Biomedical applications of biodegradable polymers

Journal of Polymer Science, Part B: Polymer Physics 49, 832-864 DOI: 10.1002/polb.22259

Citation Report

#	Article	IF	CITATIONS
1	DFT study of the Ring Opening Polymerization of ε-caprolactone by grafted lanthanide complexes: 1—Effect of the grafting mode on the reactivity of borohydride complexes. Dalton Transactions, 2011, 40, 11211.	1.6	24
2	Tuning PEG-DA hydrogel properties via solvent-induced phase separation (SIPS). Journal of Materials Chemistry, 2011, 21, 18776.	6.7	18
3	DFT study of the Ring Opening Polymerization of ε-caprolactone by grafted lanthanide complexes: 2—Effect of the initiator ligand. Dalton Transactions, 2011, 40, 11228.	1.6	23
4	ε-Caprolactone-Based Macromonomers Suitable for Biodegradable Nanoparticles Synthesis through Free Radical Polymerization. Macromolecules, 2011, 44, 9205-9212.	2.2	90
5	DFT investigations on the ring-opening polymerization of cyclic carbonates catalyzed by zinc-{β-diiminate} complexes. Polymer Chemistry, 2011, 2, 2564.	1.9	21
6	Functionalized polycarbonates from dihydroxyacetone: insights into the immortal ring-opening polymerization of 2,2-dimethoxytrimethylene carbonate. Polymer Chemistry, 2011, 2, 2789.	1.9	40
7	Biodegradable Polymeric Assemblies for Biomedical Materials. Advances in Polymer Science, 2011, , 65-114.	0.4	49
8	Therapeutic Strategies Based on Polymeric Microparticles. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-9.	3.0	42
9	Nanostructured materials for bone tissue replacement. , 2012, , 599-623.		0
11	Bone Tissue Engineering: Recent Advances and Challenges. Critical Reviews in Biomedical Engineering, 2012, 40, 363-408.	0.5	1,758
12	Orthogonal Modification of Norbornene-Functional Degradable Polymers. ACS Macro Letters, 2012, 1, 1285-1290.	2.3	64
13	Poly[(ethylene oxide)- <i>co</i> -(methylene ethylene oxide)]: A hydrolytically degradable poly(ethylene) Tj ETQq1	1 0,78431 2.3	.4 rgBT /0
14	Glycogen as a Biodegradable Construction Nanomaterial for in vivo Use. Macromolecular Bioscience, 2012, 12, 1731-1738.	2.1	25
15	Ring-opening polymerisation of rac-lactide mediated by cationic zinc complexes featuring P-stereogenic bisphosphinimine ligands. Dalton Transactions, 2012, 41, 3701.	1.6	32
16	Injectable hydrogels for central nervous system therapy. Biomedical Materials (Bristol), 2012, 7, 024101.	1.7	198
17	Microfluidic Generation and Selective Degradation of Biopolymer-Based Janus Microbeads. Biomacromolecules, 2012, 13, 1197-1203.	2.6	63
18	Synthesis and Functionalization of Thiol-Reactive Biodegradable Polymers. Macromolecules, 2012, 45, 1715-1722.	2.2	98
19	Comparative study of osteogenic potential of a composite scaffold incorporating either endogenous bone morphogenetic protein-2 or exogenous phytomolecule icaritin: An in vitro efficacy study. Acta Biomaterialia, 2012, 8, 3128-3137.	4.1	63

#	Article	IF	CITATIONS
20	New hyperbranched carbosiloxane–carbosilane polymers with aromatic units in the backbone. European Polymer Journal, 2012, 48, 1413-1421.	2.6	9
21	VEGFâ€incorporated biomimetic poly(lactideâ€ <i>co</i> â€glycolide) sintered microsphere scaffolds for bone tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 2187-2196.	1.6	40
22	Recent advances in metallo/organo-catalyzed immortal ring-opening polymerization of cyclic carbonates. Catalysis Science and Technology, 2012, 2, 898.	2.1	96
23	Bis(phosphinimino)methanide borohydride complexes of the rare-earth elements as initiators for the ring-opening polymerization of trimethylene carbonate: combined experimental and computational investigations. Polymer Chemistry, 2012, 3, 429-435.	1.9	27
24	Phosphoester cross-linked vegetable oil to construct a biodegradable and biocompatible elastomer. Soft Matter, 2012, 8, 5888.	1.2	36
25	Cyclodextrin-Centered Polyesters: Controlled Ring-Opening Polymerization of Cyclic Esters from β-Cyclodextrin-Diol. Macromolecules, 2012, 45, 1122-1130.	2.2	21
26	Aerosolized Antimicrobial Agents Based on Degradable Dextran Nanoparticles Loaded with Silver Carbene Complexes. Molecular Pharmaceutics, 2012, 9, 3012-3022.	2.3	49
27	Biodegradable Poly(disulfide)s Derived from RAFT Polymerization: Monomer Scope, Glutathione Degradation, and Tunable Thermal Responses. Biomacromolecules, 2012, 13, 3200-3208.	2.6	57
28	Amino acid vinyl esters: a new monomer palette for degradable polycationic materials. Polymer Chemistry, 2012, 3, 741.	1.9	7
29	S-Nitrosated biodegradable polymers for biomedical applications: synthesis, characterization and impact of thiol structure on the physicochemical properties. Journal of Materials Chemistry, 2012, 22, 5990.	6.7	37
30	Facile Synthesis of Clickable, Water-Soluble, and Degradable Polyphosphoesters. ACS Macro Letters, 2012, 1, 328-333.	2.3	140
31	Comparison of a biodegradable ureteral stent versus the traditional double-J stent for the treatment of ureteral injury: an experimental study. Biomedical Materials (Bristol), 2012, 7, 065002.	1.7	19
32	Nanostructured Thin Film Polymer Devices for Constant-Rate Protein Delivery. Nano Letters, 2012, 12, 5355-5361.	4.5	47
33	Porous Collagen Scaffold Reinforced with Surfaced Activated PLLA Nanoparticles. Scientific World Journal, The, 2012, 2012, 1-10.	0.8	22
34	Bioactive and Biodegradable Nanocomposites and Hybrid Biomaterials for Bone Regeneration. Journal of Functional Biomaterials, 2012, 3, 432-463.	1.8	117
35	In vitro perforation of human epithelial carcinoma cell with antibody-conjugated biodegradable microspheres illuminated by a single 80 femtosecond near-infrared laser pulse. International Journal of Nanomedicine, 2012, 7, 2653.	3.3	14
36	Amphiphilic Blockâ€Craft Copolymers Poly(ethylene glycol)â€ <i>b</i> â€(polycarbonatesâ€ <i>g</i> â€palmitate) Prepared via the Combination of Ringâ€Opening Polymerization and Click Chemistry. Journal of Polymer Science Part A, 2012, 50, 2687-2696.	2.5	22
37	Nanostructure controlled anti-cancer drug delivery using poly(ε-caprolactone) based nanohybrids. Journal of Materials Chemistry, 2012, 22, 17853.	6.7	47

#	Article	IF	CITATIONS
38	Uptake of Wellâ€Defined, Highly Glycosylated, Pentafluorostyreneâ€Based Polymers and Nanoparticles by Human Hepatocellular Carcinoma Cells. Macromolecular Bioscience, 2012, 12, 1190-1199.	2.1	14
39	Soybean oilâ€based polyurethane networks as candidate biomaterials: Synthesis and biocompatibility. European Journal of Lipid Science and Technology, 2012, 114, 1165-1174.	1.0	86
40	Functionalized Poly(<i>γ</i> â€Glutamic Acid) Fibrous Scaffolds for Tissue Engineering. Advanced Healthcare Materials, 2012, 1, 308-315.	3.9	46
41	Discrete Cationic Zinc and Magnesium Complexes for Dual Organic/Organometallicâ€Catalyzed Ringâ€Opening Polymerization of Trimethylene Carbonate. Chemistry - A European Journal, 2012, 18, 9360-9370.	1.7	58
42	Influence of fiber diameter and crystallinity on the stability of electrospun poly(l-lactic acid) membranes to hydrolytic degradation. Polymer Testing, 2012, 31, 770-776.	2.3	25
43	Nerve guidance channels based on PLLA–PTMC biomaterial. Journal of Applied Polymer Science, 2013, 127, 2259-2268.	1.3	13
44	Fabrication of pRNA nanoparticles to deliver therapeutic RNAs and bioactive compounds into tumor cells. Nature Protocols, 2013, 8, 1635-1659.	5.5	108
45	Green step-grow polymerization of biodegradable amino acid based diacids with 3,5-diamino-N-(thiazole-2-yl)benzamide: characterization and study on bioactivity. Journal of Polymer Research, 2013, 20, 1.	1.2	13
46	Synthesis and Polymerization of Bicyclic Ketals: A Practical Route to High-Molecular Weight Polyketals. Journal of the American Chemical Society, 2013, 135, 10974-10977.	6.6	15
47	Biopolymer-based degradable nanofibres from renewable resources produced by freeze-drying. RSC Advances, 2013, 3, 15282.	1.7	15
48	Alkali aminoether-phenolate complexes: synthesis, structural characterization and evidence for an activated monomer ROP mechanism. Dalton Transactions, 2013, 42, 9361.	1.6	68
49	Engineered Spider Silk Proteinâ€≺scp>Based Composites for Drug Delivery. Macromolecular Bioscience, 2013, 13, 1431-1437.	2.1	38
50	Human: Veterinary Technology Cross Over. Advances in Delivery Science and Technology, 2013, , 359-375.	0.4	0
51	The degradation and biocompatibility of waterborne biodegradable polyurethanes for tissue engineering. Chinese Journal of Polymer Science (English Edition), 2013, 31, 1451-1462.	2.0	32
52	Biomimetic electrospun nanofibrous structures for tissue engineering. Materials Today, 2013, 16, 229-241.	8.3	645
53	Molecular Simulation to Predict Miscibility and Phase Separation Behavior of Chitosan/Poly(εâ€caprolactone) Binary Blends: A Comparison with Experiments. Macromolecular Theory and Simulations, 2013, 22, 377-384.	0.6	21
54	Biodegradable vs non-biodegradable antibiotic delivery devices in the treatment of osteomyelitis. Expert Opinion on Drug Delivery, 2013, 10, 341-351.	2.4	138
55	Development and characterization of novel alginate-based hydrogels as vehicles for bone substitutes. Carbohydrate Polymers, 2013, 95, 134-142.	5.1	51

#	Article	IF	CITATIONS
56	Open cellular magnesium alloys for biodegradable orthopaedic implants. Journal of Magnesium and Alloys, 2013, 1, 303-311.	5.5	31
57	Spatially discrete thermal drawing of biodegradable microneedles for vascular drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 83, 224-233.	2.0	44
58	Study on in Vitro Degradation of Sutures for Decomposable Esophageal Stent. IFMBE Proceedings, 2013, , 59-62.	0.2	0
59	Silk fibroin biopolymer films as efficient hosts for DFB laser operation. Journal of Materials Chemistry C, 2013, 1, 7181.	2.7	40
60	Silicon/copper dome-patterned electrodes for high-performance hybrid supercapacitors. Scientific Reports, 2013, 3, 3183.	1.6	62
62	Fabrication of Electrospun Poly (Lactide-co-Glycolide)–Fibrin Multiscale Scaffold for Myocardial Regeneration <i>In Vitro</i> . Tissue Engineering - Part A, 2013, 19, 849-859.	1.6	49
63	Syntheses of bis(pyrrolylaldiminato)aluminum complexes for the polymerisation of lactide. Dalton Transactions, 2013, 42, 15191.	1.6	20
64	Two-Dimensional Polymer-Based Cultures Expand Cord Blood-Derived Hematopoietic Stem Cells and Support Engraftment of NSG Mice. Tissue Engineering - Part C: Methods, 2013, 19, 25-38.	1.1	6
65	How smart do biomaterials need to be? A translational science and clinical point of view. Advanced Drug Delivery Reviews, 2013, 65, 581-603.	6.6	429
66	Improvement of cell response of the poly(lactic-co-glycolic acid)/calcium phosphate cement composite scaffold with unidirectional pore structure by the surface immobilization of collagen via plasma treatment. Colloids and Surfaces B: Biointerfaces, 2013, 103, 209-216.	2.5	44
67	Biodegradable polyglycerols with randomly distributed ketal groups as multi-functional drug delivery systems. Biomaterials, 2013, 34, 6068-6081.	5.7	49
68	Covalently crosslinked hyaluronic acidâ€chitosan hydrogel containing dexamethasone as an injectable scaffold for soft tissue engineering. Journal of Applied Polymer Science, 2013, 129, 682-688.	1.3	40
69	Recent advances in ring-opening polymerization strategies toward α,ï‰-hydroxy telechelic polyesters and resulting copolymers. European Polymer Journal, 2013, 49, 768-779.	2.6	64
70	Novel aspects of the degradation process of PLA based bulky samples under conditions of high partial pressure of water vapour. Polymer Degradation and Stability, 2013, 98, 150-157.	2.7	24
71	Drug Delivery Systems for Predictive Medicine: Polymers as Tools for Advanced Applications. Advances in Predictive, Preventive and Personalised Medicine, 2013, , 399-455.	0.6	7
72	Synthesis, assembly, and cross-linking of polymer amphiphiles in situ: polyurethane–polylactide core–shell particles. Polymer Chemistry, 2013, 4, 2546.	1.9	11
73	Enhanced mechanical property of chitosan via blending with functional poly(ε aprolactone). Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 659-667.	2.4	8
74	Interaction between Graphene Oxide and Pluronic F127 at the Air–Water Interface. Langmuir, 2013, 29, 5742-5748.	1.6	31

#	Article	IF	CITATIONS
75	Macromolecular engineering via ring-opening polymerization (2): l-lactide/trimethylene carbonate copolymerization – kinetic and microstructural control via catalytic tuning. Polymer Chemistry, 2013, 4, 3686.	1.9	39
76	Combined effects of direct current stimulation and immobilized BMPâ€2 for enhancement of osteogenesis. Biotechnology and Bioengineering, 2013, 110, 1466-1475.	1.7	47
77	Biological evaluation of alginate-based hydrogels, with antimicrobial features by Ce(III) incorporation, as vehicles for a bone substitute. Journal of Materials Science: Materials in Medicine, 2013, 24, 2145-2155.	1.7	40
78	Chitosan/alginate crosslinked hydrogels: Preparation, characterization and application for cell growth purposes. International Journal of Biological Macromolecules, 2013, 59, 342-348.	3.6	145
79	Biodegradable and electrically conducting polymers for biomedical applications. Progress in Polymer Science, 2013, 38, 1263-1286.	11.8	527
80	The contemporary role of ε-caprolactone chemistry to create advanced polymer architectures. Polymer, 2013, 54, 4333-4350.	1.8	154
81	The Importance of Controlled/Living Radical Polymerization Techniques in the Design of Tailor Made Nanoparticles for Drug Delivery Systems. Advances in Predictive, Preventive and Personalised Medicine, 2013, , 315-357.	0.6	2
82	Phosphazenes. Organophosphorus Chemistry, 0, , 216-262.	0.3	3
83	Biomimetic coatings for biomaterial surfaces. , 2013, , 91-126.		0
84	Macromolecular engineering viaring-opening polymerization (1): <scp>l</scp> -lactide/trimethylene carbonate block copolymers as thermoplastic elastomers. Polymer Chemistry, 2013, 4, 1095-1106.	1.9	59
85	Tunable PLGAâ€Based Nanoparticles Synthesized Through Freeâ€Radical Polymerization. Macromolecular Materials and Engineering, 2013, 298, 730-739.	1.7	21
86	Design of siRNA Therapeutics from the Molecular Scale. Pharmaceuticals, 2013, 6, 440-468.	1.7	33
87	Production Methods for Hyaluronan. International Journal of Carbohydrate Chemistry, 2013, 2013, 1-14.	1.5	130
88	Propargylâ€Functional Aliphatic Polycarbonate Obtained from Carbon Dioxide and Glycidyl Propargyl Ether. Macromolecular Rapid Communications, 2013, 34, 1395-1400.	2.0	33
89	Conformational and thermal analyses of <i>α</i> â€methoxyâ€poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf Polymer International, 2013, 62, 1169-1178.	50 187 Td 1.6	(glycol)â€∢ 2
90	A porous pHâ€stabilized composite material consisting of poly (D,Lâ€lactide), calcium carbonate and gentamicin for bone substitution. Materialwissenschaft Und Werkstofftechnik, 2013, 44, 107-111.	0.5	4
91	Prevention of postsurgical adhesions using an ultrapure alginate-based gel. British Journal of Surgery, 2013, 100, 904-910.	0.1	43
92	Synthetic Polymer-Network Based Materials in Stem Cell Research. , 2013, , 3-36.		0

