Three groups of interneurons account for nearly 100% of

Developmental Neurobiology 71, 45-61 DOI: 10.1002/dneu.20853

Citation Report

#	Article	lF	CITATIONS
1	Mechanisms of Inhibition within the Telencephalon: "Where the Wild Things Are― Annual Review of Neuroscience, 2011, 34, 535-567.	5.0	205
2	GABAergic Dysfunction in Autism and Epilepsy. , 0, , .		3
3	Local Connections of Layer 5 GABAergic Interneurons to Corticospinal Neurons. Frontiers in Neural Circuits, 2011, 5, 12.	1.4	37
4	Genetics and Function of Neocortical GABAergic Interneurons in Neurodevelopmental Disorders. Neural Plasticity, 2011, 2011, 1-25.	1.0	181
5	ATR maintains select progenitors during nervous system development. EMBO Journal, 2012, 31, 1177-1189.	3.5	74
6	Somatostatinergic systems: an update on brain functions in normal and pathological aging. Frontiers in Endocrinology, 2012, 3, 154.	1.5	70
7	Chronic reduction in inhibition reduces receptive field size in mouse auditory cortex. Proceedings of the United States of America, 2012, 109, 13829-13834.	3.3	30
8	Laminarly Orthogonal Excitation of Fast-Spiking and Low-Threshold-Spiking Interneurons in Mouse Motor Cortex. Journal of Neuroscience, 2012, 32, 7021-7033.	1.7	72
9	Spatial Profile of Excitatory and Inhibitory Synaptic Connectivity in Mouse Primary Auditory Cortex. Journal of Neuroscience, 2012, 32, 5609-5619.	1.7	226
10	Satb1 Is an Activity-Modulated Transcription Factor Required for the Terminal Differentiation and Connectivity of Medial Ganglionic Eminence-Derived Cortical Interneurons. Journal of Neuroscience, 2012, 32, 17690-17705.	1.7	122
11	Prolonged Disynaptic Inhibition in the Cortex Mediated by Slow, Non-α7 Nicotinic Excitation of a Specific Subset of Cortical Interneurons. Journal of Neuroscience, 2012, 32, 3859-3864.	1.7	136
12	Thalamic Control of Layer 1 Circuits in Prefrontal Cortex. Journal of Neuroscience, 2012, 32, 17813-17823.	1.7	190
13	A Subpopulation of Dorsal Lateral/Caudal Ganglionic Eminence-Derived Neocortical Interneurons Expresses the Transcription Factor Sp8. Cerebral Cortex, 2012, 22, 2120-2130.	1.6	73
14	Maturation-Promoting Activity of SATB1 in MGE-Derived Cortical Interneurons. Cell Reports, 2012, 2, 1351-1362.	2.9	100
15	Cell-Type-Based Analysis of MicroRNA Profiles in the Mouse Brain. Neuron, 2012, 73, 35-48.	3.8	254
16	Selective Functional Interactions between Excitatory and Inhibitory Cortical Neurons and Differential Contribution to Persistent Activity of the Slow Oscillation. Journal of Neuroscience, 2012, 32, 12165-12179.	1.7	72
17	Neurons on the Move: Migration and Lamination of Cortical Interneurons. NeuroSignals, 2012, 20, 168-189.	0.5	67
18	Arl13b in Primary Cilia Regulates the Migration and Placement of Interneurons in the Developing Cerebral Cortex, Developmental Cell, 2012, 23, 925-938	3.1	203

		CITATION REPORT		
#	Article		IF	Citations
19	Division and subtraction by distinct cortical inhibitory networks in vivo. Nature, 2012,	488, 343-348.	13.7	490
20	Reliable in vivo identification of both GABAergic and glutamatergic neurons using Emx fluorescent reporter expression. Cell Calcium, 2012, 52, 182-189.	1-Cre driven	1.1	16
21	Effects of acetylcholine on neuronal properties in entorhinal cortex. Frontiers in Behav Neuroscience, 2012, 6, 32.	ioral	1.0	52
22	Surround suppression and sparse coding in visual and barrel cortices. Frontiers in Neur 2012, 6, 43.	al Circuits,	1.4	61
23	The origin of neocortical nitric oxide synthase-expressing inhibitory neurons. Frontiers Circuits, 2012, 6, 44.	in Neural	1.4	34
24	Activation of cortical 5-HT3 receptor-expressing interneurons induces NO mediated va and NPY mediated vasoconstrictions. Frontiers in Neural Circuits, 2012, 6, 50.	sodilatations	1.4	38
25	Functional diversity of supragranular GABAergic neurons in the barrel cortex. Frontiers Circuits, 2012, 6, 52.	in Neural	1.4	64
26	Electrophysiological and morphological properties of neurons in layer 5 of the rat post cortex. Hippocampus, 2012, 22, 1912-1922.	rhinal	0.9	13
27	Alpha2â€adrenergic receptor activation regulates cortical interneuron migration. Euro Neuroscience, 2012, 36, 2879-2887.	pean Journal of	1.2	8
28	Post hoc immunostaining of GABAergic neuronal subtypes following in vivo two-photo imaging in mouse neocortex. Pflugers Archiv European Journal of Physiology, 2012, 46	n calcium 3, 339-354.	1.3	22
29	Development and specification of GABAergic cortical interneurons. Cell and Bioscience	2, 2013, 3, 19.	2.1	136
30	Loss of GABAergic neurons in the hippocampus and cerebral cortex of Engrailed-2 null Implications for autism spectrum disorders. Experimental Neurology, 2013, 247, 496-5	mutant mice: 505.	2.0	83
31	Hypoxia-Induced Developmental Delays of Inhibitory Interneurons Are Reversed by Env Enrichment in the Postnatal Mouse Forebrain. Journal of Neuroscience, 2013, 33, 133	ironmental 75-13387.	1.7	75
32	The Neuron Identity Problem: Form Meets Function. Neuron, 2013, 80, 602-612.		3.8	86
33	Localization of α7 nicotinic acetylcholine receptor immunoreactivity on GABAergic int layers l–III of the rat retrosplenial granular cortex. Neuroscience, 2013, 252, 443-45	erneurons in 9.	1.1	21
34	Subcortical origins of human and monkey neocortical interneurons. Nature Neuroscier 1588-1597.	nce, 2013, 16,	7.1	265
35	Dual origins of functionally distinct O-LM interneurons revealed by differential 5-HT3A Nature Neuroscience, 2013, 16, 1598-1607.	R expression.	7.1	104
36	Cortical interneurons that specialize in disinhibitory control. Nature, 2013, 503, 521-5	24.	13.7	936

ARTICLE IF CITATIONS # A disinhibitory circuit mediates motor integration in the somatosensory cortex. Nature Neuroscience, 37 7.1 638 2013, 16, 1662-1670. Integrative Mechanisms of Oriented Neuronal Migration in the Developing Brain. Annual Review of 134 Cell and Developmental Biology, 2013, 29, 299-353. 39 Cortical connectivity and sensory coding. Nature, 2013, 503, 51-58. 13.7 536 Intrinsic Electrophysiology of Mouse Corticospinal Neurons: a Class-Specific Triad of Spike-Related Properties. Cerebral Cortex, 2013, 23, 1965-1977. Meditation-Related Increases in GABAB Modulated Cortical Inhibition. Brain Stimulation, 2013, 6, 41 0.7 54 397-402. Classification and function of GABAergic interneurons of the mammalian cerebral cortex. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2013, 7, 245-259. 0.3 Integration of GABAergic Interneurons into Cortical Cell Assemblies: Lessons from Embryos and 43 3.8 160 Adults. Neuron, 2013, 79, 849-864. Neocortical Somatostatin-Expressing GABAergic Interneurons Disinhibit the Thalamorecipient Layer 4. 44 3.8 45 Barrel cortex function. Progress in Neurobiology, 2013, 103, 3-27. 2.8 304 Nuclear receptor COUPâ€TFIIâ€expressing neocortical interneurons are derived from the medial and lateral/caudal ganglionic eminence and define specific subsets of mature interneurons. Journal of 44 Comparative Neurology, 2013, 521, 479-497. Dlx1&2-Dependent Expression of Zfhx1b (Sip1, Zeb2) Regulates the Fate Switch between Cortical and 47 140 3.8 Striatal Interneurons. Neuron, 2013, 77, 83-98. Neocortical interneurons. Neurology, 2013, 81, 273-280. 1.5 48 CNTNAP2 polymorphisms and structural brain connectivity: AÂdiffusion-tensor imaging study. Journal 49 1.5 37 of Psychiatric Research, 2013, 47, 1349-1356. Serotonergic modulation of LTP at excitatory and inhibitory synapses in the developing rat visual cortex. Neuroscience, 2013, 238, 148-158. 1.1 Ca_V2.1 ablation in cortical interneurons selectively impairs fastâ€spiking basket cells and 51 2.8 95 causes generalized seizures. Annals of Neurology, 2013, 74, 209-222. Sodium Channel Cleavage Is Associated with Aberrant Neuronal Activity and Cognitive Deficits in a Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2013, 33, 7020-7026. Erbin interacts with TARP Î³-2 for surface expression of AMPA receptors in cortical interneurons. 53 7.1 47 Nature Neuroscience, 2013, 16, 290-299. Decorrelating Action of Inhibition in Neocortical Networks. Journal of Neuroscience, 2013, 33, 54 9813-9830.

#	Article	IF	CITATIONS
55	The LIM Homeodomain Protein Lhx6 Regulates Maturation of Interneurons and Network Excitability in the Mammalian Cortex. Cerebral Cortex, 2013, 23, 1811-1823.	1.6	54
56	Convergence of genetic and environmental factors on parvalbumin-positive interneurons in schizophrenia. Frontiers in Behavioral Neuroscience, 2013, 7, 116.	1.0	78
57	Altered Cortical GABAA Receptor Composition, Physiology, and Endocytosis in a Mouse Model of a Human Genetic Absence Epilepsy Syndrome. Journal of Biological Chemistry, 2013, 288, 21458-21472.	1.6	50
58	Two specific populations of GABAergic neurons originating from the medial and the caudal ganglionic eminences aid in proper navigation of callosal axons. Developmental Neurobiology, 2013, 73, 647-672.	1.5	20
59	Activity-regulated Somatostatin Expression Reduces Dendritic Spine Density and Lowers Excitatory Synaptic Transmission via Postsynaptic Somatostatin Receptor 4. Journal of Biological Chemistry, 2013, 288, 2501-2509.	1.6	25
61	Repeated cocaine exposure increases fast-spiking interneuron excitability in the rat medial prefrontal cortex. Journal of Neurophysiology, 2013, 109, 2781-2792.	0.9	19
62	Reduced brain somatostatin in mood disorders: a common pathophysiological substrate and drug target?. Frontiers in Pharmacology, 2013, 4, 110.	1.6	103
63	The serotonin 5-HT3 receptor: a novel neurodevelopmental target. Frontiers in Cellular Neuroscience, 2013, 7, 76.	1.8	55
64	Serotonin homeostasis and serotonin receptors as actors of cortical construction: special attention to the 5-HT3A and 5-HT6 receptor subtypes. Frontiers in Cellular Neuroscience, 2013, 7, 93.	1.8	65
65	Production and organization of neocortical interneurons. Frontiers in Cellular Neuroscience, 2013, 7, 221.	1.8	71
66	Not all that glitters is gold: off-target recombination in the somatostatin–IRES-Cre mouse line labels a subset of fast-spiking interneurons. Frontiers in Neural Circuits, 2013, 7, 195.	1.4	107
67	Cell-type-specific modulation of neocortical activity by basal forebrain input. Frontiers in Systems Neuroscience, 2012, 6, 79.	1.2	120
68	Trajectory of the main GABAergic interneuron populations from early development to old age in the rat primary auditory cortex. Frontiers in Neuroanatomy, 2014, 8, 40.	0.9	64
69	Spatio-temporal extension in site of origin for cortical calretinin neurons in primates. Frontiers in Neuroanatomy, 2014, 8, 50.	0.9	72
70	Revisiting enigmatic cortical calretinin-expressing interneurons. Frontiers in Neuroanatomy, 2014, 8, 52.	0.9	70
71	Characterization of excitatory and inhibitory neuron activation in the mouse medial prefrontal cortex following palatable food ingestion and food driven exploratory behavior. Frontiers in Neuroanatomy, 2014, 8, 60.	0.9	34
72	Genetic dissection of GABAergic neural circuits in mouse neocortex. Frontiers in Cellular Neuroscience, 2014, 8, 8.	1.8	85
73	GABAergic synapses: their plasticity and role in sensory cortex - See more at: http://journal.frontiersin.org/Journal/10.3389/fncel.2014.00091/abstract#sthash.I5jGe6MC.dpuf. Frontiers in Cellular Neuroscience, 2014, 8, 91.	1.8	57

#	Article	IF	CITATIONS
74	Altered GABAergic markers, increased binocularity and reduced plasticity in the visual cortex of Engrailed-2 knockout mice. Frontiers in Cellular Neuroscience, 2014, 8, 163.	1.8	28
75	Biologically inspired load balancing mechanism in neocortical competitive learning. Frontiers in Neural Circuits, 2014, 8, 18.	1.4	1
76	mRNA expression profile of serotonin receptor subtypes and distribution of serotonergic terminations in marmoset brain. Frontiers in Neural Circuits, 2014, 8, 52.	1.4	31
77	Mapping arealisation of the visual cortex of non-primate species: lessons for development and evolution. Frontiers in Neural Circuits, 2014, 8, 79.	1.4	16
78	Dissecting inhibitory brain circuits with genetically-targeted technologies. Frontiers in Neural Circuits, 2014, 8, 124.	1.4	11
79	Maturation of cortical circuits requires Semaphorin 7A. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13978-13983.	3.3	34
80	Opposing Effects of Acute versus Chronic Blockade of Frontal Cortex Somatostatin-Positive Inhibitory Neurons on Behavioral Emotionality in Mice. Neuropsychopharmacology, 2014, 39, 2252-2262.	2.8	132
81	Characterization and Distribution of Reelin-Positive Interneuron Subtypes in the Rat Barrel Cortex. Cerebral Cortex, 2014, 24, 3046-3058.	1.6	39
82	Channelrhodopsin-Assisted Patching: InÂVivo Recording of Genetically and Morphologically Identified Neurons throughout the Brain. Cell Reports, 2014, 9, 2304-2316.	2.9	67
83	3D Clustering of GABAergic Neurons Enhances Inhibitory Actions on Excitatory Neurons in the Mouse Visual Cortex. Cell Reports, 2014, 9, 1896-1907.	2.9	16
84	Ageâ€related neurochemical changes in the rhesus macaque cochlear nucleus. Journal of Comparative Neurology, 2014, 522, 1527-1541.	0.9	23
85	Ageâ€related neurochemical changes in the rhesus macaque superior olivary complex. Journal of Comparative Neurology, 2014, 522, 573-591.	0.9	17
86	Impaired excitability of somatostatin- and parvalbumin-expressing cortical interneurons in a mouse model of Dravet syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3139-48.	3.3	216
87	NPAS1 Represses the Generation of Specific Subtypes of Cortical Interneurons. Neuron, 2014, 84, 940-953.	3.8	60
88	GABA-A Receptor Inhibition of Local Calcium Signaling in Spines and Dendrites. Journal of Neuroscience, 2014, 34, 15898-15911.	1.7	75
89	Developmental abnormalities of cortical interneurons precede symptoms onset in a mouse model of Rett syndrome. Journal of Neurochemistry, 2014, 131, 115-127.	2.1	44
90	Cortical parvalbumin and somatostatin GABA neurons express distinct endogenous modulators of nicotinic acetylcholine receptors. Molecular Brain, 2014, 7, 75.	1.3	51
91	3q27.3 microdeletional syndrome: a recognisable clinical entity associating dysmorphic features, marfanoid habitus, intellectual disability and psychosis with mood disorder. Journal of Medical Genetics, 2014, 51, 21-27.	1.5	12

#	Article	IF	CITATIONS
92	Expression of \hat{l}^21 - and \hat{l}^22 -adrenoceptors in different subtypes of interneurons in the medial prefrontal cortex of mice. Neuroscience, 2014, 257, 149-157.	1.1	20
93	d-Serine and Serine Racemase are Localized to Neurons in the Adult Mouse and Human Forebrain. Cellular and Molecular Neurobiology, 2014, 34, 419-435.	1.7	107
94	A Cortical Circuit for Gain Control by Behavioral State. Cell, 2014, 156, 1139-1152.	13.5	827
95	Lhx6 Directly Regulates Arx and CXCR7 to Determine Cortical Interneuron Fate and Laminar Position. Neuron, 2014, 82, 350-364.	3.8	118
96	Spatiotemporal specificity in cholinergic control of neocortical function. Current Opinion in Neurobiology, 2014, 26, 149-160.	2.0	117
97	Amygdala interneuron subtypes control fear learning through disinhibition. Nature, 2014, 509, 453-458.	13.7	433
98	Cell-type specific function of GABAergic neurons in layers 2 and 3 of mouse barrel cortex. Current Opinion in Neurobiology, 2014, 26, 1-6.	2.0	17
99	The emerging role of GABAB receptors as regulators of network dynamics: fast actions from a â€~slow' receptor?. Current Opinion in Neurobiology, 2014, 26, 15-21.	2.0	52
100	Somatostatin receptor sst2 reduces Akt activity and aggravates hypoxic/ischemic death in cerebral cortical neurons. Neuropharmacology, 2014, 77, 249-256.	2.0	5
101	A blanket of inhibition: functional inferences from dense inhibitory connectivity. Current Opinion in Neurobiology, 2014, 26, 96-102.	2.0	148
102	Interneuron cell types are fit to function. Nature, 2014, 505, 318-326.	13.7	919
103	Strychnine-sensitive glycine receptors on pyramidal neurons in layers II/III of the mouse prefrontal cortex are tonically activated. Journal of Neurophysiology, 2014, 112, 1169-1178.	0.9	42
104	Optogenetic astrocyte activation modulates response selectivity of visual cortex neurons in vivo. Nature Communications, 2014, 5, 3262.	5.8	195
105	Local CRH Signaling Promotes Synaptogenesis and Circuit Integration of Adult-Born Neurons. Developmental Cell, 2014, 30, 645-659.	3.1	41
106	Regional and ageâ€related differences in GAD67 expression of parvalbumin―and calbindinâ€expressing neurons in the rhesus macaque auditory midbrain and brainstem. Journal of Comparative Neurology, 2014, 522, 4074-4084.	0.9	20
107	A Class of GABAergic Neurons in the Prefrontal Cortex Sends Long-Range Projections to the Nucleus Accumbens and Elicits Acute Avoidance Behavior. Journal of Neuroscience, 2014, 34, 11519-11525.	1.7	152
108	Localized GABAergic inhibition of dendritic Ca2+ signalling. Nature Reviews Neuroscience, 2014, 15, 567-572.	4.9	73
109	Synaptic biology of barrel cortex circuit assembly. Seminars in Cell and Developmental Biology, 2014, 35, 156-164.	2.3	19

