Physicochemically Stable Polymer oupled Oxide Die Electronic Applications

Advanced Functional Materials 21, 2198-2207 DOI: 10.1002/adfm.201002054

Citation Report

#	Article	IF	CITATIONS
1	High-speed solution-processed organic single crystal transistors using a novel triisopropylsilylethynyl anthracene derivative. Applied Physics Letters, 2012, 101, .	1.5	14
2	Stability-improved organic n-channel thin-film transistors with nm-thin hydrophobic polymer-coated high-k dielectrics. Physical Chemistry Chemical Physics, 2012, 14, 14202.	1.3	20
3	Self-templating surface-initiated polymerization: a route to synthesize conductive brushes. Journal of Materials Chemistry, 2012, 22, 20179.	6.7	14
4	Complementary photo and temperature cured polymer dielectrics with high-quality dielectric properties for organic semiconductors. Journal of Materials Chemistry, 2012, 22, 19940.	6.7	15
5	Damage-free hybrid encapsulation of organic field-effect transistors to reduce environmental instability. Journal of Materials Chemistry, 2012, 22, 7731.	6.7	33
6	Performance and stability of flexible low-voltage organic thin-film transistors based on C <inf>10</inf> -DNTT. , 2012, , .		2
7	Surface Viscoelasticity of an Organic Interlayer Affects the Crystalline Nanostructure of an Organic Semiconductor and Its Electrical Performance. Journal of Physical Chemistry C, 2012, 116, 21673-21678.	1.5	7
8	Flexible low-voltage organic thin-film transistors and circuits based on C ₁₀ -DNTT. Journal of Materials Chemistry, 2012, 22, 4273-4277.	6.7	99
9	Influence of polymer dielectric surface energy on thinâ€film transistor performance of solutionâ€processed triethylsilylethynyl anthradithiophene (TESâ€ADT). Physica Status Solidi - Rapid Research Letters, 2012, 6, 71-73.	1.2	7
10	Highâ€Performance nâ€ŧype Organic Semiconductors: Incorporating Specific Electronâ€Withdrawing Motifs to Achieve Tight Molecular Stacking and Optimized Energy Levels. Advanced Materials, 2012, 24, 911-915.	11.1	89
11	Influence of substitution on the optical properties of functionalized pentacene monomers and crystals: Experiment and theory. Chemical Physics Letters, 2013, 585, 95-100.	1.2	11
12	Highly stable fluorine-rich polymer treated dielectric surface for the preparation of solution-processed organic field-effect transistors. Journal of Materials Chemistry C, 2013, 1, 1272-1278.	2.7	36
13	Directly Drawn Organic Transistors by Capillary Pen: A New Facile Patterning Method using Capillary Action for Soluble Organic Materials. Advanced Materials, 2013, 25, 4117-4122.	11.1	43
14	High-Performance Triethylsilylethynyl Anthradithiophene Transistors Prepared without Solvent Vapor Annealing: The Effects of Self-Assembly during Dip-Coating. ACS Applied Materials & Interfaces, 2013, 5, 2146-2154.	4.0	32
15	Optimization of Temperature-Mediated Organic Semiconducting Crystals on Soft Polymer-Treated Gate Dielectrics. Journal of Physical Chemistry C, 2013, 117, 25290-25297.	1.5	9
16	Using an in-vacuum CCD detector for simultaneous small- and wide-angle scattering at beamline X9. Journal of Synchrotron Radiation, 2013, 20, 211-218.	1.0	34
17	Flexible Highâ€Performance Allâ€Inkjetâ€Printed Inverters: Organoâ€Compatible and Stable Interface Engineering. Advanced Materials, 2013, 25, 4773-4777.	11.1	54
18	Chemically Tunable Ultrathin Silsesquiazane Interlayer for n-Type and p-Type Organic Transistors on Flexible Plastic. ACS Applied Materials & Interfaces, 2014, 6, 22807-22814.	4.0	10