#	Article	IF	CITATIONS
93	Validity of poly(1, 6â€bisâ€{ <i>p</i> arboxyphenoxy hexane)â€ <i>co</i> â€{sebacic anhydride)) copolymer in biomedical application. Journal of Applied Polymer Science, 2013, 128, 3687-3695.	1.3	19
94	Biocomposites: Influence of Matrix Nature and Additives on the Properties and Biodegradation Behaviour. , 0, , .		9
95	Endogenous stem/progenitor cell recruitment for tissue regeneration. , 0, , 405-418.		0
96	Bioabsorbable Stent Quo Vadis: A Case for Nano-Theranostics. Theranostics, 2014, 4, 514-533.	4.6	11
97	Nanoscale Diblock Copolymer Micelles: Characterizations and Estimation of the Effective Diffusion Coefficients of Biomolecules Release through Cylindrical Diffusion Model. PLoS ONE, 2014, 9, e105234.	1.1	2
98	Molecular Building Blocks and Their Architecture in Biologically/Environmentally Compatible Soft Matter Chemical Machinery. Journal of Oleo Science, 2014, 63, 1085-1098.	0.6	2
100	Characterization and use of ultravioletâ€reactive lowâ€molecularâ€weight polyhydroxybutyrate to prepare biodegradable acrylates. Journal of Applied Polymer Science, 2014, 131, .	1.3	0
101	Bioactivated protein-based porous microcarriers for tissue engineering applications. Journal of Materials Chemistry B, 2014, 2, 7795-7803.	2.9	13
102	Polyacetals. , 2014, , 219-233.		7
103	Methods for the Chemical Analysis of Degradable Synthetic Polymeric Biomaterials. Critical Reviews in Analytical Chemistry, 2014, 44, 23-40.	1.8	15
104	Synthesis, Properties and Applications of Biodegradable Polymers Derived from Diols and Dicarboxylic Acids: From Polyesters to Poly(ester amide)s. International Journal of Molecular Sciences, 2014, 15, 7064-7123.	1.8	191
105	Biocompatibility and enhanced osteogenic differentiation of human mesenchymal stem cells in response to surface engineered poly(<scp>d</scp> , <scp>l</scp> -lactic- <i>co</i> -glycolic acid) microparticles. Journal of Biomedical Materials Research - Part A, 2014, 102, 3872-3882.	2.1	6
106	Thermomechanical properties of poly(lactic acid) films reinforced with hydroxyapatite and regenerated cellulose microfibers. Journal of Applied Polymer Science, 2014, 131, .	1.3	2
107	Hydrolyzable Polyureas Bearing Hindered Urea Bonds. Journal of the American Chemical Society, 2014, 136, 16974-16977.	6.6	138
108	Evaluation of parameters influencing the molecular delivery by biodegradable microsphere-mediated perforation using femtosecond laser. Journal of Biomedical Optics, 2014, 19, 015003.	1.4	5
109	Nanofiber-permeated, hybrid polymer/ceramic scaffolds for guided cell behavior. Materials Research Society Symposia Proceedings, 2014, 1687, 24.	0.1	2
110	Overview of Resorbable Biomaterials. SpringerBriefs in Materials, 2014, , 1-5.	0.1	1
111	Current Applications of Biotextiles and Future Trends. SpringerBriefs in Materials, 2014, , 67-75.	0.1	1

#	Article	IF	CITATIONS
112	Cardiovascular biomaterials: when the inflammatory response helps to efficiently restore tissue functionality?. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 253-267.	1.3	29
113	Polymer-antibody fragment conjugates for biomedical applications. Progress in Polymer Science, 2014, 39, 308-329.	11.8	36
114	Green synthesis of enantiomerically pure l-lactide and d-lactide using biogenic creatinine catalyst. Polymer Degradation and Stability, 2014, 101, 18-23.	2.7	24
115	Macromolecular engineering via ring-opening polymerization (3): trimethylene carbonate block copolymers derived from glycerol. Polymer Chemistry, 2014, 5, 1229-1240.	1.9	20
116	Continuous Head-to-Tail Depolymerization: An Emerging Concept for Imparting Amplified Responses to Stimuli-Responsive Materials. ACS Macro Letters, 2014, 3, 298-304.	2.3	106
117	Polymeric hollow fiber membranes for bioartificial organs and tissue engineering applications. Journal of Chemical Technology and Biotechnology, 2014, 89, 633-643.	1.6	33
118	Biodegradable poly(ester amide)s – A remarkable opportunity for the biomedical area: Review on the synthesis, characterization and applications. Progress in Polymer Science, 2014, 39, 1291-1311.	11.8	182
119	Design and synthesis of elastin-like polypeptides for an ideal nerve conduit in peripheral nerve regeneration. Materials Science and Engineering C, 2014, 38, 119-126.	3.8	16
120	Effect of hydroxyapatite with different morphology on the crystallization behavior, mechanical property and in vitro degradation of hydroxyapatite/poly(lactic-co-glycolic) composite. Composites Science and Technology, 2014, 93, 61-67.	3.8	53
121	Biocompatible electrospun polymer blends for biomedical applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1517-1527.	1.6	23
122	Marine-degradable polylactic acid. Green Chemistry, 2014, 16, 1768-1773.	4.6	108
123	PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: Morphology, mechanical properties and bioactivity. Materials Science and Engineering C, 2014, 34, 437-445.	3.8	103
124	Low density biodegradable shape memory polyurethane foams for embolic biomedical applications. Acta Biomaterialia, 2014, 10, 67-76.	4.1	155
125	Enhancement of stainâ€induced crystallization in polylactide via thermal preannealing. Journal of Applied Polymer Science, 2014, 131, .	1.3	2
126	Stereocomplex Formation in Enantiomeric Polylactides by Melting Recrystallization of Homocrystals: Crystallization Kinetics and Crystal Morphology. Macromolecules, 2014, 47, 347-352.	2.2	104
127	Degradability and cytocompatibility of tricalcium phosphate/poly(amino acid) composite as bone tissue implants in orthopaedic surgery. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1194-1210.	1.9	14
128	Temperature―and pHâ€sensitive IPNs grafted onto polyurethane by gamma radiation for antimicrobial drugâ€eluting insertable devices. Journal of Applied Polymer Science, 2014, 131, .	1.3	12
129	Review of crosslinked and non-crosslinked copolyesters for tissue engineering and drug delivery. Polymer International, 2014, 63, 393-401.	1.6	9

		CITATION REP	ORT	
#	Article		IF	CITATIONS
130	High molecular weight poly(lactic acid) produced by an efficient iron catalyst bearing a bis(amidinato)- N -heterocyclic carbene ligand. Polyhedron, 2014, 84, 160-167.		1.0	37
131	Waterâ€soluble, biocompatible polyphosphazenes with controllable and pHâ€promoted degradat behavior. Journal of Polymer Science Part A, 2014, 52, 287-294.	ion	2.5	65
132	Scaffolding hydrogels for rapid prototyping based tissue engineering. , 2014, , 176-200.			12
133	Photoresponsive polyesters by incorporation of alkoxyphenacyl or coumarin chromophores along the backbone. Photochemical and Photobiological Sciences, 2014, 13, 412-421.		1.6	13
134	Affinity-Based Drug Delivery Systems for Tissue Repair and Regeneration. Biomacromolecules, 201 3867-3880.	4, 15,	2.6	106
135	Calcium phosphate increases the encapsulation efficiency of hydrophilic drugs (proteins, nucleic) delivery. Journal of Materials Chemistry B, 2014, 2, 7250-7259.	j ETQq1 1 0.784	4314 rgBT 2.9	/Overlock 39
136	Biodegradable intestinal stents: A review. Progress in Natural Science: Materials International, 201 24, 423-432.	4,	1.8	41
137	Glycoprotein CD98 as a receptor for colitis-targeted delivery of nanoparticles. Journal of Materials Chemistry B, 2014, 2, 1499.		2.9	37
138	A surfactant-free bio-compatible film with a highly ordered honeycomb pattern fabricated via an improved phase separation method. Chemical Communications, 2014, 50, 3817.		2.2	25
139	Polymeric Biomaterials in Tissue Engineering and Regenerative Medicine. , 2014, , 351-371.			48
140	Recent advances in biodegradable polymeric materials. Materials Science and Technology, 2014, 3 558-566.	0,	0.8	22
141	Water-based synthesis and processing of novel biodegradable elastomers for medical applications Journal of Materials Chemistry B, 2014, 2, 5083-5092.		2.9	76
142	Novel Functionalization of Discrete Polymeric Biomaterial Microstructures for Applications in Imaging and Three-Dimensional Manipulation. ACS Applied Materials & Interfaces, 2014, 6, 14477-14485.		4.0	11
143	Enantiopure Isotactic PCHC Synthesized by Ring-Opening Polymerization of Cyclohexene Carbona Macromolecules, 2014, 47, 4230-4235.	te.	2.2	95
144	Polyanhydrides of Castor Oil–Sebacic Acid for Controlled Release Applications. Industrial & Engineering Chemistry Research, 2014, 53, 7891-7901.		1.8	26
145	Poly(ester amides) (PEAs) – Scaffold for tissue engineering applications. European Polymer Journ 2014, 60, 58-68.	nal,	2.6	60
146	A resorbable bicomponent braided ureteral stent with improved mechanical performance. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 38, 17-25.	of	1.5	42
147	Influence of monomeric and polymeric structure on the physical properties of thermoplastic polyesters derived from hydroxy fatty acids. Polymer International, 2014, 63, 1902-1911.		1.6	9

