
CITATION REPORT List of articles citing

DOI: 10.1002/mnfr.201100143 Molecular Nutrition and Food Research, 2011, 55, 1129-41.

Source: https://exaly.com/paper-pdf/51477919/citation-report.pdf

Version: 2024-04-20

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
444	MicroRNA, nutrition, and cancer prevention. 2011 , 2, 472-85		96
443	Is antioxidant therapy effective to treat alzheimer's disease?. 2011 , 1, 8-14		3
442	Vitisin B, a resveratrol tetramer, inhibits migration through inhibition of PDGF signaling and enhancement of cell adhesiveness in cultured vascular smooth muscle cells. 2011 , 256, 198-208		18
441	Impact of caloric and dietary restriction regimens on markers of health and longevity in humans and animals: a summary of available findings. 2011 , 10, 107		132
440	Postconcussion syndrome: a review of pathophysiology and potential nonpharmacological approaches to treatment. 2012 , 40, 73-87		20
439	Different effects of resveratrol on dose-related Doxorubicin-induced heart and liver toxicity. 2012 , 2012, 606183		42
438	Resveratrol-procyanidin blend: nutraceutical and antiaging efficacy evaluated in a placebocontrolled, double-blind study. 2012 , 5, 159-65		36
437	Nutrition in severe dementia. 2012 , 2012, 983056		51
436	Perspectives of Targeting mTORC1-S6K1 in Cardiovascular Aging. 2012 , 3, 5		24
435	Potent vasodilation effect of amurensin G is mediated through the phosphorylation of endothelial nitric oxide synthase. 2012 , 84, 1437-50		8
434	Activity-guided isolation of resveratrol oligomers from a grapevine-shoot extract using countercurrent chromatography. 2012 , 60, 11919-27		25
433	The genetic epidemiology of nonalcoholic fatty liver disease: toward a personalized medicine. 2012 , 16, 467-85		36
432	Phenotyping the effect of diet on non-alcoholic fatty liver disease. 2012 , 57, 1370-3		110
431	Proteostasis and REDOX state in the heart. 2012 , 302, H24-37		47
430	Phytoalexins in defense against pathogens. 2012 , 17, 73-90		613
429	A joint experimental and theoretical investigation on the oxidative coupling of resveratrol induced by copper and iron ions. 2012 , 319-320, 55-63		10
428	Oxidative stress and antioxidant therapy in cystic fibrosis. 2012 , 1822, 690-713		140

(2012-2012)

427	translocation to plasma membrane in L6 myocytes and suppresses blood glucose levels in type 2 diabetic model db/db mice. 2012 , 422, 469-75		76
426	Synthesis and antioxidant activity of hydroxylated phenanthrenes as cis-restricted resveratrol analogues. 2012 , 135, 1011-9		22
425	Synergistic effects of leucine and resveratrol on insulin sensitivity and fat metabolism in adipocytes and mice. 2012 , 9, 77		90
424	Pharmacokinetics and tissue distribution of resveratrol, emodin and their metabolites after intake of Polygonum cuspidatum in rats. 2012 , 144, 671-6		40
423	Generation of monoclonal antibody against trans-resveratrol. 2012, 31, 449-54		4
422	Small things make a big difference: particulate matter and exercise. 2012 , 42, 1041-58		37
421	Drug interaction potential of resveratrol. 2012 , 44, 253-65		70
420	Proteomics analysis of human umbilical vein endothelial cells treated with resveratrol. 2012 , 43, 1671-8		7
419	Diet and aging. Oxidative Medicine and Cellular Longevity, 2012, 2012, 741468	ó.7	54
418	trans-Resveratrol in nutraceuticals: issues in retail quality and effectiveness. 2012 , 17, 12393-405		38
417	Antihyperuricemic and nephroprotective effects of resveratrol and its analogues in hyperuricemic mice. <i>Molecular Nutrition and Food Research</i> , 2012 , 56, 1433-44	5.9	51
416	Resveratrol ameliorates diabetes-related metabolic changes via activation of AMP-activated protein kinase and its downstream targets in db/db mice. <i>Molecular Nutrition and Food Research</i> , 2012, 56, 1282-91	5.9	107
415	Impairment of tumor-initiating stem-like property and reversal of epithelial-mesenchymal transdifferentiation in head and neck cancer by resveratrol treatment. <i>Molecular Nutrition and Food Research</i> , 2012 , 56, 1247-58	5.9	80
414	Are sirtuins viable targets for improving healthspan and lifespan?. 2012 , 11, 443-61		300
413	Resveratrol and diabetic cardiac function: focus on recent in vitro and in vivo studies. 2012 , 44, 281-96		62
412	Resveratrol and health: the starting point. 2012 , 13, 1256-9		22
411	Extraordinary radical scavengers: 4-mercaptostilbenes. 2012 , 18, 5898-905		18
410	Emergence of naturally occurring melatonin isomers and their proposed nomenclature. 2012 , 53, 113-21		49

409	Aging and dry eye disease. 2012 , 47, 483-90	96
408	Resveratrol delays replicative senescence of human mesothelial cells via mobilization of antioxidative and DNA repair mechanisms. 2012 , 52, 2234-45	41
407	Resveratrol attenuates brain damage in a rat model of focal cerebral ischemia via up-regulation of hippocampal Bcl-2. 2012 , 1450, 116-24	72
406	Synthesis of 2,3-syn-diarylpent-4-enamides via acyl-Claisen rearrangements of substituted cinnamyl morpholines: application to the synthesis of magnosalicin. 2012 , 53, 4464-4468	12
405	Design, synthesis, and evaluation of multitarget-directed resveratrol derivatives for the treatment of Alzheimer's disease. 2013 , 56, 5843-59	180
404	Stilbenoid profiles of canes from Vitis and Muscadinia species. 2013 , 61, 501-11	65
403	Resveratrol in the management of human cancer: how strong is the clinical evidence?. 2013 , 1290, 12-20	49
402	High-dose resveratrol supplementation in obese men: an investigator-initiated, randomized, placebo-controlled clinical trial of substrate metabolism, insulin sensitivity, and body composition. 2013 , 62, 1186-95	355
401	Aging, Nutrition and Lifestyle. 2013 , 191-217	
400	Comparative analyses of stilbenoids in canes of major Vitis vinifera L. cultivars. 2013 , 61, 11392-9	84
399	Naturally occurring plant polyphenols as potential therapies for inherited neuromuscular diseases. 2013 , 5, 2091-101	10
398	Density functional study of the antioxidant activity of some recently synthesized resveratrol analogues. 2013 , 141, 2017-24	46
397	Resveratrol: therapeutic potential for improving cardiometabolic health. 2013, 26, 1260-8	31
396	Dietary Phytochemicals. 2013 , 277-290	
395	5,6-Dihydro-5-aza-2'-deoxycytidine potentiates the anti-HIV-1 activity of ribonucleotide reductase inhibitors. 2013 , 21, 7222-8	20
394	Resveratrol mainly stimulates the glycolytic ATP synthesis flux and not the mitochondrial one: a saturation transfer NMR study in perfused and isolated rat liver. 2013 , 78, 11-7	11
393	Ultrasound-assisted extraction of stilbenoids from grape stems. 2013 , 61, 12549-56	35
392	Long time exposure to soy/isoflavone-rich diet enhances testicular and prostate health in Long-Evans rats. 2013 , 5, 1494-1501	4

