Interaction, uptake, and processing of LbL-coated micro

DOI: 10.1002/cyto.a.21145

Citation Report

#	Article	IF	CITATIONS
1	Maintenance of α ₁ -antitrypsin activity by means of co-application of hypochlorous acid-scavengers in vitro and in the supernatant of polymorphonuclear leukocytes. Biomatter, 2012, 2, 24-36.	2.6	8
2	Inhibition of Human Neutrophil Elastase by α ₁ -Antitrypsin Functionalized Colloidal Microcarriers. ACS Nano, 2012, 6, 6325-6336.	7.3	24
3	Development of LbL biopolymer capsules as a delivery system for the multilayer-assembled anti-inflammatory substance $\hat{l}\pm 1$ -antitrypsin. Journal of Materials Chemistry B, 2013, 1, 3633.	2.9	9
5	The Application of LbL-Microcarriers for the Treatment of Chronic Inflammation: Monitoring the Impact of LbL-Microcarriers on Cell Viability. Macromolecular Bioscience, 2015, 15, 546-557.	2.1	7
6	Reversible Fusion Proteins as a Tool to Enhance Uptake of Virus-Functionalized LbL Microcarriers. Biomacromolecules, 2018, 19, 3212-3223.	2.6	6
7	Microparticles of Lamivudine—Poly-ε-Caprolactone Conjugate for Drug Delivery via Internalization by Macrophages. Molecules, 2019, 24, 723.	1.7	7
8	Dual Transport of Active Substances with a Layerâ€byâ€Layerâ€Based Drug Delivery System to Terminate Inflammatory Processes. Macromolecular Bioscience, 2020, 20, 2000097.	2.1	5
9	The Metabolic Response of Various Cell Lines to Microtubule-Driven Uptake of Lipid- and Polymer-Coated Layer-by-Layer Microcarriers. Pharmaceutics, 2021, 13, 1441.	2.0	1
11	Dextrans and dextran derivatives as polyelectrolytes in layer-by-layer processing materials – A review. Carbohydrate Polymers, 2022, 293, 119700.	5.1	12