	3
642	Frontier nanoarchitectonics of graphitic carbon nitride based plasmonic photocatalysts and photoelectrocatalysts for energy, environment and organic reactions. Materials Chemistry Frontiers, 2023, 7, 1197-1247.	3.2	18
643	Construction of gel networks <i>via</i> [2+2] photocycloaddition. Journal of Materials Chemistry C, 2023, 11, 2826-2830.	2.7	1
644	Photochemical synthesis and ring–chain–ring tautomerism of benzo[4,5]imidazo[1,2- <i>a</i>]cyclopenta[<i>e</i>]pyridines. Organic and Biomolecular Chemistry, 2023, 21, 2720-2728.	1.5	2
645	Skeletal diversification by C–C cleavage to access bicyclic frameworks from a common tricyclooctane intermediate. Chemical Communications, 2023, 59, 3858-3861.	2.2	1
646	Expanding the â€~aplysinospin cascade' through DNA-templated [2+2] photocycloaddition. Chemical Communications, 2023, 59, 4221-4224.	2.2	5
647	Deaminative radical reactions <i>via</i> relayed proton-coupled electron transfer. Organic Chemistry Frontiers, 2023, 10, 2155-2164.	2.3	6
648	Divergent Synthetic Approach to Grayanane Diterpenoids. Journal of the American Chemical Society, 0,	6.6	2
649	A Classic Photochemical Approach Inducing an Unexpected Rearrangement: Exploring the Photoreactivity of Pentacyclic Triterpenic Acids. Journal of Natural Products, 0, , .	1.5	0

	CITATION R	EPORT	
#	Article	IF	CITATIONS
650	Synthesis of Boronates with a Protoilludane Skeleton. Synthesis, 2023, 55, 2311-2318.	1.2	2
652	Molecular Design and Biomedical Application of AlEgens with Photochemical Activity. , 2023, 1, 785-795.		4
659	Pericyclische Reaktionen. , 2023, , 481-614.		0
661	Catalytic Asymmetric Visible-Light de Mayo Reaction by ZrCl ₄ -Chiral Phosphoric Acid Complex. Journal of the American Chemical Society, 2023, 145, 14227-14232.	6.6	3
664	Visible light-assisted chemistry of vinyl azides and its applications in organic synthesis. Organic and Biomolecular Chemistry, 2023, 21, 4723-4743.	1.5	3
672	Diastereoselectivity in Photochemistry. , 2023, , .		0
675	CO ₂ promoted photoredox/Ni-catalyzed semi-reduction of alkynes with H ₂ O. Green Chemistry, 2023, 25, 7978-7982.	4.6	0
676	Recent advances in trifluoroethylation reaction. Organic Chemistry Frontiers, 0, , .	2.3	0
685	Visible light induced hydrogen atom transfer trifluoromethylthiolation of aldehydes with bismuth catalyst. Chemical Communications, 0, , .	2.2	0
687	Guiding excited state reactivity – the journey from the Paternò–Büchi reaction to transposed and aza PaternĂ²â€"Büchi reactions. , 2023, , 562-579.		Ο
691	Photochemical Synthesis of Fine Chemicals. , 2024, , .		0
692	Reversing the stereoselectivity of intramolecular [2+2] photocycloaddition utilizing cucurbit[8]uril as a molecular flask. Chemical Communications, 2024, 60, 3267-3270.	2.2	0
695	Photochemical Key Steps in Natural Products Synthesis. , 2024, , .		0

Photochemical Key Steps in Natural Products Synthesis. , 2024, , . 695