From irradiance to output power fluctuations: the PV p

Progress in Photovoltaics: Research and Applications 19, 505-510 DOI: 10.1002/pip.1063

Citation Report

#	Article	IF	CITATIONS
1	Integration of Renewable Energy into Present and Future Energy Systems. , 2011, , 609-706.		39
2	Testing a wavelet-based variability model (WVM) for solar PV power plants. , 2012, , .		23
3	Monitoring and checking of performance in photovoltaic plants: A tool for design, installation and maintenance of grid-connected systems. Renewable Energy, 2013, 60, 722-732.	4.3	46
4	Optimizing geographic allotment of photovoltaic capacity in a distributed generation setting. Progress in Photovoltaics: Research and Applications, 2013, 21, 1276-1285.	4.4	8
5	Cloud speed impact on solar variability scaling – Application to the wavelet variability model. Solar Energy, 2013, 91, 11-21.	2.9	104
6	A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants. IEEE Transactions on Sustainable Energy, 2013, 4, 501-509.	5.9	150
7	Electrical power fluctuations in a network of DC/AC inverters in a large PV plant: Relationship between correlation, distance and time scale. Solar Energy, 2013, 88, 227-241.	2.9	43
8	Accurate measurements of solar irradiance for evaluation of photovoltaic power profiles. , 2013, , .		8
9	Power management of hybrid energy storage system for a MW photovoltaic system. , 2013, , .		5
10	Control Strategies to Smooth Short-Term Power Fluctuations in Large Photovoltaic Plants Using Battery Storage Systems. Energies, 2014, 7, 6593-6619.	1.6	107
11	Modeling solar irradiance smoothing for large PV power plants using a 45-sensor network and the Wavelet Variability Model. Solar Energy, 2014, 110, 482-495.	2.9	27
12	Accurate power prediction of spatially distributed PV systems using localized irradiance measurements. , 2014, , .		10
13	Impacts of large-scale Intermittent Renewable Energy Sources on electricity systems, and how these can be modeled. Renewable and Sustainable Energy Reviews, 2014, 33, 443-466.	8.2	255
14	Storage requirements for PV power ramp-rate control. Solar Energy, 2014, 99, 28-35.	2.9	155
15	Performance estimation of a thin-film photovoltaic plant based on an Artificial Neural Network model. , 2014, , .		5
16	Power Smoothing of Large Solar PV Plant Using Hybrid Energy Storage. IEEE Transactions on Sustainable Energy, 2014, 5, 834-842.	5.9	238
17	Geographic smoothing of solar PV: results from Gujarat. Environmental Research Letters, 2015, 10, 104001.	2.2	34
18	Variability of interconnected wind plants: correlation length and its dependence on variability time scale. Environmental Research Letters, 2015, 10, 044004.	2.2	50