391	Effets prllentifs et sensibilisants du resvlatrol dans le cancer. 2013 , 15, 474-479		2
390	A daily glass of red wine associated with lifestyle changes independently improves blood lipids in patients with carotid arteriosclerosis: results from a randomized controlled trial. 2013 , 12, 147		40
389	Targeted acetylation of NF-kappaB/RelA and histones by epigenetic drugs reduces post-ischemic brain injury in mice with an extended therapeutic window. 2013 , 49, 177-89		71
388	Quantification of pinosylvin in rat plasma by liquid chromatography-tandem mass spectrometry: application to a pre-clinical pharmacokinetic study. 2013 , 931, 68-74		17
387	Methanol extract of Hopea odorata suppresses inflammatory responses via the direct inhibition of multiple kinases. 2013 , 145, 598-607		30
386	E. coli heat labile toxin (LT) inactivation by specific polyphenols is aggregation dependent. 2013 , 163, 319-24		19
385	Resveratrol for primary prevention of atherosclerosis: clinical trial evidence for improved gene expression in vascular endothelium. 2013 , 166, 246-8		96
384	Antioxidant therapy: still in search of the 'magic bullet'. 2013 , 13, 427-35		43
383	Pharmacokinetics and tolerability of SRT2104, a first-in-class small molecule activator of SIRT1, after single and repeated oral administration in man. 2013 , 75, 186-96		90
382	Dietary grape polyphenol resveratrol increases mammary tumor growth and metastasis in immunocompromised mice. 2013 , 13, 6		34
381	Recent advances in natural products from plants for treatment of liver diseases. 2013, 63, 570-7		148
380	Protective effects of a catechin-rich extract on the hippocampal formation and spatial memory in aging rats. 2013 , 246, 94-102		26
379	Autophagy is involved in the effects of resveratrol on prevention of splenocyte apoptosis caused by oxidative stress in restrained mice. <i>Molecular Nutrition and Food Research</i> , 2013 , 57, 1145-57	5.9	20
378	A new synthesis of 4'-resveratrol esters and evaluation of the potential for anti-depressant activity. 2013 , 23, 2941-4		11
377	Resveratrol vs. calorie restriction: data from rodents to humans. 2013 , 48, 1018-24		53
376	Neuroprotective mode of action of resveratrol in central nervous system. 2013 , 1, 90-97		3
375	Anti-estrogenic activity of a human resveratrol metabolite. 2013 , 23, 1086-92		39
374	Acetal derivatives as prodrugs of resveratrol. 2013 , 10, 2781-92		55

373	The mouse as a model organism in aging research: usefulness, pitfalls and possibilities. 2013 , 12, 8-21		88
372	Effects of molecular structure of polyphenols on their noncovalent interactions with oat Eglucan. 2013 , 61, 4533-8		43
371	Reduced hemodynamic load aids low-dose resveratrol in reversing cardiovascular defects in hypertensive rats. 2013 , 36, 866-72		35
370	Neuroprotective effects of resveratrol on embryonic dorsal root ganglion neurons with neurotoxicity induced by ethanol. 2013 , 55, 192-201		10
369	Pharmacokinetics of pterostilbene in Sprague-Dawley rats: the impacts of aqueous solubility, fasting, dose escalation, and dosing route on bioavailability. <i>Molecular Nutrition and Food Research</i> , 2013 , 57, 1015-25	5.9	84
368	Antihyperglycemic effects of short term resveratrol supplementation in type 2 diabetic patients. 2013 , 2013, 851267		167
367	Effects of resveratrol on topoisomerase II-tactivity: induction of micronuclei and inhibition of chromosome segregation in CHO-K1 cells. 2013 , 28, 243-8		14
366	Amylin uncovered: a review on the polypeptide responsible for type II diabetes. 2013 , 2013, 826706		64
365	Synthetic resveratrol analogue, 3,3',4,4',5,5'-hexahydroxy-trans-stilbene, accelerates senescence in peritoneal mesothelium and promotes senescence-dependent growth of gastrointestinal cancers. <i>International Journal of Molecular Sciences</i> , 2013 , 14, 22483-98	6.3	16
364	Resveratrol inhibits 11Ehydroxysteroid dehydrogenase type 1 activity in rat adipose microsomes. 2013 , 218, 311-20		11
363	Diabetic complications in pregnancy: is resveratrol a solution?. 2013 , 238, 482-90		28
362	Cytoplasmic reactive oxygen species and SOD1 regulate bone mass during mechanical unloading. 2013 , 28, 2368-80		43
361	Resveratrol is a potent inhibitor of vascularization and cell proliferation in experimental endometriosis. 2013 , 28, 1339-47		54
360	A daily glass of red wine and lifestyle changes do not affect arterial blood pressure and heart rate in patients with carotid arteriosclerosis after 4 and 20 weeks. 2013 , 3, 121-9		12
359	Resveratrol and diabetes. 2013, 10, 236-42		41
358	Polyphenols: benefits to the cardiovascular system in health and in aging. 2013 , 5, 3779-827		292
357	Chrononutrition against oxidative stress in aging. Oxidative Medicine and Cellular Longevity, 2013 , 2013, 729804	6.7	14
356	Development of a lozenge for oral transmucosal delivery of trans-resveratrol in humans: proof of concept. 2014 , 9, e90131		21

(2014-2014)

355	Intake of red wine in different meals modulates oxidized LDL level, oxidative and inflammatory gene expression in healthy people: a randomized crossover trial. <i>Oxidative Medicine and Cellular Longevity</i> , 2014 , 2014, 681318	34
354	Resveratrol and the Human Retina. 2014 , 481-491	
353	Alcoholic Beverages and Health Effects. 2014 , 120-122	
352	The Role of Functional Foods in Cutaneous Anti-aging. 2014 , 4, 8-16	12
351	Immunomodulatory effects of high-protein diet with resveratrol supplementation on radiation-induced acute-phase inflammation in rats. 2014 , 17, 963-71	8
350	The role of nutrition and nutritional supplements in the treatment of dyslipidemia. 2014 , 9, 333-354	4
349	Protective effects of resveratrol against di-n buthyl phthalate induced toxicity in ductus epididymis and ductus deferens in rats. 2014 , 46, 51-6	5
348	Natural compounds and aging: between autophagy and inflammasome. 2014 , 2014, 297293	38
347	Role of resveratrol in regulation of membrane transporters and integrity of human erythrocytes. 2014 , 453, 521-6	27
346	Resveratrol: Nutraceutical believed to counteract the detrimental effects of high-fat diet. 2014 , 26, 15-17	3
345	Post-flowering photoperiod has marked effects on fruit chemical composition in red raspberry (Rubus idaeus). 2014 , 165, 454-465	15
344	Resveratrol stimulates AP-1-regulated gene transcription. <i>Molecular Nutrition and Food Research</i> , 2014 , 58, 1402-13	36
343	Polyphenols and the human brain: plant Becondary metabolitelecologic roles and endogenous signaling functions drive benefits. 2014 , 5, 515-33	65
342	VitisCyc: a metabolic pathway knowledgebase for grapevine (Vitis vinifera). 2014 , 5, 644	17
341	Applied Cell Biology of Sulphur and Selenium in Plants. 2014 , 247-272	2
340	Wine, Food and Health. 2014 , 889-920	
339	Phytonutrients for controlling starch digestion: evaluation of grape skin extract. 2014 , 145, 205-11	40
338	In vitro effects of resveratrol on oxidative stress in diabetic platelets. 2014 , 51, 61-9	10

337	Regulation by resveratrol of the cellular factors mediating liver damage and regeneration after acute toxic liver injury. 2014 , 29, 603-13	23
336	Sirtuin1 and autophagy protect cells from fluoride-induced cell stress. 2014 , 1842, 245-55	54
335	Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. 2014 , 25, 581-91	108
334	Total synthesis of resveratrol-based natural products using a palladium-catalyzed decarboxylative arylation and an oxidative Heck reaction. 2014 , 53, 2473-6	51
333	Herb-drug interactions: challenges and opportunities for improved predictions. 2014 , 42, 301-17	113
332	Resveratrol enhances TNF-production in human monocytes upon bacterial stimulation. 2014 , 1840, 95-105	38
331	Resveratrol metabolic fingerprinting after acute and chronic intakes of a functional beverage in humans. 2014 , 35, 1637-43	9
330	Small molecule SIRT1 activators for the treatment of aging and age-related diseases. 2014 , 35, 146-54	412
329	Potential of resveratrol in the treatment of heart failure. 2014 , 95, 63-71	72
328	Dietary Quercetin and other Polyphenols. 2014, 163-175	3
327	3,4,2?-Trimethoxy-trans-stilbene 🗈 potent CYP1B1 inhibitor. 2014 , 5, 496	15
326	Food-Borne Topoisomerase Inhibitors: Risk or Benefit. 2014 , 8, 123-171	7
325	Absorption and metabolism of piceatannol in rats. 2014 , 62, 2541-8	63
324	Resveratrol induced inhibition of Escherichia coli proceeds via membrane oxidation and independent of diffusible reactive oxygen species generation. 2014 , 2, 865-72	43
323	Resveratrol: influences on gene expression in human skin. 2014 , 10, 377-384	29
322	Drug-like chelating agents: a potential lead for Alzheimer's disease. 2014 , 4, 52088-52099	16
321	Supplemental substances derived from foods as adjunctive therapeutic agents for treatment of neurodegenerative diseases and disorders. 2014 , 5, 394-403	43
320	9.11 Useful Chemical Activation Alternatives in Solvent-Free Organic Reactions. 2014 , 287-314	16