144Polyphophagenes is anti-cancer drug carriers: From synthesis to application. Progress in Polymer11.838144Chain and Port Bolding Effects on Matrix Degradation in Protein-Loaded Microgels.2.61.6156Three-dimensional osteogenic and chondrogenic systems to model osteochondral physiology and eggenerative joint diseases. Experimental Biology and Medicine, 2014, 239, 1080 1055.1.460151Protein-Standberg and Standberg and Standbe	#	Article	IF	CITATIONS
141Elsain and Pore-Blacking Effects on Maria Degradation in Protein-Loaded Microgels.2.63.0150Three-dimensional cateogenic and chondrogenic systems to model discochondral physiology and degenerative joint diseases. Experimental Blology and Medicine, 2014, 239, 1080-1095.1.160151Phanar microdevices enhance a transport of Jarge molecular weight molecules across retural pigment.1.49152Peparation and characterization of collagenbalic a composite scaffolds for peripheral nerve regeneration. Journal of Porous Meterials, 2014, 15, 629-638.1.31.3153Reperation and characterization of collagenbalic a composite scaffolds for peripheral nerve regeneration. Journal of Porous Meterials, 2014, 21, 699-708.1.67154Roteins and Poly(Annino Acids)., 2014, 43-65.1.138156Biodegradable polymeric nanoparticles based on amphiphilic principle: construction and application for dug delivery. Science China Chemistry, 2014, 57, 461-475.38156Polymer Synthesis and Processing., 2014, 1-31.39157Solface grafted poly(lacondiscrone) prepared using organocatalysed ring-opering polymerisation for dug delivery. Science China Chemistry, 2014, 57, 461-475.3.2158Polymer Synthesis and Processing., 2014, 1-31.39159Solface grafted poly(lacondiscrone) prepared using organocatalysed ring-opering polymerisation frag. 2014, 1-32, 2029, 2014.3.2150Epodydele polymerization of LyCaprolactone and Irimethylere Carbonate. Organometallics, 2014, 35, 3932, 301.3.2159Polymeri Topology Revealed by Ion Mobility Coupled with Mass Spectrometry. Ana	148	Polyphophazenes as anti-cancer drug carriers: From synthesis to application. Progress in Polymer Science, 2014, 39, 1987-2009.	11.8	38
1600Inter-edimensional osteogenic and chondrogenic systems to model osteochondral physiology and degenerative joint diseases. Experimental Biology and Medicine, 2014, 239, 1080-1095.1.160151Plant microdevices whene transport of large molecular weight moleculae across retinal pigment.1.40152Preparation and characterization of collagentylice composite scaffolds for peripheral nerve empirication. Journal of Porous Materials, 2014, 21, 697-988.1.313153Chemoneynytatic synthesis of novel (h)N(h - 2-bydroverthyl)-2-peripheral nerve empirication to periods polycaprelactone films. Polyaner international, 2014, 63, 1523-1530.1.67154Proteins and Poly(Amino Acids)., 2014, 43 65.111331155Biodegradable polymenic annopatics based on ampliphilic principle: construction and application followed by SHARP. Polymer Chemistry, 2014, 57, 461 475.1919156Sufface grafted poly(fil-caprelactone) prepared using organocatalysed ring-opening polymerisation followed by SHARP. Polymer Chemistry, 2014, 57, 451 475.1939157Sufface grafted poly(fil-caprelactone) prepared using organocatalysed ring-opening polymerisation sizes 5401.1.939158Biodegradable polymeric atom of fil-Caprelactone and Timethylene Carbonate. Organometallits, 2014, 3.31.139159Sufface grafted poly(fil-caprelactone) prepared using organocatalysed ring-opening polymerisation3.049159Sufface grafted poly(fil-caprelactone) prepared using organocatalysed ring-opening polymerisation3.049159Exolution of fil-Caprelactone synthesis, Structure,	149	Chain and Pore-Blocking Effects on Matrix Degradation in Protein-Loaded Microgels. Biomacromolecules, 2014, 15, 3671-3678.	2.6	16
111Planar microdevices enhance transport of large molecular weight molecules across retinal pigment1.49112Preparation and characterization of collagen/altea composite scaffolds for pertipheral nerve1.313113Chemoenzymatic synthesis of novel (3N4): 2014, 21, 699-708.1.67114Proteins and Poly(Amino Acids). 2014, 13-65.11115Biodegradable polymeric nanoparticles based on amphiphilic principle: construction and application4.245116Biodegradable polymeric nanoparticles based on amphiphilic principle: construction and application4.245116Polymer Synthesis and Processing., 2014, , 1-31.38117Sufface grafied polyfly-carcelation of prepared using organocatalysed ning-opening polymerisation1.919118Probletiminate Rare Earth Borohydride Complexes: Synthesis, Structure, and Catalytic Activity in the structure transmitter action of up Caprolation and ministry for Carbonate. Organometalles, 2014, 33, 3592-5401.1.33.247118Polymer Topology, Revealed by Ion Mobility Coupled with Mass Spectrometry. Analytical Chemistry.3.247119Enovided Shabe Polyfle accurates to retinate Rare for Soff Insue Applications. Preparation and Stability. 2014, 86, 96933700.3.23.247114Hydrohysable PBS-based polyflecter urethanels thermoplastic elastomers. Polymer Degradation and 	150	Three-dimensional osteogenic and chondrogenic systems to model osteochondral physiology and degenerative joint diseases. Experimental Biology and Medicine, 2014, 239, 1080-1095.	1.1	60
152Preparation and characterization of collagen/silica composite scaffolds for peripheral nerve1.313153Chemoenczymatic synthesis of novel (L) N(L) (2/hydrowyethyl) P-period oligomer derivatives and sphication to proop polyceprolactone films, Polymer International, 2014, 63, 1523-1530.1.07154Proteins and Poly(Amino Acids), 2014, 43-65.11155Biodegradable polymeric nanoparticles based on amphiphile principle: construction and application4.245156Polymer Synthesis and Processing, 2014, 1-31.38157Surface grafted poly(liccaprolactone) prepared using organocatalysed ring opening polymerisation1.91.9158Biodegradable polymerization of Ip-Caprolactone and Trimethyler Carbonate. Organometallics, 2014, 3.31.139159Ebeletiminate Rare Earth Borohydride Complexes: Synthesis, Structure, and Catalytic Activity in the Ring-Opening Polymerization of Ip-Caprolactone and Trimethyler Carbonate. Organometallics, 2014, 3.31.139159Eboddzed Soybean Oli/ZnO Blocomposites for Soft Tissue Applications: Preparation and characterization. ACS Applied Materials Kamp: Interfaces, 2014, 6.172277-17288.3.247160Polymer Topology Revealed by Ion Mobility Coupled with Mass Spectrometry. Analytical Chemistry, 2014, 65, 9593-3700.3.83.1161Iydrolysable PBS-based polyficter urethane)s thermoplastic elastomers. Polymer Degradation and Rise Soft.2.73.2162Synthesized for biomedical applications. Materials Science and Engineering, 2014, 3.43.83.1163Hydrolysable PBS-based polyficter urethane)s thermopelas	151	Planar microdevices enhance transport of large molecular weight molecules across retinal pigment epithelial cells. Biomedical Microdevices, 2014, 16, 629-638.	1.4	9
1130Chemoenzymatic synthesis of novel (i) N(i): (2-hydroxyethyl)-Peptold oligomer derivatives and application to porous polycaprolactone films. Polymer International, 2014, 63, 1523-1530.1-071154Proteins and Poly(Amino Acids)., 2014, , 43-65.1-11155Biodegradable polymeric nanoparticles based on amphiphilic principle: construction and application in drug delivery. Science China Chemistry, 2014, 57, 461-475.4-24-61156Polymer Synthesis and Processing., 2014, , 1-31.381157Surface prafed poly(ly-caprolactone) prepared using organocatalysed ring-opening polymerisation relationed by StATRP. Polymer Chemistry, 2014, 5, 2809-2815.1-91-91158Brig Opening Polymerization of Ip-Caprolactone and Trimethylene Carbonate. Organometallics, 2014, 33, 	152	Preparation and characterization of collagen/silica composite scaffolds for peripheral nerve regeneration. Journal of Porous Materials, 2014, 21, 699-708.	1.3	13
114Proteins and Poly(Amino Acids)., 2014, , 43-65.11125Blodegradable polymeric nanoparticles based on amphiphilic principle: construction and application4.24.3126Polymer Synthesis and Processing., 2014, , 1-31.3.8127Surface grafted poly(lu-caprolactone) prepared using organocatalysed ring-opening polymerisation1.01.9128Barge Opening Polymerization of lu-Caprolactone and Trimethylene Carbonate. Organometallics, 2014, 3.31.13.9129Eboliettiminate Rare Earth Borohydride Complexes: Synthesis, Structure, and Catalytic Activity in the Barge Opening Polymerization of lu-Caprolactone and Trimethylene Carbonate. Organometallics, 2014, 3.31.13.9120Eboxidized Soybean Oll/ZnO Biocomposites for Soft Tissue Applications: Preparation and Characterization. ACS Applied Materials Earney: Interfaces, 2014, 6, 17277-17288.3.03.23.7130Polymer Topology Revealed by Ion Mobility Coupled with Mass Spectrometry. Analytical Chemistry, 2014, 8.6, 9693-9700.3.23.73.7141Hydrolysable PBS-based poly(ester urethane): thermoplastic elastomers. Polymer Degradation and stability. 2014, 108, 223-231.3.13.13.1142Attudy of the biodegradation behaviour of poly(methacrylic acid/aniline)-grafted guin ghatti by a soil1.74.0143Sullation of PL/LAPEC-PL(L) As processing ald for biodegradable particles from gas saturated Server.2.62.7144Valuation of PL/LAPEC-PL(L) As processing ald for biodegradable particles from gas saturated Server.2.62.7145Sullation of PL/LAPEC-PL(L)	153	Chemoenzymatic synthesis of novel <i>N</i> -(2-hydroxyethyl)-β-peptoid oligomer derivatives and application to porous polycaprolactone films. Polymer International, 2014, 63, 1523-1530.	1.6	7
1151Biodegradable polymeric nanoparticles based on amphiphilic principle: construction and application4.2451156Polymer Synthesis and Processing, 2014, 1-31.381157Surface grafted polyfip-caprolactone) prepared using organocatalysed ring-opening polymerisation1.91.91158Sirface grafted polyfip-caprolactone) prepared using organocatalysed ring-opening polymerisation1.91.91159Surface grafted polyfip-caprolactone) prepared using organocatalysed ring-opening polymerisation1.99.91159Sirface grafted polyfip-caprolactone and Trimethylene Carbonate. Organometallics, 2014, 33.1.13.91159Epoxidized Soybean Oli/ZnO Biocomposites for Soft Tissue Applications: Preparation and Characterization. ACS Applied Materials & amp; Interfaces, 2014, 6, 17277-17288.1.04.91160Polymer Topology Revealed by Ion Mobility Coupled with Mass Spectrometry. Analytical Chemistry, 2014, 86, 96933700.3.2471161Hydrolysable PBS-based polyfester urethane)s thermoplastic elastomers. Polymer Degradation and 8c-97.2.7371162Satudy of the biodegradation behaviour of poly(methacrylic acid/aniline)-grafted gum ghatti by a soil1.7461163Evaluation of P(ULAPEC-P(L)LA as processing aid for biodegradable particles from gas saturated solutions (PGSS) proces. International Journal of Pharmaceutics, 2014, 468, 250-257.2.6271163PMLABE Dol Synthesized VRIng8COpening Polymerization of Racemic Benryl Pi26Malolactonate Initiated by RaraeCEarth Triboorohydride Complexes: An Experimental and DFT Study. Chemistry - A Europea Journal, Balot, 20, 14387-1	154	Proteins and Poly(Amino Acids). , 2014, , 43-65.		11
156Polymer Synthesis and Processing , 2014, 1-31.38157Surface grafted poly(lµ-caprolactone) prepared using organocatalysed ring-opening polymerisation followed by SIATRP. Polymer Chemistry, 2014, 5, 2809-2815.1919158P-Diketiminate Rare Earth Borohydride Complexes: Synthesis, Structure, and Catalytic Activity in the Ring-Opening Polymerization of Iµ-Caprolactone and Trimethylene Carbonate. Organometallics, 2014, 33, S392-S401.1.139159Epoxidized Scybean Oil/ZnO Biocomposites for Soft Tissue Applications: Preparation and Characterization. ACS Applied Materials & amp; Interfaces, 2014, 6, 17277-17288.4.049160Polymer Topology Revealed by Ion Mobility Coupled with Mass Spectrometry. Analytical Chemistry, 2014, 86, 9639-3700.3.247161Hydrolysable PBS-based poly(ester urethane)s thermoplastic elastomers. Polymer Degradation and Seb97.3.831162Novel ether-linkages containing aliphatic copolyesters of poly(butylene 1,4-cyclohexanedicarboxylate) as promising candidates for biomedical applications. Materials Science and Engineering C, 2014, 34, Seb97.3.831161Autudy of the biodegradation behaviour of poly(methacrylic acid/aniline)-grafted gum ghatti by a soil sultation (PCSS) process. International Journal of Pharmaceutics, 2014, 468, 250-257.2.627162Shulution of P(I)LA-PEC-P(I)LA as processing aid for biodegradable particles from gas saturated solutions (PCSS) process. International Journal of Pharmaceutics, 2014, 468, 250-257.2.627163Shulution of P(I)LA-PEC-P(I)LA as processing aid for biodegradable particles from gas saturated solutions (PCSS) process. International	155	Biodegradable polymeric nanoparticles based on amphiphilic principle: construction and application in drug delivery. Science China Chemistry, 2014, 57, 461-475.	4.2	45
157Surface grafted poly(IJ)-caprolactone) prepared using organocatalysed ring-opening polymerisation1.919158IP-Olkettiminate Rare Earth Borohydride Complexes: Synthesis, Structure, and Catalytic Activity in the Ring-Opening Polymerization of Iµ-Caprolactone and Trimethylene Carbonate. Organometallics, 2014, 33, S392-5401.1.139159Epoxidized Soybean Oll/ZnO Biocomposites for Soft Tissue Applications: Preparation and Characterization. ACS Applied Materials & amp; Interfaces, 2014, 6, 17277-17288.4.049160Polymer Topology Revealed by Ion Mobility Coupled with Mass Spectrometry. Analytical Chemistry, 2014, 86, 9693-9700.3.247161Hydrolysable PBS-based poly(ester urethane)s thermoplastic elastomers. Polymer Degradation and Stability, 2014, 108, 223-231.3.831162Soromising candidates for biomedical applications. Materials Science and Engineering C, 2014, 34, 86-97.3.831163Astudy of the biodegradation behaviour of poly(methacrylic acid/aniline)-grafted gum ghatti by a soil solutions (PCSS) process. International Journal of Pharmaceutics, 2014, 468, 250-257.2.627164Evaluation of P(U)LA-PEG-P(U)LA as processing aid for biodegradable particles from gas saturated solutions (PCSS) process. International Journal of Pharmaceutics, 2014, 468, 250-257.2.627165PMLABe Dol Synthesized by RingåCopening Polymerization of Racernic Benzyl PåGMalolactonate Initiated by 2014, 420, 14387-14402.1.78	156	Polymer Synthesis and Processing. , 2014, , 1-31.		38
1582-Diketiminate Rare Earth Borohydride Complexes: Synthesis, Structure, and Catalytic Activity in the Ring-Opening Polymerization of lµ-Caprolactone and Trimethylene Carbonate. Organometallics, 2014, 33, 3392-5401.1.139159Epoxidized Soybean Oil/ZnO Biocomposites for Soft Tissue Applications: Preparation and Characterization. ACS Applied Materials & amp; Interfaces, 2014, 6, 17277-17288.4.049160Polymer Topology Revealed by Ion Mobility Coupled with Mass Spectrometry. Analytical Chemistry, 2014, 86, 9693-9700.3.247161Hydrolysable PBS-based poly(ester urethane)s thermoplastic elastomers. Polymer Degradation and Stability, 2014, 108, 223-231.2.737162Novel ether-linkages containing aliphatic copolyesters of poly(butylene 1,4-cyclohexanedicarboxylate) as promising candidates for biomedical applications. Materials Science and Engineering C, 2014, 34, 86-97.3.831163Astudy of the biodegradation behaviour of poly(methacrylic acid/aniline)-grafted gum ghatti by a soil urtal method. RSC Advances, 2014, 4, 25637.1.746164Evaluation of P(U)LA-PEG-P(L)LA as processing aid for biodegradable particles from gas saturated solutions (PCSS) process. International Journal of Pharmaceutics, 2014, 468, 250-257.2.627165PMLABE Diol Synthesized by RingéCopening Polymerization of Racemic Benzyl PaétMalolactonate Initiated by areaéCanth Trisborohydride Complexes: An Experimental and DFT Study. Chemistry - A European Journal, 2014, 20, 14387-14402.1.78	157	Surface grafted poly(ε-caprolactone) prepared using organocatalysed ring-opening polymerisation followed by SI-ATRP. Polymer Chemistry, 2014, 5, 2809-2815.	1.9	19
159Epoxidized Soybean Oil/ZnO Biocomposites for Soft Tissue Applications: Preparation and Characterization. ACS Applied Materials & amp; Interfaces, 2014, 6, 17277-17288.4.049160Polymer Topology Revealed by Ion Mobility Coupled with Mass Spectrometry. Analytical Chemistry, 2014, 86, 9693-9700.3.247161Hydrolysable PBS-based poly(ester urethane)s thermoplastic elastomers. Polymer Degradation and Stability, 2014, 108, 223-231.2.737162Novel ether-linkages containing aliphatic copolyesters of poly(butylene 1,4-cyclohexanedicarboxylate) as promising candidates for biomedical applications. Materials Science and Engineering C, 2014, 34, 86-97.3.831163Astudy of the biodegradation behaviour of poly(methacrylic acid/aniline)-grafted gum ghatti by a soil1.746164Evaluation of P(U)LA-PEC-P(U)LA as processing aid for biodegradable particles from gas saturated solutions (PGSS) process. International Journal of Pharmaceutics, 2014, 468, 250-257.2.627165PMLABE Diol Synthesized by RingãeOpening Polymerization of Racemic Benzyl l²ãeMalolactonate Initiated by 2014, 20, 14387-14402.1.78	158	β-Diketiminate Rare Earth Borohydride Complexes: Synthesis, Structure, and Catalytic Activity in the Ring-Opening Polymerization of ε-Caprolactone and Trimethylene Carbonate. Organometallics, 2014, 33, 5392-5401.	1.1	39
160Polymer Topology Revealed by Ion Mobility Coupled with Mass Spectrometry. Analytical Chemistry, 2014, 86, 9693-9700.3.247161Hydrolysable PBS-based poly(ester urethane)s thermoplastic elastomers. Polymer Degradation and 2.72.737162Novel ether-linkages containing aliphatic copolyesters of poly(butylene 1,4-cyclohexanedicarboxylate) as promising candidates for biomedical applications. Materials Science and Engineering C, 2014, 34, 86-97.3.831163Astudy of the biodegradation behaviour of poly(methacrylic acid/aniline)-grafted gum ghatti by a soil burial method. RSC Advances, 2014, 4, 25637.1.746164Evaluation of P(L)LA-PEG-P(L)LA as processing aid for biodegradable particles from gas saturated solutions (PGSS) process. International Journal of Pharmaceutics, 2014, 468, 250-257.2.627165PMLABE Diol Synthesized by RingãeOpening Polymerization of Racemic Benzyl Î ² â€Malolactonate Initiated by 	159	Epoxidized Soybean Oil/ZnO Biocomposites for Soft Tissue Applications: Preparation and Characterization. ACS Applied Materials & amp; Interfaces, 2014, 6, 17277-17288.	4.0	49
161Hydrolysable PBS-based poly(ester urethane)s thermoplastic elastomers. Polymer Degradation and Stability, 2014, 108, 223-231.2.737162Novel ether-linkages containing aliphatic copolyesters of poly(butylene 1,4-cyclohexanedicarboxylate) as promising candidates for biomedical applications. Materials Science and Engineering C, 2014, 34, 86-97.3.831163A study of the biodegradation behaviour of poly(methacrylic acid/aniline)-grafted gum ghatti by a soil burial method. RSC Advances, 2014, 4, 25637.1.746164Evaluation of P(L)LA-PEG-P(L)LA as processing aid for biodegradable particles from gas saturated solutions (PGSS) process. International Journal of Pharmaceutics, 2014, 468, 250-257.2.627165PMLABE Diol Synthesized by Ringâ€Opening Polymerization of Racemic Benzyl βa€Malolactonate Initiated by 2014, 20, 14387-14402.1.78	160	Polymer Topology Revealed by Ion Mobility Coupled with Mass Spectrometry. Analytical Chemistry, 2014, 86, 9693-9700.	3.2	47
162Novel ether-linkages containing aliphatic copolyesters of poly(butylene 1,4-cyclohexanedicarboxylate) as promising candidates for biomedical applications. Materials Science and Engineering C, 2014, 34, Se-97.3.831163A study of the biodegradation behaviour of poly(methacrylic acid/aniline)-grafted gum ghatti by a soil burial method. RSC Advances, 2014, 4, 25637.1.746164Evaluation of P(L)LA-PEG-P(L)LA as processing aid for biodegradable particles from gas saturated solutions (PGSS) process. International Journal of Pharmaceutics, 2014, 468, 250-257.2.627165PMLABe Diol Synthesized by Ringâ€Opening Polymerization of Racemic Benzyl βâ€Malolactonate Initiated by 2014, 20, 14387-14402.1.78	161	Hydrolysable PBS-based poly(ester urethane)s thermoplastic elastomers. Polymer Degradation and Stability, 2014, 108, 223-231.	2.7	37
163A study of the biodegradation behaviour of poly(methacrylic acid/aniline)-grafted gum ghatti by a soil burial method. RSC Advances, 2014, 4, 25637.1.746164Evaluation of P(L)LA-PEG-P(L)LA as processing aid for biodegradable particles from gas saturated solutions (PGSS) process. International Journal of Pharmaceutics, 2014, 468, 250-257.2.627165PMLABe Diol Synthesized by Ringâ€Opening Polymerization of Racemic Benzyl βâ€Malolactonate Initiated by 2014, 20, 14387-14402.1.78	162	Novel ether-linkages containing aliphatic copolyesters of poly(butylene 1,4-cyclohexanedicarboxylate) as promising candidates for biomedical applications. Materials Science and Engineering C, 2014, 34, 86-97.	3.8	31
164Evaluation of P(L)LA-PEG-P(L)LA as processing aid for biodegradable particles from gas saturated solutions (PGSS) process. International Journal of Pharmaceutics, 2014, 468, 250-257.2.627165PMLABe Diol Synthesized by Ringâ€Opening Polymerization of Racemic Benzyl βâ€Malolactonate Initiated by 2014, 20, 14387-14402.1.78	163	A study of the biodegradation behaviour of poly(methacrylic acid/aniline)-grafted gum ghatti by a soil burial method. RSC Advances, 2014, 4, 25637.	1.7	46
PMLABe Diol Synthesized by Ringâ€Opening Polymerization of Racemic Benzyl βâ€Malolactonate Initiated by 165 Rareâ€Earth Trisborohydride Complexes: An Experimental and DFT Study. Chemistry - A European Journal, 1.7 8 2014, 20, 14387-14402.	164	Evaluation of P(L)LA-PEG-P(L)LA as processing aid for biodegradable particles from gas saturated solutions (PGSS) process. International Journal of Pharmaceutics, 2014, 468, 250-257.	2.6	27
	165	PMLABe Diol Synthesized by Ringâ€Opening Polymerization of Racemic Benzyl βâ€Malolactonate Initiated by Rareâ€Earth Trisborohydride Complexes: An Experimental and DFT Study. Chemistry - A European Journal, 2014, 20, 14387-14402.	1.7	8