#	Article	IF	CITATIONS
110	Behavioral state-dependent modulation of distinct interneuron subtypes and consequences for circuit function. Current Opinion in Neurobiology, 2014, 29, 118-125.	2.0	44
111	Curtailing Effect of Awakening on Visual Responses of Cortical Neurons by Cholinergic Activation of Inhibitory Circuits. Journal of Neuroscience, 2014, 34, 10122-10133.	1.7	22
112	Neural control of brain state. Current Opinion in Neurobiology, 2014, 29, 178-186.	2.0	142
113	Toward a Genetic Dissection of Cortical Circuits in the Mouse. Neuron, 2014, 83, 1284-1302.	3.8	121
114	Conditional deletion of Mecp2 in parvalbumin-expressing GABAergic cells results in the absence of critical period plasticity. Nature Communications, 2014, 5, 5036.	5.8	96
115	GABAergic interneuron to astrocyte signalling: a neglected form of cell communication in the brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130609.	1.8	50
116	Oxytocin Modulates Female Sociosexual Behavior through a Specific Class of Prefrontal Cortical Interneurons. Cell, 2014, 159, 295-305.	13.5	223
117	Development of Layer 1 Neurons in the Mouse Neocortex. Cerebral Cortex, 2014, 24, 2604-2618.	1.6	49
118	Clonal origins of neocortical interneurons. Current Opinion in Neurobiology, 2014, 26, 125-131.	2.0	9
119	Npas4 Regulates Excitatory-Inhibitory Balance within Neural Circuits through Cell-Type-Specific Gene Programs. Cell, 2014, 157, 1216-1229.	13.5	315
120	TRH regulates action potential shape in cerebral cortex pyramidal neurons. Brain Research, 2014, 1571, 1-11.	1.1	7
121	Mechanism underlying unaltered cortical inhibitory synaptic transmission in contrast with enhanced excitatory transmission in CaV2.1 knockin migraine mice. Neurobiology of Disease, 2014, 69, 225-234.	2.1	50
122	Molecular mechanisms of activity-dependent changes in dendritic morphology: role of RGK proteins. Trends in Neurosciences, 2014, 37, 399-407.	4.2	18
123	Synaptic molecular imaging in spared and deprived columns of mouse barrel cortex with array tomography. Scientific Data, 2014, 1, 140046.	2.4	11
124	Cellular and Axonal Constituents of Neocortical Molecular Layer Heterotopia. Developmental Neuroscience, 2014, 36, 477-489.	1.0	11
125	An enhanced role and expanded developmental origins for gammaâ€aminobutyric acidergic interneurons in the human cerebral cortex. Journal of Anatomy, 2015, 227, 384-393.	0.9	30
126	Building blocks of the cerebral cortex: from development to the dish. Wiley Interdisciplinary Reviews: Developmental Biology, 2015, 4, 529-544.	5.9	4
127	Cell-type specific connectivity accounts for diverse in vivo functional roles of inhibitory neurons in V1. BMC Neuroscience, 2015, 16, .	0.8	1

	CHATION	LEPUKI	
#	Article	IF	Citations
128	The Role of Inhibition in Epileptic Networks. Journal of Clinical Neurophysiology, 2015, 32, 227-234.	0.9	25
129	Differential modulation of repetitive firing and synchronous network activity in neocortical interneurons by inhibition of A-type K+ channels and Ih. Frontiers in Cellular Neuroscience, 2015, 9, 89.	1.8	22
130	Interplay of environmental signals and progenitor diversity on fate specification of cortical GABAergic neurons. Frontiers in Cellular Neuroscience, 2015, 9, 149.	1.8	25
131	Estrogen administration modulates hippocampal GABAergic subpopulations in the hippocampus of trimethyltin-treated rats. Frontiers in Cellular Neuroscience, 2015, 9, 433.	1.8	30
132	Diversity and overlap of parvalbumin and somatostatin expressing interneurons in mouse presubiculum. Frontiers in Neural Circuits, 2015, 9, 20.	1.4	78
133	Functional response properties of VIP-expressing inhibitory neurons in mouse visual and auditory cortex. Frontiers in Neural Circuits, 2015, 09, 22.	1.4	56
134	The effects of anodal-tDCS on corticospinal excitability enhancement and its after-effects: conventional vs. unihemispheric concurrent dual-site stimulation. Frontiers in Human Neuroscience, 2015, 9, 533.	1.0	38
135	Coordination of dendritic inhibition through local disinhibitory circuits. Frontiers in Synaptic Neuroscience, 2015, 7, 5.	1.3	19
136	Complementary control of sensory adaptation by two types of cortical interneurons. ELife, 2015, 4, .	2.8	165
137	A survey of human brain transcriptome diversity at the single cell level. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7285-7290.	3.3	1,194
138	Local and afferent synaptic pathways in the striatal microcircuitry. Current Opinion in Neurobiology, 2015, 33, 182-187.	2.0	100
139	What types of neocortical GABAergic neurons do really exist?. E-Neuroforum, 2015, 6, 49-56.	0.2	8
140	Rac-GTPases Regulate Microtubule Stability and Axon Growth of Cortical GABAergic Interneurons. Cerebral Cortex, 2015, 25, 2370-2382.	1.6	37
141	Conditional Loss of Arx From the Developing Dorsal Telencephalon Results in Behavioral Phenotypes Resembling Mild Human <i>ARX</i> Mutations. Cerebral Cortex, 2015, 25, 2939-2950.	1.6	37
142	Loss of MeCP2 in Parvalbumin-and Somatostatin-Expressing Neurons in Mice Leads to Distinct Rett Syndrome-like Phenotypes. Neuron, 2015, 88, 651-658.	3.8	144
143	Traumatic Brain Injury Increases Cortical Glutamate Network Activity by Compromising GABAergic Control. Cerebral Cortex, 2015, 25, 2306-2320.	1.6	161
144	A Barrel-Related Interneuron in Layer 4 of Rat Somatosensory Cortex with a High Intrabarrel Connectivity. Cerebral Cortex, 2015, 25, 713-725.	1.6	66
145	A model of order-selectivity based on dynamic changes in the balance of excitation and inhibition produced by short-term synaptic plasticity. Journal of Neurophysiology, 2015, 113, 509-523.	0.9	21

#	Article	IF	CITATIONS
146	Age-related changes in the central auditory system. Cell and Tissue Research, 2015, 361, 337-358.	1.5	118
147	The neocortical circuit: themes and variations. Nature Neuroscience, 2015, 18, 170-181.	7.1	880
148	Identification of a direct <scp>GABA</scp> ergic pallidocortical pathway in rodents. European Journal of Neuroscience, 2015, 41, 748-759.	1.2	66
149	Cortical fast-spiking parvalbumin interneurons enwrapped in the perineuronal net express the metallopeptidases Adamts8, Adamts15 and Neprilysin. Molecular Psychiatry, 2015, 20, 154-161.	4.1	87
150	Prefrontal Cortical Gamma-Aminobutyric Acid Transmission and Cognitive Function: Drawing Links to Schizophrenia from Preclinical Research. Biological Psychiatry, 2015, 77, 929-939.	0.7	56
151	How Does Anodal Transcranial Direct Current Stimulation of the Pain Neuromatrix Affect Brain Excitability and Pain Perception? A Randomised, Double-Blind, Sham-Control Study. PLoS ONE, 2015, 10, e0118340.	1.1	68
152	Epigenomic Signatures of Neuronal Diversity in the Mammalian Brain. Neuron, 2015, 86, 1369-1384.	3.8	640
153	Long-lasting changes in neural networks to compensate for altered nicotinic input. Biochemical Pharmacology, 2015, 97, 418-424.	2.0	10
154	Cell-Type-Specific Activity in Prefrontal Cortex during Goal-Directed Behavior. Neuron, 2015, 87, 437-450.	3.8	298
155	Vision Loss Shifts the Balance of Feedforward and Intracortical Circuits in Opposite Directions in Mouse Primary Auditory and Visual Cortices. Journal of Neuroscience, 2015, 35, 8790-8801.	1.7	75
156	Neurogliaform cells in cortical circuits. Nature Reviews Neuroscience, 2015, 16, 458-468.	4.9	119
157	Dissecting the phenotypes of Dravet syndrome by gene deletion. Brain, 2015, 138, 2219-2233.	3.7	106
158	Subtype-specific plasticity of inhibitory circuits in motor cortex during motor learning. Nature Neuroscience, 2015, 18, 1109-1115.	7.1	260
159	The role of nicotinic acetylcholine receptors in autosomal dominant nocturnal frontal lobe epilepsy. Frontiers in Physiology, 2015, 6, 22.	1.3	86
160	Cortical GABAergic Neurons. , 2015, , 69-80.		1
161	An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity. Nature Neuroscience, 2015, 18, 892-902.	7.1	182
162	HCN channels are a novel therapeutic target for cognitive dysfunction in Neurofibromatosis type 1. Molecular Psychiatry, 2015, 20, 1311-1321.	4.1	66
163	Interneuron epigenomes during the critical period of cortical plasticity: Implications for schizophrenia. Neurobiology of Learning and Memory, 2015, 124, 104-110.	1.0	36

#	Article	IF	CITATIONS
164	Duration of culture and sonic hedgehog signaling differentially specify PV versus SST cortical interneuron fates from embryonic stem cells. Development (Cambridge), 2015, 142, 1267-1278.	1.2	38
165	Compartmental organization of synaptic inputs to parvalbumin-expressing GABAergic neurons in mouse primary somatosensory cortex. Anatomical Science International, 2015, 90, 7-21.	0.5	10
166	On the functions, mechanisms, and malfunctions of intracortical contextual modulation. Neuroscience and Biobehavioral Reviews, 2015, 52, 1-20.	2.9	90
167	Cortical microarchitecture changes in genetic epilepsy. Neurology, 2015, 84, 1308-1316.	1.5	16
168	The Mediodorsal Thalamus Drives Feedforward Inhibition in the Anterior Cingulate Cortex via Parvalbumin Interneurons. Journal of Neuroscience, 2015, 35, 5743-5753.	1.7	178
169	Increased anxietyâ€like behavior and selective learning impairments are concomitant to loss of hippocampal interneurons in the presymptomatic SOD1(G93A) ALS mouse model. Journal of Comparative Neurology, 2015, 523, 1622-1638.	0.9	30
170	Converging models of schizophrenia – Network alterations of prefrontal cortex underlying cognitive impairments. Progress in Neurobiology, 2015, 134, 178-201.	2.8	71
171	Synaptic Microcircuits in the Barrel Cortex. , 2015, , 59-108.		7
172	Postnatal Phencyclidine (PCP) as a Neurodevelopmental Animal Model of Schizophrenia Pathophysiology and Symptomatology: A Review. Current Topics in Behavioral Neurosciences, 2015, 29, 403-428.	0.8	33
173	Persistent Interneuronopathy in the Prefrontal Cortex of Young Adult Offspring Exposed to Ethanol In Utero. Journal of Neuroscience, 2015, 35, 10977-10988.	1.7	74
174	Synaptic Basis for Differential Orientation Selectivity between Complex and Simple Cells in Mouse Visual Cortex. Journal of Neuroscience, 2015, 35, 11081-11093.	1.7	14
175	Distribution of serotonin receptor 5-HT6 mRNA in rat neuronal subpopulations: A double in situ hybridization study. Neuroscience, 2015, 310, 442-454.	1.1	58
176	Reconstruction and Simulation of Neocortical Microcircuitry. Cell, 2015, 163, 456-492.	13.5	1,258
177	Specific Early and Late Oddball-Evoked Responses in Excitatory and Inhibitory Neurons of Mouse Auditory Cortex. Journal of Neuroscience, 2015, 35, 12560-12573.	1.7	125
178	Hypocretin (Orexin) Regulates Glutamate Input to Fast-Spiking Interneurons in Layer V of the Fr2 Region of the Murine Prefrontal Cortex. Cerebral Cortex, 2015, 25, 1330-1347.	1.6	63
179	Generating Neuronal Diversity in the Mammalian Cerebral Cortex. Annual Review of Cell and Developmental Biology, 2015, 31, 699-720.	4.0	285
180	Alteration by p11 of mGluR5 localization regulates depression-like behaviors. Molecular Psychiatry, 2015, 20, 1546-1556.	4.1	63
181	Cortical Interneuron Subtypes Vary in Their Axonal Action Potential Properties. Journal of Neuroscience, 2015, 35, 15555-15567.	1.7	43

~		<u> </u>	
(``		REDC	D T
\sim	$\Pi \cap \Pi$	ILLI U	

#	Article	IF	CITATIONS
182	Characterizing VIP Neurons in the Barrel Cortex of VIPcre/tdTomato Mice Reveals Layer-Specific Differences. Cerebral Cortex, 2015, 25, 4854-4868.	1.6	166
183	miRNAs are Essential for the Survival and Maturation of Cortical Interneurons. Cerebral Cortex, 2015, 25, 1842-1857.	1.6	23
184	GABA receptors in brain development, function, and injury. Metabolic Brain Disease, 2015, 30, 367-379.	1.4	215
185	Tangential Migration in the Telencephalon. , 2015, , 45-58.		4
186	Correlated Gene Expression and Target Specificity Demonstrate Excitatory Projection Neuron Diversity. Cerebral Cortex, 2015, 25, 433-449.	1.6	125
187	Tasks for inhibitory interneurons in intact brain circuits. Neuropharmacology, 2015, 88, 10-23.	2.0	176
188	Local corticotropin releasing hormone (CRH) signals to its receptor CRHR1 during postnatal development of the mouse olfactory bulb. Brain Structure and Function, 2016, 221, 1-20.	1.2	31
189	Novel Striatal GABAergic Interneuron Populations Labeled in the 5HT3a ^{EGFP} Mouse. Cerebral Cortex, 2016, 26, 96-105.	1.6	48
190	Dravet Syndrome. , 2016, , 85-111.		0
191	Neuronal Cell Types in the Neocortex. , 2016, , 183-202.		2
191 192	Neuronal Cell Types in the Neocortex. , 2016, , 183-202. A large fraction of neocortical myelin ensheathes axons of local inhibitory neurons. ELife, 2016, 5, .	2.8	2 226
191 192 193	Neuronal Cell Types in the Neocortex. , 2016, , 183-202. A large fraction of neocortical myelin ensheathes axons of local inhibitory neurons. ELife, 2016, 5, . The Current Status of Somatostatin-Interneurons in Inhibitory Control of Brain Function and Plasticity. Neural Plasticity, 2016, 2016, 1-20.	2.8 1.0	2 226 53
191 192 193 194	Neuronal Cell Types in the Neocortex. , 2016, , 183-202. A large fraction of neocortical myelin ensheathes axons of local inhibitory neurons. ELife, 2016, 5, . The Current Status of Somatostatin-Interneurons in Inhibitory Control of Brain Function and Plasticity. Neural Plasticity, 2016, 2016, 1-20. GABAergic Interneurons of the Striatum. Handbook of Behavioral Neuroscience, 2016, 24, 157-178.	2.8 1.0 0.7	2 226 53 19
191 192 193 194 195	Neuronal Cell Types in the Neocortex. , 2016, , 183-202. A large fraction of neocortical myelin ensheathes axons of local inhibitory neurons. ELife, 2016, 5, . The Current Status of Somatostatin-Interneurons in Inhibitory Control of Brain Function and Plasticity. Neural Plasticity, 2016, 2016, 1-20. GABAergic Interneurons of the Striatum. Handbook of Behavioral Neuroscience, 2016, 24, 157-178. Differential Inputs to the Perisomatic and Distal-Dendritic Compartments of VIP-Positive Neurons in Layer 2/3 of the Mouse Barrel Cortex. Frontiers in Neuroanatomy, 2016, 10, 124.	2.8 1.0 0.7 0.9	2 226 53 19 29
 191 192 193 194 195 196 	Neuronal Cell Types in the Neocortex. , 2016, , 183-202. A large fraction of neocortical myelin ensheathes axons of local inhibitory neurons. ELife, 2016, 5, . The Current Status of Somatostatin-Interneurons in Inhibitory Control of Brain Function and Plasticity. Neural Plasticity, 2016, 2016, 1-20. GABAergic Interneurons of the Striatum. Handbook of Behavioral Neuroscience, 2016, 24, 157-178. Differential Inputs to the Perisomatic and Distal-Dendritic Compartments of VIP-Positive Neurons in Layer 2/3 of the Mouse Barrel Cortex. Frontiers in Neuroanatomy, 2016, 10, 124. Activation of Pyramidal Neurons in Mouse Medial Prefrontal Cortex Enhances Food-Seeking Behavioral Neuroscience, 2016, 10, 63.	2.8 1.0 0.7 0.9 1.0	2 226 53 19 29 38
 191 192 193 194 195 196 197 	Neuronal Cell Types in the Neocortex. , 2016, , 183-202. A large fraction of neocortical myelin ensheathes axons of local inhibitory neurons. ELife, 2016, 5, . The Current Status of Somatostatin-Interneurons in Inhibitory Control of Brain Function and Plasticity. Neural Plasticity, 2016, 2016, 1-20. GABAergic Interneurons of the Striatum. Handbook of Behavioral Neuroscience, 2016, 24, 157-178. Differential Inputs to the Perisomatic and Distal-Dendritic Compartments of VIP-Positive Neurons in Layer 2/3 of the Mouse Barrel Cortex. Frontiers in Neuroanatomy, 2016, 10, 124. Activation of Pyramidal Neurons in Mouse Medial Prefrontal Cortex Enhances Food-Seeking Behavior While Reducing Impulsivity in the Absence of an Effect on Food Intake. Frontiers in Behavioral Neuroscience, 2016, 10, 63. Lack of Cdkl5 Disrupts the Organization of Excitatory and Inhibitory Synapses and Parvalbumin Interneurons in the Primary Visual Cortex. Frontiers in Cellular Neuroscience, 2016, 10, 261.	2.8 1.0 0.7 0.9 1.0	2 226 53 19 29 38 59
 191 192 193 194 195 195 196 197 198 	Neuronal Cell Types in the Neocortex. , 2016, , 183-202. A large fraction of neocortical myelin ensheathes axons of local inhibitory neurons. ELife, 2016, 5, . The Current Status of Somatostatin-Interneurons in Inhibitory Control of Brain Function and Plasticity. Neural Plasticity, 2016, 2016, 1-20. GABAergic Interneurons of the Striatum. Handbook of Behavioral Neuroscience, 2016, 24, 157-178. Differential Inputs to the Perisomatic and Distal-Dendritic Compartments of VIP-Positive Neurons in Layer 2/3 of the Mouse Barrel Cortex. Frontiers in Neuroanatomy, 2016, 10, 124. Activation of Pyramidal Neurons in Mouse Medial Prefrontal Cortex Enhances Food-Seeking Behavior While Reducing Impulsivity in the Absence of an Effect on Food Intake. Frontiers in Behavioral Neuroscience, 2016, 10, 63. Lack of CdkIS Disrupts the Organization of Excitatory and Inhibitory Synapses and Parvalbumin Interneurons in the Primary Visual Cortex. Frontiers in Cellular Neuroscience, 2016, 10, 261. The Diversity of Cortical Inhibitory Synapses. Frontiers in Neural Circuits, 2016, 10, 27.	2.8 1.0 0.7 0.9 1.0 1.8 1.8	2 226 53 19 29 38 38 59 115

#	Article	IF	CITATIONS
200	Somatostatin and Somatostatin-Containing Neurons in Shaping Neuronal Activity and Plasticity. Frontiers in Neural Circuits, 2016, 10, 48.	1.4	93
201	Distinct Roles of SOM and VIP Interneurons during Cortical Up States. Frontiers in Neural Circuits, 2016, 10, 52.	1.4	33
202	Somatostatin-Expressing Inhibitory Interneurons in Cortical Circuits. Frontiers in Neural Circuits, 2016, 10, 76.	1.4	150
203	Cell-Type and State-Dependent Synchronization among Rodent Somatosensory, Visual, Perirhinal Cortex, and Hippocampus CA1. Frontiers in Systems Neuroscience, 2015, 9, 187.	1.2	47
204	Microcircuits of the Neocortex. , 2016, , 85-95.		2
205	Unihemispheric concurrent dualâ€site cathodal transcranial direct current stimulation: the effects on corticospinal excitability. European Journal of Neuroscience, 2016, 43, 1161-1172.	1.2	12
206	Inferring cortical function in the mouse visual system through large-scale systems neuroscience. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7337-7344.	3.3	82
207	Postnatal development of the electrophysiological properties of somatostatin interneurons in the anterior cingulate cortex of mice. Scientific Reports, 2016, 6, 28137.	1.6	18
208	Neuronal activity controls the development of interneurons in the somatosensory cortex. Frontiers in Biology, 2016, 11, 459-470.	0.7	12
209	Parvalbumin- and vasoactive intestinal polypeptide-expressing neocortical interneurons impose differential inhibition on Martinotti cells. Nature Communications, 2016, 7, 13664.	5.8	65
210	Molecular control of two novel migratory paths for CGE-derived interneurons in the developing mouse brain. Development (Cambridge), 2016, 143, 1753-65.	1.2	43
211	Propagation of spontaneous slow-wave activity across columns and layers of the adult rat barrel cortex in vivo. Brain Structure and Function, 2016, 221, 4429-4449.	1.2	30
212	Attenuation of oxidative and nitrosative stress in cortical area associates with antidepressant-like effects of tropisetron in male mice following social isolation stress. Brain Research Bulletin, 2016, 124, 150-163.	1.4	45
213	Inhibitory interneurons in visual cortical plasticity. Cellular and Molecular Life Sciences, 2016, 73, 3677-3691.	2.4	79
214	Extracellular Molecular Markers and Soma Size of Inhibitory Neurons: Evidence for Four Subtypes of GABAergic Cells in the Inferior Colliculus. Journal of Neuroscience, 2016, 36, 3988-3999.	1.7	50
215	Talk Louder So I Can See You. Neuron, 2016, 89, 887-888.	3.8	2
216	Postnatal development of GABAergic interneurons in the neocortical subplate of mice. Neuroscience, 2016, 322, 78-93.	1.1	16
217	Inhibitory stabilization and visual coding in cortical circuits with multiple interneuron subtypes. Journal of Neurophysiology, 2016, 115, 1399-1409.	0.9	129