319	Antioxidant effect of grapevine leaf extract on the oxidative stress induced by a high-fat diet in rats. 2014 , 23, 849-857	1
318	Anti-obesity activity of peanut sprout extract. 2014 , 23, 601-607	4
317	Resveratrol-induced potentiation of the antitumor effects of oxaliplatin is accompanied by an altered cytokine profile of human monocyte-derived macrophages. 2014 , 19, 1136-47	13
316	Calorie restriction combined with resveratrol induces autophagy and protects 26-month-old rat hearts from doxorubicin-induced toxicity. 2014 , 74, 252-62	63
315	Antifungal activity of resveratrol derivatives against Candida species. 2014 , 77, 1658-62	56
314	Protective effect of resveratrol against doxorubicin-induced cardiac toxicity and fibrosis in male experimental rats. 2014 , 70, 701-11	71
313	Topoisomerase II-targeting properties of a grapevine-shoot extract and resveratrol oligomers. 2014 , 62, 780-8	14
312	Resveratrol in vitro ameliorates tert-butyl hydroperoxide-induced alterations in erythrocyte membranes from young and older humans. 2014 , 39, 1093-7	8
311	Tailoring 3,3'-dihydroxyisorenieratene to hydroxystilbene: finding a resveratrol analogue with increased antiproliferation activity and cell selectivity. 2014 , 20, 8904-8	10
310	Resveratrol increases anti-aging Klotho gene expression via the activating transcription factor 3/c-Jun complex-mediated signaling pathway. 2014 , 53, 361-71	64
309	Review of recent data on the metabolism, biological effects, and toxicity of resveratrol in humans. <i>Molecular Nutrition and Food Research</i> , 2014 , 58, 7-21	179
308	Prevention of diabetes-induced cardiovascular complications upon treatment with antioxidants. 2014 , 19, 113-21	63
307	Enhancing the delivery of resveratrol in humans: if low bioavailability is the problem, what is the solution?. 2014 , 19, 17154-72	122
306	Differences in the glucuronidation of resveratrol and pterostilbene: altered enzyme specificity and potential gender differences. 2014 , 29, 112-9	53
305	Totalsynthese Resveratrol-basierter Naturstoffe mittels palladiumkatalysierter decarboxylierender Arylierung und oxidativer Heck-Reaktion. 2014 , 126, 2505-2509	23
304	Antitumor activity of melinjo (Gnetum gnemon L.) seed extract in human and murine tumor models in vitro and in a colon-26 tumor-bearing mouse model in vivo. 2015 , 4, 1767-80	21
303	Interventions to Slow Aging in Humans: Are We Ready?. 2015 , 14, 497-510	373
302	CHEMICAL CLASSIFICATION AND CHEMISTRY OF PHYTOTHERAPEUTICS CONSTITUENTS. 2015 , 199-235	1

301 Polyphenols and Cognitive Function. **2015**, 143-161

300	Growth-rate dependency of de novo resveratrol production in chemostat cultures of an engineered Saccharomyces cerevisiae strain. 2015 , 14, 133	22
299	Resveratrol inhibits the intracellular calcium increase and angiotensin/endothelin system activation induced by soluble uric acid in mesangial cells. 2015 , 48, 51-56	7
298	The main potentialities of resveratrol for drug delivery systems. 2015 , 51, 499-513	21
297	N-Monosubstituted Methoxy-oligo(ethylene glycol) Carbamate Ester Prodrugs of Resveratrol. 2015 , 20, 16085-102	12
296	Pretreatment with Resveratrol Prevents Neuronal Injury and Cognitive Deficits Induced by Perinatal Hypoxia-Ischemia in Rats. 2015 , 10, e0142424	56
295	Sunflower Proteins. 2015 , 331-393	14
294	Determination of naturally occurring resveratrol analog trans-4,4'-dihydroxystilbene in rat plasma by liquid chromatography-tandem mass spectrometry: application to a pharmacokinetic study. 2015 , 407, 5793-801	28
293	Antioxidant and anti-inflammatory agents mitigate pathology in a mouse model of pseudoachondroplasia. 2015 , 24, 3918-28	24
292	Critical review of resveratrol in xenobiotic-induced hepatotoxicity. 2015 , 86, 309-18	23
291	Nutraceuticals and amyloid neurodegenerative diseases: a focus on natural phenols. 2015 , 15, 41-52	48
290	Soy and the soy isoflavone genistein promote adipose tissue development in male mice on a low-fat diet. 2015 , 54, 1095-107	27
289	"Preconditioning" with latrepirdine, an adenosine 5'-monophosphate-activated protein kinase activator, delays amyotrophic lateral sclerosis progression in SOD1(G93A) mice. 2015 , 36, 1140-50	40
288	Biosynthetic origin of E-resveratrol accumulation in grape canes during postharvest storage. 2015 , 63, 1631-8	50
287	An economical and efficient technology for the extraction of resveratrol from peanut (Arachis hypogaea) sprouts by multi-stage countercurrent extraction. 2015 , 179, 15-25	24
286	Lifespan and healthspan extension by resveratrol. 2015 , 1852, 1209-18	168
285	Partitioning of resveratrol between pentane and DMSO IA contribution to resveratrolBiomembrane interactions. 2015 , 62, 366-370	
284	Elucidation of key antioxidant components in red wine via challenge with a range of oxidants using an HPLC comparison to faux wine. 2015 , 14, 11-18	

(2016-2015)

283	Phytophthora capsici in Pepper Line "PI 201234". <i>International Journal of Molecular Sciences</i> , 2015 , 6.3 16, 11417-38	17
282	Resveratrol Preconditioning Induces a Novel Extended Window of Ischemic Tolerance in the Mouse Brain. 2015 , 46, 2293-8	49
281	The role of Nrf2 in oxidative stress-induced endothelial injuries. 2015 , 225, R83-99	218
280	Inhibition of STAT3 signaling as critical molecular event in resveratrol-suppressed ovarian cancer cells. 2015 , 8, 25	35
279	Caloric restriction, resveratrol and melatonin: Role of SIRT1 and implications for aging and related-diseases. 2015 , 146-148, 28-41	114
278	Natural polyphenols based new therapeutic avenues for advanced biomedical applications. 2015 , 47, 420-30	16
277	Slowed ageing, welfare, and population problems. 2015 , 36, 321-40	5
276	Resveratrol-loaded liposomes for topical treatment of the vaginal inflammation and infections. 2015 , 79, 112-21	78
275	Resveratrol treatment as an adjunct to pharmacological management in type 2 diabetes mellitussystematic review and meta-analysis. <i>Molecular Nutrition and Food Research</i> , 2015 , 59, 147-59	117
274	Skin resistance to oxidative stress induced by resveratrol: from Nrf2 activation to GSH biosynthesis. 2015 , 78, 213-23	75
273	Leucine and Resveratrol: Experimental Model of Sirtuin Pathway Activation. 2015, 87-99	
272	Design, synthesis, and biological evaluation of 2-arylethenylquinoline derivatives as multifunctional agents for the treatment of Alzheimer's disease. 2015 , 89, 349-61	36
271	The impact of moderate wine consumption on health. 2015 , 80, 3-13	117
270	Synthesis of resveratrol sulfates: turning a nightmare into a dream. 2015 , 71, 3100-3106	10
269	Mediterranean Way of Drinking and Longevity. 2016 , 56, 635-40	51
268	Sulforaphane and Other Nutrigenomic Nrf2 Activators: Can the Clinician's Expectation Be Matched by the Reality?. <i>Oxidative Medicine and Cellular Longevity</i> , 2016 , 2016, 7857186	124
267	Novel nutraceutic therapies for the treatment of metabolic syndrome. 2016 , 7, 142-52	24
266	Neuroprotective Effect of Several Phytochemicals and Its Potential Application in the Prevention of Neurodegenerative Diseases. 2016 , 1,	13