#	ARTICLE	IF	CITATIONS
167	Biodegradable Nanocomposites for Imaging, Tissue-Repairing, and Drug-Delivery Applications. , 2015, , 35-48.		0
168	Highly Porous Gelatin Reinforced 3D Scaffolds for Articular Cartilage Regeneration. Macromolecular Bioscience, 2015, 15, 941-952.	2.1	28
169	Engineering recombinant antibodies for polymer biofunctionalization. Polymers for Advanced Technologies, 2015, 26, 1394-1401.	1.6	5
170	Influence of Diurethane Linkers on the Langmuir Layer Behavior of Oligo[(racâ€lactide)â€ <i>co</i> â€glycolide]â€based Polyesterurethanes. Macromolecular Rapid Communications, 2015, 36, 1910-1915.	2.0	5
171	Bladder reconstruction: The past, present and future. Oncology Letters, 2015, 10, 3-10.	0.8	41
172	Biodegradable Polymeric Films and Membranes Processing and Forming for Tissue Engineering. Macromolecular Materials and Engineering, 2015, 300, 858-877.	1.7	41
173	CHARACTERIZATION OF COLLAGEN EXTRACT FROM THE SKINS OF COMMERCIAL FRESHWATER FISH. Jurnal Teknologi (Sciences and Engineering), 2015, 77, .	0.3	2
174	Intraocular Implants for the Treatment of Autoimmune Uveitis. Journal of Functional Biomaterials, 2015, 6, 650-666.	1.8	29
175	Biodegradable Materials for Bone Repair and Tissue Engineering Applications. Materials, 2015, 8, 5744-5794	1.3	544
176	Plasma Modified Textiles for Biomedical Applications. , 0, , .		6
176 177	Plasma Modified Textiles for Biomedical Applications. , 0, , . ECO-BIOCOMPOSITE MATERIALS FOR SHOCK CUSHIONING APPLICATION: AN OUTLOOK OF THE POTENTIALS AND CHALLENGES. Jurnal Teknologi (Sciences and Engineering), 2015, 76, .	0.3	6 0
176 177 178	 Plasma Modified Textiles for Biomedical Applications. , 0, , . ECO-BIOCOMPOSITE MATERIALS FOR SHOCK CUSHIONING APPLICATION: AN OUTLOOK OF THE POTENTIALS AND CHALLENGES. Jurnal Teknologi (Sciences and Engineering), 2015, 76, . Amphiphilic poly(ethylene glycol)-poly(ε-caprolactone) AB₂ miktoarm copolymers for self-assembled nanocarrier systems: synthesis, characterization, and effects of morphology on antitumor activity. Polymer Chemistry, 2015, 6, 531-542. 	0.3	6 0 57
176 177 178 179	Plasma Modified Textiles for Biomedical Applications. , 0, , . ECO-BIOCOMPOSITE MATERIALS FOR SHOCK CUSHIONING APPLICATION: AN OUTLOOK OF THE POTENTIALS AND CHALLENGES. Jurnal Teknologi (Sciences and Engineering), 2015, 76, . Amphiphilic poly(ethylene glycol)-poly(ε-caprolactone) AB ₂ miktoarm copolymers for self-assembled nanocarrier systems: synthesis, characterization, and effects of morphology on antitumor activity. Polymer Chemistry, 2015, 6, 531-542. Titanium pyridonates for the homo- and copolymerization of rac-lactide and ε-caprolactone. Dalton Transactions, 2015, 44, 12411-12419.	0.3 1.9 1.6	6 0 57 36
176 177 178 179 180	Plasma Modified Textiles for Biomedical Applications. , 0, , . ECO-BIOCOMPOSITE MATERIALS FOR SHOCK CUSHIONING APPLICATION: AN OUTLOOK OF THE POTENTIALS AND CHALLENGES. Jurnal Teknologi (Sciences and Engineering), 2015, 76, . Amphiphilic poly(ethylene glycol)-poly(ε-caprolactone) AB ₂ miktoarm copolymers for self-assembled nanocarrier systems: synthesis, characterization, and effects of morphology on antitumor activity. Polymer Chemistry, 2015, 6, 531-542. Titanium pyridonates for the homo- and copolymerization of rac-lactide and ε-caprolactone. Dalton Transactions, 2015, 44, 12411-12419. A novel squid pen chitosan/hydroxyapatite/β-tricalcium phosphate composite for bone tissue engineering. Materials Science and Engineering C, 2015, 55, 373-383.	0.3 1.9 1.6 3.8	6 0 57 36 50
176 177 178 179 180 181	 Plasma Modified Textiles for Biomedical Applications. , 0, , . ECO-BIOCOMPOSITE MATERIALS FOR SHOCK CUSHIONING APPLICATION: AN OUTLOOK OF THE POTENTIALS AND CHALLENGES. Jurnal Teknologi (Sciences and Engineering), 2015, 76, . Amphiphilic poly(ethylene glycol)-poly(ε-caprolactone) AB₂ miktoarm copolymers for self-assembled nanocarrier systems: synthesis, characterization, and effects of morphology on antitumor activity. Polymer Chemistry, 2015, 6, 531-542. Titanium pyridonates for the homo- and copolymerization of rac-lactide and ε-caprolactone. Dalton Transactions, 2015, 44, 12411-12419. A novel squid pen chitosan/hydroxyapatite/l²-tricalcium phosphate composite for bone tissue engineering. Materials Science and Engineering C, 2015, 55, 373-383. Functional Degradable Polymers by Radical Ring-Opening Copolymerization of MDO and Vinyl Bromobutanoate: Synthesis, Degradability and Post-Polymerization Modification. Biomacromolecules, 2015, 16, 2049-2058. 	0.3 1.9 1.6 3.8 2.6	 6 0 57 36 50 69
176 177 178 179 180 181 182	 Plasma Modified Textiles for Biomedical Applications., 0,,. ECO-BIOCOMPOSITE MATERIALS FOR SHOCK CUSHIONING APPLICATION: AN OUTLOOK OF THE POTENTIALS AND CHALLENCES. Jurnal Teknologi (Sciences and Engineering), 2015, 76,. Amphiphilic poly(ethylene glycol)-poly(lµ-caprolactone) AB₂ miktoarm copolymers for self-assembled nanocarrier systems: synthesis, characterization, and effects of morphology on antitumor activity. Polymer Chemistry, 2015, 6, 531-542. Titanium pyridonates for the homo- and copolymerization of rac-lactide and lµ-caprolactone. Dalton Transactions, 2015, 44, 12411-12419. A novel squid pen chitosan/hydroxyapatite/l²-tricalcium phosphate composite for bone tissue engineering. Materials Science and Engineering C, 2015, 55, 373-383. Functional Degradable Polymers by Radical Ring-Opening Copolymerization of MDO and Vinyl Bromobutanoate: Synthesis, Degradability and Post-Polymerization Modification. Biomacromolecules, 2015, 16, 2049-2058. Influence of functionalized halloysite clays (HNT) on selected properties of multiblock (e)PBS-EG copolymer obtained by enzymatic catalysis. Designed Monomers and Polymers, 2015, 18, 501-511. 	0.3 1.9 1.6 3.8 2.6	 6 0 57 36 50 69 7
176 177 178 179 180 181 182 183	Plasma Modified Textiles for Biomedical Applications. , 0, , . ECO-BIOCOMPOSITE MATERIALS FOR SHOCK CUSHIONING APPLICATION: AN OUTLOOK OF THE POTENTIALS AND CHALLENGES. Jurnal Teknologi (Sciences and Engineering), 2015, 76, . Amphiphilic poly(ethylene glycol)-poly([µ-caprolactone) AB < sub>2 < /sub> miktoarm copolymers for self-assembled nanocarrier systems: synthesis, characterization, and effects of morphology on antitumor activity. Polymer Chemistry, 2015, 6, 531-542. Titanium pyridonates for the homo- and copolymerization of rac-lactide and îµ-caprolactone. Dalton Transactions, 2015, 44, 12411-12419. A novel squid pen chitosan/hydroxyapatite/[²-tricalcium phosphate composite for bone tissue engineering. Materials Science and Engineering C, 2015, 55, 373-383. Functional Degradable Polymers by Radical Ring-Opening Copolymerization of MDO and Vinyl Bromobutanoate: Synthesis, Degradability and Post-Polymerization Modification. Biomacromolecules, 2015, 16, 2049-2058. Influence of functionalized halloysite clays (HNT) on selected properties of multiblock (e)PBS-EC copolymer obtained by enzymatic catalysis. Designed Monomers and Polymers, 2015, 18, 501-511. Evaluation of biodegradability on polyaspartamide-polylactic acid based nanoparticles by chemical hydrolysis studies. Polymer Degradation and Stability, 2015, 119, 56-67.	0.3 1.9 1.6 3.8 2.6 0.7 2.7	 6 0 57 36 50 69 7 18

#	Article	IF	CITATIONS
185	Tuning of Sol–Gel Transition in the Mixed Polymer Micelle Solutions of Copolymer Mixtures Consisting of Enantiomeric Diblock and Triblock Copolymers of Polylactide and Poly(ethylene glycol). Macromolecular Chemistry and Physics, 2015, 216, 837-846.	1.1	8
186	Polymer Chemistry and Synthetic Polymers. , 2015, , 1-31.		4
187	Biomimetic and synthetic esophageal tissue engineering. Biomaterials, 2015, 57, 133-141.	5.7	34
188	Controlled Slow-Release Drug-Eluting Stents for the Prevention of Coronary Restenosis: Recent Progress and Future Prospects. ACS Applied Materials & Interfaces, 2015, 7, 11695-11712.	4.0	101
189	Nanocomposite hydrogels based on embedded PLGA nanoparticles in gelatin. Nanocomposites, 2015, 1, 46-50.	2.2	11
190	Efficacy and Safety of Ultrapure Alginate-Based Anti-Adhesion Gel in Experimental Peritonitis. Surgical Infections, 2015, 16, 410-414.	0.7	5
191	Progress in material design for biomedical applications. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14444-14451.	3.3	201
192	Toward Self-Regenerating Antimicrobial Polymer Surfaces. ACS Macro Letters, 2015, 4, 1337-1340.	2.3	28
193	Green process for green materials: viable low-temperature lipase-catalysed synthesis of renewable telechelics in supercritical CO ₂ . Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20150073.	1.6	13
194	Computational analyses of different intervertebral cages for lumbar spinal fusion. Journal of Biomechanics, 2015, 48, 3274-3282.	0.9	30
195	Biofunctionalization of poly(l-lactide-co-glycolide) by post-plasma grafting of 2-aminoethyl methacrylate and gelatin immobilization. Materials Letters, 2015, 139, 344-347.	1.3	6
196	Prospects for polymer therapeutics in Parkinson's disease and other neurodegenerative disorders. Progress in Polymer Science, 2015, 44, 79-112.	11.8	24
197	Heart regeneration after myocardial infarction using synthetic biomaterials. Journal of Controlled Release, 2015, 203, 23-38.	4.8	113
198	Ethylene carbonate/cyclic ester random copolymers synthesized by ring-opening polymerization. Polymer Chemistry, 2015, 6, 1972-1985.	1.9	22
199	Biodegradable Protein Nanocontainers. Biomacromolecules, 2015, 16, 815-821.	2.6	45
200	Emerging Regenerative Approaches for Periodontal Reconstruction: A Systematic Review From the AAP Regeneration Workshop. Journal of Periodontology, 2015, 86, S134-52.	1.7	60
201	hiPS-MSCs differentiation towards fibroblasts on a 3D ECM mimicking scaffold. Scientific Reports, 2015, 5, 8480.	1.6	34
202	Degradable Glycineâ€Based Photoâ€Polymerizable Polyphosphazenes for Use as Scaffolds for Tissue Regeneration. Macromolecular Bioscience, 2015, 15, 351-363.	2.1	35

#	Article	IF	CITATIONS
203	Mechanism of erosion of nanostructured porous silicon drug carriers in neoplastic tissues. Nature Communications, 2015, 6, 6208.	5.8	97
204	Stability Evaluation of Ivermectin-Loaded Biodegradable Microspheres. AAPS PharmSciTech, 2015, 16, 1129-1139.	1.5	11
205	â€~One-component' ultrathin multilayer films based on poly(vinyl alcohol) as stabilizing coating for phenytoin-loaded liposomes. Colloids and Surfaces B: Biointerfaces, 2015, 135, 133-142.	2.5	5
206	Improved dimensional stability with bioactive glass fibre skeleton in poly(lactide-co-glycolide) porous scaffolds for tissue engineering. Materials Science and Engineering C, 2015, 56, 457-466.	3.8	27
207	Facile synthesis of well-defined hydrophilic polyesters as degradable poly(ethylene glycol)-like biomaterials. Polymer Chemistry, 2015, 6, 6452-6456.	1.9	20
208	Microcantilever sensors for fast analysis of enzymatic degradation of poly (d, l-lactide). Polymer Degradation and Stability, 2015, 119, 1-8.	2.7	5
209	Development of Peptide Conjugated Chlorogenic Acid Nanoassemblies for Targeting Tumorigenic Cells. Soft Materials, 2015, 13, 150-159.	0.8	5
210	Controlled release of anti-diabetic drug Gliclazide from poly(caprolactone)/poly(acrylic acid) hydrogels. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 947-962.	1.9	13
211	Mechanical properties and degradation studies of poly(mannitol sebacate)/cellulose nanocrystals nanocomposites. RSC Advances, 2015, 5, 55879-55891.	1.7	14
212	(Iminophosphoranyl)(thiophosphoranyl)methane rare-earth borohydride complexes: synthesis, structures and polymerization catalysis. Dalton Transactions, 2015, 44, 12338-12348.	1.6	12
213	Bio-mimetic composite scaffold from mussel shells, squid pen and crab chitosan for bone tissue engineering. International Journal of Biological Macromolecules, 2015, 80, 445-454.	3.6	39
214	Polyelectrolyte-coated nanocapsules containing undecylenic acid: Synthesis, biocompatibility and neuroprotective properties. Colloids and Surfaces B: Biointerfaces, 2015, 135, 8-17.	2.5	12
215	Development and characterization of hydroxyapatite/β-TCP/chitosan composites for tissue engineering applications. Materials Science and Engineering C, 2015, 56, 481-493.	3.8	46
216	Copolyesters from Soybean Oil for Use as Resorbable Biomaterials. ACS Sustainable Chemistry and Engineering, 2015, 3, 880-891.	3.2	40
217	Asymmetric Copolymerization of Cyclopentene Oxide and CO2 Using a Dinuclear Zinc–AzePhenol Catalyst: Enlightened by DFT Calculations. Macromolecules, 2015, 48, 1651-1657.	2.2	48
218	Copolymers of trimethylene carbonate and ε-caprolactone asÂelectrolytes for lithium-ion batteries. Polymer, 2015, 63, 91-98.	1.8	102
219	Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review. European Polymer Journal, 2015, 72, 365-385.	2.6	514
220	Block and Random Copolymers of 1,2-Cyclohexyl Cyclocarbonate and <scp>l</scp> -Lactide or Trimethylene Carbonate Synthesized by Ring-Opening Polymerization. Macromolecules, 2015, 48, 3247-3256.	2.2	35

