1,25â€Đihydroxyvitamin D₃ acts directly o to inhibit experimental autoimmune encephalomyelitis

European Journal of Immunology 41, 822-832 DOI: 10.1002/eji.201040632

Citation Report

#	Article	IF	CITATIONS
1	Vitamin D in the healthy and inflamed central nervous system: access and function. Journal of the Neurological Sciences, 2011, 311, 37-43.	0.3	66
2	Vitamin D in autoimmune, infectious and allergic diseases: A vital player?. Best Practice and Research in Clinical Endocrinology and Metabolism, 2011, 25, 617-632.	2.2	102
3	Vitamin D-mediated immune regulation in Multiple Sclerosis. Journal of the Neurological Sciences, 2011, 311, 23-31.	0.3	46
4	Environmental triggers of multiple sclerosis. FEBS Letters, 2011, 585, 3724-3729.	1.3	64
5	Nuclear receptors: T _H 17 cell control from within. FEBS Letters, 2011, 585, 3764-3769.	1.3	13
6	Effects of vitamin D on the peripheral adaptive immune system: A review. Autoimmunity Reviews, 2011, 10, 733-743.	2.5	207
7	Predominance of Th2 polarization by Vitamin D through a STAT6-dependent mechanism. Journal of Neuroinflammation, 2011, 8, 56.	3.1	114
8	Genetics of experimental allergic encephalomyelitis supports the role of T helper cells in multiple sclerosis pathogenesis. Annals of Neurology, 2011, 70, 887-896.	2.8	33
9	Vitamin D and Multiple Sclerosis. , 2011, , 1843-1877.		3
10	Current Theories for Multiple Sclerosis Pathogenesis and Treatment. , 2012, , .		0
11	Vitamin D and Regulatory T Cells. , 2012, , 85-101.		0
12	Vitamin D and multiple sclerosis. Current Opinion in Neurology, 2012, 25, 246-251.	1.8	80
13	The <i>Ifng</i> Gene Is Essential for <i>Vdr</i> Gene Expression and Vitamin D3-Mediated Reduction of the Pathogenic T Cell Burden in the Central Nervous System in Experimental Autoimmune Encephalomyelitis, a Multiple Sclerosis Model. Journal of Immunology, 2012, 189, 3188-3197.	0.4	41
14	Availability of 25-Hydroxyvitamin D3 to APCs Controls the Balance between Regulatory and Inflammatory T Cell Responses. Journal of Immunology, 2012, 189, 5155-5164.	0.4	172
15	Vitamin D and Autoimmune Disease. Oxidative Stress and Disease, 2012, , 239-306.	0.3	2
16	1,25-Dihyroxyvitamin D3 Promotes <i>FOXP3</i> Expression via Binding to Vitamin D Response Elements in Its Conserved Noncoding Sequence Region. Journal of Immunology, 2012, 188, 5276-5282.	0.4	160
17	Interference with RhoA–ROCK Signaling Mechanism in Autoreactive CD4+ T Cells Enhances the Bioavailability of 1,25-Dihydroxyvitamin D3 in Experimental Autoimmune Encephalomyelitis. American Journal of Pathology, 2012, 181, 993-1006.	1.9	20
18	Vitamin D, multiple sclerosis and inflammatory bowel disease. Archives of Biochemistry and Biophysics, 2012, 523, 103-106.	1.4	92