265	Curcumin and Resveratrol in the Management of Cognitive Disorders: What is the Clinical Evidence?. 2016 , 21,	59
264	Resveratrol and Cardiovascular Diseases. 2016 , 8,	231
263	Resveratrol Supplementation Did Not Improve Cognition in Patients with Schizophrenia: Results from a Randomized Clinical Trial. 2016 , 7, 159	30
262	The Effects of Resveratrol Supplementation in Overweight and Obese Humans: A Systematic Review of Randomized Trials. 2016 , 14, 323-33	32
261	Nutrients and ageing: what can we learn about ageing interactions from animal biology?. 2016 , 19, 19-25	13
260	New polymer for removal of wine phenolics: Poly(N-(3-(N-isobutyrylisobutyramido)-3-oxopropyl)acrylamide) (P-NIOA). 2016 , 213, 554-560	4
259	Polyphenols in Foods. 2016 , 51, 290-300	4
258	Resveratrol enhances HBV replication through activating Sirt1-PGC-1PPAR pathway. <i>Scientific Reports</i> , 2016 , 6, 24744	28
257	Synthesis and skin gene analysis of 4'-acetoxy-resveratrol (4AR), therapeutic potential for dermal applications. 2016 , 26, 3258-3262	7
256	Resveratrol inhibits lipogenesis of 3T3-L1 and SGBS cells by inhibition of insulin signaling and mitochondrial mass increase. 2016 , 1857, 643-52	41
255	Protective effects of resveratrol against hypoxanthine-xanthine oxidase-induced toxicity on human erythrocytes. 2016 , 23, 144-153	4
254	Investigation of the potential immunomodulatory effects of resveratrol on equine whole blood: An in vitro investigation. 2016 , 106, 97-9	5
253	Resveratrol protects CA1 neurons against focal cerebral ischemic reperfusion-induced damage via the ERK-CREB signaling pathway in rats. 2016 , 146-147, 21-7	35
252	Resveratrol directly targets DDX5 resulting in suppression of the mTORC1 pathway in prostate cancer. 2016 , 7, e2211	27
251	Grapevine cane⊠ waste is a source of bioactive stilbenes. 2016 , 94, 884-892	47
250	Genetics, Nutrition, and Skin. 2016 , 91-106	
249	Classical and atypical resistance of cancer cells as a target for resveratrol. 2016 , 36, 1562-8	5
248	Unravelling the mechanisms regulating muscle mitochondrial biogenesis. 2016 , 473, 2295-314	103

247	Hormetic shifting of redox environment by pro-oxidative resveratrol protects cells against stress. 2016 , 99, 608-622	62
246	Resveratrol limits diabetes-associated cognitive decline in rats by preventing oxidative stress and inflammation and modulating hippocampal structural synaptic plasticity. 2016 , 1650, 1-9	57
245	Metabolic Engineering of Chemical Defence Pathways in Plant Disease Control. 2016, 71-89	2
244	Anti-metastatic potential of resveratrol and its metabolites by the inhibition of epithelial-mesenchymal transition, migration, and invasion of malignant cancer cells. <i>Phytomedicine</i> 6.5 , 2016 , 23, 1787-1796	36
243	Resveratrol Cardioprotection Against Myocardial Ischemia/Reperfusion Injury Involves Upregulation of Adiponectin Levels and Multimerization in Type 2 Diabetic Mice. 2016 , 68, 304-312	24
242	Synthesis of Resveratrol Derivatives and In Vitro Screening for Potential Cancer Chemopreventive Activities. 2016 , 349, 414-27	20
241	Chronic treatment with resveratrol improves overactive bladder in obese mice via antioxidant activity. 2016 , 788, 29-36	16
240	Muscle redox signalling pathways in exercise. Role of antioxidants. 2016 , 98, 29-45	57
239	The polyphenols resveratrol and epigallocatechin-3-gallate restore the severe impairment of mitochondria in hippocampal progenitor cells from a Down syndrome mouse model. 2016 , 1862, 1093-104	71
238	Ultrafast Polyphenol Metabolomics of Red Wines Using MicroLC-MS/MS. 2016 , 64, 505-12	22
237	Post-veraison deficit irrigation regimes enhance berry coloration and health-promoting bioactive compounds in C rimson Seedless C able grapes. 2016 , 163, 9-18	35
236	Influence of exercise training with resveratrol supplementation on skeletal muscle mitochondrial capacity. 2016 , 41, 26-32	35
235	Walnuts (Juglans regia) Chemical Composition and Research in Human Health. 2016 , 56, 1231-41	95
234	Dietary polyphenols and chromatin remodeling. 2017 , 57, 2589-2599	45
233	Evaluation of Tc-resveratrol as a colon cancer targeting probe. 2017 , 26, e12504	1
232	Comparative effects of energy restriction and resveratrol intake on glycemic control improvement. 2017 , 43, 371-378	10
231	Regioselective Hydroxylation of Stilbenes by Engineered Cytochrome P450 from Thermobifida fusca YX. 2017 , 359, 984-994	24
230	Restenosis Inhibition and Re-differentiation of TGF//Smad3-activated Smooth Muscle Cells by Resveratrol. <i>Scientific Reports</i> , 2017 , 7, 41916	16

229	A Placebo-Controlled Double-Blinded Randomized Pilot Study of Combination Phytotherapy in Biochemically Recurrent Prostate Cancer. 2017 , 77, 765-775	23
228	Designing food structure and composition to enhance nutraceutical bioactivity to support cancer inhibition. 2017 , 46, 215-226	43
227	Semisynthesis and biological evaluation of prenylated resveratrol derivatives as multi-targeted agents for Alzheimer's disease. 2017 , 71, 665-682	17
226	RING-H2-type E3 gene VpRH2 from Vitis pseudoreticulata improves resistance to powdery mildew by interacting with VpGRP2A. 2017 , 68, 1669-1687	19
225	Synthesis, antiplatelet and antithrombotic activities of resveratrol derivatives with NO-donor properties. 2017 , 27, 2450-2453	16
224	Resveratrol as MDR reversion molecule in breast cancer: An overview. 2017 , 103, 223-232	53
223	Resveratrol regulates gene transcription via activation of stimulus-responsive transcription factors. 2017 , 117, 166-176	39
222	Resveratrol: A novel type of topoisomerase II inhibitor. 2017 , 292, 21011-21022	28
221	Wine and Cardiovascular Health: A Comprehensive Review. 2017 , 136, 1434-1448	101
220	HS-1793, a resveratrol analogue, downregulates the expression of hypoxia-induced HIF-1 and VEGF and inhibits tumor growth of human breast cancer cells in a nude mouse xenograft model. 2017 , 51, 715-723	20
219	Development of new ultrasonicBolvent assisted method for determination of trans-resveratrol from red grapes: Optimization, characterization, and antioxidant activity (ORAC assay). 2017 , 20, 36-42	23
218	Metabolizes Dietary Plant Glucosides and Externalizes Their Bioactive Phytochemicals. 2017, 8,	52
217	Role of resveratrol in the management of insulin resistance and related conditions: Mechanism of action. 2017 , 54, 267-293	37
216	Antioxidant Therapy Against Persistent Organic Pollutants and Associated Diseases. 2017 , 217-246	
215	Resveratrol improves the lipid profile promoted by red yeast rice (monacolin k) in patients with moderate dyslipidemia: An open-label, randomized, parallel-group controlled clinical trial. 2017 , 1, 72-75	1
214	Preventive Effects of Resveratrol-enriched Extract of Peanut Sprout on Bacteria- and Estradiol-induced Prostatitis in Mice. 2017 , 12, 1934578X1701200	2
213	Resveratrol, Potential Therapeutic Interest in Joint Disorders: A Critical Narrative Review. 2017 , 9,	47
212	Plant Hormesis Management with Biostimulants of Biotic Origin in Agriculture. 2017 , 8, 1762	72