#	Article	IF	CITATIONS
221	Fabrication of acrylic acid grafted guar gum-multiwalled carbon nanotube hydrophobic membranes for transdermal drug delivery. RSC Advances, 2015, 5, 41736-41744.	1.7	19
222	Biomaterial based cardiac tissue engineering and its applications. Biomedical Materials (Bristol), 2015, 10, 034004.	1.7	79
223	Formulation of functionalized PLGA polymeric nanoparticles for targeted drug delivery. Polymer, 2015, 68, 41-46.	1.8	42
224	Antimicrobial Electrospun Biopolymer Nanofiber Mats Functionalized with Graphene Oxide–Silver Nanocomposites. ACS Applied Materials & Interfaces, 2015, 7, 12751-12759.	4.0	256
225	Emerging Perspectives in the Synthesis of Novel Degradable Biomedical Copolymers. Polymer-Plastics Technology and Engineering, 2015, 54, 128-139.	1.9	0
226	Surface Modified Biodegradable Electrospun Membranes as a Carrier for Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells. Tissue Engineering - Part A, 2015, 21, 2301-2314.	1.6	39
227	Synthesis of Aliphatic Poly(ether 1,2-glycerol carbonate)s via Copolymerization of CO ₂ with Glycidyl Ethers Using a Cobalt Salen Catalyst and Study of a Thermally Stable Solid Polymer Electrolyte. ACS Macro Letters, 2015, 4, 533-537.	2.3	40
228	Biodegradable shape-memory polymers for biomedical applications. , 2015, , 219-245.		1
229	Biomaterials for Bone Regenerative Engineering. Advanced Healthcare Materials, 2015, 4, 1268-1285.	3.9	280
230	DFT investigations on the ring-opening polymerization of substituted cyclic carbonates catalyzed by zinc-{β-diketiminate} complexes. Polymer Chemistry, 2015, 6, 3336-3352.	1.9	23
231	Polyamide Nanogels from Generally Recognized as Safe Components and Their Toxicity in Mouse Preimplantation Embryos. Biomacromolecules, 2015, 16, 3491-3498.	2.6	10
232	Novel comb polymers from alternating N-acylated poly(aminoester)s obtained by spontaneous zwitterionic copolymerisation. Chemical Communications, 2015, 51, 16213-16216.	2.2	25
233	Hydrolytic and oxidative degradation of electrospun supramolecular biomaterials: In vitro degradation pathways. Acta Biomaterialia, 2015, 27, 21-31.	4.1	68
234	Shape/temperature memory phenomena in un-crosslinked poly-É›-caprolactone (PCL). European Polymer Journal, 2015, 72, 282-295.	2.6	45
235	Osteogenic differentiation of human mesenchymal stem cells in the absence of osteogenic supplements: A surface-roughness gradient study. Acta Biomaterialia, 2015, 28, 64-75.	4.1	124
236	Review: Poly(vinyl alcohol) Functionalizations and Applications. Polymer-Plastics Technology and Engineering, 2015, 54, 1289-1319.	1.9	73
237	A Conductive Polymer Hydrogel Supports Cell Electrical Signaling and Improves Cardiac Function After Implantation into Myocardial Infarct. Circulation, 2015, 132, 772-784.	1.6	199
238	Stereocomplex Film Using Triblock Copolymers of Polylactide and Poly(ethylene glycol) Retain Paxlitaxel on Substrates by an Aqueous Inkjet System. Langmuir, 2015, 31, 10583-10589.	1.6	17

#	Article	IF	Citations
239	Biodegradable nanocomposites based on poly(ester-urethane) and nanosized hydroxyapatite: Plastificant and reinforcement effects. Polymer Degradation and Stability, 2015, 121, 171-179.	2.7	35
240	Medical, Dental, and Pharmaceutical Applications. , 2015, , 291-405.		5
241	Hydrogels for central nervous system therapeutic strategies. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2015, 229, 905-916.	1.0	14
242	Bioabsorbable polymers in cancer therapy: latest developments. EPMA Journal, 2015, 6, 22.	3.3	47
243	Spherulitic morphologies of the triblock Poly(GL)-b-poly(GL-co-TMC-co-CL)-b-poly(GL) copolymer: Isothermal and non-isothermal crystallization studies. European Polymer Journal, 2015, 73, 222-236.	2.6	4
244	Microwave-assisted fabrication of chitosan-hydroxyapatite superporous hydrogel composites as bone scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 1233-1246.	1.3	56
245	Functionalization of TiO ₂ nanoparticles with bio-safe poly(vinyl alcohol) to obtain new poly(amide-imide) nanocomposites containing <i>N</i> , <i>N′-</i> (pyromellitoyl)-bis-L-leucine linkages. High Performance Polymers, 2015, 27, 458-468.	0.8	13
246	Safety and Biocompatibility of Carbohydrate-Functionalized Polyanhydride Nanoparticles. AAPS Journal, 2015, 17, 256-267.	2.2	41
247	Design, optimization and evaluation of poly- É› -caprolactone (PCL) based polymeric nanoparticles for oral delivery of lopinavir. Drug Development and Industrial Pharmacy, 2015, 41, 131-140.	0.9	51
248	Microfluidics assisted generation of innovative polysaccharide hydrogel microparticles. Carbohydrate Polymers, 2015, 116, 189-199.	5.1	44
249	Cellulose nanocrystal driven crystallization of poly(<scp>d</scp> , <scp>l</scp> ″actide) and improvement of the thermomechanical properties. Journal of Applied Polymer Science, 2015, 132, .	1.3	39
250	Novel bioresorbable stent coating for drug release in congenital heart disease applications. Journal of Biomedical Materials Research - Part A, 2015, 103, 1761-1770.	2.1	6
251	Strategies to Direct the Enrichment, Expansion, and Recruitment of Regulatory Cells for the Treatment of Disease. Annals of Biomedical Engineering, 2015, 43, 593-602.	1.3	31
252	Synthesis and Properties of Novel Surface Active Monomers Based on Derivatives of 4â€Hydroxybutyric Acid and 6â€Hydroxyhexanoic Acid. Journal of Surfactants and Detergents, 2015, 18, 133-144.	1.0	11
253	New Semi-Biodegradable Materials from Semi-Interpenetrated Networks of Poly(ϵ-caprolactone) and Poly(ethyl acrylate). Macromolecular Bioscience, 2015, 15, 229-240.	2.1	7
254	Polyurethanes derived from carbohydrates and cystineâ€based monomers. Journal of Applied Polymer Science, 2015, 132, .	1.3	13
255	Preliminary investigation on the design of biodegradable microparticles for ivermectin delivery: set up of formulation parameters. Drug Development and Industrial Pharmacy, 2015, 41, 1182-1192.	0.9	7
256	Laser Ablation of Biomaterials. , 2016, , .		0

#	Article	IF	CITATIONS
257	Calcium Alginate and Calcium Alginate-Chitosan Beads Containing Celecoxib Solubilized in a Self-Emulsifying Phase. Scientifica, 2016, 2016, 1-8.	0.6	53
258	Polyetheretherketone Hybrid Composites with Bioactive Nanohydroxyapatite and Multiwalled Carbon Nanotube Fillers. Polymers, 2016, 8, 425.	2.0	38
259	PLA and PLGA nanoarchitectonics for improving anti-infective drugs efficiency. , 2016, , 451-482.		0
260	Fabrication of a Micro-Needle Array Electrode by Thermal Drawing for Bio-Signals Monitoring. Sensors, 2016, 16, 908.	2.1	47
261	Biomedical Applications of Biodegradable Polyesters. Polymers, 2016, 8, 20.	2.0	363
262	Recent Developments in Antimicrobial Polymers: A Review. Materials, 2016, 9, 599.	1.3	153
263	Heterogeneity of Scaffold Biomaterials in Tissue Engineering. Materials, 2016, 9, 332.	1.3	72
264	Rapid Hydrophilization of Model Polyurethane/Urea (PURPEG) Polymer Scaffolds Using Oxygen Plasma Treatment. Polymers, 2016, 8, 144.	2.0	2
265	Polymeric Biodegradable Stent Insertion in the Esophagus. Polymers, 2016, 8, 158.	2.0	10
266	Effect of Hydroxyapatite Nanoparticles on the Degradability of Random Poly(butylene) Tj ETQq1 1 0.784314 rgBT 2016, 8, 253.	/Overlock 2.0	10 Tf 50 38 11
267	Antibiotic Drug Delivery Systems for the Intracellular Targeting of Bacterial Pathogens. , 0, , .		12
268	Dextran functionalization enhances nanoparticle-mediated siRNA delivery and silencing. Technology, 2016, 04, 42-54.	1.4	13
269	Stability and Reorganization of αâ€2â€Crystals in Random <scp> </scp> / <scp>d</scp> ‣actide Copolymers. Macromolecular Chemistry and Physics, 2016, 217, 1534-1538.	1.1	34
270	Skeletal muscle regeneration via engineered tissue culture over electrospun nanofibrous chitosan/PVA scaffold. Journal of Biomedical Materials Research - Part A, 2016, 104, 1720-1727.	2.1	56
271	Effects of Chemically Doped Bioactive Borate Glass on Neuron Regrowth and Regeneration. Annals of Biomedical Engineering, 2016, 44, 3468-3477.	1.3	26
272	Ultrasonic atomization and polyelectrolyte complexation to produce gastroresistant shell–core microparticles. Journal of Applied Polymer Science, 2016, 133, .	1.3	15
273	Poly(trimethylene carbonate)/Poly(malic acid) Amphiphilic Diblock Copolymers as Biocompatible Nanoparticles. Chemistry - A European Journal, 2016, 22, 2819-2830.	1.7	13
275	Ionizing Radiation Effects in Polymers. , 2016, , .		16

#	Article	IF	CITATIONS
276	Injectable Hydrogels as Tissue Adhesives. , 2016, , 239-273.		1
277	Bioactive polymeric scaffolds for tissue engineering. Bioactive Materials, 2016, 1, 93-108.	8.6	336
279	Selecting and Designing Polymers Suitable for Nanoparticle Manufacturing. , 2016, , 343-379.		0
280	Influence of purified multiwalled carbon nanotubes on the mechanical and morphological behavior in poly (L-lactic acid) matrix. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 59, 547-560.	1.5	8
281	Cell adhesion behavior of poly(ε-caprolactone)/poly(L -lactic acid) nanofibers scaffold. Materials Letters, 2016, 171, 178-181.	1.3	19
282	Nanoparticles for brain-specific drug and genetic material delivery, imaging and diagnosis. Nanomedicine, 2016, 11, 833-849.	1.7	95
283	Poly(DL-lactide-co-Îμ-caprolactone) and poly(DL-lactide-co-glycolide) blends for biomedical application: Physical properties, cell compatibility, and in vitro degradation behavior. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 741-750.	1.8	8
284	Mechanical properties and osteogenic potential of hydroxyapatite-PLGA-collagen biomaterial for bone regeneration. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 1139-1154.	1.9	26
285	3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. Journal of Controlled Release, 2016, 234, 41-48.	4.8	355
286	Design of biodegradable blends based on PLA and PCL: From morphological, thermal and mechanical studies to shape memory behavior. Polymer Degradation and Stability, 2016, 132, 97-108.	2.7	222
287	Enhanced efficacy of clindamycin hydrochloride encapsulated in PLA/PLGA based nanoparticle system for oral delivery. IET Nanobiotechnology, 2016, 10, 254-261.	1.9	15
288	Alginate dialdehyde (AD)-crosslinked casein films: synthesis, characterization and water absorption behavior. Designed Monomers and Polymers, 2016, 19, 406-419.	0.7	19
289	Biomaterials in Orthopaedics. Advanced Structured Materials, 2016, , 161-181.	0.3	36
290	PLA composites: From production to properties. Advanced Drug Delivery Reviews, 2016, 107, 17-46.	6.6	651
291	Epoxidised soybean oil–Cu/Cu ₂ O bio-nanocomposite material: synthesis and characterization with antibacterial activity. RSC Advances, 2016, 6, 38906-38912.	1.7	8
292	Functionalization of Polyurethane/Urea Copolymers with Amide Groups by Polymer Treatment with Ammonia Plasma. Plasma Chemistry and Plasma Processing, 2016, 36, 835-848.	1.1	8
293	Elastomers in vascular tissue engineering. Current Opinion in Biotechnology, 2016, 40, 149-154.	3.3	26
294	Quantitative Tissue Spectroscopy of Near Infrared Fluorescent Nanosensor Implants. Journal of Biomedical Nanotechnology, 2016, 12, 1035-1047	0.5	46

#	Article	IF	CITATIONS
295	Mechanical evaluation of gradient electrospun scaffolds with 3D printed ring reinforcements for tracheal defect repair. Biomedical Materials (Bristol), 2016, 11, 025020.	1.7	23
296	Biorefineries – factories of the future. Chemical and Process Engineering - Inzynieria Chemiczna I Procesowa, 2016, 37, 109-119.	0.7	8
297	In-Chain Poly(phosphonate)s via Acyclic Diene Metathesis Polycondensation. Macromolecules, 2016, 49, 3761-3768.	2.2	29
298	Unified polymer erosion model for pulsatile drug delivery. Journal of Membrane Science, 2016, 512, 61-72.	4.1	6
299	Highly Elastic and Moldable Polyester Biomaterial for Cardiac Tissue Engineering Applications. ACS Biomaterials Science and Engineering, 2016, 2, 780-788.	2.6	79
300	The effects of PHBV- <i>g</i> -MA compatibilizer on morphology and properties of poly(3-hydroxybutyrate-Co-3-hydroxyvalerate)/olive husk flour composites. Journal of Adhesion Science and Technology, 2016, 30, 2061-2080.	1.4	22
301	Electrospun composite nanofiber membrane of poly(l -lactide) and surface grafted chitin whiskers: Fabrication, mechanical properties and cytocompatibility. Carbohydrate Polymers, 2016, 147, 216-225.	5.1	55
302	Synthesis of highly branched poly(\hat{l}' -valerolactone)s: a comparative study between comb and linear analogues. RSC Advances, 2016, 6, 45791-45801.	1.7	19
303	Fractional separation of polymers in nanochannels: Combined influence of wettability and structure. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2118-2125.	2.4	4
304	Redox Switchable Copolymerization of Cyclic Esters and Epoxides by a Zirconium Complex. Macromolecules, 2016, 49, 6768-6778.	2.2	73
305	Biodegradable Polymers: Drug Delivery Applications. , 0, , 646-670.		0
307	Four Different Regioisomeric Polycarbonates Derived from One Natural Product, <scp>d</scp> -Glucose. Macromolecules, 2016, 49, 7857-7867.	2.2	28
308	Regeneration of Blood Vessels. , 2016, , 315-351.		3
309	Postpolymerization Modifications of Alkeneâ€Functional Polycarbonates for the Development of Advanced Materials Biomaterials. Macromolecular Bioscience, 2016, 16, 1762-1775.	2.1	34
310	Biomedical applications of electrospun polycaprolactone fiber mats. Polymers for Advanced Technologies, 2016, 27, 1264-1273.	1.6	86
311	Recent progress in nanomaterials for gene delivery applications. Biomaterials Science, 2016, 4, 1291-1309.	2.6	183
312	Monomeric and dimeric Al(<scp>iii</scp>) complexes for the production of polylactide. Dalton Transactions, 2016, 45, 13846-13852.	1.6	24
313	Overview of Methods of Making Polyester Nano- and Microparticulate Systems for Drug Delivery. , 2016, , 81-123.		1