TION REI

#	Article	IF	CITATIONS
19	Dispatch performance analysis of PV power plants using various energy storage capacities. , 2015, , .		1
20	Integrating solar PV (photovoltaics) in utility system operations: Analytical framework and Arizona case study. Energy, 2015, 85, 1-9.	4.5	64
21	Three-phase Photovoltaic Systems: Structures, Topologies, and Control. Electric Power Components and Systems, 2015, 43, 1364-1375.	1.0	17
22	Optimal capacity design for hybrid energy storage system supporting dispatch of large-scale photovoltaic power plant. Journal of Energy Storage, 2015, 3, 25-35.	3.9	30
23	Real-time photovoltaic plant maximum power point estimation for use in grid frequency stabilization. , 2015, , .		44
24	Control strategies to use the minimum energy storage requirement for PV power ramp-rate control. Solar Energy, 2015, 111, 332-343.	2.9	89
25	Energy Storage Requirements for PV Power Ramp Rate Control in Northern Europe. International Journal of Photoenergy, 2016, 2016, 1-11.	1.4	17
26	Short-term energy storage for power quality improvement in weak MV grids with distributed renewable generation. , 2016, , .		5
27	The importance of model fidelity, update rate and horizon length in model based microgrid control. , 2016, , .		1
28	High temporal resolution load variability compared to PV variability. , 2016, , .		12
29	Fundamental analysis of temperature-based transmission capacity constraints with high-penetration of PV generation considering a spatial smoothing effect. , 2016, , .		1
30	Impacts of short-term solar power forecasts in system operations. , 2016, , .		4
31	Modeling the Temporal Variations in the Output of Large Solar PV Power Plants. Energy Procedia, 2016, 95, 294-301.	1.8	3
32	Local short-term variability in solar irradiance. Atmospheric Chemistry and Physics, 2016, 16, 6365-6379.	1.9	40
33	Simulating the variability of dispersed large PV plants. Progress in Photovoltaics: Research and Applications, 2016, 24, 680-691.	4.4	19
34	A semiparametric spatio-temporal model for solar irradiance data. Renewable Energy, 2016, 87, 15-30.	4.3	10
35	Power Management for Improved Dispatch of Utility-Scale PV Plants. IEEE Transactions on Power Systems, 2016, 31, 2297-2306.	4.6	40
36	Active power control in a hybrid PV-storage power plant for frequency support. Solar Energy, 2017, 144, 49-62.	2.9	39

CITATION REPORT

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
37	On the relation between battery size and PV power ramp rate limitation. Solar Energy, 2017, 142, 182-193.	2.9	31
38	Empirical Model for Capacity Credit Evaluation of Utility-Scale PV Plant. IEEE Transactions on Sustainable Energy, 2017, 8, 94-103.	5.9	35
39	Power Ramp Limitation Capabilities of Large PV Power Plants With Active Power Reserves. IEEE Transactions on Sustainable Energy, 2017, 8, 573-581.	5.9	39
40	Analysis of solar irradiance variations as a source of flicker associated with PV systems. , 2017, , .		1
41	Multi-period power management optimization for operating isolated hybrid microgrids. , 2017, , .		0
42	Power fluctuations in solar-storage clusters: spatial correlation and battery response times. Energy Procedia, 2017, 135, 379-390.	1.8	2
43	A hybrid energy storage adaptive control strategy for PV power smoothing. , 2017, , .		0
44	Solar Variability Reduction Using Off-Maximum Power Point Tracking and Battery Storage. , 2017, , .		4
45	Ideal Operation of a Photovoltaic Power Plant Equipped with an Energy Storage System on Electricity Market. Applied Sciences (Switzerland), 2017, 7, 749.	1.3	10
46	Critical Evaluation of the Foundations of Solar Simulator Standards. , 2017, , .		3
47	Stochastic Model for Generation of High-Resolution Irradiance Data and Estimation of Power Output of Photovoltaic Plants. IEEE Transactions on Sustainable Energy, 2018, 9, 952-960.	5.9	22
48	Suitability of representative electrochemical energy storage technologies for ramp-rate control of photovoltaic power. Journal of Power Sources, 2018, 384, 396-407.	4.0	25
49	Geographic smoothing of solar photovoltaic electric power production in the Western USA. Journal of Renewable and Sustainable Energy, 2018, 10, .	0.8	11
50	Smoothing of Output Power Variation with Increasing PV Array Size. , 2018, , .		4
51	Irradiance Variability Quantification and Small-Scale Averaging in Space and Time: A Short Review. Atmosphere, 2018, 9, 264.	1.0	33
52	Effects of temporal averaging on short-term irradiance variability under mixed sky conditions. Atmospheric Measurement Techniques, 2018, 11, 3131-3144.	1.2	12
53	Geographic Dependence of the Solar Irradiance Spectrum at Intermediate to High Frequencies. Physical Review Applied, 2019, 12, .	1.5	3
54	Integration of Centralized and Local Voltage Control Scheme in Distribution Network to Reduce the Operation of Mechanically Switched Devices. , 2019, , .		5