211	Therapeutic Versatility of Resveratrol Derivatives. 2017, 9,	85
210	Calorie Restriction Mimetics From Functional Foods. 2017 , 257-271	2
209	Effects of Resveratrol on Cognitive Functions. 2017 , 283-292	1
208	A review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer. 2017 , 7, 23	217
207	Plant Immunity. 2017,	1
206	Protective effects of resveratrol against mancozeb induced apoptosis damage in mouse oocytes. 2017 , 8, 6233-6245	31
205	The polypharmacology of natural products. 2018 , 10, 1361-1368	27
204	Novel sarsasapogenin-triazolyl hybrids as potential anti-Alzheimer's agents: Design, synthesis and biological evaluation. 2018 , 151, 351-362	23
203	Transcriptome-Based Analysis in Lactobacillus plantarum WCFS1 Reveals New Insights into Resveratrol Effects at System Level. <i>Molecular Nutrition and Food Research</i> , 2018 , 62, e1700992	9
202	Selective multistage extraction process of biomolecules from vine shoots by a combination of biological, chemical, and physical treatments. 2018 , 21, 581-589	12
201	Resveratrol supplementation decreases blood glucose without changing the circulating CD14CD16 monocytes and inflammatory cytokines in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled study. 2018 , 54, 40-51	31
200	Phytochemicals as Anti-inflammatory Nutraceuticals and Phytopharmaceuticals. 2018, 363-388	15
199	Brief Challenges on Medicinal Plants: An Eye-Opening Look at Ageing-Related Disorders. 2018 , 122, 539-558	16
198	Effect of resveratrol treatment on graft revascularization after islet transplantation in streptozotocin-induced diabetic mice. 2018 , 10, 25-39	10
197	Dereplication of oligostilbenes in dipterocarpaceous plants using LCMS-ESI-Ion trap-database. 2018 , 41, 161-169	O
196	The effects of resveratrol on markers of oxidative stress in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled clinical trial. 2018 , 55, 341-353	85
195	Metabolism and pharmacokinetics of resveratrol and pterostilbene. 2018 , 44, 16-25	128
194	Stilbenes from Veratrum maackii Regel Protect against Ethanol-Induced DNA Damage in Mouse Cerebellum and Cerebral Cortex. 2018 , 9, 1616-1624	9

193	Resveratrol Protects Purkinje Neurons and Restores Muscle Activity in Rat Model of Cerebellar Ataxia. 2018 , 65, 35-42	6
192	Does resveratrol retain its antioxidative properties in wine? Redox behaviour of resveratrol in the presence of Cu(II) and tebuconazole. 2018 , 262, 221-225	10
191	Targeting Mitochondria: The Road to Mitochondriotropic Antioxidants and Beyond. 2018 , 333-358	6
190	Current perspective of mitochondrial biology in Parkinson's disease. 2018 , 117, 91-113	45
189	Nutritional patterns associated with the maintenance of neurocognitive functions and the risk of dementia and Alzheimer's disease: A focus on human studies. 2018 , 131, 32-43	96
188	DCEO Biotechnology: Tools To Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals. 2018 , 118, 4-72	97
187	Telomeres, Nutrition, and Longevity: Can We Really Navigate Our Aging?. 2017, 73, 39-47	40
186	Interventions to slow cardiovascular aging: Dietary restriction, drugs and novel molecules. 2018 , 109, 108-118	15
185	Dyslipidemia. 2018 , 264-275.e5	О
184	Bioavailability of resveratrol: Possibilities for enhancement. 2018 , 11, 71-77	38
184	Bioavailability of resveratrol: Possibilities for enhancement. 2018 , 11, 71-77 The Role of Wine in Modulating Inflammatory Processes: A Review. 2018 , 4, 88	38
		, and the second
183	The Role of Wine in Modulating Inflammatory Processes: A Review. 2018 , 4, 88	2
183	The Role of Wine in Modulating Inflammatory Processes: A Review. 2018 , 4, 88 Stress Response of Dietary Phytochemicals in a Hormetic Manner for Health and Longevity. 2018 , The study of the phenolic complex composition and the antioxidant activity of white grape	2
183 182 181	The Role of Wine in Modulating Inflammatory Processes: A Review. 2018, 4, 88 Stress Response of Dietary Phytochemicals in a Hormetic Manner for Health and Longevity. 2018, The study of the phenolic complex composition and the antioxidant activity of white grape cultivars. 2018, 327-338	2
183 182 181 180	The Role of Wine in Modulating Inflammatory Processes: A Review. 2018, 4, 88 Stress Response of Dietary Phytochemicals in a Hormetic Manner for Health and Longevity. 2018, The study of the phenolic complex composition and the antioxidant activity of white grape cultivars. 2018, 327-338 Possible Benefits and Risks of Polyphenols Supplementation During Pregnancy. 2018, 249-260 Solid Dispersion of Resveratrol Supported on Magnesium DiHydroxide (Resv@MDH) Microparticles	2 2 5
183 182 181 180	The Role of Wine in Modulating Inflammatory Processes: A Review. 2018, 4, 88 Stress Response of Dietary Phytochemicals in a Hormetic Manner for Health and Longevity. 2018, The study of the phenolic complex composition and the antioxidant activity of white grape cultivars. 2018, 327-338 Possible Benefits and Risks of Polyphenols Supplementation During Pregnancy. 2018, 249-260 Solid Dispersion of Resveratrol Supported on Magnesium DiHydroxide (Resv@MDH) Microparticles Improves Oral Bioavailability. 2018, 10,	2 2 5

175	Do the Effects of Resveratrol on Thermogenic and Oxidative Capacities in IBAT and Skeletal Muscle Depend on Feeding Conditions?. 2018 , 10,		12
174	Browning of Adipose Tissue and Sirtuin Involvement. 2018 ,		4
173	Piceatannol attenuates D-GalN/LPS-induced hepatoxicity in mice: Involvement of ER stress, inflammation and oxidative stress. 2018 , 64, 131-139		27
172	Dietary polyphenols and neurogenesis: Molecular interactions and implication for brain ageing and cognition. 2018 , 90, 456-470		40
171	Transglutaminase 2 Mediates the Cytotoxicity of Resveratrol in a Human Cholangiocarcinoma and Gallbladder Cancer Cell Lines. 2018 , 70, 761-769		1
170	Long-Term Resveratrol Supplementation as a Secondary Prophylaxis for Stroke. <i>Oxidative Medicine and Cellular Longevity</i> , 2018 , 2018, 4147320	6.7	33
169	The Epigenetics of Autoimmunity and Epigenetic Drug Discovery. 2018, 297-320		
168	Applications of Yeast Synthetic Biology Geared towards the Production of Biopharmaceuticals. 2018 , 9,		24
167	Use of Resveratrol Self-Emulsifying Systems in T/C28a2 Cell Line as Beneficial Effectors in Cellular Uptake and Protection Against Oxidative Stress-Mediated Death. 2018 , 9, 538		3
166	Field-Based Metabolomics of . Stems Provides New Insights for Genotype Discrimination and Polyphenol Metabolism Structuring. 2018 , 9, 798		23
165	Effect of Resveratrol Supplementation on Inflammatory Markers: A Systematic Review and Meta-analysis of Randomized Controlled Trials. 2018 , 40, 1180-1192.e5		43
164	Influence of the periprostatic adipose tissue in obesity-associated mouse urethral dysfunction and oxidative stress: Effect of resveratrol treatment. 2018 , 836, 25-33		7
163	The polyphenol resveratrol promotes skeletal growth in mice through a sirtuin 1-bone morphogenic protein 2 longevity axis. 2018 , 175, 4183-4192		22
162	Antioxidant and pro-oxidant actions of resveratrol on human serum albumin in the presence of toxic diabetes metabolites: Glyoxal and methyl-glyoxal. 2018 , 1862, 1938-1947		26
161	What's in wine? A clinician's perspective. 2019 , 29, 97-106		24
160	Mutual influence of piceatannol and bisphenol F on their interaction with pepsin: Insights from spectroscopic, isothermal titration calorimetry and molecular modeling studies. 2019 , 206, 384-395		22
159	Can resveratrol supplement change inflammatory mediators? A systematic review and meta-analysis on randomized clinical trials. 2019 , 73, 345-355		30
158	Resveratrol cytotoxicity is energy-dependent. 2019 , 43, e13008		6