CITAT	DEDO	DT
CITAT	KEPU	K I

#	Article	IF	CITATIONS
19	Grafting Fluorinated Polymer Nanolayer for Advancing the Electrical Stability of Organic Field-Effect Transistors. Chemistry of Materials, 2014, 26, 6467-6476.	3.2	34
20	Optimized Grafting Density of End-Functionalized Polymers to Polar Dielectric Surfaces for Solution-Processed Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2014, 6, 20444-20451.	4.0	25
21	A high molecular weight triisopropylsilylethynyl (TIPS)-benzodithiophene and diketopyrrolopyrrole-based copolymer for high performance organic photovoltaic cells. Journal of Materials Chemistry A, 2014, 2, 6348.	5.2	61
22	Fluorinated Polyimide Gate Dielectrics for the Advancing the Electrical Stability of Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2014, 6, 15209-15216.	4.0	47
23	Al ₂ O ₃ /TiO ₂ Nanolaminate Thin Film Encapsulation for Organic Thin Film Transistors via Plasma-Enhanced Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2014, 6, 6731-6738.	4.0	180
24	High-Performance Organic Complementary Inverters Using Monolayer Graphene Electrodes. ACS Applied Materials & Interfaces, 2014, 6, 6816-6824.	4.0	35
25	Critical Factors to Achieve Low Voltage―and Capacitanceâ€Based Organic Fieldâ€Effect Transistors. Advanced Materials, 2014, 26, 288-292.	11.1	39
26	Synchrotron X-ray techniques for the investigation of structures and dynamics in interfacial systems. Current Opinion in Colloid and Interface Science, 2014, 19, 228-241.	3.4	45
27	Achieving good bias stress reliability in organic transistor with vertical channel. Organic Electronics, 2014, 15, 1531-1535.	1.4	3
28	Impact of Energetically Engineered Dielectrics on Charge Transport in Vacuum-Deposited Bis(triisopropylsilylethynyl)pentacene. Journal of Physical Chemistry C, 2015, 119, 28819-28827.	1.5	15
29	Layerâ€byâ€Layer Conjugated Extension of a Semiconducting Polymer for Highâ€Performance Organic Fieldâ€Effect Transistor. Advanced Functional Materials, 2015, 25, 3833-3839.	7.8	28
30	Controlling Conjugation and Solubility of Donor–Acceptor Semiconducting Copolymers for High-Performance Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2015, 7, 12781-12788.	4.0	17
31	Fluorinated polymer-grafted organic dielectrics for organic field-effect transistors with low-voltage and electrical stability. Physical Chemistry Chemical Physics, 2015, 17, 16791-16797.	1.3	16
32	Solution-Processed Organic Complementary Inverters Based on TIPS-Pentacene and PDI8-CN2. IEEE Transactions on Electron Devices, 2015, 62, 4220-4224.	1.6	10
33	Tunable Solubility Parameter of Poly(3-hexyl thiophene) with Hydrophobic Side-Chains to Achieve Rubbery Conjugated Films. ACS Applied Materials & Interfaces, 2015, 7, 1290-1297.	4.0	28
34	3D Hollow Framework Silver Nanowire Electrodes for High-Performance Bottom-Contact Organic Transistors. ACS Applied Materials & amp; Interfaces, 2015, 7, 14272-14278.	4.0	19
35	Air-Processable Silane-Coupled Polymers to Modify a Dielectric for Solution-Processed Organic Semiconductors. ACS Applied Materials & amp; Interfaces, 2015, 7, 5274-5280.	4.0	4
36	Dielectric surface-polarity tuning and enhanced operation stability of solution-processed organic field-effect transistors. Organic Electronics, 2015, 17, 87-93.	1.4	14