#	Article	IF	CITATIONS
314	Isabgol–silk fibroin 3D composite scaffolds as an effective dermal substitute for cutaneous wound healing in rats. RSC Advances, 2016, 6, 73617-73626.	1.7	17
315	Synthesis of novel amphiphilic hyaluronan containing-aromatic fatty acids for fabrication of polymeric micelles. Carbohydrate Polymers, 2016, 151, 1175-1183.	5.1	10
316	POSS end-linked peptide-functionalized poly(É›-caprolactone)s and their inclusion complexes with α-cyclodextrin. Journal of Polymer Science Part A, 2016, 54, 3643-3651.	2.5	3
317	Microbial enzymes: industrial progress in 21st century. 3 Biotech, 2016, 6, 174.	1.1	540
318	Polylactic Acid: Synthesis, Properties, and Applications. , 0, , 6480-6490.		2
319	Nitric Oxide-Releasing Biomedical Materials. , 2016, , 5716-5737.		1
320	Neural tissue engineering: Bioresponsive nanoscaffolds using engineered self-assembling peptides. Acta Biomaterialia, 2016, 44, 2-15.	4.1	75
321	Polymer-based drug delivery systems for cancer treatment. Journal of Polymer Science Part A, 2016, 54, 3525-3550.	2.5	102
322	Poly(α-hydroxy acid)s and poly(α-hydroxy acid-co-α-amino acid)s derived from amino acid. Advanced Drug Delivery Reviews, 2016, 107, 82-96.	6.6	40
323	Synthesis, characterization and evaluation of in vitro toxicity in hepatocytes of linear polyesters with varied aromatic and aliphatic co-monomers. Journal of Controlled Release, 2016, 244, 214-228.	4.8	4
324	Dual Catalysis Based on N-Heterocyclic Olefins for the Copolymerization of Lactones: High Performance and Tunable Selectivity. Macromolecules, 2016, 49, 8869-8878.	2.2	50
325	Magnesium and aluminum complexes bearing bis(5,6,7-trihydro quinolyl)-fused benzodiazepines for ε-caprolactone polymerization. Inorganic Chemistry Frontiers, 2016, 3, 1317-1325.	3.0	8
326	Polymeric nanoparticles assembled with microfluidics for drug delivery across the blood-brain barrier. European Physical Journal: Special Topics, 2016, 225, 779-795.	1.2	19
327	Accelerated Biodegradation of Agriculture Film Based on Aromatic–Aliphatic Copolyester in Soil under Mesophilic Conditions. Journal of Agricultural and Food Chemistry, 2016, 64, 5653-5661.	2.4	29
328	Tissueâ€Engineered Fibrinâ€Based Heart Valve with Bioâ€Inspired Textile Reinforcement. Advanced Healthcare Materials, 2016, 5, 2113-2121.	3.9	57
329	<i>In Vivo</i> Biological Evaluation of High Molecular Weight Multifunctional Acid-Degradable Polymeric Drug Carriers with Structurally Different Ketals. Biomacromolecules, 2016, 17, 3683-3693.	2.6	15
330	Biodegradable polymer scaffolds. Journal of Materials Chemistry B, 2016, 4, 7493-7505.	2.9	64
331	The release of cefazolin from chitosan/polyvinyl alcohol/sepiolite nanocomposite hydrogel films. Iranian Polymer Journal (English Edition), 2016, 25, 933-943.	1.3	34

#	Article	IF	CITATIONS
332	Synthesis of degradable poly(ε-caprolactone)-based graft copolymers via a "grafting-from―approach. Polymer Chemistry, 2016, 7, 7126-7134.	1.9	12
333	Selective enhancement of human stem cell proliferation by mussel inspired surface coating. RSC Advances, 2016, 6, 60206-60214.	1.7	7
334	Investigation on pH-switchable (itaconic acid/ethylene glycol/acrylic acid) based polymeric biocompatible hydrogel. RSC Advances, 2016, 6, 106821-106831.	1.7	9
335	Poly(ester amide)s: recent insights into synthesis, stability and biomedical applications. Polymer Chemistry, 2016, 7, 7039-7046.	1.9	102
336	Enzymes' action on materials: Recent trends. Journal of Cellular Biotechnology, 2016, 1, 131-144.	0.1	5
337	Processing Methods: Biomedical Polymers. , 0, , 6795-6802.		2
338	Nondestructive Molecular Characterization of Polycarbonate–Polyvinylamine Composites after Thermally Induced Aminolysis. Macromolecular Materials and Engineering, 2016, 301, 648-652.	1.7	15
339	Preparation of polyphosphazenes: a tutorial review. Chemical Society Reviews, 2016, 45, 5200-5215.	18.7	211
340	Antibody immobilization on poly(L-lactic acid) nanofibers advantageously carried out by means of a non-equilibrium atmospheric plasma process. Journal Physics D: Applied Physics, 2016, 49, 274003.	1.3	12
341	Bio-scaffolds produced from irradiated squid pen and crab chitosan with hydroxyapatite/β-tricalcium phosphate for bone-tissue engineering. International Journal of Biological Macromolecules, 2016, 93, 1446-1456.	3.6	24
342	Multifunctional biodegradable polymer nanocomposite incorporating graphene-silver hybrid for biomedical applications. Materials and Design, 2016, 108, 319-332.	3.3	81
343	Copolymerization of <scp>l</scp> -lactide/trimethylene carbonate by organocatalysis: controlled synthesis of comb-like graft copolymers with side chains with different topologies. RSC Advances, 2016, 6, 40371-40382.	1.7	13
344	<i>In vitro</i> degradation and mechanical properties of PLA-PCL copolymer unit cell scaffolds generated by two-photon polymerization. Biomedical Materials (Bristol), 2016, 11, 015011.	1.7	84
345	Biomedical Polymers: An Overview. SpringerBriefs in Applied Sciences and Technology, 2016, , 1-22.	0.2	2
346	Investigation of silk sericin conformational structure for fabrication into porous scaffolds with poly(vinyl alcohol) for skin tissue reconstruction. European Polymer Journal, 2016, 81, 43-52.	2.6	19
347	Scaffolds based on hyaluronan and carbon nanotubes gels. Journal of Biomaterials Applications, 2016, 31, 534-543.	1.2	4
348	Biomaterials for hollow organ tissue engineering. Fibrogenesis and Tissue Repair, 2016, 9, 3.	3.4	34
349	Polyhydroxybutyrate (PHB)-based triblock copolymers: synthesis of hydrophobic PHB/poly(benzyl) Tj ETQq1 1 C Polymer Chemistry, 2016, 7, 4603-4608.).784314 rg 1.9	gBT /Overlock 16

#	Article	IF	CITATIONS
350	Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering. Materials Science and Engineering C, 2016, 61, 484-491.	3.8	128
351	In vitro evaluation of poly(ethylene glycol)-block-poly(É›-caprolactone) methyl ether copolymer coating effects on cells adhesion and proliferation. Applied Surface Science, 2016, 374, 23-30.	3.1	20
352	Biomechanical Challenges to Polymeric Biodegradable Stents. Annals of Biomedical Engineering, 2016, 44, 560-579.	1.3	45
353	Use of thiol-ene click chemistry to modify mechanical and thermal properties of polyhydroxyalkanoates (PHAs). International Journal of Biological Macromolecules, 2016, 83, 358-365.	3.6	33
354	Branched aliphatic polyesters by ring-opening (co)polymerization. Progress in Polymer Science, 2016, 58, 27-58.	11.8	58
355	Disposition and safety of inhaled biodegradable nanomedicines: Opportunities and challenges. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1703-1724.	1.7	67
356	Designing a novel nanocomposite for bone tissue engineering using electrospun conductive PBAT/polypyrrole as a scaffold to direct nanohydroxyapatite electrodeposition. RSC Advances, 2016, 6, 32615-32623.	1.7	63
357	Lactide polymerisation by ring-expanded NHC complexes of zinc. Polyhedron, 2016, 103, 121-125.	1.0	17
358	Nondegradable synthetic polymers for medical devices and implants. , 2016, , 33-62.		17
359	Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chemical Reviews, 2016, 116, 2602-2663.	23.0	2,018
359 360	Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chemical Reviews, 2016, 116, 2602-2663. Design of fully aliphatic multiblock poly(ester urethane)s displaying thermoplastic elastomeric properties. Polymer, 2016, 83, 154-161.	23.0 1.8	2,018 20
359 360 361	Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chemical Reviews, 2016, 116, 2602-2663. Design of fully aliphatic multiblock poly(ester urethane)s displaying thermoplastic elastomeric properties. Polymer, 2016, 83, 154-161. Surface wettability and energy effects on the biological performance of poly-3-hydroxybutyrate films treated with RF plasma. Materials Science and Engineering C, 2016, 62, 450-457.	23.0 1.8 3.8	2,018 20 33
359 360 361 362	Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chemical Reviews, 2016, 116, 2602-2663. Design of fully aliphatic multiblock poly(ester urethane)s displaying thermoplastic elastomeric properties. Polymer, 2016, 83, 154-161. Surface wettability and energy effects on the biological performance of poly-3-hydroxybutyrate films treated with RF plasma. Materials Science and Engineering C, 2016, 62, 450-457. Tailoring the degradation rate and release kinetics from poly(galactitol sebacate) by blending with chitosan, alginate or ethyl cellulose. International Journal of Biological Macromolecules, 2016, 93, 1591-1602.	23.0 1.8 3.8 3.6	2,018 20 33 16
359 360 361 362 363	Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chemical Reviews, 2016, 116, 2602-2663. Design of fully aliphatic multiblock poly(ester urethane)s displaying thermoplastic elastomeric properties. Polymer, 2016, 83, 154-161. Surface wettability and energy effects on the biological performance of poly-3-hydroxybutyrate films treated with RF plasma. Materials Science and Engineering C, 2016, 62, 450-457. Tailoring the degradation rate and release kinetics from poly(galactitol sebacate) by blending with chitosan, alginate or ethyl cellulose. International Journal of Biological Macromolecules, 2016, 93, 1591-1602. Articular cartilage: from formation to tissue engineering. Biomaterials Science, 2016, 4, 734-767.	23.0 1.8 3.8 3.6 2.6	2,018 20 33 16 231
359 360 361 362 363	Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chemical Reviews, 2016, 116, 2602-2663. Design of fully aliphatic multiblock poly(ester urethane)s displaying thermoplastic elastomeric properties. Polymer, 2016, 83, 154-161. Surface wettability and energy effects on the biological performance of poly-3-hydroxybutyrate films treated with RF plasma. Materials Science and Engineering C, 2016, 62, 450-457. Tailoring the degradation rate and release kinetics from poly(galactitol sebacate) by blending with chitosan, alginate or ethyl cellulose. International Journal of Biological Macromolecules, 2016, 93, 1591-1602. Articular cartilage: from formation to tissue engineering. Biomaterials Science, 2016, 4, 734-767. Degradable Biomaterials for Temporary Medical Implants. Advanced Structured Materials, 2016, , 127-160.	23.0 1.8 3.8 3.6 2.6 0.3	2,018 20 33 16 231 10
 359 360 361 362 363 364 365 	Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chemical Reviews, 2016, 116, 2602-2663. Design of fully aliphatic multiblock poly(ester urethane)s displaying thermoplastic elastomeric properties. Polymer, 2016, 83, 154-161. Surface wettability and energy effects on the biological performance of poly-3-hydroxybutyrate films treated with RF plasma. Materials Science and Engineering C, 2016, 62, 450-457. Tailoring the degradation rate and release kinetics from poly(galactitol sebacate) by blending with chitosan, alginate or ethyl cellulose. International Journal of Biological Macromolecules, 2016, 93, 1591-1602. Articular cartilage: from formation to tissue engineering. Biomaterials Science, 2016, 4, 734-767. Degradable Biomaterials for Temporary Medical Implants. Advanced Structured Materials, 2016, 1, 127-160. Fabrication and characterization of Pluronic modified poly(hydroxybutyrate) fibers for potential wound dressing applications. Materials Science and Engineering C, 2016, 63, 266-273.	23.0 1.8 3.8 3.6 2.6 0.3 3.8	2,018 20 33 33 16 231 231 231
 359 360 361 362 363 364 365 366 	Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chemical Reviews, 2016, 116, 2602-2663. Design of fully aliphatic multiblock poly(ester urethane)s displaying thermoplastic elastomeric properties. Polymer, 2016, 83, 154-161. Surface wettability and energy effects on the biological performance of poly-3-hydroxybutyrate films treated with RF plasma. Materials Science and Engineering C, 2016, 62, 450-457. Tailoring the degradation rate and release kinetics from poly(galactitol sebacate) by blending with chitosan, alginate or ethyl cellulose. International Journal of Biological Macromolecules, 2016, 93, 1591-1602. Articular cartilage: from formation to tissue engineering. Biomaterials Science, 2016, 4, 734-767. Degradable Biomaterials for Temporary Medical Implants. Advanced Structured Materials, 2016, , 127-160. Fabrication and characterization of Pluronic modified poly(hydroxybutyrate) fibers for potential wound dressing applications. Materials Science and Engineering C, 2016, 63, 266-273. Biointerfacial phenomena of amlodipine buccomucosal tablets of HPMC matrix system containing polyacrylate polymerfl ² -cyclodextrin: Correlation of swelling and drug delivery performance. Expert Opinion on Drug Delivery, 2016, 13, 633-643.	 23.0 1.8 3.8 3.6 2.6 0.3 3.8 2.4 	2,018 20 33 33 16 231 231 231 20 231

ARTICLE IF CITATIONS 3D printing of polyurethane biomaterials., 2016, , 149-170. 368 20 Nitric oxide release from a biodegradable cysteine-based polyphosphazene. Journal of Materials Chemistry B, 2016, 4, 1987-1998. 19 Tailoring chemical and physical properties of fibrous scaffolds from block copolyesters containing ether and thio-ether linkages for skeletal differentiation of human mesenchymal stromal cells. 370 5.7 26 Biomaterials, 2016, 76, 261-272. In-vitro investigation and hydrolytic degradation of antibacterial nanocomposites based on 371 1.8 44 PLLA/triclosan/nano-hydroxyapatite. Polymer, 2016, 83, 101-110. Preparation of hybrid materials for controlled drug release. Drug Development and Industrial 372 0.9 9 Pharmacy, 2016, 42, 1058-1065. Poly(butylene succinate)-based polyesters for biomedical applications: A review. European Polymer Journal, 2016, 75, 431-460. 2.6 Development of a hydroxyapatite-poly(d,l-lactide-co-glycolide) infiltrated carbon foam for orthopedic 374 5.4 17 applications. Carbon, 2016, 98, 106-114. Influence of low contents of superhydrophilic MWCNT on the properties and cell viability of electrospun poly (butylene adipate-co-terephthalate) fibers. Materials Science and Engineering C, 2016, 3.8 88 59, 782-791 A poly(ether-ester) copolymer for the preparation of nanocarriers with improved degradation and 376 3.8 7 drug delivery kinetics. Materials Science and Engineering C, 2016, 59, 488-499. A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel 1.7 properties by addition of rigid inorganic fillers. Journal of Materials Science, 2016, 51, 271-310. Evaluation of biodegradable polymer conduits – poly(l-lactic acid) – for guiding sciatic nerve 378 30 1.9 regeneration in mice. Methods, 2016, 99, 28-36. Porous poly (D,L â€lactide―co â€glycolide) acid/biosilicate ® composite scaffolds for bone tissue 379 1.6 engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 63-71. Polyanhydride Nanoparticle Interactions with Host Serum Proteins and Their Effects on Bone Marrow 380 2.6 7 Derived Macrophage Activation. ACS Biomaterials Science and Engineering, 2017, 3, 160-168. Interpolyelectrolyte complexes of lysozyme with short poly[di(carboxylatophenoxy)phosphazene]. Binding energetics and protein conformational stability. Polymer, 2017, 108, 97-104. 1.8 Branched Macromolecular Architectures for Degradable, Multifunctional Phosphorusâ€Based 382 2.0 36 Polymers. Macromolecular Rapid Communications, 2017, 38, 1600644. Oxidation Responsive Polymers with a Triggered Degradation via Arylboronate Self-Immolative Motifs 36 on a Polyphosphazene Backbone. ACS Macro Letters, 2017, 6, 150-154. Optimized Photoinitiator for Fast Twoâ€Photon Absorption Polymerization of Polyesterâ€Macromers for 384 1.6 20 Tissue Engineering. Advanced Engineering Materials, 2017, 19, 1600686. Differential Adhesive and Bioactive Properties of the Polymeric Surface Coated with Graphene Oxide Thin Film. ACS Applied Materials & amp; Interfaces, 2017, 9, 4498-4508.