157	Food Sources of Antidiabetic Phenolic Compounds. 2019 , 45-82	1
156	Mechanisms of Action of Phenolic Phytochemicals in Diabetes Management. 2019 , 83-121	3
155	Therapeutic effects of resveratrol in Escherichia coli-induced rat endometritis model. 2019 , 392, 1577-1589	5
154	Multifaceted analyses disclose the role of fruit size and skin-russeting in the accumulation pattern of phenolic compounds in apple. 2019 , 14, e0219354	13
153	DNA Damage by an essential enzyme: A delicate balance act on the tightrope. 2019 , 82, 102639	2
152	Plants of the genus Vitis: Phenolic compounds, anticancer properties and clinical relevance. 2019 , 91, 362-379	35
151	Comparative analysis of stilbene and benzofuran neolignan derivatives as acetylcholinesterase inhibitors with neuroprotective and anti-inflammatory activities. 2019 , 29, 2475-2479	6
150	Antidepressant active ingredients from herbs and nutraceuticals used in TCM: pharmacological mechanisms and prospects for drug discovery. 2019 , 150, 104520	53
149	A Unique Formulation of Cardioprotective Bio-Actives: An Overview of Their Safety Profile. 2019 , 6,	1
148	Antioxidant Activity of Selected Stilbenoid Derivatives in a Cellular Model System. 2019, 9,	6
147	c-Myc Metabolic Addiction in Cancers Counteracted by Resveratrol and NQO2. 2019 ,	
146	Resveratrol Improves Boar Sperm Quality via 5'AMP-Activated Protein Kinase Activation during Cryopreservation. <i>Oxidative Medicine and Cellular Longevity</i> , 2019 , 2019, 5921503	23
145	Wine-Derived Phenolic Metabolites in the Digestive and Brain Function. 2019 , 5, 7	5
144	Natural Products Mediated Targeting of Virally Infected Cancer. 2019 , 17, 1559325818813227	8
143	Fungal endophyte Phomopsis liquidambari biodegrades soil resveratrol: a potential allelochemical in peanut monocropping systems. 2019 , 99, 5899-5909	10
142	Inhibition of VEGFR-2 Phosphorylation and Effects on Downstream Signaling Pathways in Cultivated Human Endothelial Cells by Stilbenes from Vitis Spp. 2019 , 67, 3909-3918	11
141	Phytoestrogens, phytosteroids and saponins in vegetables: Biosynthesis, functions, health effects and practical applications. 2019 , 90, 351-421	18
140	Antibacterial and antifungal properties of resveratrol. 2019 , 53, 716-723	134

(2020-2019)

139	Sirtuins and Type 2 Diabetes: Role in Inflammation, Oxidative Stress, and Mitochondrial Function. 2019 , 10, 187	92
138	Dietary Polyphenols Targeting Arterial Stiffness: Interplay of Contributing Mechanisms and Gut Microbiome-Related Metabolism. 2019 , 11,	25
137	Resveratrol: Twenty Years of Growth, Development and Controversy. 2019 , 27, 1-14	65
136	Resveratrol induces cell death through ROS-dependent downregulation of Notch1/PTEN/Akt signaling in ovarian cancer cells. 2019 , 19, 3353-3360	18
135	Evaluation of Resveratrol Supplementation on Laboratory Animals, Cats, Pigs, Horses, Dogs, Cattle, and Birds. 2019 ,	
134	Effects of and resveratrol on milk yield and serum prolactin and oxytocin levels: a lactogenic study. 2019 , 7, 71-77	1
133	References. 2019 , 415-510	
132	Bioactive Compounds from Norway Spruce Bark: Comparison Among Sustainable Extraction Techniques for Potential Food Applications. 2019 , 8,	7
131	Resveratrol ameliorates podocyte damage in diabetic mice via SIRT1/PGC-1#mediated attenuation of mitochondrial oxidative stress. 2019 , 234, 5033-5043	48
130	Resveratrol: from enhanced biosynthesis and bioavailability to multitargeting chronic diseases. 2019 , 109, 2237-2251	81
129	Plant-derived natural agents as dietary supplements for the regulation of glycosylated hemoglobin: A review of clinical trials. 2020 , 39, 331-342	11
128	Resveratrol protects against nonalcoholic fatty liver disease by improving lipid metabolism and redox homeostasis via the PPAR pathway. 2020 , 45, 227-239	25
127	Antiproliferative activity of stilbene derivatives and other constituents from the stem bark of L. 2020 , 34, 3506-3513	3
126	Inactivation of Escherichia coli O157:H7 in apple cider by resveratrol and naringenin. 2020, 86, 103327	5
125	Characterization of bioactive compounds and antioxidant activity of fruit beers. 2020, 305, 125437	68
124	Therapeutic effect of resveratrol supplementation on oxidative stress: a systematic review and meta-analysis of randomised controlled trials. 2020 , 96, 197-205	8
123	The effect of resveratrol supplementation on C-reactive protein (CRP) in type 2 diabetic patients: Results from a systematic review and meta-analysis of randomized controlled trials. 2020 , 49, 102251	5
122	Resveratrol alleviates non-alcoholic fatty liver disease through epigenetic modification of the Nrf2 signaling pathway. 2020 , 119, 105667	39

121	Cardiac changes associated with vascular aging. 2020 , 43, 92-98		14
120	Resveratrol proniosomes as a convenient nanoingredient for functional food. 2020 , 310, 125950		16
119	Resveratrol-loaded chitosan-Epoly(glutamic acid) nanoparticles: Optimization, solubility, UV stability, and cellular antioxidant activity. 2020 , 186, 110702		16
118	Mechanisms of Aging and the Preventive Effects of Resveratrol on Age-Related Diseases. 2020 , 25,		18
117	Inhibitory effect of resveratrol on the growth and angiogenesis of human endometrial tissue in an In Vitro three-dimensional model of endometriosis. 2020 , 20, 484-490		6
116	Mitophagy Receptors and Mediators: Therapeutic Targets in the Management of Cardiovascular Ageing. 2020 , 62, 101129		34
115	A Novel Promising Frontier for Human Health: The Beneficial Effects of Nutraceuticals in Cardiovascular Diseases. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	14
114	Characterization of Stilbene Composition in Grape Berries from Wild Species in Year-To-Year Harvest. 2020 , 68, 13408-13417		7
113	Roles of Mitochondrial Sirtuins in Mitochondrial Function, Redox Homeostasis, Insulin Resistance and Type 2 Diabetes. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	24
112	Therapeutic potential of prenylated stilbenoid macasiamenene F through its anti-inflammatory and cytoprotective effects on LPS-challenged monocytes and microglia. 2020 , 263, 113147		9
111	Polyphenols in Farm Animals: Source of Reproductive Gain or Waste?. 2020 , 9,		10
110	Neuroinflammation Mechanisms and Phytotherapeutic Intervention: A Systematic Review. 2020 , 11, 3707-3731		11
109	Phenolics Profile and Antioxidant Activity of Special Beers. 2020 , 25,		12
108	Potential nephroprotective effects of resveratrol in drug induced nephrotoxicity: a narrative review of safety and efficacy data. 2020 , 20, 529-544		2
107	Effects of Orally Administered Resveratrol on TNF, IL-1 Leukocyte Phagocytic Activity and Oxidative Burst Function in Horses: A Prospective, Randomized, Double-Blinded, Placebo-Controlled Study. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	2
106	Resveratrol alters texture and provides nutritional benefits in white-salted noodles. 2020 , 55, 2740-27	50	
105	Nanoemulsions as delivery systems for lipophilic nutraceuticals: strategies for improving their formulation, stability, functionality and bioavailability. 2020 , 29, 149-168		64
104	Wine, food, and health. 2020 , 947-978		2