#	Article	IF	CITATIONS
218	Diverse Ensembles of Inhibitory Interneurons. Neuron, 2016, 90, 4-6.	3.8	11
219	Substantial DNA methylation differences between two major neuronal subtypes in human brain. Nucleic Acids Research, 2016, 44, 2593-2612.	6.5	97
220	Immediate manifestation of acoustic trauma in the auditory cortex is layer specific and cell type dependent. Journal of Neurophysiology, 2016, 115, 1860-1874.	0.9	22
221	Functional Differentiation of Cholecystokinin-Containing Interneurons Destined for the Cerebral Cortex. Cerebral Cortex, 2017, 27, bhw094.	1.6	19
222	Cooperative Subnetworks of Molecularly Similar Interneurons in Mouse Neocortex. Neuron, 2016, 90, 86-100.	3.8	173
223	In vivo imaging of cortical interneurons migrating in the intermediate/subventricular zones. Neuroscience Research, 2016, 110, 68-71.	1.0	6
224	Strategies and Tools for Combinatorial Targeting of GABAergic Neurons in Mouse Cerebral Cortex. Neuron, 2016, 91, 1228-1243.	3.8	260
225	Cell-Specific Targeting of Genetically Encoded Tools for Neuroscience. Annual Review of Genetics, 2016, 50, 571-594.	3.2	49
226	Caudal Ganglionic Eminence Precursor Transplants Disperse and Integrate as Lineage-Specific Interneurons but Do Not Induce Cortical Plasticity. Cell Reports, 2016, 16, 1391-1404.	2.9	31
227	Selective Maturation of Temporal Dynamics of Intracortical Excitatory Transmission at the Critical Period Onset. Cell Reports, 2016, 16, 1677-1689.	2.9	28
228	Potential roles of cholinergic modulation in the neural coding of location and movement speed. Journal of Physiology (Paris), 2016, 110, 52-64.	2.1	14
229	Neuropeptides shaping the central nervous system development: Spatiotemporal actions of VIP and PACAP through complementary signaling pathways. Journal of Neuroscience Research, 2016, 94, 1472-1487.	1.3	15
230	Tyrosine hydroxylase-producing neurons in the human cerebral cortex do not colocalize with calcium-binding proteins or the serotonin 3A receptor. Journal of Chemical Neuroanatomy, 2016, 78, 1-9.	1.0	2
231	Major amyloid-β–degrading enzymes, endothelin-converting enzyme-2 and neprilysin, are expressed by distinct populations of GABAergic interneurons in hippocampus and neocortex. Neurobiology of Aging, 2016, 48, 83-92.	1.5	34
232	Differential regulation of spontaneous and evoked inhibitory synaptic transmission in somatosensory cortex by retinoic acid. Synapse, 2016, 70, 445-452.	0.6	12
233	Psychedelics Recruit Multiple Cellular Types and Produce Complex Transcriptional Responses Within the Brain. EBioMedicine, 2016, 11, 262-277.	2.7	53
234	Distinct Roles of Parvalbumin- and Somatostatin-Expressing Interneurons in Working Memory. Neuron, 2016, 92, 902-915.	3.8	155
235	The antiepileptic and ictogenic effects of optogenetic neurostimulation of PV-expressing interneurons. Journal of Neurophysiology, 2016, 116, 1694-1704.	0.9	51

#	Article	IF	CITATIONS
236	Depth-specific optogenetic control in vivo with a scalable, high-density μLED neural probe. Scientific Reports, 2016, 6, 28381.	1.6	118
237	A viral strategy for targeting and manipulating interneurons across vertebrate species. Nature Neuroscience, 2016, 19, 1743-1749.	7.1	396
238	Effects of Hypocretin/Orexin and Major Transmitters of Arousal on Fast Spiking Neurons in Mouse Cortical Layer 6B. Cerebral Cortex, 2016, 26, 3553-3562.	1.6	16
239	Distinct Functional Groups Emerge from the Intrinsic Properties of Molecularly Identified Entorhinal Interneurons and Principal Cells. Cerebral Cortex, 2017, 27, bhw143.	1.6	24
240	VIP+ interneurons control neocortical activity across brain states. Journal of Neurophysiology, 2016, 115, 3008-3017.	0.9	84
241	Involvement of cortical fast-spiking parvalbumin-positive basket cells in epilepsy. Progress in Brain Research, 2016, 226, 81-126.	0.9	74
242	Immunocytochemical heterogeneity of somatostatinâ€expressing GABAergic interneurons in layers II and III of the mouse cingulate cortex: A combined immunofluorescence/designâ€based stereologic study. Journal of Comparative Neurology, 2016, 524, 2281-2299.	0.9	15
243	Synaptic interactions and inhibitory regulation in auditory cortex. Biological Psychology, 2016, 116, 4-9.	1.1	10
244	Cell migration in the developing rodent olfactory system. Cellular and Molecular Life Sciences, 2016, 73, 2467-2490.	2.4	24
245	BCL11B/CTIP2 is highly expressed in GABAergic interneurons of the mouse somatosensory cortex. Journal of Chemical Neuroanatomy, 2016, 71, 1-5.	1.0	36
246	Cross-Modality Sharpening of Visual Cortical Processing through Layer-1-Mediated Inhibition and Disinhibition. Neuron, 2016, 89, 1031-1045.	3.8	239
247	Evidence That the Laminar Fate of LGE/CGE-Derived Neocortical Interneurons Is Dependent on Their Progenitor Domains. Journal of Neuroscience, 2016, 36, 2044-2056.	1.7	19
248	GABAergic interneurons form transient layer-specific circuits in early postnatal neocortex. Nature Communications, 2016, 7, 10584.	5.8	66
249	Closed-loop feedback control and bifurcation analysis of epileptiform activity via optogenetic stimulation in a mathematical model of human cortex. Physical Review E, 2016, 93, 012416.	0.8	14
250	Early Somatostatin Interneuron Connectivity Mediates the Maturation of Deep Layer Cortical Circuits. Neuron, 2016, 89, 521-535.	3.8	154
251	NPY+-, but not PV+-GABAergic neurons mediated long-range inhibition from infra- to prelimbic cortex. Translational Psychiatry, 2016, 6, e736-e736.	2.4	39
252	Sensory experience regulates cortical inhibition by inducing IGF1 in VIP neurons. Nature, 2016, 531, 371-375.	13.7	146
253	Unaltered Network Activity and Interneuronal Firing During Spontaneous Cortical Dynamics In Vivo in a Mouse Model of Severe Myoclonic Epilepsy of Infancy. Cerebral Cortex, 2016, 26, 1778-1794.	1.6	62

ARTICLE IF CITATIONS # Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nature Neuroscience, 254 7.1 1,522 2016, 19, 335-346. Neuronal factors determining high intelligence. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150180. 1.8 Early rescue of interneuron disease trajectory in developmental epilepsies. Current Opinion in 256 2.0 4 Neurobiology, 2016, 36, 82-88. Transgenic labeling of parvalbumin-expressing neurons with tdTomato. Neuroscience, 2016, 321, 236-245. Cotransmission of acetylcholine and GABA. Neuropharmacology, 2016, 100, 40-46. 258 2.0 81 Two cellular hypotheses explaining the initiation of ketamine's antidepressant actions: Direct inhibition and disinhibition. Neuropharmacology, 2016, 100, 17-26. Thalamocortical Innervation Pattern in Mouse Auditory and Visual Cortex: Laminar and Cell-Type 260 1.6 141 Specificity. Cerebral Cortex, 2016, 26, 2612-2625. Fate determination of cerebral cortical GABAergic interneurons and their derivation from stem cells. 261 1.1 Brain Research, 2017, 1655, 277-282. Mechanisms of memory storage in a model perirhinal network. Brain Structure and Function, 2017, 262 1.2 9 222, 183-200. Micro-connectomics: probing the organization of neuronal networks at the cellular scale. Nature Reviews Neuroscience, 2017, 18, 131-146. La Deletion from Mouse Brain Alters Pre-tRNA Metabolism and Accumulation of Pre-5.8S rRNA, with 264 1.1 8 Neuron Death and Reactive Astrocytosis. Molecular and Cellular Biology, 2017, 37, . Cellular and Circuitry Bases of Autism: Lessons Learned from the Temporospatial Manipulation of 1.5 Autism Genes in the Brain. Neuroscience Bulletin, 2017, 33, 205-218. Quantification of neuronal density across cortical depth using automated 3D analysis of confocal 266 1.2 25 image stacks. Brain Structure and Function, 2017, 222, 3333-3353. A Back Door to Cortical Development. Cell Stem Cell, 2017, 20, 295-296. 5.2 Reduced local input to fastâ€spiking interneurons in the somatosensory cortex in the 268 2.6 6 <scp>CABA_A</scp> 1³2 R43Q mouse model of absence epilepsy. Epilepsia, 2017, 58, 597-607. A role for GABAergic interneuron diversity in circuit development and plasticity of the neonatal 50 cerebral cortex. Current Opinion in Neuróbiology, 2017, 43, 149-155. Age-dependent decrease of GAD65/67 mRNAs but normal densities of GABAergic interneurons in the 270 1.0 24 brain regions of Shank3 -overexpressing manic mouse model. Neuroscience Letters, 2017, 649, 48-54. Global Representations of Goal-Directed Behavior in Distinct Cell Types of Mouse Neocortex. Neuron, 271 3.8 2017, 94, 891-907.e6.

	CITATION	I KLPORT	
#	Article	IF	CITATIONS
272	Visual processing mode switching regulated by VIP cells. Scientific Reports, 2017, 7, 1843.	1.6	15
273	ARX polyalanine expansion mutations lead to migration impediment in the rostral cortex coupled with a developmental deficit of calbindin-positive cortical GABAergic interneurons. Neuroscience, 2017, 357, 220-231.	1.1	16
274	Molecular mechanisms of experienceâ€dependent maturation in cortical <scp>GABA</scp> ergic inhibition. Journal of Neurochemistry, 2017, 142, 649-661.	2.1	23
275	Forty Years of Sodium Channels: Structure, Function, Pharmacology, and Epilepsy. Neurochemical Research, 2017, 42, 2495-2504.	1.6	125
276	Somatostatin-Positive Gamma-Aminobutyric Acid Interneuron Deficits in Depression: Cortical Microcircuit and Therapeutic Perspectives. Biological Psychiatry, 2017, 82, 549-559.	0.7	238
277	Atypical PKC and Notch Inhibition Differentially Modulate Cortical Interneuron Subclass Fate from Embryonic Stem Cells. Stem Cell Reports, 2017, 8, 1135-1143.	2.3	6
278	A robot for high yield electrophysiology and morphology of single neurons in vivo. Nature Communications, 2017, 8, 15604.	5.8	19
279	Single-cell RNA sequencing identifies distinct mouse medial ganglionic eminence cell types. Scientific Reports, 2017, 7, 45656.	1.6	67
280	Epileptogenic high-frequency oscillations skip the motor area in children with multilobar drug-resistant epilepsy. Clinical Neurophysiology, 2017, 128, 1197-1205.	0.7	29
281	Searching for Cross-Diagnostic Convergence: Neural Mechanisms Governing Excitation and Inhibition Balance in Schizophrenia and Autism Spectrum Disorders. Biological Psychiatry, 2017, 81, 848-861.	0.7	217
282	The related neuronal endosomal proteins NEEP21 (Nsg1) and P19 (Nsg2) have divergent expression profiles in vivo. Journal of Comparative Neurology, 2017, 525, 1861-1878.	0.9	14
283	Transplantation of GABAergic interneurons for cell-based therapy. Progress in Brain Research, 2017, 231, 57-85.	0.9	17
284	Trajectory of Parvalbumin Cell Impairment and Loss of Cortical Inhibition in Traumatic Brain Injury. Cerebral Cortex, 2017, 27, 5509-5524.	1.6	64
285	Neuronal adaptation in the somatosensory system of rodents. Neuroscience, 2017, 343, 66-76.	1.1	25
286	Gene-environment interactions in cortical interneuron development and dysfunction: A review of preclinical studies. NeuroToxicology, 2017, 58, 120-129.	1.4	13
287	Unique Maturation Trajectories of Basket and Chandelier Cells in the Neocortex. Journal of Neuroscience, 2017, 37, 10255-10257.	1.7	0
288	Cortical Interneurons Differentially Shape Frequency Tuning following Adaptation. Cell Reports, 2017, 21, 878-890.	2.9	89
289	Cortical interneuron development: a tale of time and space. Development (Cambridge), 2017, 144, 3867-3878.	1.2	166

#	Article	IF	CITATIONS
290	Brain-wide Maps Reveal Stereotyped Cell-Type-Based Cortical Architecture and Subcortical Sexual Dimorphism. Cell, 2017, 171, 456-469.e22.	13.5	301
291	Parvalbumin-expressing interneurons can act solo while somatostatin-expressing interneurons act in chorus in most cases on cortical pyramidal cells. Scientific Reports, 2017, 7, 12764.	1.6	30
292	Hippocampal GABAergic Inhibitory Interneurons. Physiological Reviews, 2017, 97, 1619-1747.	13.1	601
293	Parvalbumin and Somatostatin Interneurons Control Different Space-Coding Networks in the Medial Entorhinal Cortex. Cell, 2017, 171, 507-521.e17.	13.5	100
294	Cortical inhibitory interneurons control sensory processing. Current Opinion in Neurobiology, 2017, 46, 200-207.	2.0	98
295	Serotonin Decreases the Gain of Visual Responses in Awake Macaque V1. Journal of Neuroscience, 2017, 37, 11390-11405.	1.7	47
296	Disrupted cholinergic modulation can underlie abnormal gamma rhythms in schizophrenia and auditory hallucination. Journal of Computational Neuroscience, 2017, 43, 173-187.	0.6	5
297	Heterotopic Transplantations Reveal Environmental Influences on Interneuron Diversity and Maturation. Cell Reports, 2017, 21, 721-731.	2.9	25
298	Optogenetic Modulation of a Minor Fraction of Parvalbumin-Positive Interneurons Specifically Affects Spatiotemporal Dynamics of Spontaneous and Sensory-Evoked Activity in Mouse Somatosensory Cortex in Vivo. Cerebral Cortex, 2017, 27, 5784-5803.	1.6	37
299	Coevolution in the timing of GABAergic and pyramidal neuron maturation in primates. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171169.	1.2	18
300	Radial glia in the ventral telencephalon. FEBS Letters, 2017, 591, 3942-3959.	1.3	48
301	Ephrin-A2 regulates excitatory neuron differentiation and interneuron migration in the developing neocortex. Scientific Reports, 2017, 7, 11813.	1.6	9
302	Postnatal development of GABAergic interneurons and perineuronal nets in mouse temporal cortex subregions. International Journal of Developmental Neuroscience, 2017, 63, 27-37.	0.7	10
303	Precise inhibitory microcircuit assembly of developmentally related neocortical interneurons in clusters. Nature Communications, 2017, 8, 16091.	5.8	26
304	Auditory cortex interneuron development requires cadherins operating hair-cell mechanoelectrical transduction. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7765-7774.	3.3	35
305	Neuronal cell-type classification: challenges, opportunities and the path forward. Nature Reviews Neuroscience, 2017, 18, 530-546.	4.9	664
306	Interneuronopathies and their role in early life epilepsies and neurodevelopmental disorders. Epilepsia Open, 2017, 2, 284-306.	1.3	62
307	Developmental Dysfunction of VIP Interneurons Impairs Cortical Circuits. Neuron, 2017, 95, 884-895.e9.	3.8	123

#	Article	IF	CITATIONS
308	Characterization of GABAergic Marker Expression in the Chronic Unpredictable Stress Model of Depression. Chronic Stress, 2017, 1, 247054701772045.	1.7	81
309	Dissecting Cell-Type Composition and Activity-Dependent Transcriptional State in Mammalian Brains by Massively Parallel Single-Nucleus RNA-Seq. Molecular Cell, 2017, 68, 1006-1015.e7.	4.5	143
310	Default Patterning Produces Pan-cortical Glutamatergic and CGE/LGE-like GABAergic Neurons from Human Pluripotent Stem Cells. Stem Cell Reports, 2017, 9, 1463-1476.	2.3	14
311	A small molecule activator of Na _v 1.1 channels increases fastâ€spiking interneuron excitability and GABAergic transmission <i>inÂvitro</i> and has antiâ€convulsive effects <i>inÂvivo</i> . European Journal of Neuroscience, 2017, 46, 1887-1896.	1.2	22
312	Distinct cortical and sub-cortical neurogenic domains for GABAergic interneuron precursor transcription factors NKX2.1, OLIG2 and COUP-TFII in early fetal human telencephalon. Brain Structure and Function, 2017, 222, 2309-2328.	1.2	37
313	Antagonism of the 5-HT 6 receptor – Preclinical rationale for the treatment of Alzheimer's disease. Neuropharmacology, 2017, 125, 50-63.	2.0	60
314	Modeling the neural substrates of learning through conditioning: A two-phased model. IBM Journal of Research and Development, 2017, 61, 9:1-9:11.	3.2	0
315	ErbB4 signaling in the prelimbic cortex regulates fear expression. Translational Psychiatry, 2017, 7, e1168.	2.4	32
316	Network-Level Control of Frequency Tuning in Auditory Cortex. Neuron, 2017, 95, 412-423.e4.	3.8	180
317	Somatostatin Neurons in the Basal Forebrain Promote High-Calorie Food Intake. Cell Reports, 2017, 20, 112-123.	2.9	47
318	Chronic nicotine differentially affects murine transcriptome profiling in isolated cortical interneurons and pyramidal neurons. BMC Genomics, 2017, 18, 194.	1.2	7
319	Parallel processing by cortical inhibition enables context-dependent behavior. Nature Neuroscience, 2017, 20, 62-71.	7.1	307
320	α4β2 â^— nicotinic receptors stimulate GABA release onto fast-spiking cells in layer V of mouse prefrontal (Fr2) cortex. Neuroscience, 2017, 340, 48-61.	1.1	20
321	Disinhibition of somatostatin-positive GABAergic interneurons results in an anxiolytic and antidepressant-like brain state. Molecular Psychiatry, 2017, 22, 920-930.	4.1	153
322	Anatomy of the Cerebral Cortex. , 2017, , 3-36.		0
323	Functional dissection of inhibitory microcircuits in the visual cortex. Neuroscience Research, 2017, 116, 70-76.	1.0	7
324	Spatial Embryonic Origin Delineates GABAergic Hub Neurons Driving Network Dynamics in the Developing Entorhinal Cortex. Cerebral Cortex, 2017, 27, 4649-4661.	1.6	26
325	Distinct Inhibitory Circuits Orchestrate Cortical beta and gamma Band Oscillations. Neuron, 2017, 96, 1403-1418.e6.	3.8	256

ARTICLE IF CITATIONS # Progress and challenges for understanding the function of cortical microcircuits in auditory 326 5.8 32 processing. Nature Communications, 2017, 8, 2165. Sculpting Cerebral Cortex with Serotonin in Rodent and Primate., 2017, , . 327 328 The Cerebral Cortex., 2017, , 263-288. 7 DNA Methylation Profiling of Human Prefrontal Cortex Neurons in Heroin Users Shows Significant Difference between Genomic Contexts of Hyper- and Hypomethylation and a Younger Epigenetic Age. Genes, 2017, 8, 152. A Laminar Organization for Selective Cortico-Cortical Communication. Frontiers in Neuroanatomy, 330 0.9 96 2017, 11, 71. Cornu Ammonis Regionsâ€"Antecedents of Cortical Layers?. Frontiers in Neuroanatomy, 2017, 11, 83. HCN Channel Modulation of Synaptic Integration in GABAergic Interneurons in Malformed Rat 332 1.8 17 Neocortex. Frontiers in Cellular Neuroscience, 2017, 11, 109. NCAM Regulates Inhibition and Excitability in Layer 2/3 Pyramidal Cells of Anterior Cingulate Cortex. 333 1.4 Frontiers in Neural Circuits, 2017, 11, 19. Plasticity during Sleep Is Linked to Specific Regulation of Cortical Circuit Activity. Frontiers in Neural 334 1.4 57 Circuits, 2017, 11, 65. Modulation of Hippocampal Circuits by Muscarinic and Nicotinic Receptors. Frontiers in Neural 1.4 Circuits, 2017, 11, 102. A Computational Analysis of the Function of Three Inhibitory Cell Types in Contextual Visual 336 31 1.2 Processing. Frontiers in Computational Neuroscience, 2017, 11, 28. Rostro-Caudal and Caudo-Rostral Migrations in the Telencephalon: Going Forward or Backward?. 337 1.4 Frontiers in Neuroscience, 2017, 11, 692. Architecture of the Entorhinal Cortex A Review of Entorhinal Anatomy in Rodents with Some 338 1.2 250 Comparative Notes. Frontiers in Systems Neuroscience, 2017, 11, 46. Serotonin enhances excitability and gamma frequency temporal integration in mouse prefrontal 2.8 39 fast-spiking interneurons. ELife, 2017, 6, . Paradoxical response reversal of top-down modulation in cortical circuits with three interneuron 340 2.8 47 types. ELife, 2017, 6, . Information Integration from Distributed Threshold-Based Interactions. Complexity, 2017, 2017, 1-14. 341 Chrna2-Martinotti Cells Synchronize Layer 5 Type A Pyramidal Cells via Rebound Excitation. PLoS 342 2.6 91 Biology, 2017, 15, e2001392. 343 Function and Evolution of the Reptilian Cerebral Cortex., 2017, , 491-518.