#	Article	IF	CITATIONS
19	Vitamin D in multiple sclerosis: implications for assessment and treatment. Expert Review of Neurotherapeutics, 2012, 12, 1101-1112.	1.4	19
20	Characterization of the interaction between astrocytes and encephalitogenic lymphocytes during the development of experimental autoimmune encephalitomyelitis (EAE) in mice. Clinical and Experimental Immunology, 2012, 170, 254-265.	1.1	27
21	Vitamin D and cancer: a review of molecular mechanisms. Biochemical Journal, 2012, 441, 61-76.	1.7	323
22	The influence of nutritional factors on the prognosis of multiple sclerosis. Nature Reviews Neurology, 2012, 8, 678-689.	4.9	73
23	Calcitriol Modulates the CD46 Pathway in T Cells. PLoS ONE, 2012, 7, e48486.	1.1	30
24	Pathogenesis of multiple sclerosis via environmental and genetic dysregulation of N-glycosylation. Seminars in Immunopathology, 2012, 34, 415-424.	2.8	46
25	Contribution of GPR30 for 1,25 dihydroxyvitamin D3 protection in EAE. Metabolic Brain Disease, 2012, 27, 29-35.	1.4	16
26	Serum levels of 25-hydroxy vitamin D in normal Biozzi and C57BL/6 mice and during the course of chronic relapsing experimental autoimmune encephalomyelitis (CR EAE). Inflammation Research, 2013, 62, 659-667.	1.6	8
27	One calcitriol dose transiently increases Helios+FoxP3+ T cells and ameliorates autoimmune demyelinating disease. Journal of Neuroimmunology, 2013, 263, 64-74.	1.1	44
28	1,25-Dihydroxyvitamin D ₃ selectively and reversibly impairs T helper-cell CNS localization. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 21101-21106.	3.3	50
29	Contribution of vitamin D insufficiency to the pathogenesis of multiple sclerosis. Therapeutic Advances in Neurological Disorders, 2013, 6, 81-116.	1.5	73
30	Pediatric Multiple Sclerosis. Neuroimaging Clinics of North America, 2013, 23, 227-243.	0.5	14
31	The Vitamin D Receptor and T Cell Function. Frontiers in Immunology, 2013, 4, 148.	2.2	250
32	Induced and Natural Regulatory T Cells in the Development of Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2013, 19, 1772-1788.	0.9	157
33	1,25-Dihydroxyvitamin D3 Suppresses TLR8 Expression and TLR8-Mediated Inflammatory Responses in Monocytes In Vitro and Experimental Autoimmune Encephalomyelitis In Vivo. PLoS ONE, 2013, 8, e58808.	1.1	40
34	Vitamin D and inflammatory diseases. Journal of Inflammation Research, 2014, 7, 69.	1.6	284
35	Utilização da vitamina D3 e seus metabólitos na alimentação de frangos de corte sobre parâmetros imunológicos e morfometria intestinal. Pesquisa Veterinaria Brasileira, 2014, 34, 477-484.	0.5	2
37	Vitamin D receptor expression controls proliferation of naÃ⁻ve CD8+ T cells and development of CD8 mediated gastrointestinal inflammation. BMC Immunology, 2014, 15, 6.	0.9	75

#	Article	IF	CITATIONS
38	The role of CYP11A1 in the production of vitamin D metabolites and their role in the regulation of epidermal functions. Journal of Steroid Biochemistry and Molecular Biology, 2014, 144, 28-39.	1.2	136
39	RÃ1es bénéfiques de la vitamine D sur la neurodégénérescence et les troubles mentaux. Cahiers De Nutrition Et De Dietetique, 2014, 49, 279-293.	0.2	3
40	Vitamin D as a Neurosteroid Affecting the Developing and Adult Brain. Annual Review of Nutrition, 2014, 34, 117-141.	4.3	183
41	Genomic Binding Sites and Biological Effects of the Vitamin D: VDR Complex in Multiple Sclerosis. NeuroMolecular Medicine, 2014, 16, 265-279.	1.8	16
42	Effect of Absent Immune Cell Expression of Vitamin D Receptor on Cardiac Allograft Survival in Mice. Transplantation, 2015, 99, 1365-1371.	0.5	1
43	Effect of vitamin D3 intake on the onset of disease in a murine model of human Krabbe disease. Journal of Neuroscience Research, 2015, 93, 28-42.	1.3	14
44	Vitamin D3 and Monomethyl Fumarate Enhance Natural Killer Cell Lysis of Dendritic Cells and Ameliorate the Clinical Score in Mice Suffering from Experimental Autoimmune Encephalomyelitis. Toxins, 2015, 7, 4730-4744.	1.5	16
45	Vitamin D Antagonises the Suppressive Effect of Inflammatory Cytokines on CTLA-4 Expression and Regulatory Function. PLoS ONE, 2015, 10, e0131539.	1.1	43
46	Vitamin D cell signalling in health and disease. Biochemical and Biophysical Research Communications, 2015, 460, 53-71.	1.0	152
47	Advances in the immunopathogenesis of multiple sclerosis. Current Opinion in Neurology, 2015, 28, 206-219.	1.8	134
48	Multiple sclerosis and environmental factors: the role of vitamin D, parasites, and Epstein-Barr virus infection. Acta Neurologica Scandinavica, 2015, 132, 46-55.	1.0	71
49	Cutting Edge: Progesterone Directly Upregulates Vitamin D Receptor Gene Expression for Efficient Regulation of T Cells by Calcitriol. Journal of Immunology, 2015, 194, 883-886.	0.4	24
50	Is Multiple Sclerosis a Sun Deprivation Disease?. , 2015, , 481-494.		0
51	NKT cells can help mediate the protective effects of 1,25-dihydroxyvitamin D3 in experimental autoimmune encephalomyelitis in mice. International Immunology, 2015, 27, 237-244.	1.8	43
52	Vitamin D Actions on CD4+ T Cells in Autoimmune Disease. Frontiers in Immunology, 2015, 6, 100.	2.2	93
53	A Functional Relay from Progesterone to Vitamin D in the Immune System. DNA and Cell Biology, 2015, 34, 379-382.	0.9	9
54	Sex-Based Differences in Multiple Sclerosis (MS): Part II: Rising Incidence of Multiple Sclerosis in Women and the Vulnerability of Men to Progression of this Disease. Current Topics in Behavioral Neurosciences, 2015, 26, 57-86.	0.8	38
55	Inflammation and Nutritional Science for Programs/Policies and Interpretation of Research Evidence (INSPIRE). Journal of Nutrition, 2015, 145, 1039S-1108S.	1.3	170