		CITATION REPORT	
# 55	ARTICLE PV plants performance analysis under mutable operating condition. , 2019, , .	IF	Citations
56	Estimating PV power from aggregate power measurements within the distribution grid. Journal of Renewable and Sustainable Energy, 2019, 11, .	0.8	19
57	Toward Optimal Risk-Averse Configuration for HESS With CGANs-Based PV Scenario Generation. IEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 1779-1793.	E 5.9	15
58	A comprehensive voltage control strategy with voltage flicker compensation for highly PV penetrated distribution networks. Electric Power Systems Research, 2019, 172, 105-113.	2.1	20
59	Comparison of AC and DC Bus Interconnections of Energy Storage Systems in PV Power Plants with Oversized PV Generator. , 2019, , .		1
60	Analysis of battery-based virtual inertia & primary frequency response on improving frequency dynamics in an island hydro-diesel-PV ac-grid. , 2019, , .		2
61	Validating Performance Models for Hybrid Power Plant Control Assessment. Energies, 2019, 12, 433	0. 1.6	9
62	Stochastic processes in renewable power systems: From frequency domain to time domain. Science China Technological Sciences, 2019, 62, 2093-2103.	2.0	7
63	Maximum expected ramp rates using cloud speed sensor measurements. Journal of Renewable and Sustainable Energy, 2020, 12, 056302.	0.8	1
64	Estimation of the largest expected photovoltaic power ramp rates. Applied Energy, 2020, 278, 1156	36. 5.1	26
65	A review of energy storage technologies for large scale photovoltaic power plants. Applied Energy, 2020, 274, 115213.	5.1	108
66	Key technologies of intelligent transportation based on image recognition. International Journal of Advanced Robotic Systems, 2020, 17, 172988142091727.	1.3	Ο
67	Influence of photovoltaic generation model and time resolution on the reliability evaluation of distribution systems. International Journal of Energy Research, 2021, 45, 864-878.	2.2	0
68	A comparison of photovoltaic models for estimating power generation: a case study of Brazilian dat Clean Technologies and Environmental Policy, 2021, 23, 517-530.	a. 2.1	1
69	Evaluating Distributed PV Curtailment Using Quasi-Static Time-Series Simulations. IEEE Open Access Journal of Power and Energy, 2021, 8, 365-376.	5 2.5	7
70	Generation of synthetic 4 s utility-scale PV output time series from hourly solar irradiance data. Journal of Renewable and Sustainable Energy, 2021, 13, 026301.	0.8	1
71	Over-frequency support in large-scale photovoltaic power plants using non-conventional control architectures. International Journal of Electrical Power and Energy Systems, 2021, 127, 106679.	3.3	2
72	Cloud advection model of solar irradiance smoothing by spatial aggregation. Journal of Renewable and Sustainable Energy, 2021, 13, .	0.8	6