(2021-2020)

103	Imine stilbene analog ameliorate isoproterenol-induced cardiac hypertrophy and hydrogen peroxide-induced apoptosis. 2020 , 153, 80-88	12
102	Dietary resveratrol supplement improves carcass traits and meat quality of Pekin ducks. 2021 , 100, 100802	5
101	Using foliar nitrogen application during veraison to improve the flavor components of grape and wine. 2021 , 101, 1288-1300	7
100	A Review of Plant Extracts and Plant-Derived Natural Compounds in the Prevention/Treatment of Neonatal Hypoxic-Ischemic Brain Injury. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6
99	Clinical trials of resveratrol efficacy and safety. 2021 , 6-6	1
98	Liver cancer. 2021 , 105-127	
97	Rutin and Gallic Acid Regulates Mitochondrial Functions via the SIRT1 Pathway in C2C12 Myotubes. 2021 , 10,	5
96	Therapeutic Potential of Resveratrol in COVID-19-Associated Hemostatic Disorders. 2021 , 26,	21
95	Preparation and optimization of a resveratrol solid dispersion to improve the physicochemical properties and oral bioavailability of resveratrol. 2021 , 42, 605-613	1
94	Plant-Derivatives Small Molecules with Antibacterial Activity. 2021 , 10,	9
93	Preconceptional Resveratrol Supplementation Partially Counteracts Age-Related Reproductive Complications in C57BL/6J Female Mice. 2021 , 26,	
92	The Role of Resveratrol Administration in Human Obesity. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	9
91	Cellular Antioxidant Effects and Bioavailability of Food Supplements Rich in Hydroxytyrosol. 2021 , 11, 4763	1
90	Proniosome: A promising approach for vesicular drug delivery. 2021 , 0-0	Ο
89	Effects of resveratrol supplementation on bone quality: a systematic review and meta-analysis of randomized controlled trials. 2021 , 21, 214	1
88	Construction of hyperbranched and pH-responsive polymeric nanocarriers by yne-phenol click-reaction for tumor synergistic chemotherapy. 2021 , 204, 111790	4
87	Chemo-Preventive Action of Resveratrol: Suppression of p53-A Molecular Targeting Approach. 2021 , 26,	6
86	Aging-Induced Impairment of Vascular Function: Mitochondrial Redox Contributions and Physiological/Clinical Implications. 2021 , 35, 974-1015	1

85	Resveratrol attenuates TNBC lung metastasis by down-regulating PD-1 expression on pulmonary T cells and converting macrophages to M1 phenotype in a murine tumor model. 2021 , 368, 104423	3
84	Genome-Wide Identification of Resveratrol Intrinsic Resistance Determinants in. 2021 , 10,	1
83	Fruits. 2020 , 24, 279-376	2
82	Plant Polyphenols in Healthcare and Aging. 2017 , 267-282	1
81	Defense signaling in plants against micro-creatures: do or die. 2020 , 73, 605-613	3
80	Mechanisms of resveratrol in the prevention and treatment of gastrointestinal cancer. 2020 , 8, 2425-2437	10
79	Sirtuin1 over-expression does not impact retinal vascular and neuronal degeneration in a mouse model of oxygen-induced retinopathy. 2014 , 9, e85031	17
78	Resveratrol inhibits sodium/iodide symporter gene expression and function in rat thyroid cells. 2014 , 9, e107936	14
77	Pterostilbene Is a Potential Candidate for Control of Blackleg in Canola. 2016, 11, e0156186	9
76	Sensitization of Radioresistant Prostate Cancer Cells by Resveratrol Isolated from Arachis hypogaea Stems. 2017 , 12, e0169204	22
75	Resveratrol suppresses hyperglycemia-induced activation of NF-B and AP-1 via c-Jun and RelA gene regulation. 2018 , 32, 10	3
74	The journey of resveratrol from yeast to human. 2012 , 4, 146-58	122
73	Small Things Make a Big Difference. 2012 , 42, 1041	2
72	Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence. 2013 , 19, 6064-93	321
71	Effects of Resveratrol and other Polyphenols on Sirt1: Relevance to Brain Function During Aging. 2018 , 16, 126-136	68
7º	Effect of Fruit Secondary Metabolites on Melanoma: A Systematic Review of In vitro Studies. 2020 , 16, 1009-1035	1
69	Effects of 8 weeks of aerobic training and resveratrol on physical fitness, insulin resistance, liver function, and blood pressure in T2DM elderly women. 2016 , 27, 507-522	1
68	Resveratrol and related compounds as antioxidants with an allosteric mechanism of action in epigenetic drug targets. 2013 , 62, 1-13	55

(2020-2014)

67	Enhancing the Delivery of Resveratrol in Humans: If Low Bioavailability is the Problem, What is the Solution?. 2014 , 19, 17154-17172	1
66	Epigenetics: Linking Nutrition to Molecular Mechanisms in Aging. 2017 , 22, 81-89	19
65	Enhancement of Nutraceutical Value of Table Eggs Through Poultry Feeding Strategies. 2015 , 11, 201-212	15
64	Pharmacologic Means of Extending Lifespan. 2012 , Suppl 4,	4
63	Review: Anti-Oxidant and Anti-Aging Properties of Equol in Prostate Health (BPH). 2014 , 04, 1-12	13
62	Severe & amp; Moderate BPH Symptoms in Mid-Aged Men Improve with Isoflavonoid-Equol Treatment: Pilot Intervention Study. 2013 , 03, 21-27	7
61	The Angiogenetic Effect of Resveratrol on Dermal Wound Healing in Balb/C Mice. 2017, 14,	1
60	Resveratrol and its derivative pterostilbene attenuate oxidative stress-induced intestinal injury by improving mitochondrial redox homeostasis and function via SIRT1 signaling. 2021 , 177, 1-14	6
59	Dietary Biofactors in the Management of Cancer: Myth or Reality?. 2012 , 109-127	1
58	ResveratrolThe Chateau Hormonelfor Cardio Diabetic Protection. 2014 , 04, 371-378	
57	Hormetic Shifting of Redox Environment by Pro-Oxidative Resveratrol Protects Cells Against Stress.	0
56	Improvement of Cancer Therapy Using Phytochemicals. 2019 , 139-164	
55	Therapeutic benefit of resveratrol in 5-fluorouracil-induced nephrotoxicity in rats. 2019, 6, 72	2
54	The effect of pre- and postnatal exposure to a mixture of daidzein and genistein on the reproductive system of male rats. 2020 , 66, 5-12	2
53	Targeting of HSP70/HSF1 Axis Abrogates In Vitro Ibrutinib-Resistance in Chronic Lymphocytic Leukemia. 2021 , 13,	2
52	A Comprehensive Analysis of the Efficacy of Resveratrol in Atherosclerotic Cardiovascular Disease, Myocardial Infarction and Heart Failure. 2021 , 26,	O
51	N-Methylated Analogs of hIAPP Fragments 18-22, 23-27, 33-37 Inhibit Aggregation of the Amyloidogenic Core of the Hormone. 2021 , 18, e2000842	
50	Microemulsions as Antioxidant Carriers. 2020 , 197-224	