#	Article	IF	CITATIONS
56	Vitamin D and estrogen synergy in Vdr-expressing CD4+ T cells is essential to induce Helios+FoxP3+ T cells and prevent autoimmune demyelinating disease. Journal of Neuroimmunology, 2015, 286, 48-58.	1.1	60
57	"Disease modifying nutricals―for multiple sclerosis. , 2015, 148, 85-113.		42
58	Dysbiosis caused by vitamin D receptor deficiency confers colonization resistance to Citrobacter rodentium through modulation of innate lymphoid cells. Mucosal Immunology, 2015, 8, 618-626.	2.7	86
59	Post-translational regulation of RORγt—A therapeutic target for the modulation of interleukin-17-mediated responses in autoimmune diseases. Cytokine and Growth Factor Reviews, 2016, 30, 1-17.	3.2	54
60	Network of nuclear receptor ligands in multiple sclerosis: Common pathways and interactions of sex-steroids, corticosteroids and vitamin D3-derived molecules. Autoimmunity Reviews, 2016, 15, 900-910.	2.5	17
62	The multiple sclerosis susceptibility genes TAGAP and IL2RA are regulated by vitamin D in CD4+ T cells. Genes and Immunity, 2016, 17, 118-127.	2.2	35
63	Dietary Vitamin D3 Suppresses Pulmonary Immunopathology Associated with Late-Stage Tuberculosis in C3HeB/FeJ Mice. Journal of Immunology, 2016, 196, 1293-1304.	0.4	25
64	Functional genomics analysis of vitamin D effects on CD4+ T cells in vivo in experimental autoimmune encephalomyelitis ‬. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1678-E1687.	3.3	81
65	1,25-Dihydroxyvitamin D 3 suppressed experimental autoimmune encephalomyelitis through both immunomodulation and oligodendrocyte maturation. Experimental and Molecular Pathology, 2017, 102, 515-521.	0.9	27
66	Regulation of Immune Function by Vitamin D and Its Use in Diseases of Immunity. Endocrinology and Metabolism Clinics of North America, 2017, 46, 1061-1094.	1.2	143
67	Modulation of inflammatory and immune responses by vitamin D. Journal of Autoimmunity, 2017, 85, 78-97.	3.0	250
68	Vitamin D in Autoimmunity: Molecular Mechanisms and Therapeutic Potential. Frontiers in Immunology, 2016, 7, 697.	2.2	298
69	Evolutionary Origin of the Interferon–Immune Metabolic Axis: The Sterol–Vitamin D Link. Frontiers in Immunology, 2017, 8, 62.	2.2	11
70	Lower Serum Vitamin D Metabolite Levels in Relation to Circulating Cytokines/Chemokines and Metabolic Hormones in Pregnant Women with Hypertensive Disorders. Frontiers in Immunology, 2017, 8, 273.	2.2	23
71	EBV Infection and Vitamin D in Multiple Sclerosis Patients. , 2017, , 9-20.		1
72	Symposium review: Targeting antimicrobial defenses of the udder through an intrinsic cellular pathway. Journal of Dairy Science, 2018, 101, 2753-2761.	1.4	10
73	1,25-Dihydroxyvitamin D3 increases the methionine cycle, CD4+ T cell DNA methylation and Helios+Foxp3+ T regulatory cells to reverse autoimmune neurodegenerative disease. Journal of Neuroimmunology, 2018, 324, 100-114.	1.1	30
74	T Regulatory Cell Subpopulations Associated with Recent Ultraviolet Radiation Exposure in a Skin Cancer Screening Cohort. Journal of Immunology, 2018, 201, 3269-3281.	0.4	14