#	Article	IF	CITATIONS
344	Subcellular Targeting of VIP Boutons in Mouse Barrel Cortex is Layer-Dependent and not Restricted to Interneurons. Cerebral Cortex, 2017, 27, 5353-5368.	1.6	45
345	Individual Variability in the Functional Organization of the Cerebral Cortex Across a Lifetime: A Substrate for Evolution Across Generations. , 2017, , 343-356.		2
346	Loss of GABA _B â€mediated interhemispheric synaptic inhibition in stroke periphery. Journal of Physiology, 2018, 596, 1949-1964.	1.3	18
347	Multiple long-range inputs evoke NMDA currents in prefrontal cortex fast-spiking interneurons. Neuropsychopharmacology, 2018, 43, 2101-2108.	2.8	16
348	Developmental diversification of cortical inhibitory interneurons. Nature, 2018, 555, 457-462.	13.7	393
349	Synaptic and circuit development of the primary sensory cortex. Experimental and Molecular Medicine, 2018, 50, 1-9.	3.2	14
350	Cholinergic Behavior State-Dependent Mechanisms of Neocortical Gain Control: a Neurocomputational Study. Molecular Neurobiology, 2018, 55, 249-257.	1.9	6
351	Entorhinal fast-spiking speed cells project to the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1627-E1636.	3.3	44
352	Neurochemical Characterization of PSA-NCAM + Cells in the Human Brain and Phenotypic Quantification in Alzheimer's Disease Entorhinal Cortex. Neuroscience, 2018, 372, 289-303.	1.1	24
353	Maternal thyroid hormone is required for parvalbumin neurone development in the anterior hypothalamic area. Journal of Neuroendocrinology, 2018, 30, e12573.	1.2	27
354	Parvalbumin fastâ€spiking interneurons are selectively altered by paediatric traumatic brain injury. Journal of Physiology, 2018, 596, 1277-1293.	1.3	26
355	Input-Specific NMDAR-Dependent Potentiation of Dendritic GABAergic Inhibition. Neuron, 2018, 97, 368-377.e3.	3.8	101
356	Morphological and Functional Characterization of Non-fast-Spiking GABAergic Interneurons in Layer 4 Microcircuitry of Rat Barrel Cortex. Cerebral Cortex, 2018, 28, 1439-1457.	1.6	29
357	Optogenetic dissection of roles of specific cortical interneuron subtypes in GABAergic network synchronization. Journal of Physiology, 2018, 596, 901-919.	1.3	22
358	NLGN1 and NLGN2 in the prefrontal cortex: their role in memory consolidation and strengthening. Current Opinion in Neurobiology, 2018, 48, 122-130.	2.0	26
359	Dravet syndrome: a sodium channel interneuronopathy. Current Opinion in Physiology, 2018, 2, 42-50.	0.9	103
360	Amyloid β causes excitation/inhibition imbalance through dopamine receptor 1-dependent disruption of fast-spiking GABAergic input in anterior cingulate cortex. Scientific Reports, 2018, 8, 302.	1.6	48
361	The GABAA Receptor \hat{I}^2 Subunit Is Required for Inhibitory Transmission. Neuron, 2018, 98, 718-725.e3.	3.8	40

#	Article	IF	CITATIONS
362	Auditory Cortex Circuits. Springer Handbook of Auditory Research, 2018, , 199-233.	0.3	6
363	Solving Constraint-Satisfaction Problems with Distributed Neocortical-Like Neuronal Networks. Neural Computation, 2018, 30, 1359-1393.	1.3	12
364	Altered expression of schizophrenia-related genes in mice lacking mGlu5 receptors. European Archives of Psychiatry and Clinical Neuroscience, 2018, 268, 77-87.	1.8	6
365	Neurobiological bases of autism–epilepsy comorbidity: a focus on excitation/inhibition imbalance. European Journal of Neuroscience, 2018, 47, 534-548.	1.2	187
366	POm Thalamocortical Input Drives Layer-Specific Microcircuits in Somatosensory Cortex. Cerebral Cortex, 2018, 28, 1312-1328.	1.6	101
367	Mild Traumatic Brain Injury Induces Structural and Functional Disconnection of Local Neocortical Inhibitory Networks via Parvalbumin Interneuron Diffuse Axonal Injury. Cerebral Cortex, 2018, 28, 1625-1644.	1.6	38
368	A Schizophrenia-Related Deletion Leads to KCNQ2-Dependent Abnormal Dopaminergic Modulation of Prefrontal Cortical Interneuron Activity. Cerebral Cortex, 2018, 28, 2175-2191.	1.6	19
369	Inhibitory Interneurons and their Circuit Motifs in the Many Layers of the Barrel Cortex. Neuroscience, 2018, 368, 132-151.	1.1	104
370	Parvalbumin-Positive Interneurons Regulate Neuronal Ensembles in Visual Cortex. Cerebral Cortex, 2018, 28, 1831-1845.	1.6	65
371	Cortical Circuits of Callosal GABAergic Neurons. Cerebral Cortex, 2018, 28, 1154-1167.	1.6	54
372	Synaptic Integration in Cortical Inhibitory Neuron Dendrites. Neuroscience, 2018, 368, 115-131.	1.1	18
373	Anatomical Correlates of Local, Translaminar, and Transcolumnar Inhibition by Layer 6 GABAergic Interneurons in Somatosensory Cortex. Cerebral Cortex, 2018, 28, 2763-2774.	1.6	10
374	<i>Dlx1<i>and</i>Dlx2</i> Promote Interneuron GABA Synthesis, Synaptogenesis, and Dendritogenesis. Cerebral Cortex, 2018, 28, 3797-3815.	1.6	72
375	Blockade of 5â€ <scp>HT</scp> 3 receptors with granisetron does not affect trigeminothalamic nociceptive transmission in rats: Implication for migraine. Clinical and Experimental Pharmacology and Physiology, 2018, 45, 34-41.	0.9	7
376	Endogenous neurosteroids influence synaptic GABA _A receptors during postnatal development. Journal of Neuroendocrinology, 2018, 30, e12537.	1.2	12
377	Conserved rules in embryonic development of cortical interneurons. Seminars in Cell and Developmental Biology, 2018, 76, 86-100.	2.3	42
378	Generation of diverse cortical inhibitory interneurons. Wiley Interdisciplinary Reviews: Developmental Biology, 2018, 7, e306.	5.9	30
379	Age-dependent and region-specific alteration of parvalbumin neurons and perineuronal nets in the mouse cerebral cortex. Neurochemistry International, 2018, 112, 59-70.	1.9	53

#	Article	IF	CITATIONS
380	Selective activation of parvalbumin interneurons prevents stress-induced synapse loss and perceptual defects. Molecular Psychiatry, 2018, 23, 1614-1625.	4.1	80
381	Neuromodulation of Hippocampal Cells and Circuits. Springer Series in Computational Neuroscience, 2018, , 227-325.	0.3	3
382	Cell Type-Specific Gene Expression of Alpha 5 Subunit-Containing Gamma-Aminobutyric Acid Subtype A Receptors in Human and Mouse Frontal Cortex. Molecular Neuropsychiatry, 2018, 4, 204-215.	3.0	20
383	5-HTR2A and 5-HTR3A but not 5-HTR1A antagonism impairs the cross-modal reactivation of deprived visual cortex in adulthood. Molecular Brain, 2018, 11, 65.	1.3	14
384	Perineuronal nets decrease membrane capacitance of peritumoral fast spiking interneurons in a model of epilepsy. Nature Communications, 2018, 9, 4724.	5.8	129
385	Cell Densities in the Mouse Brain: A Systematic Review. Frontiers in Neuroanatomy, 2018, 12, 83.	0.9	260
386	Heterogeneity and Diversity of Striatal GABAergic Interneurons: Update 2018. Frontiers in Neuroanatomy, 2018, 12, 91.	0.9	145
387	Animal Models in Psychiatric Disease: A Circuit-Search Approach. Harvard Review of Psychiatry, 2018, 26, 298-303.	0.9	3
388	Progressive divisions of multipotent neural progenitors generate late-born chandelier cells in the neocortex. Nature Communications, 2018, 9, 4595.	5.8	13
389	Inhibitory control of the excitatory/inhibitory balance in psychiatric disorders. F1000Research, 2018, 7, 23.	0.8	149
390	Cell Type Specific Representation of Vibro-tactile Stimuli in the Mouse Primary Somatosensory Cortex. Frontiers in Neural Circuits, 2018, 12, 109.	1.4	12
391	Early Excitatory Activity-Dependent Maturation of Somatostatin Interneurons in Cortical Layer 2/3 of Mice. Cerebral Cortex, 2019, 29, 4107-4118.	1.6	9
392	In vivo Optogenetic Approach to Study Neuron-Oligodendroglia Interactions in Mouse Pups. Frontiers in Cellular Neuroscience, 2018, 12, 477.	1.8	14
393	Electrophysiological Profiling of Neocortical Neural Subtypes: A Semi-Supervised Method Applied to in vivo Whole-Cell Patch-Clamp Data. Frontiers in Neuroscience, 2018, 12, 823.	1.4	17
394	Loss of interneurons and disruption of perineuronal nets in the cerebral cortex following hypoxia-ischaemia in near-term fetal sheep. Scientific Reports, 2018, 8, 17686.	1.6	22
395	Ketamine and selective activation of parvalbumin interneurons inhibit stress-induced dendritic spine elimination. Translational Psychiatry, 2018, 8, 272.	2.4	60
396	Lateral inhibition by Martinotti interneurons is facilitated by cholinergic inputs in human and mouse neocortex. Nature Communications, 2018, 9, 4101.	5.8	75
397	Inhibitory Interneurons Regulate Temporal Precision and Correlations in Cortical Circuits. Trends in Neurosciences, 2018, 41, 689-700.	4.2	172

#	Article	IF	CITATIONS
398	A multi-scale layer-resolved spiking network model of resting-state dynamics in macaque visual cortical areas. PLoS Computational Biology, 2018, 14, e1006359.	1.5	91
399	Development and Functional Diversification of Cortical Interneurons. Neuron, 2018, 100, 294-313.	3.8	470
400	Shared and distinct transcriptomic cell types across neocortical areas. Nature, 2018, 563, 72-78.	13.7	1,323
401	Voltage-Dependent Calcium Channels, Calcium Binding Proteins, and Their Interaction in the Pathological Process of Epilepsy. International Journal of Molecular Sciences, 2018, 19, 2735.	1.8	41
402	Adolescence as a neurobiological critical period for the development of higher-order cognition. Neuroscience and Biobehavioral Reviews, 2018, 94, 179-195.	2.9	374
403	Laminar Distribution of Neurochemically-Identified Interneurons and Cellular Co-expression of Molecular Markers in Epileptic Human Cortex. Neuroscience Bulletin, 2018, 34, 992-1006.	1.5	17
404	Ex Utero Electroporation and Organotypic Slice Cultures of Embryonic Mouse Brains for Live-Imaging of Migrating GABAergic Interneurons. Journal of Visualized Experiments, 2018, , .	0.2	1
405	Distinct learning-induced changes in stimulus selectivity and interactions of GABAergic interneuron classes in visual cortex. Nature Neuroscience, 2018, 21, 851-859.	7.1	175
406	Specialized Subpopulations of Deep-Layer Pyramidal Neurons in the Neocortex: Bridging Cellular Properties to Functional Consequences. Journal of Neuroscience, 2018, 38, 5441-5455.	1.7	122
407	Brain stimulation patterns emulating endogenous thalamocortical input to parvalbumin-expressing interneurons reduce nociception in mice. Brain Stimulation, 2018, 11, 1151-1160.	0.7	6
408	Peptide-Mediated Neurotransmission Takes Center Stage. Trends in Neurosciences, 2018, 41, 325-327.	4.2	9
409	Preferential inputs from cholecystokinin-positive neurons to the somatic compartment of parvalbumin-expressing neurons in the mouse primary somatosensory cortex. Brain Research, 2018, 1695, 18-30.	1.1	18
410	Neural Circuits That Mediate Selective Attention: A Comparative Perspective. Trends in Neurosciences, 2018, 41, 789-805.	4.2	79
411	Structural modularity and grid activity in the medial entorhinal cortex. Journal of Neurophysiology, 2018, 119, 2129-2144.	0.9	18
412	Modulation of cortical circuits by top-down processing and arousal state in health and disease. Current Opinion in Neurobiology, 2018, 52, 172-181.	2.0	43
413	Monoaminergic Neuromodulation of Sensory Processing. Frontiers in Neural Circuits, 2018, 12, 51.	1.4	99
414	Layer 5 Callosal Parvalbumin-Expressing Neurons: A Distinct Functional Group of GABAergic Neurons. Frontiers in Cellular Neuroscience, 2018, 12, 53.	1.8	22
415	PV Interneurons: Critical Regulators of E/I Balance for Prefrontal Cortex-Dependent Behavior and Psychiatric Disorders. Frontiers in Neural Circuits, 2018, 12, 37.	1.4	403

#	Article	IF	CITATIONS
416	Common Ribs of Inhibitory Synaptic Dysfunction in the Umbrella of Neurodevelopmental Disorders. Frontiers in Molecular Neuroscience, 2018, 11, 132.	1.4	19
417	Resveratrol Prevents Cellular and Behavioral Sensory Alterations in the Animal Model of Autism Induced by Valproic Acid. Frontiers in Synaptic Neuroscience, 2018, 10, 9.	1.3	41
418	Neurogliaform cortical interneurons derive from cells in the preoptic area. ELife, 2018, 7, .	2.8	40
419	Excitable neuronal assemblies with adaptation as a building block of brain circuits for velocity-controlled signal propagation. PLoS Computational Biology, 2018, 14, e1006216.	1.5	12
420	A MicroRNA-Based Gene-Targeting Tool for Virally Labeling Interneurons in the Rodent Cortex. Cell Reports, 2018, 24, 294-303.	2.9	32
421	Two types of somatostatin-expressing GABAergic interneurons in the superficial layers of the mouse cingulate cortex. PLoS ONE, 2018, 13, e0200567.	1.1	14
422	Single cell transcriptomics in neuroscience: cell classification and beyond. Current Opinion in Neurobiology, 2018, 50, 242-249.	2.0	71
423	Rett syndrome: insights into genetic, molecular and circuit mechanisms. Nature Reviews Neuroscience, 2018, 19, 368-382.	4.9	164
424	Synaptic Release of Acetylcholine Rapidly Suppresses Cortical Activity by Recruiting Muscarinic Receptors in Layer 4. Journal of Neuroscience, 2018, 38, 5338-5350.	1.7	34
425	The Evf2 Ultraconserved Enhancer IncRNA Functionally and Spatially Organizes Megabase Distant Genes in the Developing Forebrain. Molecular Cell, 2018, 71, 956-972.e9.	4.5	61
426	An Emerging Circuit Pharmacology of GABAA Receptors. Trends in Pharmacological Sciences, 2018, 39, 710-732.	4.0	147
427	Mechanisms of Cortical Differentiation. International Review of Cell and Molecular Biology, 2018, 336, 223-320.	1.6	24
428	Dynamic interactions between GABAergic and astrocytic networks. Neuroscience Letters, 2019, 689, 14-20.	1.0	10
429	Sp9 Regulates Medial Ganglionic Eminence-Derived Cortical Interneuron Development. Cerebral Cortex, 2019, 29, 2653-2667.	1.6	35
430	Densities and Laminar Distributions of Kv3.1b-, PV-, GABA-, and SMI-32-Immunoreactive Neurons in Macaque Area V1. Cerebral Cortex, 2019, 29, 1921-1937.	1.6	13
431	A Derived Positional Mapping of Inhibitory Subtypes in the Somatosensory Cortex. Frontiers in Neuroanatomy, 2019, 13, 78.	0.9	7
432	GluA4-Targeted AAV Vectors Deliver Genes Selectively to Interneurons while Relying on the AAV Receptor for Entry. Molecular Therapy - Methods and Clinical Development, 2019, 14, 252-260.	1.8	17
433	Biphasic Impact of Prenatal Inflammation and Macrophage Depletion on the Wiring of Neocortical Inhibitory Circuits. Cell Reports, 2019, 28, 1119-1126.e4.	2.9	38

#	Article	IF	CITATIONS
434	New insights into the development of the human cerebral cortex. Journal of Anatomy, 2019, 235, 432-451.	0.9	224
435	Neuromodulation Leads to a Burst-Tonic Switch in a Subset of VIP Neurons in Mouse Primary Somatosensory (Barrel) Cortex. Cerebral Cortex, 2020, 30, 488-504.	1.6	31
436	Extracellular Spike Waveform Dissociates Four Functionally Distinct Cell Classes in Primate Cortex. Current Biology, 2019, 29, 2973-2982.e5.	1.8	67
437	Different Inhibitory Interneuron Cell Classes Make Distinct Contributions to Visual Contrast Perception. ENeuro, 2019, 6, ENEURO.0337-18.2019.	0.9	31
438	Target specific functions of EPL interneurons in olfactory circuits. Nature Communications, 2019, 10, 3369.	5.8	15
439	Loss of Foxg1 Impairs the Development of Cortical SST-Interneurons Leading to Abnormal Emotional and Social Behaviors. Cerebral Cortex, 2019, 29, 3666-3682.	1.6	17
440	Direct reprogramming into interneurons: potential for brain repair. Cellular and Molecular Life Sciences, 2019, 76, 3953-3967.	2.4	23
441	Distribution Patterns of Three Molecularly Defined Classes of GABAergic Neurons Across Columnar Compartments in Mouse Barrel Cortex. Frontiers in Neuroanatomy, 2019, 13, 45.	0.9	23
442	Pathophysiology of Epilepsy. , 2019, , 1-18.		1
443	Sensory- and Motor-Related Responses of Layer 1 Neurons in the Mouse Visual Cortex. Journal of Neuroscience, 2019, 39, 10060-10070.	1.7	21
444	The Chromatin Environment Around Interneuron Genes in Oligodendrocyte Precursor Cells and Their Potential for Interneuron Reprograming. Frontiers in Neuroscience, 2019, 13, 829.	1.4	11
445	Recruitment of GABAergic Interneurons in the Barrel Cortex during Active Tactile Behavior. Neuron, 2019, 104, 412-427.e4.	3.8	150
446	Intergenerational Metabolic Syndrome and Neuronal Network Hyperexcitability in Autism. Trends in Neurosciences, 2019, 42, 709-726.	4.2	25
447	Cell type-specific transcriptional programs in mouse prefrontal cortex during adolescence and addiction. Nature Communications, 2019, 10, 4169.	5.8	100
448	Inhibitory interneurons mediate autism-associated behaviors via 4E-BP2. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18060-18067.	3.3	37
449	Γ-Aminobutyric acid in adult brain: an update. Behavioural Brain Research, 2019, 376, 112224.	1.2	23
450	New Insights Into Cholinergic Neuron Diversity. Frontiers in Molecular Neuroscience, 2019, 12, 204.	1.4	60
451	Intersectional monosynaptic tracing for dissecting subtype-specific organization of GABAergic interneuron inputs. Nature Neuroscience, 2019, 22, 492-502.	7.1	39