#	Article	IF	CITATIONS
386	Biodegradable polymer networks via triazolinedione-crosslinking of oleyl-functionalized poly(ε-caprolactone). European Polymer Journal, 2017, 89, 230-240.	2.6	13
387	Synthesis & chemical and dielectric characterization of poly (linoleic acid)- g -poly (dimethylaminoethyl methacrylate): A novel high-κ graft copolymer. Composites Part B: Engineering, 2017, 117, 43-48.	5.9	11
388	Polymers and Composites for Orthopedic Applications. , 2017, , 349-403.		32
389	Biodegradable Polyphosphazene-Based Blends for Regenerative Engineering. Regenerative Engineering and Translational Medicine, 2017, 3, 15-31.	1.6	52
390	Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair. Acta Biomaterialia, 2017, 54, 386-398.	4.1	151
391	Antibacterial PHAs coating for titanium implants. European Polymer Journal, 2017, 90, 66-78.	2.6	37
392	Mesenchymal stem cells cultivated on scaffolds formed by 3D printed PCL matrices, coated with PLGA electrospun nanofibers for use in tissue engineering. Biomedical Physics and Engineering Express, 2017, 3, 045005.	0.6	42
393	Additive manufacturing of polymer melts for implantable medical devices and scaffolds. Biofabrication, 2017, 9, 012002.	3.7	145
394	Perivascular medical devices and drug delivery systems: Making the right choices. Biomaterials, 2017, 128, 56-68.	5.7	26
395	Ring-opening polymerization of ethylene carbonate: comprehensive structural elucidation by 1D & 2D-NMR techniques, and selectivity analysis. RSC Advances, 2017, 7, 11786-11795.	1.7	23
396	Pro-Antimicrobial Networks via Degradable Acetals (PANDAs) Using Thiol–Ene Photopolymerization. ACS Macro Letters, 2017, 6, 171-175.	2.3	21
397	Copper(II) complexes containing N,N′-bidentate N-substituted N-(pyridin-2-ylmethyl)amine: Synthesis, structure and application towards polymerization of rac-lactide. Polyhedron, 2017, 127, 51-58.	1.0	32
398	Biodegradable polyurethane micelles with pH and reduction responsive properties for intracellular drug delivery. Materials Science and Engineering C, 2017, 75, 1221-1230.	3.8	53
399	Production of Electrospun Fast-Dissolving Drug Delivery Systems with Therapeutic Eutectic Systems Encapsulated in Gelatin. AAPS PharmSciTech, 2017, 18, 2579-2585.	1.5	42
400	Preparation and characterization of a novel degradable nano-hydroxyapatite/poly(lactic- co -glycolic) composite reinforced with bamboo fiber. Materials Science and Engineering C, 2017, 75, 1014-1018.	3.8	18
401	Thermal and kinetic evaluation of biodegradable thermo-sensitive gelatin/poly(ethylene glycol) diamine crosslinked citric acid hydrogels for controlled release of tramadol. European Polymer Journal, 2017, 89, 42-56.	2.6	32
402	The effect of mechanical loads on the degradation of aliphatic biodegradable polyesters. International Journal of Energy Production and Management, 2017, 4, 179-190.	1.9	39
403	Development of a fiber shape polymeric humidity sensor. Proceedings of SPIE, 2017, , .	0.8	1

#	Article	IF	CITATIONS
404	Biodegradable poly(lactic acid)-based scaffolds: synthesis and biomedical applications. Journal of Polymer Research, 2017, 24, 1.	1.2	58
405	A mini review: Shape memory polymers for biomedical applications. Frontiers of Chemical Science and Engineering, 2017, 11, 143-153.	2.3	98
406	Biomimetic strategies for fracture repair: Engineering the cell microenvironment for directed tissue formation. Journal of Tissue Engineering, 2017, 8, 204173141770479.	2.3	6
407	Controlled Ion Release from Novel Polyester/Ceramic Composites Enhances Osteoinductivity. AAPS Journal, 2017, 19, 1029-1044.	2.2	9
408	Drawing in poly(ε-caprolactone) fibers: tuning mechanics, fiber dimensions and surface-modification density. Journal of Materials Chemistry B, 2017, 5, 4499-4506.	2.9	13
409	Structural and Chemical Modification to Improve Adhesive and Material Properties of Fibrin-Genipin for Repair of Annulus Fibrosus Defects in Intervertebral Disks. Journal of Biomechanical Engineering, 2017, 139, .	0.6	29
410	Biomedical Applications of Polyhydroxyalkanoates. Indian Journal of Microbiology, 2017, 57, 261-269.	1.5	117
411	Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study. Materials Science and Engineering C, 2017, 79, 326-335.	3.8	100
412	pH-Sensitive drug delivery system based on hydrophobic modified konjac glucomannan. Carbohydrate Polymers, 2017, 171, 9-17.	5.1	29
413	Tailor made alginate hydrogel for local infection prophylaxis in orthopedic applications. Materials Science and Engineering C, 2017, 78, 1046-1053.	3.8	17
414	Evaluating polymeric biomaterial–environment interfaces by Langmuir monolayer techniques. Journal of the Royal Society Interface, 2017, 14, 20161028.	1.5	28
415	Characterizing viscoelasticity of unhydrolyzed chicken sternal cartilage extract suspensions: Towards development of injectable therapeutics formulations. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 72, 90-101.	1.5	3
416	Rationally designed double emulsion process for co-encapsulation of hybrid cargo in stealth nanocarriers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 476-482.	2.3	20
417	Development and physicochemical characterization of acetalated dextran aerosol particle systems for deep lung delivery. International Journal of Pharmaceutics, 2017, 525, 264-274.	2.6	29
418	Polyamides and their functionalization: recent concepts for their applications as biomaterials. Biomaterials Science, 2017, 5, 1230-1235.	2.6	70
419	Isotactic degradable polyesters derived from O-carboxyanhydrides of l-lactic and l-malic acid using a single organocatalyst/initiator system. European Polymer Journal, 2017, 95, 660-670.	2.6	13
420	Safety and Efficacy of Alginate Adhesion Barrier Gel in Compromised Intestinal Anastomosis. Surgical Infections, 2017, 18, 670-675.	0.7	4
421	Stability of adhesive interfaces by stereocomplex formation of polylactides and hybridization with nanoparticles. Polymer Degradation and Stability, 2017, 141, 69-76.	2.7	7

#	Article	IF	CITATIONS
422	Vegetable oil hybrid films cross-linked at the air–water interface: formation kinetics and physical characterization. Soft Matter, 2017, 13, 4569-4579.	1.2	7
423	3D-printed cellular structures for bone biomimetic implants. Additive Manufacturing, 2017, 15, 93-101.	1.7	91
424	Enhanced proliferation of HeLa cells on PLLA-PCL and PLGA-PCL multiblock copolymers. Polymer Journal, 2017, 49, 567-573.	1.3	7
425	Determining conformational order and crystallinity in polycaprolactone via Raman spectroscopy. Polymer, 2017, 117, 1-10.	1.8	84
426	Encapsulation of TOPO stabilized NaYF4:Er3+,Yb3+ nanoparticles in biocompatible nanocarriers: Synthesis, optical properties and colloidal stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 556-563.	2.3	12
427	Lithium Quinolylâ€Amidinates Efficiently Promoting Ringâ€Opening Polymerization of εâ€Caprolactone: Synthesis and ⁷ Li NMR Spectroscopic Studies. European Journal of Inorganic Chemistry, 2017, 2017, 2653-2660.	1.0	6
428	Multifunctional PP-Based Nanocomposites Incorporated with Organoclays, Poly(MA- <i>alt</i> -1-Dodecene)- <i>g</i> -SiO ₂ Nanoparticles and Bioengineering Polyesters in Melt by Reactive Extrusion. Polymer-Plastics Technology and Engineering, 2017, 56, 647-666.	1.9	4
429	Bionanocomposites poly(ϵ-caprolactone)/organomodified Moroccan beidellite clay prepared by <i>in situ</i> ring opening polymerization: Characterizations and properties. Journal of Macromolecular Science - Pure and Applied Chemistry, 2017, 54, 201-210.	1.2	11
430	Synthesis and rheological investigation of self-healable deferoxamine grafted alginate hydrogel. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 856-865.	2.4	15
431	Multiâ€Functional Polyurethane Hydrogel Foams with Tunable Mechanical Properties for Wound Dressing Applications. Macromolecular Materials and Engineering, 2017, 302, 1600375.	1.7	18
432	Predictive Methodologies for Design of Bone Tissue Engineering Scaffolds. , 2017, , 453-492.		5
433	Drug delivery systems for prolonged duration local anesthesia. Materials Today, 2017, 20, 22-31.	8.3	89
434	Laboratory injection molder for the fabrication of polymeric porous poly-epsilon-caprolactone scaffolds for preliminary mesenchymal stem cells tissue engineering applications. Microelectronic Engineering, 2017, 175, 12-16.	1.1	16
436	Correlation between traditional techniques and TD-NMR to determine the morphology of PHB/PCL blends. Polymer Testing, 2017, 58, 159-165.	2.3	35
437	Freeze drying optimization of polymeric nanoparticles for ocular flurbiprofen delivery: effect of protectant agents and critical process parameters on long-term stability. Drug Development and Industrial Pharmacy, 2017, 43, 637-651.	0.9	23
438	Poly(trimethylene carbonate) as an elastic biodegradable film for human embryonic stem cell-derived retinal pigment epithelial cells. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 3134-3144.	1.3	13
439	Polymerisation of a terpene-derived lactone: a bio-based alternative to Îμ-caprolactone. Polymer Chemistry, 2017, 8, 833-837.	1.9	55
440	Effect of process and formulation parameters on polycaprolactone nanoparticles prepared by solvent displacement. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 516, 238-244.	2.3	51

#	Article	IF	CITATIONS
441	3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment. Acta Biomaterialia, 2017, 50, 154-164.	4.1	201
442	Thermogelling, ABC Triblock Copolymer Platform for Resorbable Hydrogels with Tunable, Degradationâ€Mediated Drug Release. Advanced Functional Materials, 2017, 27, 1704107.	7.8	49
443	Unlocking the Potential of Poly(<i>Ortho</i> Ester)s: A General Catalytic Approach to the Synthesis of Surfaceâ€Erodible Materials. Angewandte Chemie - International Edition, 2017, 56, 16664-16668.	7.2	24
444	High doses of lipid-core nanocapsules do not affect bovine embryonic development in vitro. Toxicology in Vitro, 2017, 45, 194-201.	1.1	7
445	The fabrication of bioresorbable implants for bone defects replacement using computer tomogram and 3D printing. AIP Conference Proceedings, 2017, , .	0.3	0
446	Microfabricated Drug Delivery Devices: Design, Fabrication, and Applications. Advanced Functional Materials, 2017, 27, 1703606.	7.8	43
447	Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chemical Reviews, 2017, 117, 12764-12850.	23.0	582
448	The combined strategy of mesenchymal stem cells and tissue-engineered scaffolds for spinal cord injury regeneration. Experimental and Therapeutic Medicine, 2017, 14, 3355-3368.	0.8	34
449	Cross-Linking of a Hydrophilic, Antimicrobial Polycation toward a Fast-Swelling, Antimicrobial Superabsorber and Interpenetrating Hydrogel Networks with Long Lasting Antimicrobial Properties. ACS Applied Materials & Interfaces, 2017, 9, 36573-36582.	4.0	39
450	Peripheral Nerve Injury: Current Challenges, Conventional Treatment Approaches, and New Trends in Biomaterials-Based Regenerative Strategies. ACS Biomaterials Science and Engineering, 2017, 3, 3098-3122.	2.6	99
451	<i>N</i> -Heterocyclic Olefin-Based (Co)polymerization of a Challenging Monomer: Homopolymerization of ω-Pentadecalactone and Its Copolymers with γ-Butyrolactone, δ-Valerolactone, and ε-Caprolactone. Macromolecules, 2017, 50, 8406-8416.	2.2	76
452	Advances in microfluidic devices made from thermoplastics used in cell biology and analyses. Biomicrofluidics, 2017, 11, 051502.	1.2	82
453	Immobilization of bacteriophage in wound-dressing nanostructure. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2475-2484.	1.7	54
454	Phase behavior of the polymer/drug system PLA/DEET. Polymer, 2017, 126, 116-125.	1.8	27
455	Mono-BHT heteroleptic magnesium complexes: synthesis, molecular structure and catalytic behavior in the ring-opening polymerization of cyclic esters. Dalton Transactions, 2017, 46, 12132-12146.	1.6	53
456	Catalyst-controlled polycondensation of glycerol with diacyl chlorides: linear polyesters from a trifunctional monomer. Chemical Science, 2017, 8, 7106-7111.	3.7	27
457	Electrospun API-loaded mixed matrix membranes for controlled release. RSC Advances, 2017, 7, 43300-43309.	1.7	4
458	Production of a novel medium chain length poly(3â€hydroxyalkanoate) using unprocessed biodiesel waste and its evaluation as a tissue engineering scaffold. Microbial Biotechnology, 2017, 10, 1384-1399.	2.0	40

ARTICLE IF CITATIONS # Tunable degradation of polyethylene glycolâ€like polymers based on imine and oxime bonds. Journal of 459 2.5 27 Polymer Science Part A, 2017, 55, 3826-3831. Biodegradable Shape Memory Polymers in Medicine. Advanced Healthcare Materials, 2017, 6, 1700694. Investigation of redox switchable titanium and zirconium catalysts for the ring opening 461 3.0 33 polymerization of cyclic esters and epoxides. Inorganic Chemistry Frontiers, 2017, 4, 1798-1805. A critical review on the prospect of polyaniline-grafted biodegradable nanocomposite. Advances in Colloid and Interface Science, 2017, 249, 2-16. Neuronal Differentiation Modulated by Polymeric Membrane Properties. Cells Tissues Organs, 2017, 463 1.3 5 204, 164-178. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1797-1825. 164 Taurine grafting and collagen adsorption on PLLA films improve human primary chondrocyte adhesion 468 2.514 and growth. Colloids and Surfaces B: Biointerfaces, 2017, 158, 643-649. Nanocomposites of Polymeric Biomaterials Containing Carbonate Groups: An Overview. 1.7 10 Macromolecular Materials and Engineering, 2017, 302, 1700042. Preparation and characterization of poly($\hat{l}\mu$ -caprolactone)/ZnO foams for tissue engineering applications. Journal of Materials Science, 2017, 52, 12067-12078. 470 1.7 19 Poly(α-hydroxy acid) based polymers: A review on material and degradation aspects. Polymer 471 Degradation and Stability, 2017, 144, 520-535. Innovative Systems from Clickable Biopolymer-Based Hydrogels for Drug Delivery., 2017, , 117-133. 472 1 Microfibers as Physiologically Relevant Platforms for Creation of 3D Cell Cultures. Macromolecular 2.1 34 Bioscience, 2017, 17, 1700279. Musculoskeletal Tissue Regeneration: the Role of the Stem Cells. Regenerative Engineering and 474 1.6 30 Translational Medicine, 2017, 3, 133-165. Tailored biodegradable triblock copolymer coatings obtained by MAPLE: a parametric study. Applied Physics A: Materials Science and Processing, 2017, 123, 1. 1.1 Poly(lactic acid) as Biomaterial for Cardiovascular Devices and Tissue Engineering Applications. 476 0.4 16 Advances in Polymer Science, 2017, , 51-77. Hyperbranched polyglycerols: recent advances in synthesis, biocompatibility and biomedical 113 applications. Journal of Materials Chemistry B, 2017, 5, 9249-9277. Surface Wrinkling and Porosity of Polymer Particles toward Biological and Biomedical Applications. 478 1.9 20 Advanced Materials Interfaces, 2017, 4, 1700929. Drug delivery nanoplatform for orthopaedic-associated infections. Materials Today: Proceedings, 479 2017, 4, 6880-6888.