#	Article	IF	CITATIONS
75	The Anti-Inflammatory Effects of Vitamin D in Tumorigenesis. International Journal of Molecular Sciences, 2018, 19, 2736.	1.8	128
76	Sex-Specific Gene-by-Vitamin D Interactions Regulate Susceptibility to Central Nervous System Autoimmunity. Frontiers in Immunology, 2018, 9, 1622.	2.2	22
77	Genomic Effects of the Vitamin D Receptor: Potentially the Link between Vitamin D, Immune Cells, and Multiple Sclerosis. Frontiers in Immunology, 2018, 9, 477.	2.2	52
78	Vitamin D and Multiple Sclerosis. , 2018, , 989-1024.		4
79	Serum Vitamin D Metabolites and CXCL10 Concentrations Associate With Survival in Dogs With Immune Mediated Disease. Frontiers in Veterinary Science, 2019, 6, 247.	0.9	10
80	High dose vitamin D exacerbates central nervous system autoimmunity by raising T-cell excitatory calcium. Brain, 2019, 142, 2737-2755.	3.7	43
81	RhoA as a Key Regulator of Innate and Adaptive Immunity. Cells, 2019, 8, 733.	1.8	130
82	A Review of Various Antioxidant Compounds and their Potential Utility as Complementary Therapy in Multiple Sclerosis. Nutrients, 2019, 11, 1528.	1.7	65
83	Immunomodulatory effects of Calcitriol in acute spinal cord injury in rats. International Immunopharmacology, 2019, 74, 105726.	1.7	3
84	Identifying the culprits in neurological autoimmune diseases. Journal of Translational Autoimmunity, 2019, 2, 100015.	2.0	9
85	Aligning the Paradoxical Role of Vitamin D in Gastrointestinal Immunity. Trends in Endocrinology and Metabolism, 2019, 30, 459-466.	3.1	32
86	Immunological effects of vitamin D and their relations to autoimmunity. Journal of Autoimmunity, 2019, 100, 7-16.	3.0	58
87	The Role of the Renin-Angiotensin System and Vitamin D in Keloid Disorder—A Review. Frontiers in Surgery, 2019, 6, 67.	0.6	13
88	Vitamin D Supplementation in Central Nervous System Demyelinating Disease—Enough Is Enough. International Journal of Molecular Sciences, 2019, 20, 218.	1.8	25
89	Vitamin D down-regulates the expression of some Th17 cell-related cytokines, key inflammatory chemokines, and chemokine receptors in experimental autoimmune encephalomyelitis. Nutritional Neuroscience, 2019, 22, 725-737.	1.5	18
90	Vitamin D repletion ameliorates adipose tissue browning and muscle wasting in infantile nephropathic cystinosisâ€associated cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 120-134.	2.9	26
91	Micronutrients in autoimmune diseases: possible therapeutic benefits of zinc and vitamin D. Journal of Nutritional Biochemistry, 2020, 77, 108240.	1.9	69
92	Vitamin D3-mediated resistance to a multiple sclerosis model disease depends on myeloid cell 1,25-dihydroxyvitamin D3 synthesis and correlates with increased CD4+ T cell CTLA-4 expression. Journal of Neuroimmunology, 2020, 338, 577105.	1.1	24