#	Article	IF	CITATIONS
452	General Principles of Neuronal Co-transmission: Insights From Multiple Model Systems. Frontiers in Neural Circuits, 2018, 12, 117.	1.4	80
453	Electrophysiological monitoring of inhibition in mammalian species, from rodents to humans. Neurobiology of Disease, 2019, 130, 104500.	2.1	16
454	Neuronal cell-subtype specificity of neural synchronization in mouse primary visual cortex. Nature Communications, 2019, 10, 2533.	5.8	30
455	From Hiring to Firing: Activation of Inhibitory Neurons and Their Recruitment in Behavior. Frontiers in Molecular Neuroscience, 2019, 12, 168.	1.4	60
456	The diversity of GABAergic neurons and neural communication elements. Nature Reviews Neuroscience, 2019, 20, 563-572.	4.9	167
457	Diversity and Function of Somatostatin-Expressing Interneurons in the Cerebral Cortex. International Journal of Molecular Sciences, 2019, 20, 2952.	1.8	45
458	Distribution of GABAergic Neurons and VGluT1 and VGAT Immunoreactive Boutons in the Ferret (Mustela putorius) Piriform Cortex and Endopiriform Nucleus. Comparison With Visual Areas 17, 18 and 19. Frontiers in Neuroanatomy, 2019, 13, 54.	0.9	3
459	Nogo-A targeted therapy promotes vascular repair and functional recovery following stroke. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14270-14279.	3.3	94
460	Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell Identity. Cell, 2019, 177, 1873-1887.e17.	13.5	844
461	GABAergicâ€astrocyte signaling: A refinement of inhibitory brain networks. Glia, 2019, 67, 1842-1851.	2.5	78
461 462	GABAergicâ€astrocyte signaling: A refinement of inhibitory brain networks. Glia, 2019, 67, 1842-1851. Calretinin+-neurons-mediated GABAergic inhibition in mouse prefrontal cortex. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 94, 109658.	2.5 2.5	78
461 462 463	GABAergicâ€astrocyte signaling: A refinement of inhibitory brain networks. Glia, 2019, 67, 1842-1851. Calretinin+-neurons-mediated GABAergic inhibition in mouse prefrontal cortex. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 94, 109658. Deep Survey of GABAergic Interneurons: Emerging Insights From Gene-Isoform Transcriptomics. Frontiers in Molecular Neuroscience, 2019, 12, 115.	2.5 2.5 1.4	78 10 14
461 462 463 464	GABAergicâ€estrocyte signaling: A refinement of inhibitory brain networks. Glia, 2019, 67, 1842-1851. Calretinin+-neurons-mediated GABAergic inhibition in mouse prefrontal cortex. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 94, 109658. Deep Survey of GABAergic Interneurons: Emerging Insights From Gene-Isoform Transcriptomics. Frontiers in Molecular Neuroscience, 2019, 12, 115. Individual Oligodendrocytes Show Bias for Inhibitory Axons in the Neocortex. Cell Reports, 2019, 27, 2799-2808.e3.	2.5 2.5 1.4 2.9	78 10 14 83
461 462 463 464	GABAergicâ€estrocyte signaling: A refinement of inhibitory brain networks. Glia, 2019, 67, 1842-1851. Calretinin+-neurons-mediated GABAergic inhibition in mouse prefrontal cortex. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 94, 109658. Deep Survey of GABAergic Interneurons: Emerging Insights From Gene-Isoform Transcriptomics. Frontiers in Molecular Neuroscience, 2019, 12, 115. Individual Oligodendrocytes Show Bias for Inhibitory Axons in the Neocortex. Cell Reports, 2019, 27, 2799-2808.e3. Dysmaturation of Somatostatin Interneurons Following Umbilical Cord Occlusion in Preterm Fetal Sheep. Frontiers in Physiology, 2019, 10, 563.	2.5 2.5 1.4 2.9	 78 10 14 83 15
461 462 463 464 465	GABAergicâ€estrocyte signaling: A refinement of inhibitory brain networks. Glia, 2019, 67, 1842-1851. Calretinin+-neurons-mediated GABAergic inhibition in mouse prefrontal cortex. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 94, 109658. Deep Survey of GABAergic Interneurons: Emerging Insights From Gene-Isoform Transcriptomics. Frontiers in Molecular Neuroscience, 2019, 12, 115. Individual Oligodendrocytes Show Bias for Inhibitory Axons in the Neocortex. Cell Reports, 2019, 27, 2799-2808.e3. Dysmaturation of Somatostatin Interneurons Following Umbilical Cord Occlusion in Preterm Fetal Sheep. Frontiers in Physiology, 2019, 10, 563. Amplifying the redistribution of somato-dendritic inhibition by the interplay of three interneuron types. PLoS Computational Biology, 2019, 15, e1006999.	2.5 2.5 1.4 2.9 1.3 1.5	 78 10 14 83 15 42
461 462 463 464 465 466	GABAergicâ€estrocyte signaling: A refinement of inhibitory brain networks. Clia, 2019, 67, 1842-1851. Calretinin+-neurons-mediated GABAergic inhibition in mouse prefrontal cortex. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 94, 109658. Deep Survey of GABAergic Interneurons: Emerging Insights From Gene-Isoform Transcriptomics. Frontiers in Molecular Neuroscience, 2019, 12, 115. Individual Oligodendrocytes Show Bias for Inhibitory Axons in the Neocortex. Cell Reports, 2019, 27, 2799-2808.e3. Dysmaturation of Somatostatin Interneurons Following Umbilical Cord Occlusion in Preterm Fetal Sheep. Frontiers in Physiology, 2019, 10, 563. Amplifying the redistribution of somato-dendritic inhibition by the interplay of three interneuron types. PLoS Computational Biology, 2019, 15, e1006999. Altered inhibition and excitation in neocortical circuits in congenital microcephaly. Neurobiology of Disease, 2019, 129, 130-143.	2.5 2.5 1.4 2.9 1.3 1.5 2.1	 78 10 14 83 15 42 7
 461 462 463 464 465 466 467 468 	GABAergicâCestrocyte signaling: A refinement of inhibitory brain networks. Glia, 2019, 67, 1842-1851. Calretinin+-neurons-mediated GABAergic inhibition in mouse prefrontal cortex. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 94, 109658. Deep Survey of GABAergic Interneurons: Emerging Insights From Gene-Isoform Transcriptomics. Frontiers in Molecular Neuroscience, 2019, 12, 115. Individual Oligodendrocytes Show Bias for Inhibitory Axons in the Neocortex. Cell Reports, 2019, 27, 2799-2808.e3. Dysmaturation of Somatostatin Interneurons Following Umbilical Cord Occlusion in Preterm Fetal Sheep. Frontiers in Physiology, 2019, 10, 563. Amplifying the redistribution of somato-dendritic inhibition by the interplay of three interneuron types. PLoS Computational Biology, 2019, 15, e1006999. Altered inhibition and excitation in neocortical circuits in congenital microcephaly. Neurobiology of Disease, 2019, 129, 130-143. Cellular, Synaptic and Network Effects of Acetylcholine in the Neocortex. Frontiers in Neural Circuits, 2019, 13, 24.	2.5 2.5 1.4 2.9 1.3 1.5 2.1 1.4	 78 10 14 83 15 42 7 72

#	Article	IF	Citations
470	Diminished Fear Extinction in Adolescents Is Associated With an Altered Somatostatin Interneuron–Mediated Inhibition in the Infralimbic Cortex. Biological Psychiatry, 2019, 86, 682-692.	0.7	23
471	"Braking―the Prefrontal Cortex: The Role of Glucocorticoids and Interneurons in Stress Adaptation and Pathology. Biological Psychiatry, 2019, 86, 669-681.	0.7	72
472	Neocortical Projection Neurons Instruct Inhibitory Interneuron Circuit Development in a Lineage-Dependent Manner. Neuron, 2019, 102, 960-975.e6.	3.8	51
473	A Disinhibitory Microcircuit Mediates Conditioned Social Fear in the Prefrontal Cortex. Neuron, 2019, 102, 668-682.e5.	3.8	119
474	Functional Access to Neuron Subclasses in Rodent and Primate Forebrain. Cell Reports, 2019, 26, 2818-2832.e8.	2.9	60
475	Preserving the balance: diverse forms of long-term GABAergic synaptic plasticity. Nature Reviews Neuroscience, 2019, 20, 272-281.	4.9	96
476	Gad1â€promotorâ€driven GFP expression in nonâ€GABAergic neurons of the nucleus endopiriformis in a transgenic mouse line. Journal of Comparative Neurology, 2019, 527, 2215-2232.	0.9	4
477	Cortical GABAergic Dysfunction in Stress and Depression: New Insights for Therapeutic Interventions. Frontiers in Cellular Neuroscience, 2019, 13, 87.	1.8	225
478	Cortical State Fluctuations across Layers of V1 during Visual Spatial Perception. Cell Reports, 2019, 26, 2868-2874.e3.	2.9	46
479	Fast-acting antidepressant activity of ketamine: highlights on brain serotonin, glutamate, and GABA neurotransmission in preclinical studies. , 2019, 199, 58-90.		126
480	Chronic Ethanol Exposure and Withdrawal Impair Synaptic <scp>GABA_A</scp> Receptorâ€Mediated Neurotransmission in Deep‣ayer Prefrontal Cortex. Alcoholism: Clinical and Experimental Research, 2019, 43, 822-832.	1.4	29
481	Glutamate versus GABA in neuron–oligodendroglia communication. Glia, 2019, 67, 2092-2106.	2.5	44
482	Inhibitory Units: An Organizing Nidus for Feature-Selective SubNetworks in Area V1. Journal of Neuroscience, 2019, 39, 4931-4944.	1.7	7
483	Two Groups of eGFP-Expressing Neurons with Distinct Characteristics in the Neocortex of GIN Mice. Neuroscience, 2019, 404, 268-281.	1.1	1
484	Aberrant Excitatory–Inhibitory Synaptic Mechanisms in Entorhinal Cortex Microcircuits During the Pathogenesis of Alzheimer's Disease. Cerebral Cortex, 2019, 29, 1834-1850.	1.6	90
485	Estrus-Cycle Regulation of Cortical Inhibition. Current Biology, 2019, 29, 605-615.e6.	1.8	63
486	Heterogeneity within classical cell types is the rule: lessons from hippocampal pyramidal neurons. Nature Reviews Neuroscience, 2019, 20, 193-204.	4.9	171
487	<i>SCN1A</i> gain of function in early infantile encephalopathy. Annals of Neurology, 2019, 85, 514-525.	2.8	76

#	Article	IF	CITATIONS
488	COALIA: A Computational Model of Human EEG for Consciousness Research. Frontiers in Systems Neuroscience, 2019, 13, 59.	1.2	40
489	The X-Linked Intellectual Disability Gene Zdhhc9 Is Essential for Dendrite Outgrowth and Inhibitory Synapse Formation. Cell Reports, 2019, 29, 2422-2437.e8.	2.9	45
490	Neurovascular Coupling under Chronic Stress Is Modified by Altered GABAergic Interneuron Activity. Journal of Neuroscience, 2019, 39, 10081-10095.	1.7	25
491	Alteration of Extracellular Matrix Molecules and Perineuronal Nets in the Hippocampus of Pentylenetetrazol-Kindled Mice. Neural Plasticity, 2019, 2019, 1-14.	1.0	6
492	Hyperexcitability and impaired intracortical inhibition in patients with fragile-X syndrome. Translational Psychiatry, 2019, 9, 312.	2.4	27
493	Rapid Anti-Depressant Relief by Ketamine: Exploring A Complex Mechanism of Action. Current Psychopharmacology, 2019, 8, 99-112.	0.1	2
494	Differential distributions of parvalbumin-positive interneurons in the sulci and gyri of the adult ferret cerebral cortex. NeuroReport, 2019, 30, 993-997.	0.6	0
495	Chronic voluntary alcohol consumption causes persistent cognitive deficits and cortical cell loss in a rodent model. Scientific Reports, 2019, 9, 18651.	1.6	22
496	Prefrontal circuit organization for executive control. Neuroscience Research, 2019, 140, 23-36.	1.0	40
497	Cell-Type-Specific D1 Dopamine Receptor Modulation of Projection Neurons and Interneurons in the Prefrontal Cortex. Cerebral Cortex, 2019, 29, 3224-3242.	1.6	72
498	The Epigenetic Factor CBP Is Required for the Differentiation and Function of Medial Ganglionic Eminence-Derived Interneurons. Molecular Neurobiology, 2019, 56, 4440-4454.	1.9	16
499	Ceftriaxone Treatment Preserves Cortical Inhibitory Interneuron Function via Transient Salvage of GLT-1 in a Rat Traumatic Brain Injury Model. Cerebral Cortex, 2019, 29, 4506-4518.	1.6	28
500	The Na+/H+ Exchanger Nhe1 Modulates Network Excitability via GABA Release. Cerebral Cortex, 2019, 29, 4263-4276.	1.6	13
501	Function of local circuits in the hippocampal dentate gyrus-CA3 system. Neuroscience Research, 2019, 140, 43-52.	1.0	40
502	Four Unique Interneuron Populations Reside in Neocortical Layer 1. Journal of Neuroscience, 2019, 39, 125-139.	1.7	131
503	Subregion-specific Protective Effects of Fluoxetine and Clozapine on Parvalbumin Expression in Medial Prefrontal Cortex of Chronically Isolated Rats. Neuroscience, 2019, 396, 24-35.	1.1	28
504	Neural microvascular pericytes contribute to human adult neurogenesis. Journal of Comparative Neurology, 2019, 527, 780-796.	0.9	29
505	Cortical interneuron function in autism spectrum condition. Pediatric Research, 2019, 85, 146-154.	1.1	32

#	Article	IF	CITATIONS
506	Sparse Representation in Awake Auditory Cortex: Cell-type Dependence, Synaptic Mechanisms, Developmental Emergence, and Modulation. Cerebral Cortex, 2019, 29, 3796-3812.	1.6	40
507	High Sensitivity Mapping of Cortical Dopamine D2 Receptor Expressing Neurons. Cerebral Cortex, 2019, 29, 3813-3827.	1.6	32
508	Subtypes of GABAergic cells in the inferior colliculus. Hearing Research, 2019, 376, 1-10.	0.9	25
509	Presynaptic GABAA Receptors Modulate Thalamocortical Inputs in Layer 4 of Rat V1. Cerebral Cortex, 2019, 29, 921-936.	1.6	22
510	The Prolonged Masking of Temporal Acoustic Inputs with Noise Drives Plasticity in the Adult Rat Auditory Cortex. Cerebral Cortex, 2019, 29, 1032-1046.	1.6	13
511	A Neural Model of Empathic States in Attachment-Based Psychotherapy. Computational Psychiatry, 2020, 1, 132.	1.1	7
512	Ankyrin-G regulates forebrain connectivity and network synchronization via interaction with GABARAP. Molecular Psychiatry, 2020, 25, 2800-2817.	4.1	40
513	Enriched Environment Reverts Somatostatin Interneuron Loss in MK-801 Model of Schizophrenia. Molecular Neurobiology, 2020, 57, 125-134.	1.9	12
514	Chronic ethanol exposure alters prelimbic prefrontal cortical Fast-Spiking and Martinotti interneuron function with differential sex specificity in rat brain. Neuropharmacology, 2020, 162, 107805.	2.0	36
515	Maternal inflammation has a profound effect on cortical interneuron development in a stage and subtype-specific manner. Molecular Psychiatry, 2020, 25, 2313-2329.	4.1	54
516	Characterizing the morphology of somatostatinâ€expressing interneurons and their synaptic innervation pattern in the barrel cortex of the GFPâ€expressing inhibitory neurons mouse. Journal of Comparative Neurology, 2020, 528, 244-260.	0.9	13
517	Optogenetic assessment of VIP, PV, SOM and NOS inhibitory neuron activity and cerebral blood flow regulation in mouse somato-sensory cortex. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1427-1440.	2.4	56
518	Interneuron Types as Attractors and Controllers. Annual Review of Neuroscience, 2020, 43, 1-30.	5.0	127
519	Inhibitory neuronal changes following a mixed diffuseâ€focal model of traumatic brain injury. Journal of Comparative Neurology, 2020, 528, 175-198.	0.9	12
520	microRNA Deficiency in VIP+ Interneurons Leads to Cortical Circuit Dysfunction. Cerebral Cortex, 2020, 30, 2229-2249.	1.6	16
521	A Distinct Class of Bursting Neurons with Strong Gamma Synchronization and Stimulus Selectivity in Monkey V1. Neuron, 2020, 105, 180-197.e5.	3.8	45
522	Distribution of neuronal structures immunoreactive for parvalbumin in the midcingulate cortex of the rabbit. Journal of Veterinary Medicine Series C: Anatomia Histologia Embryologia, 2020, 49, 150-156.	0.3	1
523	Distinct diseaseâ€sensitive GABAergic neurons in the perirhinal cortex of Alzheimer's mice and patients. Brain Pathology, 2020, 30, 345-363.	2.1	49

#	Article	IF	Citations
524	Genome-Wide Analysis of Differential Gene Expression and Splicing in Excitatory Neurons and Interneuron Subtypes. Journal of Neuroscience, 2020, 40, 958-973.	1.7	51
525	Somatostatin receptors (SSTR1-5) on inhibitory interneurons in the barrel cortex. Brain Structure and Function, 2020, 225, 387-401.	1.2	17
526	Excitatory and Inhibitory Subnetworks Are Equally Selective during Decision-Making and Emerge Simultaneously during Learning. Neuron, 2020, 105, 165-179.e8.	3.8	82
527	Key Aspects of Neurovascular Control Mediated by Specific Populations of Inhibitory Cortical Interneurons. Cerebral Cortex, 2020, 30, 2452-2464.	1.6	46
528	Sociability development in mice with cellâ€specific deletion of the NMDA receptor NR1 subunit gene. Genes, Brain and Behavior, 2020, 19, e12624.	1.1	11
529	Citalopram prevents sleep-deprivation-induced reduction in CaMKII-CREB-BDNF signaling in mouse prefrontal cortex. Brain Research Bulletin, 2020, 155, 11-18.	1.4	13
530	Anatomy and Physiology of Macaque Visual Cortical Areas V1, V2, and V5/MT: Bases for Biologically Realistic Models. Cerebral Cortex, 2020, 30, 3483-3517.	1.6	31
531	Cross-modal reaction of auditory and visual cortices after long-term bilateral hearing deprivation in the rat. Brain Structure and Function, 2020, 225, 129-148.	1.2	8
532	Switching Operation Modes in the Neocortex via Cholinergic Neuromodulation. Molecular Neurobiology, 2020, 57, 139-149.	1.9	4
533	Prefrontal somatostatin interneurons encode fear memory. Nature Neuroscience, 2020, 23, 61-74.	7.1	139
534	GABAergic Restriction of Network Dynamics Regulates Interneuron Survival in the Developing Cortex. Neuron, 2020, 105, 75-92.e5.	3.8	66
535	Reverse engineering human brain evolution using organoid models. Brain Research, 2020, 1729, 146582.	1.1	25
536	A Quantitative Comparison of Inhibitory Interneuron Size and Distribution between Mouse and Macaque V1, Using Calcium-Binding Proteins. Cerebral Cortex Communications, 2020, 1, tgaa068.	0.7	11
537	Synaptic Transmission from Somatostatin-expressing Interneurons to Excitatory Neurons Mediated by α5-subunit-containing GABAA Receptors in the Developing Visual Cortex. Neuroscience, 2020, 449, 147-156.	1.1	2
538	Inhibition of GABA interneurons in the mPFC is sufficient and necessary for rapid antidepressant responses. Molecular Psychiatry, 2021, 26, 3277-3291.	4.1	54
539	Innovations present in the primate interneuron repertoire. Nature, 2020, 586, 262-269.	13.7	206
540	The γ-Protocadherins Regulate the Survival of GABAergic Interneurons during Developmental Cell Death. Journal of Neuroscience, 2020, 40, 8652-8668.	1.7	26
541	Excitation-Inhibition Imbalance Leads to Alteration of Neuronal Coherence and Neurovascular Coupling under Acute Stress. Journal of Neuroscience, 2020, 40, 9148-9162.	1.7	20