#	Article	IF	CITATIONS
37	Solvent boiling point affects the crystalline properties and performances of anthradithiophene-based devices. Dyes and Pigments, 2015, 114, 60-68.	2.0	11
38	Progress in flexible organic thin-film transistors and integrated circuits. Science Bulletin, 2016, 61, 1081-1096.	4.3	31
39	Polymerâ€modified solutionâ€processed metal oxide dielectrics on aluminum foil substrate for flexible organic transistors. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2509-2517.	0.8	4
40	Balancing Surface Hydrophobicity and Polarizability of Fluorinated Dielectrics for Organic Fieldâ€Effect Transistors with Excellent Gateâ€Bias Stability and Mobility. Advanced Materials Interfaces, 2016, 3, 1600284.	1.9	10
41	A Physicochemical Approach Toward Extending Conjugation and the Ordering of Solution-Processable Semiconducting Polymers. ACS Applied Materials & Interfaces, 2016, 8, 4819-4827.	4.0	16
42	Direct patterning of conductive carbon nanotube/polystyrene sulfonate composites via electrohydrodynamic jet printing for use in organic field-effect transistors. Journal of Materials Chemistry C, 2016, 4, 4912-4919.	2.7	49
43	Ultrathin annealing-free polymer layers: new opportunity to enhance mobility and stability of low-voltage thin-film organic transistors. RSC Advances, 2016, 6, 51264-51269.	1.7	1
44	Unified film patterning and annealing of an organic semiconductor with micro-grooved wet stamps. Journal of Materials Chemistry C, 2016, 4, 6996-7003.	2.7	24
45	Spin Selfâ€Assembled Clay Nanocomposite Passivation Layers Made from a Photocrosslinkable Poly(vinyl) Tj ETQq Thinâ€Film Transistors. Chinese Journal of Chemistry, 2016, 34, 1103-1108.	0 0 0 rgBT 2.6	/Overlock 4
46	Use of a cross-linkable or monolayer-forming polymeric buffer layer on PCBM-based n-channel organic field-effect transistors. Polymer Bulletin, 2016, 73, 2493-2500.	1.7	6
47	Favorable Molecular Orientation Enhancement in Semiconducting Polymer Assisted by Conjugated Organic Small Molecules. Advanced Functional Materials, 2016, 26, 8527-8536.	7.8	18
48	Low-power organic field-effect transistors and complementary inverter based on low-temperature processed Al2O3 dielectric. Organic Electronics, 2016, 34, 118-123.	1.4	18
49	(Poly(3,4-ethylenedioxythiophene):Polystyrene Sulfonate):Polytetrafluoroethylene for Use in High-Performance and Stable Bottom-Contact Organic Field-Effect Transistors. Journal of Physical Chemistry C, 2016, 120, 956-962.	1.5	12
50	Engineering the morphologies and charge transport properties of newly synthesized dibenzochrysene-based small molecules by attaching various side groups. Dyes and Pigments, 2016, 130, 176-182.	2.0	4
51	Photo-patternable high-k ZrOx dielectrics prepared using zirconium acrylate for low-voltage-operating organic complementary inverters. Organic Electronics, 2016, 33, 40-47.	1.4	23
52			
	Below-one-volt organic thin-film transistors with large on/off current ratios. Organic Electronics, 2017, 49, 179-186.	1.4	45
53		1.4 4.0	45 80