Phytochemicals Plus Checkpoint Inhibitors in GI Cancers. **2020**, 83-107

48	Role of Dietary Supplementation of Natural Products in the Prevention and Treatment of Liver Diseases. 2020 , 261-285		
47	Resveratrol Provides Cardioprotection after Ischemia/reperfusion Injury via Modulation of Antioxidant Enzyme Activities. <i>Iranian Journal of Pharmaceutical Research</i> , 2013 , 12, 867-75	1.1	25
46	Cancer therapy with phytochemicals: evidence from clinical studies. 2015 , 5, 84-97		115
45	Resveratrol alleviates nerve injury after cerebral ischemia and reperfusion in mice by inhibiting inflammation and apoptosis. 2015 , 8, 3219-26		30
44	Potential therapeutic target for malignant paragangliomas: ATP synthase on the surface of paraganglioma cells. <i>American Journal of Cancer Research</i> , 2015 , 5, 1558-70	4.4	10
43	Resveratrol Reduces Lipid Accumulation through Upregulating the Expression of MicroRNAs Regulating Fatty Acid Bet Oxidation in Liver Cells: Evidence from and Studies. <i>Iranian Journal of Pharmaceutical Research</i> , 2020 , 19, 333-340	1.1	
42	Molecular hydrogen as a nutraceutical for extending the health span. 2022 , 757-770		
41	Cytoprotective roles of epigallocatechin gallate and resveratrol on staurosporine-treated mesenchymal stem cells in in vitro culture. <i>Herba Polonica</i> , 2021 , 67, 45-52	0.9	
40	Cadmium-Induced Kidney Injury in Mice Is Counteracted by a Flavonoid-Rich Extract of Bergamot Juice, Alone or in Association with Curcumin and Resveratrol, via the Enhancement of Different Defense Mechanisms <i>Biomedicines</i> , 2021 , 9,	4.8	4
39	Resveratrol inhibits the migration, invasion and epithelial-mesenchymal transition in liver cancer cells through up- miR-186-5p expression <i>Zhejiang Da Xue Xue Bao Yi Xue Ban = Journal of Zhejiang University Medical Sciences</i> , 2021 , 50, 582-590		O
38	The emerging role of dark berry polyphenols in human health and nutrition. Food Frontiers,	4.2	7
37	Sodium-calcium exchanger isoform-3 targeted Withania somnifera (L.) Dunal therapeutic intervention ameliorates cognition in the 5xFAD mouse model of Alzheimer's disease <i>Scientific Reports</i> , 2022 , 12, 1537	4.9	
36	Long-term effects of melatonin and resveratrol on aging rats: A multi-biomarker approach <i>Mutation Research - Genetic Toxicology and Environmental Mutagenesis</i> , 2022 , 876-877, 503443	3	1
35	Piceatannol, a metabolite of resveratrol, attenuates atopic dermatitis by targeting Janus kinase 1 <i>Phytomedicine</i> , 2022 , 99, 153981	6.5	О
34	Dietary Plant Polyphenols as the Potential Drugs in Neurodegenerative Diseases: Current Evidence, Advances, and Opportunities <i>Oxidative Medicine and Cellular Longevity</i> , 2022 , 2022, 5288698	6.7	2
33	Therapeutic Effects of Resveratrol in Inflammatory Bowel Diseases: Shedding Light on the Role of Cellular and Molecular Pathways. <i>Revista Brasileira De Farmacognosia</i> , 2022 , 32, 160	2	2
32	Increasing the added value of vine-canes as a sustainable source of phenolic compounds: A review <i>Science of the Total Environment</i> , 2022 , 830, 154600	10.2	1

31	Addition of -Resveratrol-Loaded Highly Concentrated Double Emulsion to Yoghurts: Effect on Physicochemical Properties <i>International Journal of Molecular Sciences</i> , 2021 , 23,	6.3	1
30	Current Options in the Valorisation of Vine Pruning Residue for the Production of Biofuels, Biopolymers, Antioxidants, and Bio-Composites following the Concept of Biorefinery: A Review <i>Polymers</i> , 2022 , 14,	4.5	4
29	The Chemopreventive Effects of Polyphenols and Coffee, Based upon a DMBA Mouse Model with microRNA and mTOR Gene Expression Biomarkers <i>Cells</i> , 2022 , 11,	7.9	2
28	Table_1.docx. 2018 ,		
27	Resveratrol: A Phenolic Prodigy. Pakistan Biomedical Journal,		
26	LC-ESI-QTOF-MS/MS Characterization and Estimation of the Antioxidant Potential of Phenolic Compounds from Different Parts of the Lotus () Seed and Rhizome <i>ACS Omega</i> , 2022 , 7, 14630-14642	3.9	O
25	Resveratrol content in wine I resveratrol biochemical properties. 2022, 11, 31-38		
24	New frontier radioiodinated probe based on resveratrol repositioning for microtubules dynamic targeting <i>International Journal of Radiation Biology</i> , 2022 , 1-29	2.9	0
23	Secondary Metabolite Engineering for Plant Immunity Against Various Pathogens. 2022, 123-143		
22	Glucosylation mechanism of resveratrol through the mutant Q345F sucrose phosphorylase from the organism Bifidobacterium adolescentis: a computational study. <i>Organic and Biomolecular Chemistry</i> ,	3.9	O
21	Nutrigenomics of Aging. 2022, 27-56		
20	Improvement of tissue-specific distribution and biotransformation potential of nicotinamide mononucleotide in combination with ginsenosides or resveratrol. <i>Pharmacology Research and Perspectives</i> , 2022 , 10,	3.1	1
19	Interfacial engineering approaches to improve emulsion performance: Properties of oil droplets coated by mixed, multilayer, or conjugated lactoferrin-hyaluronic acid interfaces. <i>Food Hydrocolloids</i> , 2022 , 133, 107938	10.6	2
18	Anti-inflammatory effects of resveratrol in patients with cardiovascular disease: A systematic review and meta-analysis of randomized controlled trials. 2022 , 70, 102863		2
17	Targeted delivery of hydrogels in human gastrointestinal tract: A review. 2023 , 134, 108013		1
16	Resveratrol inhibits development of colorectal adenoma via suppression of LEF1; comprehensive analysis with connectivity map.		O
15	Resveratrol biotransformation and actions on the liver metabolism of healthy and arthritic rats. 2022 , 120991		0
14	Addition of Trans-Resveratrol-Loaded, Highly Concentrated Double Emulsion to Moisturizing Cream: Effect on Physicochemical Properties. 2022 , 6, 70		O

13	Differential Effects of Resveratrol on HECa10 and ARPE-19 Cells. 2022, 12, 11314	О
12	Effects of lifespan-extending interventions on cognitive healthspan. 1-83	o
11	Nutraceutical activation of Sirt1: a review. 2022 , 9, e002171	1
10	Can resveratrol supplementation affect biomarkers of inflammation and oxidative stress? An umbrella meta-analysis. 2022 , 99, 105360	1
9	Potential Synergistic Supplementation of NAD+ Promoting Compounds as a Strategy for Increasing Healthspan. 2023 , 15, 445	1
8	Resveratrol prevents ovariectomy-induced bone quality deterioration by împroving the microarchitectural and biophysicochemical properties of bone.	o
7	Resveratrol alleviates doxorubicin-induced damage in mice ovary. 2023, 376, 110431	0
6	Therapeutic role of resveratrol against hepatocellular carcinoma: A review on its molecular mechanisms of action. 2023 , 6, 100233	O
5	DNA methylation regulates Sirtuin 1 expression in osteoarthritic chondrocytes. 2023, 68, 101-110	0
4	Quorum Quenchers from Reynoutria japonica in the Battle against Methicillin-Resistant Staphylococcus aureus (MRSA). 2023 , 28, 2635	o
3	Content of phenol and stilbene compounds and gene expression related to fruit development during ripening in Ampelopsis.	0
2	An Overview of Bioactive Phenolic Molecules and Antioxidant Properties of Beer: Emerging Trends. 2023 , 28, 3221	o
1	X-yne click polymerization.	О