#	Article	IF	CITATIONS
73	Comparative Analysis of Degradation Assessment of Battery Energy Storage Systems in PV Smoothing Application. Energies, 2021, 14, 3600.	1.6	5
74	Longâ€ŧerm degradation rate of crystalline silicon PV modules at commercial PV plants: An 82â€MWp assessment over 10 years. Progress in Photovoltaics: Research and Applications, 2021, 29, 1294-1302.	4.4	16
75	Levelized Cost of Hydrogen Calculation from Offâ€Grid Photovoltaic Plants Using Different Methods. Solar Rrl, 2022, 6, .	3.1	5
76	Characterizing solar PV grid overvoltages by data blending advanced metering infrastructure with meteorology. Solar Energy, 2021, 227, 312-320.	2.9	3
77	Solar Radiation Resource: Measurement, Modeling, and Methods. , 2022, , 176-212.		5
78	Power ramp-rates of utility-scale PV systems under passing clouds: Module-level emulation with cloud shadow modeling. Applied Energy, 2020, 268, 114980.	5.1	33
79	Worst Expected Ramp Rates from Cloud Speed Measurements. , 2019, , .		3
80	Cloud Advection and Spatial Variability of Solar Irradiance. , 2020, , .		4
82	Power output fluctuations in large PV plants. Renewable Energy and Power Quality Journal, 0, , 1276-1281.	0.2	8
83	A Unified Power-Setpoint Tracking Algorithm for Utility-Scale PV Systems With Power Reserves and Fast Frequency Response Capabilities. IEEE Transactions on Sustainable Energy, 2022, 13, 479-490.	5.9	14
84	Contributions to the size reduction of a battery used for PV power ramp rate control. Solar Energy, 2021, 230, 435-448.	2.9	10
86	Research on control strategy of two-stage photovoltaic virtual synchronous generator with variable power point tracking. Energy Reports, 2022, 8, 283-290.	2.5	6
87	An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints. Renewable and Sustainable Energy Reviews, 2022, 155, 111955.	8.2	34
88	Double Moving Average Methodology for Smoothing of Solar Power Fluctuations with Battery Energy Storage. , 2020, , .		8
89	Fuzzy Time Series Methods Applied to (In)Direct Short-Term Photovoltaic Power Forecasting. Energies, 2022, 15, 845.	1.6	13
90	Power Generation Prediction of Building-Integrated Photovoltaic System with Colored Modules Using Machine Learning. Energies, 2022, 15, 2589.	1.6	3
91	A review of behind-the-meter solar forecasting. Renewable and Sustainable Energy Reviews, 2022, 160, 112224.	8.2	21
92	A nonstationary and nonâ€Gaussian moving average model for solar irradiance. Environmetrics, 0, , .	0.6	2

CITATION REPORT

#	Article	IF	CITATIONS
93	Towards the applicability of solar nowcasting: A practice on predictive PV power ramp-rate control. Renewable Energy, 2022, 195, 147-166.	4.3	9
94	A PV ramp-rate control strategy to extend battery lifespan using forecasting. Applied Energy, 2022, 323, 119546.	5.1	7
95	Sizing of energy storage systems for ramp rate control of photovoltaic strings. Renewable Energy, 2022, 196, 1366-1375.	4.3	6
96	Inverter-based PV ramp-rate limitation strategies: minimizing energy losses. , 2022, , .		0
97	Impact of Time Resolution on Curtailment Losses in Hybrid Wind-Solar PV Plants. Energies, 2022, 15, 5968.	1.6	0
98	A New Strategy for PI Tuning in Photovoltaic Irrigation Systems Based on Simulation of System Voltage Fluctuations Due to Passing Clouds. Energies, 2022, 15, 7191.	1.6	2
99	The Effect of Inverter Loading Ratio on Energy Estimate Bias. , 2022, , .		2
100	Analytical index-based allocation and sizing of Lambert-W modeled PV in an active distribution network. Energy Conversion and Management: X, 2023, 17, 100334.	0.9	6
101	Comparing Spatio-Temporal Models for Aggregate PV Power Nowcasting. , 2022, , .		0
102	Robust Proactive Power Smoothing Control of PV Systems Based on Deep Reinforcement Learning. IEEE Transactions on Sustainable Energy, 2023, 14, 1585-1598.	5.9	3
103	Benchmark of eight commercial solutions for deterministic intra-day solar forecast. EPJ Photovoltaics, 2023, 14, 15.	0.8	0
104	Enhancement of the Voltage Control Response in Three-Phase Photovoltaic Inverters With Small DC Capacitors. IEEE Transactions on Industry Applications, 2023, 59, 4473-4483.	3.3	0
105	Omnivision forecasting: Combining satellite and sky images for improved deterministic and probabilistic intra-hour solar energy predictions. Applied Energy, 2023, 336, 120818.	5.1	9
110	A Power-Based Control Approach for a Battery-Assisted Quasi-Impedance-Source Converter Applied in Photovoltaic Systems. , 2023, , .		0