#	Article	IF	CITATIONS
55	Tuning charge transport across junctions of ferrocene-containing polymer brushes on ITO by controlling the brush thickness and the tether lengths. European Polymer Journal, 2017, 97, 282-291.	2.6	11
56	Boosting the Charge Transport Property of Indeno[1,2â€b]fluoreneâ€6,12â€dione though Incorporation of Sulfur―or Nitrogenâ€Linked Side Chains. Advanced Functional Materials, 2017, 27, 1702318.	7.8	31
57	Ladder-like polysilsesquioxane dielectrics for organic field-effect transistor applications. Journal of Materials Chemistry C, 2017, 5, 10955-10964.	2.7	11
58	Low-voltage, High-performance Organic Field-Effect Transistors Based on 2D Crystalline Molecular Semiconductors. Scientific Reports, 2017, 7, 7830.	1.6	32
59	Tailoring Phase Transition in Poly(3-hexylselenophene) Thin Films and Correlating Their Crystalline Polymorphs with Charge Transport Properties for Organic Field-Effect Transistors. Macromolecules, 2017, 50, 9674-9682.	2.2	29
60	Highly stable perovskite solar cells with all-inorganic selective contacts from microwave-synthesized oxide nanoparticles. Journal of Materials Chemistry A, 2017, 5, 25485-25493.	5.2	41
61	Low-Voltage Organic Single-Crystal Field-Effect Transistor with Steep Subthreshold Slope. ACS Applied Materials & Interfaces, 2018, 10, 25871-25877.	4.0	50
62	Simultaneous enhancement of charge density and molecular stacking order of polymer semiconductors by viologen dopants for high performance organic field-effect transistors. Journal of Materials Chemistry C, 2018, 6, 5497-5505.	2.7	23
63	Highly Reliable Superhydrophobic Protection for Organic Field-Effect Transistors by Fluoroalkylsilane-Coated TiO ₂ Nanoparticles. ACS Nano, 2018, 12, 11062-11069.	7.3	32
64	Fully Transparent pâ€MoTe ₂ 2D Transistors Using Ultrathin MoO <i>_x</i> /Pt Contact Media for Indiumâ€Tinâ€Oxide Source/Drain. Advanced Functional Materials, 2018, 28, 1801204.	7.8	25
65	2D MoSe ₂ Transistor with Polymerâ€Brush/Channel Interface. Advanced Materials Interfaces, 2018, 5, 1800812.	1.9	30
66	Theoretical Investigations on Molecular Packing Motifs and Charge Transport Properties of a Family of Trialkylsilylethynyl-Modified Pentacenes/Anthradithiophenes. Journal of Physical Chemistry C, 2018, 122, 18880-18894.	1.5	15
67	Self-Assembly of Pentacene on Sub-nm Scale Surface Roughness-Controlled Gate Dielectrics. Macromolecular Research, 2018, 26, 942-949.	1.0	9
68	Surface Modification of CdSe Quantum-Dot Floating Gates for Advancing Light-Erasable Organic Field-Effect Transistor Memories. ACS Nano, 2018, 12, 7701-7709.	7.3	89
69	Highly stable flexible organic field-effect transistors with Parylene-C gate dielectrics on a flexible substrate. Organic Electronics, 2019, 75, 105391.	1.4	17
70	A Computational Predictive Approach for Controlling the Morphology of Functional Molecular Aggregates on Substrates. Advanced Theory and Simulations, 2019, 2, 1900156.	1.3	7
71	A critical role of amphiphilic polymers in organic–inorganic hybrid sol–gel derived gate dielectrics for flexible organic thin-film transistors. Journal of Materials Chemistry C, 2019, 7, 11612-11620.	2.7	14
72	Spontaneous Phase Separation of Poly(3â€hexylthiophene)s with Different Regioregularity for a Stretchable Semiconducting Film. Advanced Functional Materials, 2019, 29, 1903163.	7.8	16