			2
#	ARTICLE	IF	CITATIONS
542	Neuropsychiatric Diseases. Frontiers in Neuroscience, 2020, 14, 586133.	1.4	6
543	Incubation of depression: ECM assembly and parvalbumin interneurons after stress. Neuroscience and Biobehavioral Reviews, 2020, 118, 65-79.	2.9	28
544	Quantitative patterns of motor cortex proteinopathy across ALS genotypes. Acta Neuropathologica Communications, 2020, 8, 98.	2.4	27
545	Region and Cell Type Distribution of TCF4 in the Postnatal Mouse Brain. Frontiers in Neuroanatomy, 2020, 14, 42.	0.9	28
546	Moderate prenatal alcohol exposure alters the number and function of GABAergic interneurons in the murine orbitofrontal cortex. Alcohol, 2020, 88, 33-41.	0.8	13
547	Prelimbic cortical targets of ventromedial thalamic projections include inhibitory interneurons and corticostriatal pyramidal neurons in the rat. Brain Structure and Function, 2020, 225, 2057-2076.	1.2	3
548	Expanding the focus on female brain and behaviour. Brain, Behavior, and Immunity, 2020, 90, 1-2.	2.0	1
549	Layer- and Cell Type-Specific Response Properties of Gustatory Cortex Neurons in Awake Mice. Journal of Neuroscience, 2020, 40, 9676-9691.	1.7	14
550	Phenotypic variation of transcriptomic cell types in mouse motor cortex. Nature, 2021, 598, 144-150.	13.7	196
551	Disinhibition of somatostatin interneurons confers resilience to stress in male but not female mice. Neurobiology of Stress, 2020, 13, 100238.	1.9	9
552	Auditory Long-Range Parvalbumin Cortico-Striatal Neurons. Frontiers in Neural Circuits, 2020, 14, 45.	1.4	15
553	Cell type–differential modulation of prefrontal cortical GABAergic interneurons on low gamma rhythm and social interaction. Science Advances, 2020, 6, eaay4073.	4.7	44
554	Analysis of pallial/cortical interneurons in key vertebrate models of Testudines, Anurans and Polypteriform fishes. Brain Structure and Function, 2020, 225, 2239-2269.	1.2	4
555	Complex <scp>IV</scp> subunit isoform <scp>COX</scp> 6A2 protects fastâ€spiking interneurons from oxidative stress and supports their function. EMBO Journal, 2020, 39, e105759.	3.5	16
556	Neuromorphological Aspects of the GABAergic Hypothesis of the Pathogenesis of Schizophrenia. Neuroscience and Behavioral Physiology, 2020, 50, 663-668.	0.2	0
557	Somatostatin expressing GABAergic interneurons in the medial entorhinal cortex preferentially inhibit layerIII-V pyramidal cells. Communications Biology, 2020, 3, 754.	2.0	10
558	Endocannabinoid Signaling Contributes to Experience-Induced Increase of Synaptic Release Sites From Parvalbumin Interneurons in Mouse Visual Cortex. Frontiers in Cellular Neuroscience, 2020, 14, 571133.	1.8	3
559	Whole-Brain Profiling of Cells and Circuits in Mammals by Tissue Clearing and Light-Sheet Microscopy. Neuron, 2020, 106, 369-387.	3.8	145

#	Article	IF	CITATIONS
560	PDK1 regulates the survival of the developing cortical interneurons. Molecular Brain, 2020, 13, 65.	1.3	13
561	Arid1b haploinsufficiency in parvalbumin- or somatostatin-expressing interneurons leads to distinct ASD-like and ID-like behavior. Scientific Reports, 2020, 10, 7834.	1.6	24
562	Serotonergic modulation across sensory modalities. Journal of Neurophysiology, 2020, 123, 2406-2425.	0.9	19
563	Mining the jewels of the cortex's crowning mystery. Current Opinion in Neurobiology, 2020, 63, 154-161.	2.0	22
564	Parallel RNA and DNA analysis after deep sequencing (PRDD-seq) reveals cell type-specific lineage patterns in human brain. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13886-13895.	3.3	33
565	GABAergic Neurons in the Dorsal Raphe Nucleus that Express 5-HT3A Receptors Participate in Responses to Stress Hormones. Neuroscience, 2020, 441, 217-225.	1.1	3
566	LTP of inhibition at PV interneuron output synapses requires developmental BMP signaling. Scientific Reports, 2020, 10, 10047.	1.6	4
567	Exciting Complexity: The Role of Motor Circuit Elements in ALS Pathophysiology. Frontiers in Neuroscience, 2020, 14, 573.	1.4	40
568	Disrupted inhibitory plasticity and homeostasis in Fragile X syndrome. Neurobiology of Disease, 2020, 142, 104959.	2.1	9
569	Absence of parvalbumin increases mitochondria volume and branching of dendrites in inhibitory Pvalb neurons in vivo: a point of convergence of autism spectrum disorder (ASD) risk gene phenotypes. Molecular Autism, 2020, 11, 47.	2.6	18
570	Drugâ€Responsive Inhomogeneous Cortical Modulation by Direct Current Stimulation. Annals of Neurology, 2020, 88, 489-502.	2.8	16
571	A novel mouse model of glucagonâ€like peptideâ€1 receptor expression: A look at the brain. Journal of Comparative Neurology, 2020, 528, 2445-2470.	0.9	40
572	Growth-Promoting Treatment Screening for Corticospinal Neurons in Mouse and Man. Cellular and Molecular Neurobiology, 2020, 40, 1327-1338.	1.7	3
573	Developmental characterization of <i>Zswim5</i> expression in the progenitor domains and tangential migration pathways of cortical interneurons in the mouse forebrain. Journal of Comparative Neurology, 2020, 528, 2404-2419.	0.9	5
574	Repurposed molecules for antiepileptogenesis: Missing an opportunity to prevent epilepsy?. Epilepsia, 2020, 61, 359-386.	2.6	57
575	Interneuron Desynchronization Precedes Seizures in a Mouse Model of Dravet Syndrome. Journal of Neuroscience, 2020, 40, 2764-2775.	1.7	62
576	Somatostatin-Expressing Interneurons in the Auditory Cortex Mediate Sustained Suppression by Spectral Surround. Journal of Neuroscience, 2020, 40, 3564-3575.	1.7	39
577	Histological characterization of interneurons in Alzheimer's disease reveals a loss of somatostatin interneurons in the temporal cortex. Neuropathology, 2020, 40, 336-346.	0.7	19

		CITATION R	EPORT	
#	Article		IF	Citations
578	Cellular effects of serotonin in the CNS. Handbook of Behavioral Neuroscience, 2020, 3	1, 279-288.	0.7	2
579	MAP/ERK Signaling in Developing Cognitive and Emotional Function and Its Effect on Pa Neurodegenerative Processes. International Journal of Molecular Sciences, 2020, 21, 44	athological and 71.	1.8	96
580	Coordination of different modes of neuronal migration and functional organization of t cortex. , 2020, , 531-553.	he cerebral		0
581	Antidepressant mechanisms of ketamine: Focus on GABAergic inhibition. Advances in P 2020, 89, 43-78.	harmacology,	1.2	15
582	Itinerant complexity in networks of intrinsically bursting neurons. Chaos, 2020, 30, 061	.106.	1.0	4
583	GABAergic Inhibitory Interneuron Deficits in Alzheimer's Disease: Implications for Tr Frontiers in Neuroscience, 2020, 14, 660.	eatment.	1.4	111
584	The generation of cortical interneurons. , 2020, , 461-479.			3
585	Function and Evolution of the Reptilian Cerebral Cortex. , 2020, , 213-245.			4
586	Barrel cortex VIP/ChAT interneurons suppress sensory responses in vivo. PLoS Biology, 2 e3000613.	2020, 18,	2.6	19
587	Synaptic Mechanisms Underlying the Network State-Dependent Recruitment of VIP-Exp Interneurons in the CA1 Hippocampus. Cerebral Cortex, 2020, 30, 3667-3685.	pressing	1.6	36
588	Activity-Dependent Plasticity of Axo-axonic Synapses at the Axon Initial Segment. Neuro 265-276.e6.	on, 2020, 106,	3.8	66
589	Synaptic Zinc Enhances Inhibition Mediated by Somatostatin, but not Parvalbumin, Cel Auditory Cortex. Cerebral Cortex, 2020, 30, 3895-3909.	s in Mouse	1.6	15
590	Distinct roles of parvalbumin- and somatostatin-expressing neurons in flexible represen variables in the prefrontal cortex. Progress in Neurobiology, 2020, 187, 101773.	tation of task	2.8	9
591	Enhanced accumulation of N-terminally truncated AÎ ² with and without pyroglutamate- in parvalbumin-expressing GABAergic neurons in idiopathic and dup15q11.2-q13 autisn Neuropathologica Communications, 2020, 8, 58.	11 modification n. Acta	2.4	4
592	Modelling acute and lasting effects of tDCS on epileptic activity. Journal of Computatio Neuroscience, 2020, 48, 161-176.	nal	0.6	11
593	Extinction of cueâ€evoked foodâ€seeking recruits a GABAergic interneuron ensemble i prefrontal cortex of mice. European Journal of Neuroscience, 2020, 52, 3723-3737.	n the dorsal medial	1.2	1
594	Opposed hemodynamic responses following increased excitation and parvalbumin-base Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 841-856.	d inhibition.	2.4	23
595	Deviance detection in physiologically identified cell types in the rat auditory cortex. Hea Research, 2021, 399, 107997.	ring	0.9	13

#	Article	IF	CITATIONS
596	Interplay between perivascular and perineuronal extracellular matrix remodelling in neurological and psychiatric diseases. European Journal of Neuroscience, 2021, 53, 3811-3830.	1.2	26
597	Sparse Labeling and Neural Tracing in Brain Circuits by STARS Strategy: Revealing Morphological Development of Type II Spiral Ganglion Neurons. Cerebral Cortex, 2021, 31, 2759-2772.	1.6	5
598	Circuit Mechanisms Underlying Epileptogenesis in a Mouse Model of Focal Cortical Malformation. Current Biology, 2021, 31, 334-345.e4.	1.8	9
599	Topographic gradients define the projection patterns of the claustrum core and shell in mice. Journal of Comparative Neurology, 2021, 529, 1607-1627.	0.9	26
600	Novel Therapeutic Approach for Excitatory/Inhibitory Imbalance in Neurodevelopmental and Neurodegenerative Diseases. Annual Review of Pharmacology and Toxicology, 2021, 61, 701-721.	4.2	24
601	Detailed neuronal distribution of GPR3 and its co-expression with EF-hand calcium-binding proteins in the mouse central nervous system. Brain Research, 2021, 1750, 147166.	1.1	7
602	Inhibitory stabilization and cortical computation. Nature Reviews Neuroscience, 2021, 22, 21-37.	4.9	80
603	Warped rhythms: Epileptic activity during critical periods disrupts the development of neural networks for human communication. Behavioural Brain Research, 2021, 399, 113016.	1.2	3
604	Mediodorsal and Ventromedial Thalamus Engage Distinct L1 Circuits in the Prefrontal Cortex. Neuron, 2021, 109, 314-330.e4.	3.8	85
605	The emerging role of chromatin remodelers in neurodevelopmental disorders: a developmental perspective. Cellular and Molecular Life Sciences, 2021, 78, 2517-2563.	2.4	58
606	Cortical VIP ⁺ /ChAT ⁺ interneurons: From genetics to function. Journal of Neurochemistry, 2021, 158, 1320-1333.	2.1	13
607	Neuronal Circuits in Barrel Cortex for Whisker Sensory Perception. Physiological Reviews, 2021, 101, 353-415.	13.1	66
608	Flexible Frequency Switching in Adult Mouse Visual Cortex Is Mediated by Competition Between Parvalbumin and Somatostatin Expressing Interneurons. Neural Computation, 2021, 33, 926-966.	1.3	7
609	Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems. Science, 2021, 371, .	6.0	197
610	Conditional Pten knockout in parvalbumin- or somatostatin-positive neurons sufficiently leads to autism-related behavioral phenotypes. Molecular Brain, 2021, 14, 24.	1.3	12
612	Flexible Stoichiometry: Implications for KCNQ2- and KCNQ3-Associated Neurodevelopmental Disorders. Developmental Neuroscience, 2021, 43, 191-200.	1.0	17
613	Anatomical asymmetries in the tectofugal pathway of dark-incubated domestic chicks: Rightwards lateralization of parvalbumin neurons in the entopallium. Laterality, 2021, 26, 163-185.	0.5	12
614	Contribution of Interneuron Subtype-Specific GABAergic Signaling to Emergent Sensory Processing in Mouse Somatosensory Whisker Barrel Cortex. Cerebral Cortex, 2022, 32, 2538-2554.	1.6	7

~		~	
(15	ΓΔΤΙ	RED	$\cap PT$
		IVLE'	

#	Article	IF	CITATIONS
615	Densities and numbers of calbindin and parvalbumin positive neurons across the rat and mouse brain. IScience, 2021, 24, 101906.	1.9	35
616	Immunohistological Examination of AKT Isoforms in the Brain: Cell-Type Specificity That May Underlie AKT's Role in Complex Brain Disorders and Neurological Disease. Cerebral Cortex Communications, 2021, 2, tgab036.	0.7	7
617	Behavioral Deficits Induced by Somatostatin-Positive GABA Neuron Silencing Are Rescued by Alpha 5 GABA-A Receptor Potentiation. International Journal of Neuropsychopharmacology, 2021, 24, 505-518.	1.0	31
618	Distinct Spiking Patterns of Excitatory and Inhibitory Neurons and LFP Oscillations in Prefrontal Cortex During Sensory Discrimination. Frontiers in Physiology, 2021, 12, 618307.	1.3	9
619	Morphoâ€physiological properties and connectivity of vasoactive intestinal polypeptideâ€expressing interneurons in the mouse hippocampal dentate gyrus. Journal of Comparative Neurology, 2021, 529, 2658-2675.	0.9	2
621	Aberrant development of excitatory circuits to inhibitory neurons in the primary visual cortex after neonatal binocular enucleation. Scientific Reports, 2021, 11, 3163.	1.6	4
622	GABAergic neuron-specific whole-brain transduction by AAV-PHP.B incorporated with a new GAD65 promoter. Molecular Brain, 2021, 14, 33.	1.3	27
623	Criticality, Connectivity, and Neural Disorder: A Multifaceted Approach to Neural Computation. Frontiers in Computational Neuroscience, 2021, 15, 611183.	1.2	22
625	Sensing and processing whisker deflections in rodents. PeerJ, 2021, 9, e10730.	0.9	4
626	Comparison of Acute Effects of Neurotoxic Compounds on Network Activity in Human and Rodent Neural Cultures. Toxicological Sciences, 2021, 180, 295-312.	1.4	12
628	Hyperactive MEK1 Signaling in Cortical GABAergic Neurons Promotes Embryonic Parvalbumin Neuron Loss and Defects in Behavioral Inhibition. Cerebral Cortex, 2021, 31, 3064-3081.	1.6	10
629	Neuronal activity regulated pentraxin (narp) and GluA4 subunit of AMPA receptor may be targets for fluoxetine modulation. Metabolic Brain Disease, 2021, 36, 711-722.	1.4	6
630	Role of Medial Prefrontal Cortical Neurons and Oxytocin Modulation in the Establishment of Social Buffering. Experimental Neurobiology, 2021, 30, 48-58.	0.7	5
632	Conduction Velocity Along the Local Axons of Parvalbumin Interneurons Correlates With the Degree of Axonal Myelination. Cerebral Cortex, 2021, 31, 3374-3392.	1.6	20
634	Neuron–Oligodendrocyte Communication in Myelination of Cortical GABAergic Cells. Life, 2021, 11, 216.	1.1	13
635	Dissociable Roles of Pallidal Neuron Subtypes in Regulating Motor Patterns. Journal of Neuroscience, 2021, 41, 4036-4059.	1.7	36
636	Somatostatin interneurons activated by 5-HT2A receptor suppress slow oscillations in medial entorhinal cortex. ELife, 2021, 10, .	2.8	13
639	The Role of Parvalbumin Interneuron GIRK Signaling in the Regulation of Affect and Cognition in Male and Female Mice. Frontiers in Behavioral Neuroscience, 2021, 15, 621751.	1.0	9

#	Article	IF	CITATIONS
640	Defining early changes in Alzheimer's disease from RNA sequencing of brain regions differentially affected by pathology. Scientific Reports, 2021, 11, 4865.	1.6	23
641	Interneuron development and dysfunction. FEBS Journal, 2022, 289, 2318-2336.	2.2	23
642	Propofol sedation-induced alterations in brain connectivity reflect parvalbumin interneurone distribution in human cerebral cortex. British Journal of Anaesthesia, 2021, 126, 835-844.	1.5	10
643	Development of Auditory Cortex Circuits. JARO - Journal of the Association for Research in Otolaryngology, 2021, 22, 237-259.	0.9	8
644	Critical aspects of neurodevelopment. Neurobiology of Learning and Memory, 2021, 180, 107415.	1.0	5
645	4E-BP2–dependent translation in parvalbumin neurons controls epileptic seizure threshold. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	10
646	Contribution of Excitatory and Inhibitory Neuronal Activity to BOLD fMRI. Cerebral Cortex, 2021, 31, 4053-4067.	1.6	38
647	Alcohol reduces the activity of somatostatin interneurons in the mouse prefrontal cortex: A neural basis for its disinhibitory effect?. Neuropharmacology, 2021, 188, 108501.	2.0	15
648	Regulation of Perineuronal Nets in the Adult Cortex by the Activity of the Cortical Network. Journal of Neuroscience, 2021, 41, 5779-5790.	1.7	31
649	GABAergic Axosomatic Synapses of Rat Brain Cortex. Cell and Tissue Biology, 2021, 15, 267-272.	0.2	1
650	Changing the Cortical Conductor's Tempo: Neuromodulation of the Claustrum. Frontiers in Neural Circuits, 2021, 15, 658228.	1.4	11
651	How stress physically re-shapes the brain: Impact on brain cell shapes, numbers and connections in psychiatric disorders. Neuroscience and Biobehavioral Reviews, 2021, 124, 193-215.	2.9	33
652	Behavioural impairments after exposure of neonatal mice to propofol are accompanied by reductions in neuronal activity in cortical circuitry. British Journal of Anaesthesia, 2021, 126, 1141-1156.	1.5	21
655	Functional Contribution of the Medial Prefrontal Circuitry in Major Depressive Disorder and Stress-Induced Depressive-Like Behaviors. Frontiers in Behavioral Neuroscience, 2021, 15, 699592.	1.0	35
656	Enhanced modulation of cell-type specific neuronal responses in mouse dorsal auditory field during locomotion. Cell Calcium, 2021, 96, 102390.	1.1	10
658	Prefrontal GABAergic Interneurons Gate Long-Range Afferents to Regulate Prefrontal Cortex-Associated Complex Behaviors. Frontiers in Neural Circuits, 2021, 15, 716408.	1.4	18
659	A Neuronal Model of the Primary Visual Cortex: Simulation of Visual Evoked Potentials. , 2021, , .		0
660	NDNF interneurons, Spartans of the cortical column: Small in number, strong in impact. Neuron, 2021, 109, 2041-2042.	3.8	0