#	Article	IF	CITATIONS
93	Vitamin D/CD46 Crosstalk in Human T Cells in Multiple Sclerosis. Frontiers in Immunology, 2020, 11, 598727.	2.2	10
94	The protective effect of iodide intake adjustment and 1,25(OH) ₂ D ₃ supplementation in rat offspring following excess iodide intake. Therapeutic Advances in Endocrinology and Metabolism, 2020, 11, 204201882095829.	1.4	3
95	Vitamin D and IFN-Î ² Modulate the Inflammatory Gene Expression Program of Primary Human T Lymphocytes. Frontiers in Immunology, 2020, 11, 566781.	2.2	8
96	Calcitriol Prevents Neuroinflammation and Reduces Blood-Brain Barrier Disruption and Local Macrophage/Microglia Activation. Frontiers in Pharmacology, 2020, 11, 161.	1.6	36
97	Repurposing the psoriasis drug Oxarol to an ointment adjuvant for the influenza vaccine. International Immunology, 2020, 32, 499-507.	1.8	7
98	Neuron-Specific Vitamin D Signaling Attenuates Microglia Activation and CNS Autoimmunity. Frontiers in Neurology, 2020, 11, 19.	1.1	24
99	Environmental Influencers, MicroRNA, and Multiple Sclerosis. Journal of Central Nervous System Disease, 2020, 12, 117957351989495.	0.7	22
100	Dietary influence on central nervous system myelin production, injury, and regeneration. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165779.	1.8	13
101	Vitamin D and Immune Regulation: Antibacterial, Antiviral, Antiâ€Inflammatory. JBMR Plus, 2021, 5, e10405.	1.3	158
102	A Systems Biology Approach for miRNA-mRNA Expression Patterns Analysis in Rheumatoid Arthritis. Combinatorial Chemistry and High Throughput Screening, 2021, 24, 195-212.	0.6	10
103	Vitamin D and VDR Gene Polymorphisms' Association with Rheumatoid Arthritis in Lithuanian Population. Medicina (Lithuania), 2021, 57, 346.	0.8	11
105	Regulation of Mycobacterium-Specific Mononuclear Cell Responses by 25-Hydroxyvitamin D3. PLoS ONE, 2011, 6, e21674.	1.1	38
106	1(OH) Vitamin D3 Supplementation Improves the Sensitivity of the Immune-Response during Peg-IFN/RBV Therapy in Chronic Hepatitis C Patients-Case Controlled Trial. PLoS ONE, 2013, 8, e63672.	1.1	27
107	1α,25(OH)2 Vitamin D3 Modulates Avian T Lymphocyte Functions without Inducing CTL Unresponsiveness. PLoS ONE, 2016, 11, e0150134.	1.1	14
108	Multiple Sclerosis: Lipids, Lymphocytes, and Vitamin D. Immunometabolism, 2020, 2, .	0.7	25
109	Evaluation of 1,25(OH)2D3 Effects on FOXP3, ROR-Î ³ t, GITR, and CTLA-4 Gene Expression in the PBMCs of Vitamin D-Deficient Women with Unexplained Recurrent Pregnancy Loss (URPL). Iranian Biomedical Journal, 2020, 24, 290-300.	0.4	7
110	The Role of Micronutrients in Graft-VSHost Disease: Immunomodulatory Effects of Vitamins A and D. Frontiers in Immunology, 2018, 9, 2853.	2.2	7
111	Nuclear Receptor Control of Myeloid Cell Responses - Implications for CNS Autoimmunity. Rheumatology (Sunnyvale, Calif), 2013, 03, .	0.3	1

	CITATION RE	PORT	
#	Article	IF	CITATIONS
112	Role of Active Vitamin D3 in Immunity. Indian Journal of Medical Biochemistry, 2017, 21, 166-175.	0.1	4
113	Essential vitamins for an effective T cell response. World Journal of Immunology, 2016, 6, 39.	0.5	5
114	THE ROLE OF VITAMIN D IN THE PATHOGENESIS OF CHRONIC NON-COMMUNICABLE DISEASES. Osteoporosis and Bone Diseases, 2014, 17, 27-30.	0.3	4
115	Shedding Light on Vitamin D and Multiple Sclerosis. , 2016, , 327-345.		0
116	Multiple Sclerosis in Women. , 2017, , 81-107.		2
118	Chemical synthesis, biological activities and action on nuclear receptors of 20S(OH)D3, 20S,25(OH)2D3, 20S,23S(OH)2D3 and 20S,23R(OH)2D3. Bioorganic Chemistry, 2022, 121, 105660.	2.0	10
119	Autoimmune disease and interconnections with vitamin D. Endocrine Connections, 2022, 11, .	0.8	28
125	Effect of Vitamin D on Graft-versus-Host Disease. Biomedicines, 2022, 10, 987.	1.4	4
126	Vitamin D as a Risk Factor for Multiple Sclerosis: Immunoregulatory or Neuroprotective?. Frontiers in Neurology, 2022, 13, .	1.1	17
128	Full spectrum of vitamin D immunomodulation in multiple sclerosis: mechanisms and therapeutic implications. Brain Communications, 2022, 4, .	1.5	30
129	Efforts Towards Repurposing of Antioxidant Drugs and Active Compounds for Multiple Sclerosis Control. Neurochemical Research, 0, , .	1.6	0
130	How Does Vitamin D Affect Immune Cells Crosstalk in Autoimmune Diseases?. International Journal of Molecular Sciences, 2023, 24, 4689.	1.8	8
131	Nutritional considerations in multiple sclerosis. British Journal of Neuroscience Nursing, 2023, 19, S18-S20.	0.1	0
132	Clinical and Imaging Outcomes after Vitamin D Supplementation in Patients with Multiple Sclerosis: A Systematic Review. Nutrients, 2023, 15, 1945.	1.7	4
135	Vitamin D mechanisms of protection in multiple sclerosis. , 2024, , 1129-1166.		0