#	Article	IF	CITATIONS
73	Annealing Behavior with Thickness Hindered Nucleation in Small-Molecule Organic Semiconductor Thin Films. Crystal Growth and Design, 2019, 19, 3777-3784.	1.4	2
74	Overcoating BaTiO3 dielectrics with a fluorinated polymer to produce highly reliable organic field-effect transistors. Thin Solid Films, 2019, 685, 40-46.	0.8	8
75	Recent Progress in Inkjetâ€Printed Thinâ€Film Transistors. Advanced Science, 2019, 6, 1801445.	5.6	187
76	Monolayer MoS2 field-effect transistors patterned by photolithography for active matrix pixels in organic light-emitting diodes. Npj 2D Materials and Applications, 2019, 3, .	3.9	43
77	Impact of Organic Molecule-Induced Charge Transfer on Operating Voltage Control of Both n-MoS2 and p-MoTe2 Transistors. Nano Letters, 2019, 19, 2456-2463.	4.5	26
78	Surface treatment of Parylene-C gate dielectric for highly stable organic field-effect transistors. Organic Electronics, 2019, 69, 128-134.	1.4	5
79	High-efficiency nitrene-based crosslinking agent for robust dielectric layers and high-performance solution-processed organic field-effect transistors. Applied Surface Science, 2019, 479, 280-286.	3.1	11
80	Preparation and application of polystyrene-grafted alumina core-shell nanoparticles for dielectric surface passivation in solution-processed polymer thin film transistors. Organic Electronics, 2019, 65, 305-310.	1.4	13
81	Two-dimensional Organic Materials and Their Electronic Applications. Chemistry Letters, 2019, 48, 14-21.	0.7	4
82	Comparison of semiconductor growth and charge transport on hydrophobic polymer dielectrics of organic field-effect transistors: Cytop vs. polystyrene. Organic Electronics, 2020, 77, 105485.	1.4	19
83	Facile Photo-cross-linking System for Polymeric Gate Dielectric Materials toward Solution-Processed Organic Field-Effect Transistors: Role of a Cross-linker in Various Polymer Types. ACS Applied Materials & Interfaces, 2020, 12, 30600-30615.	4.0	33
84	Non-lithographic direct patterning of carbon nanomaterial electrodes via electrohydrodynamic-printed wettability patterns by polymer brush for fabrication of organic field-effect transistor. Applied Surface Science, 2020, 515, 145989.	3.1	24
85	Electrically stable polymer-only dielectrics for organic field-effect transistors with low gate leakage current. Organic Electronics, 2020, 85, 105828.	1.4	12
86	Controlled Synthesis of Poly(pentafluorostyrene-ran-methyl methacrylate) Copolymers by Nitroxide Mediated Polymerization and Their Use as Dielectric Layers in Organic Thin-film Transistors. Polymers, 2020, 12, 1231.	2.0	9
87	Organic ferroelectric fieldâ€effect transistor memories with <scp>poly(vinylidene fluoride)</scp> gate insulators and conjugated semiconductor channels: a review. Polymer International, 2021, 70, 404-413.	1.6	16
88	Newly Synthesized Nonvacuum Processed Highâ€k Polymeric Dielectrics with Carboxyl Functionality for Highly Stable Operating Printed Transistor Applications. Advanced Functional Materials, 2021, 31, 2007304.	7.8	23
89	Controlling the gate dielectric properties of vinyl-addition polynorbornene copolymers <i>via</i> thiol–ene click chemistry for organic field-effect transistors. Journal of Materials Chemistry C, 2021, 9, 4742-4747.	2.7	11
90	Strategy for Selective Printing of Gate Insulators Customized for Practical Application in Organic Integrated Devices. ACS Applied Materials & Interfaces, 2021, 13, 1043-1056.	4.0	20

#	Article	IF	CITATIONS
91	PECCS Measurements in Organic FETs. SpringerBriefs in Physics, 2013, , 31-58.	0.2	0
92	Blended polymer as composite insulating layers for organic field effect transistor. Solid-State Electronics, 2022, 189, 108194.	0.8	2
93	Directionally Patterned Large-Area Poly(3-hexylthiophene) Field-Effect Transistors via Flow-Blade Printing Method Using Coffee-Ring Effect: Uniform Performance Regardless of Pattern Fabrication Condition and Applications. ACS Applied Electronic Materials, 2021, 3, 385-394.	2.0	4
94	Effect of Interface Modification Conditions on Electrical Characteristics and Device Consistency of Organic Thin Film Transistors. IEEE Electron Device Letters, 2022, 43, 36-39.	2.2	2
95	High-performance five-ring-fused organic semiconductors for field-effect transistors. Chemical Society Reviews, 2022, 51, 3071-3122.	18.7	49
96	Flexible Hybrid Single-Crystalline Silicon Nanomembrane Thin-Film Transistor with Organic Polymeric Polystyrene as a Gate Dielectric on a Plastic Substrate. ACS Applied Electronic Materials, 2022, 4, 2281-2289.	2.0	6
97	Photo-response modulation of organic transistors for multi-level light sensing using active layer microstructure control. Journal of Materials Chemistry C, 2023, 11, 4365-4374.	2.7	2