#	Article	IF	CITATIONS
661	The impact of (ab)normal maternal environment on cortical development. Progress in Neurobiology, 2021, 202, 102054.	2.8	11
662	A Characterization of the Electrophysiological and Morphological Properties of Vasoactive Intestinal Peptide (VIP) Interneurons in the Medial Entorhinal Cortex (MEC). Frontiers in Neural Circuits, 2021, 15, 653116.	1.4	4
663	Corticofugal VIP Gabaergic Projection Neurons in the Mouse Auditory and Motor Cortex. Frontiers in Neural Circuits, 2021, 15, 714780.	1.4	9
664	Reelin Affects Signaling Pathways of a Group of Inhibitory Neurons and the Development of Inhibitory Synapses in Primary Neurons. International Journal of Molecular Sciences, 2021, 22, 7510.	1.8	1
665	FLRT2 and FLRT3 cooperate in maintaining the tangential migratory streams of cortical interneurons during development. Journal of Neuroscience, 2021, 41, JN-RM-0380-20.	1.7	7
669	Characterization and Stage-Dependent Lineage Analysis of Intermediate Progenitors of Cortical GABAergic Interneurons. Frontiers in Neuroscience, 2021, 15, 607908.	1.4	2
670	Differential Excitability of PV and SST Neurons Results in Distinct Functional Roles in Inhibition Stabilization of Up States. Journal of Neuroscience, 2021, 41, 7182-7196.	1.7	4
671	The distribution, number, and certain neurochemical identities of infracortical white matter neurons in the brains of a southern lesser galago, a blackâ€capped squirrel monkey, and a crested macaque. Journal of Comparative Neurology, 2021, 529, 3676-3708.	0.9	1
672	Islet1 Precursors Contribute to Mature Interneuron Subtypes in Mouse Neocortex. Cerebral Cortex, 2021, 31, 5206-5224.	1.6	3
673	Interrogating theoretical models of neural computation with emergent property inference. ELife, 2021, 10, .	2.8	16
674	Microcircuits for spatial coding in the medial entorhinal cortex. Physiological Reviews, 2022, 102, 653-688.	13.1	36
675	The role of mTORC1 activation in seizure-induced exacerbation of Alzheimer's disease. Brain, 2022, 145, 324-339.	3.7	15
676	Lateralized Decrease of Parvalbumin+ Cells in the Somatosensory Cortex of ASD Models Is Correlated with Unilateral Tactile Hypersensitivity. Cerebral Cortex, 2022, 32, 554-568.	1.6	9
677	Cortical disinhibitory circuits: cell types, connectivity and function. Trends in Neurosciences, 2021, 44, 643-657.	4.2	35
678	Cholinergic modulation of dentate gyrus processing through dynamic reconfiguration of inhibitory circuits. Cell Reports, 2021, 36, 109572.	2.9	8
679	Development, Diversity, and Death of MGE-Derived Cortical Interneurons. International Journal of Molecular Sciences, 2021, 22, 9297.	1.8	13
680	Neocortical inhibitory interneuron subtypes are differentially attuned to synchrony- and rate-coded information. Communications Biology, 2021, 4, 935.	2.0	3
681	Adaptive Mechanisms of Somatostatin-Positive Interneurons after Traumatic Brain Injury through a Switch of α Subunits in L-Type Voltage-Gated Calcium Channels. Cerebral Cortex, 2022, 32, 1093-1109. 	1.6	4

#	Article	IF	CITATIONS
682	Neurophysiological basis of the N400 deflection, from Mismatch Negativity to Semantic Prediction Potentials and late positive components. International Journal of Psychophysiology, 2021, 166, 134-150.	0.5	10
683	Optogenetic Activation of Interneuron Subtypes Modulates Visual Contrast Responses of Mouse V1 Neurons. Cerebral Cortex, 2022, 32, 1110-1124.	1.6	6
684	Excitatory synapses and gap junctions cooperate to improve Pv neuronal burst firing and cortical social cognition in Shank2-mutant mice. Nature Communications, 2021, 12, 5116.	5.8	18
685	Reliable Sensory Processing in Mouse Visual Cortex through Cooperative Interactions between Somatostatin and Parvalbumin Interneurons. Journal of Neuroscience, 2021, 41, 8761-8778.	1.7	17
686	Infralimbic cortex pyramidal neuron GIRK signaling contributes to regulation of cognitive flexibility but not affect-related behavior in male mice Physiology and Behavior, 2021, 242, 113597.	1.0	3
687	Somatostatin Interneurons of the Insula Mediate QR2-Dependent Novel Taste Memory Enhancement. ENeuro, 2021, 8, ENEURO.0152-21.2021.	0.9	5
688	Gephyrin-Lacking PV Synapses on Neocortical Pyramidal Neurons. International Journal of Molecular Sciences, 2021, 22, 10032.	1.8	3
690	CellExplorer: A framework for visualizing and characterizing single neurons. Neuron, 2021, 109, 3594-3608.e2.	3.8	56
691	Somatostatin-Positive Interneurons Contribute to Seizures in <i>SCN8A</i> Epileptic Encephalopathy. Journal of Neuroscience, 2021, 41, 9257-9273.	1.7	11
692	The Engram's Dark Horse: How Interneurons Regulate State-Dependent Memory Processing and Plasticity. Frontiers in Neural Circuits, 2021, 15, 750541.	1.4	8
693	Reduction of cortical parvalbumin-expressing GABAergic interneurons in a rodent hyperoxia model of preterm birth brain injury with deficits in social behavior and cognition. Development (Cambridge), 2021, 148, .	1.2	7
694	Mu opioid receptors on hippocampal GABAergic interneurons are critical for the antidepressant effects of tianeptine. Neuropsychopharmacology, 2022, 47, 1387-1397.	2.8	12
695	Neuronal identity and cognitive control dynamics in the PFC. Seminars in Cell and Developmental Biology, 2022, 129, 14-21.	2.3	3
696	Vasoactive intestinal peptide (VIP) conducts the neuronal activity during absence seizures: GABA seems to be the main mediator of VIP. Neuroscience Letters, 2021, 765, 136268.	1.0	1
697	Extensive Structural Remodeling of the Axonal Arbors of Parvalbumin Basket Cells during Development in Mouse Neocortex. Journal of Neuroscience, 2021, 41, 9326-9339.	1.7	10
698	Sodium channelopathies of skeletal muscle and brain. Physiological Reviews, 2021, 101, 1633-1689.	13.1	55
699	Cholinergic boutons are closely associated with excitatory cells and four subtypes of inhibitory cells in the inferior colliculus. Journal of Chemical Neuroanatomy, 2021, 116, 101998.	1.0	10
700	Wiring of higher-order cortical areas: Spatiotemporal development of cortical hierarchy. Seminars in Cell and Developmental Biology, 2021, 118, 35-49.	2.3	14

#	Article	IF	CITATIONS
701	Depression-like behavior associated with E/I imbalance of mPFC and amygdala without TRPC channels in mice of knockout IL-10 from microglia. Brain, Behavior, and Immunity, 2021, 97, 68-78.	2.0	21
702	Regulation of Parvalbumin Interactome in the Perilesional Cortex after Experimental Traumatic Brain Injury. Neuroscience, 2021, 475, 52-72.	1.1	2
703	OUP accepted manuscript. Cerebral Cortex, 2021, 32, 76-92.	1.6	1
704	A Role for Vasoactive Intestinal Peptide Interneurons in Neurodevelopmental Disorders. Developmental Neuroscience, 2021, 43, 168-180.	1.0	11
705	Perineuronal nets stabilize the grid cell network. Nature Communications, 2021, 12, 253.	5.8	1,386
706	Combining Optogenetics with MEA, Depth-Resolved LFPs and Assessing the Scope of Optogenetic Network Modulation. Neuromethods, 2018, , 133-152.	0.2	5
707	Inhibitory Cell Types, Circuits and Receptive Fields in Mouse Visual Cortex. Research and Perspectives in Neurosciences, 2016, , 11-18.	0.4	8
708	Excitatory and Inhibitory Synaptic Placement and Functional Implications. , 2016, , 467-487.		7
709	3D Ultrastructure of Synaptic Inputs to Distinct GABAergic Neurons in the Mouse Primary Visual Cortex. Cerebral Cortex, 2021, 31, 2610-2624.	1.6	7
710	A Role for Somatostatin-Positive Interneurons in Neuro-Oscillatory and Information Processing Deficits in Schizophrenia. Schizophrenia Bulletin, 2021, 47, 1385-1398.	2.3	21
744	VIPergic neurons of the infralimbic and prelimbic cortices control palatable food intake through separate cognitive pathways. JCI Insight, 2019, 4, .	2.3	7
745	Identifying local and descending inputs for primary sensory neurons. Journal of Clinical Investigation, 2015, 125, 3782-3794.	3.9	90
746	Profiling parvalbumin interneurons using iPSC: challenges and perspectives for Autism Spectrum Disorder (ASD). Molecular Autism, 2020, 11, 10.	2.6	10
747	Independent Neuronal Origin of Seizures and Behavioral Comorbidities in an Animal Model of a Severe Childhood Genetic Epileptic Encephalopathy. PLoS Genetics, 2015, 11, e1005347.	1.5	31
748	Low Density Lipoprotein-Receptor Related Protein 1 Is Differentially Expressed by Neuronal and Glial Populations in the Developing and Mature Mouse Central Nervous System. PLoS ONE, 2016, 11, e0155878.	1.1	56
749	A Single Vector Platform for High-Level Gene Transduction of Central Neurons: Adeno-Associated Virus Vector Equipped with the Tet-Off System. PLoS ONE, 2017, 12, e0169611.	1.1	41
750	Rate and Temporal Coding Convey Multisensory Information in Primary Sensory Cortices. ENeuro, 2017, 4, ENEURO.0037-17.2017.	0.9	33
751	LSPS/Optogenetics to Improve Synaptic Connectivity Mapping: Unmasking the Role of Basket Cell-Mediated Feedforward Inhibition. ENeuro, 2016, 3, ENEURO.0142-15.2016.	0.9	7

#	Article	IF	CITATIONS
752	Identification of Mouse Claustral Neuron Types Based on Their Intrinsic Electrical Properties. ENeuro, 2020, 7, ENEURO.0216-20.2020.	0.9	22
753	Serotonergic Suppression of Mouse Prefrontal Circuits Implicated in Task Attention. ENeuro, 2016, 3, ENEURO.0269-16.2016.	0.9	16
754	Inhibitory Projections from the Inferior Colliculus to the Medial Geniculate body Originate from Four Subtypes of GABAergic Cells. ENeuro, 2018, 5, ENEURO.0406-18.2018.	0.9	17
755	Parvalbumin Interneuron Dysfunction in a Thalamo-Prefrontal Cortical Circuit in <i>Disc1</i> Locus Impairment Mice. ENeuro, 2020, 7, ENEURO.0496-19.2020.	0.9	19
756	Updating the picture of layer 2/3 VIP-expressing interneuron function in the mouse cerebral cortex. Acta Neurobiologiae Experimentalis, 2020, 79, 328-337.	0.4	4
757	Prefrontal Disinhibition in Social Fear: A Vital Action of Somatostatin Interneurons. Frontiers in Cellular Neuroscience, 2020, 14, 611732.	1.8	12
758	Regenerative Therapies to Restore Interneuron Disturbances in Experimental Models of Encephalopathy of Prematurity. International Journal of Molecular Sciences, 2021, 22, 211.	1.8	8
761	A deleterious Nav1.1 mutation selectively impairs telencephalic inhibitory neurons derived from Dravet Syndrome patients. ELife, 2016, 5, .	2.8	101
762	Somatostatin-positive interneurons in the dentate gyrus of mice provide local- and long-range septal synaptic inhibition. ELife, 2017, 6, .	2.8	73
763	Attentional modulation of neuronal variability in circuit models of cortex. ELife, 2017, 6, .	2.8	74
764	Parvalbumin-positive interneurons mediate neocortical-hippocampal interactions that are necessary for memory consolidation. ELife, 2017, 6, .	2.8	151
765	Rem2 stabilizes intrinsic excitability and spontaneous firing in visual circuits. ELife, 2018, 7, .	2.8	16
766	Sensory experience inversely regulates feedforward and feedback excitation-inhibition ratio in rodent visual cortex. ELife, 2018, 7, .	2.8	53
767	Altered hippocampal interneuron activity precedes ictal onset. ELife, 2018, 7, .	2.8	59
768	Complementary networks of cortical somatostatin interneurons enforce layer specific control. ELife, 2019, 8, .	2.8	89
769	Early-generated interneurons regulate neuronal circuit formation during early postnatal development. ELife, 2019, 8, .	2.8	14
770	A scalable platform for the development of cell-type-specific viral drivers. ELife, 2019, 8, .	2.8	67
771	Spatiotemporal constraints on optogenetic inactivation in cortical circuits. ELife, 2019, 8, .	2.8	150

#	Article	IF	CITATIONS
772	Mechanisms underlying the response of mouse cortical networks to optogenetic manipulation. ELife, 2020, 9, .	2.8	47
773	Auditory cortex shapes sound responses in the inferior colliculus. ELife, 2020, 9, .	2.8	45
774	Developmental loss of MeCP2 from VIP interneurons impairs cortical function and behavior. ELife, 2020, 9, .	2.8	40
775	Learning prediction error neurons in a canonical interneuron circuit. ELife, 2020, 9, .	2.8	35
776	Cortical ChAT+ neurons co-transmit acetylcholine and GABA in a target- and brain-region-specific manner. ELife, 2020, 9, .	2.8	57
777	Heterogeneous somatostatin-expressing neuron population in mouse ventral tegmental area. ELife, 2020, 9, .	2.8	9
778	Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH. Nature, 2021, 598, 137-143.	13.7	205
780	Comprehensive characterization of oscillatory signatures in a model circuit with PV- and SOM-expressing interneurons. Biological Cybernetics, 2021, 115, 487-517.	0.6	8
781	GABAergic Gene Regulatory Elements Used in Adeno-Associated Viral Vectors. Frontiers in Neurology, 2021, 12, 745159.	1.1	4
782	PV network plasticity mediated by neuregulin1-ErbB4 signalling controls fear extinction. Molecular Psychiatry, 2022, 27, 896-906.	4.1	19
783	Neocortex in the Spotlight: Concepts, Questions, and Methods. Neuromethods, 2014, , 3-18.	0.2	0
785	Imaging the Cortical Representation of Active Sensing in the Vibrissa System. , 2015, , 109-128.		0
790	Behavior-State Dependent Modulation of Perception Based on a Model of Conditioning. Lecture Notes in Computer Science, 2017, , 387-393.	1.0	0
810	Excitatory and inhibitory circuits differentially regulate local and distant cerebral hemodynamics. , 2019, , .		0
811	Development of the Central Nervous System. , 2019, , 1-99.		0
813	Coarse-grained descriptions of oscillations in neuronal network models. Communications in Mathematical Sciences, 2019, 17, 1437-1458.	0.5	0
814	Neuronal Cell-Subtype Specificity of Neural Synchronization in Mouse Primary Visual Cortex. SSRN Electronic Journal, 0, , .	0.4	0
816	Effect of Somatostatin-Expressing Interneuron Deficits in Depression. Advances in Psychology, 2019, 09, 1767-1777.	0.0	0

#	Article	IF	Citations
827	Development of the Central Nervous System. , 2020, , 3-77.		0
828	Loss of Clustered Protocadherin Diversity Alters the Spatial Distribution of Cortical Interneurons in Mice. Cerebral Cortex Communications, 2020, 1, tgaa089.	0.7	1
832	Interneuron transplantation: a prospective surgical therapy for medically refractory epilepsy. Neurosurgical Focus, 2020, 48, E18.	1.0	5
836	ErbB4 in parvalbumin-positive interneurons mediates proactive interference in olfactory associative reversal learning. Neuropsychopharmacology, 2021, , .	2.8	4
837	Visualizing Oscillations in Brain Slices With Genetically Encoded Voltage Indicators. Frontiers in Neuroanatomy, 2021, 15, 741711.	0.9	4
839	Intracortical Localization of a Promising Pain Biomarker. Journal of Neuroscience, 2020, 40, 9549-9551.	1.7	0
840	Altered White Matter and Layer VIb Neurons in Heterozygous Disc1 Mutant, a Mouse Model of Schizophrenia. Frontiers in Neuroanatomy, 2020, 14, 605029.	0.9	3
842	Neurobiology of Self-Injurious Behavior. Autism and Child Psychopathology Series, 2020, , 51-110.	0.1	0
843	Wide field mapping of cell-specific contributions to brain function. , 2020, , .		0
848	Heterogeneous GAD65 Expression in Subtypes of GABAergic Neurons Across Layers of the Cerebral Cortex and Hippocampus. Frontiers in Behavioral Neuroscience, 2021, 15, 750869.	1.0	12
849	Sex Differences in Affective Dysfunction and Alterations in Parvalbumin in Rodent Models of Early Life Adversity. Frontiers in Behavioral Neuroscience, 2021, 15, 741454.	1.0	12
850	Interneuron origin and molecular diversity in the human fetal brain. Nature Neuroscience, 2021, 24, 1745-1756.	7.1	49
851	mGlu1 potentiation enhances prelimbic somatostatin interneuron activity to rescue schizophrenia-like physiological and cognitive deficits. Cell Reports, 2021, 37, 109950.	2.9	21
860	Regulatory Elements Inserted into AAVs Confer Preferential Activity in Cortical Interneurons. ENeuro, 2020, 7, .	0.9	4
862	Reduced GABAergic neuropil and interneuron profiles in schizophrenia: Complementary analysis of disease course-related differences. Journal of Psychiatric Research, 2022, 145, 50-59.	1.5	3
863	Inhibition in the auditory cortex. Neuroscience and Biobehavioral Reviews, 2022, 132, 61-75.	2.9	13
865	Dynamics of a disinhibitory prefrontal microcircuit in controlling social competition. Neuron, 2022, 110, 516-531.e6.	3.8	45
866	Inhibitory control of synaptic signals preceding locomotion in mouse frontal cortex. Cell Reports, 2021, 37, 110035.	2.9	3

#	Article	IF	CITATIONS
868	A Cortico-Cortical Pathway Targets Inhibitory Interneurons and Modulates Paw Movement during Locomotion in Mice. Journal of Neuroscience, 2022, 42, 44-57.	1.7	5
869	Structural changes in the neocortex as correlates of variations in EEG spectra and seizure susceptibility in rat brains with different degrees of dysplasia. Journal of Comparative Neurology, 2021, , .	0.9	1
870	Deletion of <i>Fmr1</i> in Parvalbumin Inhibitory Neurons Leads to Dysregulated Translation and Selective Behavioral Deficits Associated with Fragile X Syndrome. SSRN Electronic Journal, 0, , .	0.4	0
871	Ablation of microRNAs in VIP ⁺ interneurons impairs olfactory discrimination and decreases neural activity in the olfactory bulb. Acta Physiologica, 2022, 234, e13767.	1.8	5
872	Long-Term Enhancement of NMDA Receptor Function in Inhibitory Neurons Preferentially Modulates Potassium Channels and Cell Adhesion Molecules. Frontiers in Pharmacology, 2021, 12, 796179.	1.6	3
873	Therapeutic potential of GABAA receptor subunit expression abnormalities in fragile X syndrome. Expert Review of Precision Medicine and Drug Development, 0, , 1-16.	0.4	2
874	Gabaergic Interneurons in Early Brain Development: Conducting and Orchestrated by Cortical Network Activity. Frontiers in Molecular Neuroscience, 2021, 14, 807969.	1.4	20
875	Single Circuit in V1 Capable of Switching Contexts During Movement Using an Inhibitory Population as a Switch. Neural Computation, 2022, 34, 541-594.	1.3	1
876	A selective serotonin reuptake inhibitor ameliorates obsessive–compulsive disorder-like perseverative behavior by attenuating 5-HT2C receptor signaling in the orbitofrontal cortex. Neuropharmacology, 2022, 206, 108926.	2.0	3
877	Regulatory Elements Inserted into AAVs Confer Preferential Activity in Cortical Interneurons. ENeuro, 2020, 7, ENEURO.0211-20.2020.	0.9	12
878	SLC6A1 and Neuropsychiatric Diseases: The Role of Mutations and Prospects for Treatment with Genome Editing Systems. Neurochemical Journal, 2021, 15, 376-389.	0.2	0
879	Local Connections of Pyramidal Neurons to Parvalbumin-Producing Interneurons in Motor-Associated Cortical Areas of Mice. ENeuro, 2022, 9, ENEURO.0567-20.2021.	0.9	5
880	The Organization of Somatostatin-Immunoreactive Cells in the Visual Cortex of the Gerbil. Biomedicines, 2022, 10, 92.	1.4	2
881	Stimulus-Selective Response Plasticity in Primary Visual Cortex: Progress and Puzzles. Frontiers in Neural Circuits, 2021, 15, 815554.	1.4	14
884	Kinetics and Connectivity Properties of Parvalbumin- and Somatostatin-Positive Inhibition in Layer 2/3 Medial Entorhinal Cortex. ENeuro, 2022, 9, ENEURO.0441-21.2022.	0.9	18
885	Disruption of KCC2 in Parvalbumin-Positive Interneurons Is Associated With a Decreased Seizure Threshold and a Progressive Loss of Parvalbumin-Positive Interneurons. Frontiers in Molecular Neuroscience, 2021, 14, 807090.	1.4	3
886	DNA-methylation dynamics across short-term, exposure-containing CBT in patients with panic disorder. Translational Psychiatry, 2022, 12, 46.	2.4	4
887	Cortical Hyperexcitability in the Driver's Seat in ALS. Clinical and Translational Neuroscience, 2022, 6, 5.	0.4	4

#	Article	IF	CITATIONS
888	<i>In vivo</i> electrophysiological study of the targeting of 5â€HT ₃ receptorâ€expressing cortical interneurons by the multimodal antidepressant, vortioxetine. European Journal of Neuroscience, 2022, 55, 1409-1423.	1.2	2
889	Ipsilateral Stimulus Encoding in Primary and Secondary Somatosensory Cortex of Awake Mice. Journal of Neuroscience, 2022, 42, 2701-2715.	1.7	17
891	VIP-Expressing GABAergic Neurons: Disinhibitory vs. Inhibitory Motif and Its Role in Communication Across Neocortical Areas. Frontiers in Cellular Neuroscience, 2022, 16, 811484.	1.8	11
892	Mouse and human share conserved transcriptional programs for interneuron development. Science, 2021, 374, eabj6641.	6.0	75
893	Effects of Altered Excitation-Inhibition Balance on Decision Making in a Cortical Circuit Model. Journal of Neuroscience, 2022, 42, 1035-1053.	1.7	33
894	Malformations of Cortical Development. , 2021, , 1-237.		1
895	Hyper-Excitability of Corticothalamic PT Neurons in MPFC Promotes Irritability in the Mouse Model of Alzheimer's Disease. SSRN Electronic Journal, 0, , .	0.4	0
896	The Signature of Moderate Perinatal Hypoxia on Cortical Organization and Behavior: Altered PNN-Parvalbumin Interneuron Connectivity of the Cingulate Circuitries. Frontiers in Cell and Developmental Biology, 2022, 10, 810980.	1.8	5
897	Lower Levels of GABAergic Function Markers in Corticotropin-Releasing Hormone-Expressing Neurons in the sgACC of Human Subjects With Depression. Frontiers in Psychiatry, 2022, 13, 827972.	1.3	3
898	VIP interneurons regulate olfactory bulb output and contribute to odor detection and discrimination. Cell Reports, 2022, 38, 110383.	2.9	10
899	Somatostatin and Somatostatin-Containing Interneurons—From Plasticity to Pathology. Biomolecules, 2022, 12, 312.	1.8	13
901	The Neuron Phenotype Ontology: A FAIR Approach to Proposing and Classifying Neuronal Types. Neuroinformatics, 2022, 20, 793-809.	1.5	3
902	Neuroprotective Effects of TRPM7 Deletion in Parvalbumin GABAergic vs. Glutamatergic Neurons following Ischemia. Cells, 2022, 11, 1178.	1.8	6
904	Genetic mosaicism in the human brain: from lineage tracing to neuropsychiatric disorders. Nature Reviews Neuroscience, 2022, 23, 275-286.	4.9	39
905	A Novel LHX6 Reporter Cell Line for Tracking Human iPSC-Derived Cortical Interneurons. Cells, 2022, 11, 853.	1.8	2
906	Long-Range GABAergic Projections of Cortical Origin in Brain Function. Frontiers in Systems Neuroscience, 2022, 16, 841869.	1.2	13
908	The Role of Inhibitory Interneurons in Circuit Assembly and Refinement Across Sensory Cortices. Frontiers in Neural Circuits, 2022, 16, 866999.	1.4	5
909	Transforming Discoveries About Cortical Microcircuits and Gamma Oscillations Into New Treatments for Cognitive Deficits in Schizophrenia. American Journal of Psychiatry, 2022, 179, 267-276.	4.0	16

#	Article	IF	CITATIONS
910	The neural hierarchy of consciousness: A theoretical model and review on neurophysiology and NCCs. Neuropsychologia, 2022, 169, 108202.	0.7	3
911	Dopaminergic modulation of primary motor cortex: From cellular and synaptic mechanisms underlying motor learning to cognitive symptoms in Parkinson's disease. Neurobiology of Disease, 2022, 167, 105674.	2.1	15
912	Perinatal Penicillin Exposure Affects Cortical Development and Sensory Processing. Frontiers in Molecular Neuroscience, 2021, 14, 704219.	1.4	4
913	A subpopulation of cortical VIP-expressing interneurons with highly dynamic spines. Communications Biology, 2022, 5, 352.	2.0	7
914	Cellular and molecular signatures of in vivo imaging measures of GABAergic neurotransmission in the human brain. Communications Biology, 2022, 5, 372.	2.0	1
915	Transcranial Magnetic Stimulation and Neocortical Neurons: The Micro-Macro Connection. Frontiers in Neuroscience, 2022, 16, 866245.	1.4	8
940	Computational Concepts for Reconstructing and Simulating Brain Tissue. Advances in Experimental Medicine and Biology, 2022, 1359, 237-259.	0.8	2
941	Role of NMDA receptor-mediated abnormalities of GABAergic interneurons in psychiatric disorders. Journal of Central South University (Medical Sciences), 2020, 45, 176-180.	0.1	0
943	Differential effects of group III metabotropic glutamate receptors on spontaneous inhibitory synaptic currents in spine-innervating double bouquet and parvalbumin-expressing dendrite-targeting GABAergic interneurons in human neocortex. Cerebral Cortex, 2023, 33, 2101-2142.	1.6	2
944	Genetic Regulation of Vertebrate Forebrain Development by Homeobox Genes. Frontiers in Neuroscience, 2022, 16, 843794.	1.4	14
945	Parvalbumin-Positive Interneurons Regulate Cortical Sensory Plasticity in Adulthood and Development Through Shared Mechanisms. Frontiers in Neural Circuits, 2022, 16, .	1.4	19
946	Patterns of functional connectivity alterations induced by alcohol reflect somatostatin interneuron expression in the human cerebral cortex. Scientific Reports, 2022, 12, 7896.	1.6	8
948	Modulation of epileptiform activity by three subgroups of GABAergic interneurons in mouse somatosensory cortex. Epilepsy Research, 2022, 183, 106937.	0.8	5
949	Global and subtype-specific modulation of cortical inhibitory neurons regulated by acetylcholine during motor learning. Neuron, 2022, 110, 2334-2350.e8.	3.8	24
950	Single-cell transcriptomic classification of rabies-infected cortical neurons. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	19
951	Selective Inhibitory Circuit Dysfunction after Chronic Frontal Lobe Contusion. Journal of Neuroscience, 2022, 42, 5361-5372.	1.7	2
953	Neonatal Oxidative Stress Impairs Cortical Synapse Formation and GABA Homeostasis in Parvalbumin-Expressing Interneurons. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-12.	1.9	9
955	The Distinct Characteristics of Somatostatin Neurons in the Human Brain. Molecular Neurobiology, 2022, 59, 4953-4965.	1.9	5

ARTICLE IF CITATIONS # Single-cell transcriptomic analysis of neuroepithelial cells and other cell types of the gills of 956 22 1.6 zebrafish (Danio rerio) exposed to hypoxia. Scientific Reports, 2022, 12, . Biophysical Kv3 channel alterations dampen excitability of cortical PV interneurons and contribute to 2.8 network hyperexcitability in early Alzheimer's. ELifé, 0, 11, . Somatostatin interneurons exhibit enhanced functional output and resilience to axotomy after mild 959 2.1 2 traumatic brain injury. Neurobiology of Disease, 2022, 171, 105801. Increasing the Excitatory Drive Rescues Excitatory/Inhibitory Imbalance and Mismatch Negativity 960 1.1 Deficit Caused by Parvalbumin Specific GluA1 Deletion. Neuroscience, 2022, 496, 190-204. GABA System Modifications During Periods of Hormonal Flux Across the Female Lifespan. Frontiers in 961 1.0 9 Behavioral Neuroscience, 0, 16, . Neuropeptide System Regulation of Prefrontal Cortex Circuitry: Implications for Neuropsychiatric 1.4 Disorders. Frontiers in Neural Circuits, 0, 16, . Stiff person syndrome spectrum disorders; more than meets the eye. Journal of Neuroimmunology, 963 1.1 23 2022, 369, 577915. Loss of SST and PV positive interneurons in the ventral hippocampus results in anxiety-like behavior in 964 1.5 5xFAD mice. Neurobiology of Aging, 2022, 117, 165-178. Deletion of Fmr1 in parvalbumin-expressing neurons results in dysregulated translation and selective behavioral deficits associated with fragile X syndrome. Molecular Autism, 2022, 13, . 965 2.6 11 Serotonergic regulation of bipolar cell survival in the developing cerebral cortex. Cell Reports, 2022, 40, 111037. Application of Medial Ganglionic Eminence Cell Transplantation in Diseases Associated With 968 4 1.8 Interneuron Disorders. Frontiers in Cellular Neuroscience, 0, 16, . Long-term changes of parvalbumin- and somatostatin-positive interneurons of the primary motor cortex after chronic social defeat stress depend on individual stress-vulnerability. Frontiers in 1.3 Psychiatry, 0, 13, . Understanding the effects of serotonin in the brain through its role in the gastrointestinal tract. 971 3.7 21 Brain, 2022, 145, 2967-2981. GABA tonic currents and glial cells are altered during epileptogenesis in a mouse model of Dravet 1.8 syndrome. Frontiers in Cellular Neuroscience, 0, 16, . Control of fear by discrete prefrontal GABAergic populations encoding valence-specific information. 973 20 3.8 Neuron, 2022, 110, 3036-3052.e5. Cell-type specific DNA methylome signatures reveal epigenetic mechanisms for neuronal diversity and 974 1.4 neurodevelopmental disorder. Human Molecular Genetics, 0, , . 975 Hippocampal circuit dysfunction in psychosis. Translational Psychiatry, 2022, 12, . 2.4 8 Juvenile social isolation immediately affects the synaptic activity and firing property of fast-spiking 976 parvalbumin-expressing interneuron subtype in mouse medial prefrontal cortex. Cérebral Cortex, 1.6 2023, 33, 359<u>1</u>-3606.

#	Article	IF	CITATIONS
977	The effect of self-administered methamphetamine on GABAergic interneuron populations and functional connectivity of the nucleus accumbens and prefrontal cortex. Psychopharmacology, 2022, 239, 2903-2919.	1.5	1
979	Early postnatal serotonin modulation prevents adult-stage deficits in Arid1b-deficient mice through synaptic transcriptional reprogramming. Nature Communications, 2022, 13, .	5.8	5
980	Semantic processing and neurobiology in Alzheimer's disease and Mild Cognitive Impairment. Neuropsychologia, 2022, 174, 108337.	0.7	8
981	Knock-in mouse models for studying somatostatin and cholecystokinin expressing cells. Journal of Neuroscience Methods, 2022, 381, 109704.	1.3	0
982	<i>Sncg</i> , <i>Mybpc1</i> , and <i>Parm1</i> Classify subpopulations of VIP-expressing interneurons in layers 2/3 of the somatosensory cortex. Cerebral Cortex, 2023, 33, 4293-4304.	1.6	1
985	N-acetylcysteine treatment mitigates loss of cortical parvalbumin-positive interneuron and perineuronal net integrity resulting from persistent oxidative stress in a rat TBI model. Cerebral Cortex, 2023, 33, 4070-4084.	1.6	3
987	Quantitative analysis of the GABAergic innervation of the soma and axon initial segment of pyramidal cells in the human and mouse neocortex. Cerebral Cortex, 2023, 33, 3882-3909.	1.6	2
989	A microcircuit model involving parvalbumin, somatostatin, and vasoactive intestinal polypeptide inhibitory interneurons for the modulation of neuronal oscillation during visual processing. Cerebral Cortex, 2023, 33, 4459-4477.	1.6	7
990	In vivo extracellular recordings of thalamic and cortical visual responses reveal V1 connectivity rules. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	5
991	NLRP3-Mediated Piezo1 Upregulation in ACC Inhibitory Parvalbumin-Expressing Interneurons Is Involved in Pain Processing after Peripheral Nerve Injury. International Journal of Molecular Sciences, 2022, 23, 13035.	1.8	6
992	Impact of somatostatin interneurons on interactions between barrels in plasticity induced by whisker deprivation. Scientific Reports, 2022, 12, .	1.6	3
993	Connectomic analysis of thalamus-driven disinhibition in cortical layer 4. Cell Reports, 2022, 41, 111476.	2.9	6
994	Distinct organization of two cortico-cortical feedback pathways. Nature Communications, 2022, 13, .	5.8	11
995	Embryonic Deletion of TXNIP in GABAergic Neurons Enhanced Oxidative Stress in PV+ Interneurons in Primary Somatosensory Cortex of Aging Mice: Relevance to Schizophrenia. Brain Sciences, 2022, 12, 1395.	1.1	1
996	Cortical control of chandelier cells in neural codes. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	4
997	Parvalbumin and parvalbumin chandelier interneurons in autism and other psychiatric disorders. Frontiers in Psychiatry, 0, 13, .	1.3	13
998	Contingent Social Interaction Does Not Prevent Habituation towards Playback of Pro-Social 50-kHz Calls: Behavioral Responses and Brain Activation Patterns. Brain Sciences, 2022, 12, 1474.	1.1	0
999	An efficient rAAV vector for protein expression in cortical parvalbumin expressing interneurons. Scientific Reports, 2022, 12, .	1.6	3

#	Article	IF	CITATIONS
1001	Cortical circuit-based lossless neural integrator for perceptual decision-making: A computational modeling study. Frontiers in Computational Neuroscience, 0, 16, .	1.2	0
1002	Disinhibitory circuit mediated by connections from vasoactive intestinal polypeptide to somatostatin interneurons underlies the paradoxical decrease in spike synchrony with increased border ownership selective neuron firing rate. Frontiers in Computational Neuroscience, 0, 16, .	1.2	0
1003	Neurotransmitter phenotype and axonal projection patterns of VIP-expressing neurons in the inferior colliculus. Journal of Chemical Neuroanatomy, 2022, 126, 102189.	1.0	7
1004	Identification of visual cortex cell types and species differences using single-cell RNA sequencing. Nature Communications, 2022, 13, .	5.8	12
1005	Prefrontal Interneurons: Populations, Pathways, and Plasticity Supporting Typical and Disordered Cognition in Rodent Models. Journal of Neuroscience, 2022, 42, 8468-8476.	1.7	8
1006	Key role of neuronal diversity in structured reservoir computing. Chaos, 2022, 32, 113130.	1.0	0
1008	Effects of optogenetic inhibition of a small fraction of parvalbumin-positive interneurons on the representation of sensory stimuli in mouse barrel cortex. Scientific Reports, 2022, 12, .	1.6	4
1009	Cell-Type Specific Inhibition Controls the High-Frequency Oscillations in the Medial Entorhinal Cortex. International Journal of Molecular Sciences, 2022, 23, 14087.	1.8	3
1010	Atypical antidepressant mirtazapine inhibits 5-hydroxytryptamine3 receptor currents in NCB-20 cells. Journal of Pharmacological Sciences, 2023, 151, 63-71.	1.1	1
1011	Circadian time―and sleepâ€dependent modulation of cortical parvalbuminâ€positive inhibitory neurons. EMBO Journal, 2023, 42, .	3.5	5
1012	The local and longâ€ r ange input landscape of inhibitory neurons in mouse auditory cortex. Journal of Comparative Neurology, 2023, 531, 502-514.	0.9	1
1015	Simulations of cortical networks using spatially extended conductanceâ€based neuronal models. Journal of Physiology, 2023, 601, 3123-3139.	1.3	6
1016	Spikebench: An open benchmark for spike train time-series classification. PLoS Computational Biology, 2023, 19, e1010792.	1.5	2
1017	Cell-type-specific synaptic modulation of mAChR on SST and PV interneurons. Frontiers in Psychiatry, 0, 13, .	1.3	2
1018	The plasticitome of cortical interneurons. Nature Reviews Neuroscience, 2023, 24, 80-97.	4.9	17
1019	Prefrontal Cortical (PFC) circuits. , 2023, , 125-169.		0
1020	Adolescent Parvalbumin Expression in the Left Orbitofrontal Cortex Shapes Sociability in Female Mice. Journal of Neuroscience, 2023, 43, 1555-1571.	1.7	7
1021	Interacting rhythms enhance sensitivity of target detection in a fronto-parietal computational model	2.8	0

#	Article	IF	CITATIONS
1023	Transcriptomic cell type structures inÂvivo neuronal activity across multiple timescales. Cell Reports, 2023, 42, 112318.	2.9	2
1024	Leveraging circuits to understand addiction. , 2023, , 1-44.		1
1027	HCN channels at the cell soma ensure the rapid electrical reactivity of fast-spiking interneurons in human neocortex. PLoS Biology, 2023, 21, e3002001.	2.6	7
1029	Therapeutic Hypothermia Attenuates Cortical Interneuron Loss after Cerebral Ischemia in Near-Term Fetal Sheep. International Journal of Molecular Sciences, 2023, 24, 3706.	1.8	0
1031	Involvement of GABAergic Interneuron Subtypes in 4-Aminopyridine-Induced Seizure-Like Events in Mouse Entorhinal Cortex <i>in Vitro</i> . Journal of Neuroscience, 2023, 43, 1987-2001.	1.7	2
1032	GABAB Inhibition through Feedback Is Involved in the Synchronization of Interictal Spikes in the Cortex. Neuroscience and Behavioral Physiology, 0, , .	0.2	0
1033	Propofol-Induced Developmental Neurotoxicity: From Mechanisms to Therapeutic Strategies. ACS Chemical Neuroscience, 2023, 14, 1017-1032.	1.7	1
1034	Visual assessment of global chromatin intranuclear localization and its cellular diversification in mouse cells. Acta Biochimica Et Biophysica Sinica, 2023, , .	0.9	0
1038	Plasticity in auditory cortex during parenthood. Hearing Research, 2023, 431, 108738.	0.9	2
1042	Cellular signaling impacts upon GABAergic cortical interneuron development. Frontiers in Neuroscience, 0, 17, .	1.4	1
1044	Inhibitory circuits in fear memory and fear-related disorders. Frontiers in Neural Circuits, 0, 17, .	1.4	8
1048	Neurotransmission-related gene expression in the frontal pole is altered in subjects with bipolar disorder and schizophrenia. Translational Psychiatry, 2023, 13, .	2.4	1
1050	In-silico EEG biomarkers of reduced inhibition in human cortical microcircuits in depression. PLoS Computational Biology, 2023, 19, e1010986.	1.5	3
1051	Responses of Cortical Neurons to Intracortical Microstimulation in Awake Primates. ENeuro, 2023, 10, ENEURO.0336-22.2023.	0.9	4
1052	Regulation of the E/I-balance by the neural matrisome. Frontiers in Molecular Neuroscience, 0, 16, .	1.4	3
1121	Morphological Features of Human Dendritic Spines. Advances in Neurobiology, 2023, , 367-496.	1.3	0
1137	Glial Cells During the Life Cycle. , 2023, , 29-57.		0
1141	Imbalances of Inhibitory and Excitatory Systems in Autism Spectrum Disorders. , 2023, , 209-226.		0

ARTICLE

IF CITATIONS