#	Article	IF	CITATIONS
480	The effect of pendant group structure on the thermoresponsive properties of <i>N</i> -substituted polyesters. Polymer Chemistry, 2017, 8, 7195-7206.	1.9	36
481	Polymer Microneedle Mediated Local Aptamer Delivery for Blocking the Function of Vascular Endothelial Growth Factor. ACS Biomaterials Science and Engineering, 2017, 3, 3395-3403.	2.6	23
482	Analysis of polycaprolactone scaffolds fabricated via precision extrusion deposition for control of craniofacial tissue mineralization. Orthodontics and Craniofacial Research, 2017, 20, 12-17.	1.2	27
483	Potassium acrylate: A novelty in hydroponic substrates. , 2017, , .		1
484	Chitosan whisker grafted with oligo(lactic acid) nanoparticles via a green synthesis pathway: Potential as a transdermal drug delivery system. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2523-2531.	1.7	20
485	How are we applying nanogel composites in biomedicine?. Nanomedicine, 2017, 12, 1627-1630.	1.7	5
486	A facile approach of light driven nanoassembly for the controlled accommodation of doxorubicin. Biomedical Physics and Engineering Express, 2017, 3, 045006.	0.6	1
487	Tunable and processable shape memory composites based on degradable polymers. Polymer, 2017, 122, 323-331.	1.8	26
488	Development of double emulsion nanoparticles for the encapsulation of bovine serum albumin. Colloids and Surfaces B: Biointerfaces, 2017, 158, 190-196.	2.5	20
489	Sandwich-type PLLA-nanosheets loaded with BMP-2 induce bone regeneration in critical-sized mouse calvarial defects. Acta Biomaterialia, 2017, 59, 12-20.	4.1	32
490	Controlling chitosan degradation properties inÂvitro and inÂvivo. , 2017, , 159-182.		17
491	Microstructure and mechanical properties of biodegradable poly (D/L) lactic acid/polycaprolactone blends processed from the solvent-evaporation technique. Materials Science and Engineering C, 2017, 71, 807-819.	3.8	20
492	Dual-responsive hybrid thermoplastic shape memory polyurethane. Materials Chemistry Frontiers, 2017, 1, 767-779.	3.2	52
493	Bioresorbable stents: Current and upcoming bioresorbable technologies. International Journal of Cardiology, 2017, 228, 931-939.	0.8	116
494	Synthetic biodegradable medical polyesters. , 2017, , 79-105.		13
495	Biomaterials and Culture Technologies for Regenerative Therapy of Liver Tissue. Advanced Healthcare Materials, 2017, 6, 1600791.	3.9	21
496	Bioresorbable polymers for next-generation cardiac scaffolds. , 2017, , 445-467.		5
497	Incorporation of Glycolate Units Promotes Hydrolytic Degradation in Flexible Poly(glycolate- <i>co</i> -3-hydroxybutyrate) Synthesized by Engineered <i>Escherichia coli</i> . ACS Biomaterials Science and Engineering, 2017, 3, 3058-3063.	2.6	15

	СІТАТ	tion Report	
#	Article	IF	CITATIONS
498	Intermolecular interactions between B. mori silk fibroin and poly(l-lactic acid) in electrospun composite nanofibrous scaffolds. Materials Science and Engineering C, 2017, 70, 777-787.	3.8	17
499	Introduction to bioresorbable polymers for biomedical applications. , 2017, , 3-29.		12
500	Biocompatibility of biodegradable medical polymers. , 2017, , 379-414.		8
501	The impact of monomer sequence and stereochemistry on the swelling and erosion of biodegradable poly(lactic-co-glycolic acid) matrices. Biomaterials, 2017, 117, 66-76.	5.7	76
502	Tailored Degradation and Dye Release from Poly(ester amides). Polymer-Plastics Technology and Engineering, 2017, 56, 635-646.	1.9	7
503	Polymeric micelles of suberoylanilide hydroxamic acid to enhance the anticancer potential <i>in vitro</i> and <i>in vivo</i> . Nanomedicine, 2017, 12, 43-58.	1.7	14
504	Optimization of lipaseâ€catalyzed polymerization of benzyl malolactonate through a design of experiment approach. Journal of Applied Polymer Science, 2017, 134, .	1.3	4
505	Copolymers of polyhydroxyalkanoates and polyethylene glycols: recent advancements with biological and medical significance. Polymer International, 2017, 66, 497-503.	1.6	23
506	Silver-Loaded Cellulose Acetate-g-Poly(ε-caprolactone) Composites. IOP Conference Series: Materials Science and Engineering, 2017, 205, 012008.	0.3	0
507	Unlocking the Potential of Poly(<i>Ortho</i> Ester)s: A General Catalytic Approach to the Synthesis of Surfaceâ€Erodible Materials. Angewandte Chemie, 2017, 129, 16891-16895.	1.6	9
508	Chitosan-based scaffolds for growth factor delivery. , 2017, , 175-207.		7
509	Biofunctionalised polycaprolactone fibrous mat as a transfer tool for cell sheet engineering. Fibers and Polymers, 2017, 18, 2094-2101.	1.1	3
510	Biocompatible, Biodegradable Radio-opaque Polymer Nanoparticles Microscopy and Microanalysis, 2017, 23, 1940-1941.	0.2	0
511	Poly(ethylene glycol) and Co-polymer Based-Hydrogels for Craniofacial Bone Tissue Engineering. , 2017, , 225-246.		2
512	Biomimetic Orthopedic Materials. , 2017, , 109-139.		2
513	Delivery of Antioxidant and Anti-inflammatory Agents for Tissue Engineered Vascular Grafts. Frontiers in Pharmacology, 2017, 8, 659.	1.6	31
514	Sustained Release Talazoparib Implants for Localized Treatment of <i>BRCA1</i> -deficient Breast Cancer. Theranostics, 2017, 7, 4340-4349.	4.6	24
515	Polymer Design and Development. , 2017, , 295-314.		20

ARTICLE IF CITATIONS # Poly(Lactic-co-Glycolic Acid): Applications and Future Prospects for Periodontal Tissue Regeneration. 516 2.0 141 Polymers, 2017, 9, 189. Biodegradable Chitosan Decreases the Immune Response to Trichinella spiralis in Mice. Molecules, 1.7 2017, 22, 2008. 518 Therapeutic Applications of Polymeric Materials., 2017, , 1-19. 2 Personalised 3D Printed Medicines: Which Techniques and Polymers Are More Successful?. 164 Bioengineering, 2017, 4, 79. Biofabrication and biomaterials for urinary tract reconstruction. Research and Reports in Urology, 520 0.6 9 2017, Volume 9, 79-92. Perspectives of bioinspired materials in regenerative medicine., 2017, , 139-175. Mg and Its Alloys for Biomedical Applications: Exploring Corrosion and Its Interplay with Mechanical 522 1.0 93 Failure. Metals, 2017, 7, 252. Bioresorbable Polymers â⁻†., 2017, , . 524 Polycaprolactone-Based Biomaterials for Guided Tissue Regeneration Membrane., 2017,,. 6 Recent advances in "bioartificial polymeric materials―based nanovectors. ChemistrySelect, 2017, 2, . Microparticle Vaccines Against Toxoplasma gondii., 0,,. 526 0 Synthetic biodegradable medical polyesters., 2017, , 107-152. CO₂-based amphiphilic polycarbonate micelles enable a reliable and efficient platform for 528 4.6 23 tumor imaging. Theranostics, 2017, 7, 4689-4698. Multifunctional nanostructured biopolymeric materials for therapeutic applications., 2017, 107-135. 529 Degradable, Dendritic Polyols on a Branched Polyphosphazene Backbone. Industrial & amp; Engineering 530 1.8 13 Chemistry Research, 2018, 57, 3602-3609. Development and optimization of a tumor targeting system based on microbial synthesized PHA biopolymers and PhaP mediated functional modification. Applied Microbiology and Biotechnology, 2018, 102, 3229-3241. Preclinical in Vitro and in Vivo Assessment of Linear and Branched <scp>l</scp>-Valine-Based 532 Poly(ester urea)s for Soft Tissue Applications. ACS Biomaterials Science and Engineering, 2018, 4, 2.6 11 1346-1356. Application of pectin‑zinc oxide hybrid nanocomposite in the delivery of a hydrophilic drug and a study of its isotherm, kinetics and release mechanism. International Journal of Biological Macromolecules, 34 2018, 115, 418-430.

#	Article	IF	CITATIONS
534	Antibacterial bioelastomers with sustained povidone-iodine release. Chemical Engineering Journal, 2018, 347, 19-26.	6.6	32
535	Horseradish peroxidase-catalyzed hydrogelation for biomedical applications. Biomaterials Science, 2018, 6, 1286-1298.	2.6	116
536	Drug delivery systems and materials for wound healing applications. Advanced Drug Delivery Reviews, 2018, 127, 138-166.	6.6	512
537	Development and characterisation of chondroitin sulfate- and hyaluronic acid-incorporated sorbitan ester nanoparticles as gene delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 125, 85-94.	2.0	33
538	"Click―chemistry in polymeric scaffolds: Bioactive materials for tissue engineering. Journal of Controlled Release, 2018, 273, 160-179.	4.8	172
539	Micro and nanotechnologies for bone regeneration: Recent advances and emerging designs. Journal of Controlled Release, 2018, 274, 35-55.	4.8	68
540	Design of an Orthopedic Product by Using Additive Manufacturing Technology: The Arm Splint. Journal of Medical Systems, 2018, 42, 54.	2.2	63
541	Tunable Degradation of Copolymers Prepared by Nitroxide-Mediated Radical Ring-Opening Polymerization and Point-by-Point Comparison with Traditional Polyesters. Macromolecules, 2018, 51, 724-736.	2.2	41
542	Biotechnological advances in lactic acid production by lactic acid bacteria: lignocellulose as novel substrate. Biofuels, Bioproducts and Biorefining, 2018, 12, 290-303.	1.9	124
543	Amphiphilic diblock copolymer of hydrophilic-functionalized lactone and lactide <i>via</i> switchable organocatalytic polymerization. RSC Advances, 2018, 8, 1905-1908.	1.7	5
544	Facile and Very Sensitive Electrochemical Method for Evaluating the Release Kinetics of Caffeine from Bioactive Polymeric Scaffolds. Journal of the Electrochemical Society, 2018, 165, E89-E96.	1.3	0
545	Colorectal cancer lung metastasis treatment with polymer–drug nanoparticles. Journal of Controlled Release, 2018, 275, 85-91.	4.8	53
546	Applications of Biopolymeric Gels in Agricultural Sector. Gels Horizons: From Science To Smart Materials, 2018, , 185-228.	0.3	4
547	Lysine-derived, pH-sensitive and biodegradable poly(beta-aminoester urethane) networks and their local drug delivery behaviour. Soft Matter, 2018, 14, 1195-1209.	1.2	17
548	Regenerative Engineering of the Rotator Cuff of the Shoulder. ACS Biomaterials Science and Engineering, 2018, 4, 751-786.	2.6	23
549	Membranes for Organs-On-Chips. , 2018, , 295-321.		3
550	Scaffold functionalization to support a tissue biocompatibility. , 2018, , 255-277.		4
551	Conductive polylactic-acid filament for dose monitoring in syringe-less wearable infusion pump. Sensors and Actuators B: Chemical, 2018, 258, 1080-1089.	4.0	2

#	Article	IF	CITATIONS
552	Process-induced degradation of bioresorbable PDLGA in bone tissue scaffold production. Journal of Materials Science: Materials in Medicine, 2018, 29, 14.	1.7	5
553	Restoration of articular osteochondral defects in rat by a bi-layered hyaluronic acid hydrogel plug with TUDCA-PLGA microsphere. Journal of Industrial and Engineering Chemistry, 2018, 61, 295-303.	2.9	12
554	Shear wave propagation in layered composites with degraded matrices at locations of imperfect bonding. Wave Motion, 2018, 78, 9-31.	1.0	3
555	Near-Infrared Light Induced Phase Transition of Biodegradable Composites for On-Demand Healing and Drug Release. ACS Applied Materials & Interfaces, 2018, 10, 4131-4139.	4.0	22
556	Preparation and optimization of surface-engineered poly(lactic acid) microspheres as a drug delivery device. Journal of Materials Science, 2018, 53, 4745-4758.	1.7	27
557	Fabrication and characterization of polymer eramic nanocomposites containing drug loaded modified halloysite nanotubes. Journal of Biomedical Materials Research - Part A, 2018, 106, 1276-1287.	2.1	18
558	Functional Polycarbonates from Carbon Dioxide and Tailored Epoxide Monomers: Degradable Materials and Their Application Potential. Advanced Functional Materials, 2018, 28, 1704302.	7.8	141
559	Reducible disulfide poly(beta-amino ester) hydrogels for antioxidant delivery. Acta Biomaterialia, 2018, 68, 178-189.	4.1	31
560	Preparation of monolithic polycaprolactone foams with controlled morphology. Polymer, 2018, 136, 166-178.	1.8	27
561	Design and evaluation of dental films of PEGylated rosin derivatives containing sparfloxacin for periodontitis. Drug Development and Industrial Pharmacy, 2018, 44, 914-922.	0.9	7
562	Novel application of graphene oxide to improve hydrophilicity and mechanical strength of aramid nanofiber hybrid membrane. Composites Part A: Applied Science and Manufacturing, 2018, 110, 126-132.	3.8	52
563	A review on chitosan centred scaffolds and their applications in tissue engineering. International Journal of Biological Macromolecules, 2018, 116, 849-862.	3.6	195
564	Electro-spun PLA-PEG-yarns for tissue engineering applications. Biomedizinische Technik, 2018, 63, 231-243.	0.9	13
565	Mechanical, material, and biological study of a PCL/bioactive glass bone scaffold: Importance of viscoelasticity. Materials Science and Engineering C, 2018, 90, 280-288.	3.8	54
566	Biodegradable polylactide and thermoplastic starch blends as drug release device – mass transfer study. Polish Journal of Chemical Technology, 2018, 20, 75-80.	0.3	10
567	Improvement of PLGA loading and release of curcumin by supercritical technology. Journal of Supercritical Fluids, 2018, 141, 60-67.	1.6	9
568	Design, characterization and preliminary biological evaluation of new lignin-PLA biocomposites. International Journal of Biological Macromolecules, 2018, 114, 855-863.	3.6	76
569	Biodegradable Polymeric Nanoparticles for Therapeutic Cancer Treatments. Annual Review of Chemical and Biomolecular Engineering, 2018, 9, 105-127.	3.3	161

#	Article	IF	CITATIONS
570	Controlling release from 3D printed medical devices using CLIP and drug-loaded liquid resins. Journal of Controlled Release, 2018, 278, 9-23.	4.8	73
571	Colonization of Electrospun Polycaprolactone Fibers by Relevant Pathogenic Bacterial Strains. ACS Applied Materials & Interfaces, 2018, 10, 11467-11473.	4.0	17
572	Polyester nanoparticles from macrolactones via miniemulsion enzymatic ring-opening polymerization. Colloid and Polymer Science, 2018, 296, 861-869.	1.0	12
573	Biodegradable Polymer with Hydrolysis-Induced Zwitterions for Antibiofouling. ACS Applied Materials & Interfaces, 2018, 10, 11213-11220.	4.0	76
574	Controlling the degradation of dicalcium phosphate/calcium sulfate/poly(amino acid) biocomposites for bone regeneration. Polymer Composites, 2018, 39, E122.	2.3	10
575	Levan and levansucrases: Polymer, enzyme, micro-organisms and biomedical applications. Biocatalysis and Biotransformation, 2018, 36, 233-244.	1.1	32
576	Chitosan-based bionanocomposites for biomedical application. Bioinspired, Biomimetic and Nanobiomaterials, 2018, 7, 219-227.	0.7	17
577	Hydroxyapatite–polymer biocomposites for bone regeneration: A review of current trends. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2046-2057.	1.6	232
578	Degradable thermosets based on labile bonds or linkages: A review. Progress in Polymer Science, 2018, 76, 65-110.	11.8	257
579	Axon mimicking hydrophilic hollow polycaprolactone microfibres for diffusion magnetic resonance imaging. Materials and Design, 2018, 137, 394-403.	3.3	14
580	PCL and PCL-based materials in biomedical applications. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 863-893.	1.9	529
581	Low temperature gamma sterilization of a bioresorbable polymer, PLGA. Radiation Physics and Chemistry, 2018, 143, 27-32.	1.4	11
582	Grapheneâ€polymer nanocomposites for biomedical applications. Polymers for Advanced Technologies, 2018, 29, 687-700.	1.6	70
583	Polyester micelles for drug delivery and cancer theranostics: Current achievements, progresses and future perspectives. Materials Science and Engineering C, 2018, 83, 218-232.	3.8	68
584	A Viscoelastic Study of Poly(ε-Caprolactone) Microsphere Sintered Bone Tissue Engineering Scaffold. Journal of Medical and Biological Engineering, 2018, 38, 359-369.	1.0	2
585	Review on polyphosphazenes-based materials for bone and skeleton tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 693-701.	1.8	21
586	Nano- and micro-materials in the treatment of internal bleeding and uncontrolled hemorrhage. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 507-519.	1.7	37
587	Phosphasalen vs. Salen Ligands: What Does the Phosphorus Change?. European Journal of Inorganic Chemistry, 2018, 2018, 1634-1644.	1.0	15

	CITAT	ION REPORT	
#	Apticie	IF	CITATIONS
"		u	CHAHONS
588	3D bioactive composite scaffolds for bone tissue engineering. Bioactive Materials, 2018, 3, 278-314.	8.6	866
589	Effect of unmodified and modified montmorillonite on the properties of PCL based ultrafiltration membrane for water treatment applications. Journal of Water Process Engineering, 2018, 21, 61-68.	2.6	18
590	Observation of Polylactide Stereocomplex by Atomic Force Microscopy. Chemistry Letters, 2018, 47, 82-84.	0.7	3
591	Review of Existing Biomaterials—Method of Material Selection for Specific Applications in Orthopedics. , 2018, , 47-99.		12
592	Synthesis of a novel organosoluble, biocompatible, and antibacterial chitosan derivative for biomedical applications. Journal of Applied Polymer Science, 2018, 135, 45905.	1.3	21
593	Thermosensitive hydrogels a versatile concept adapted to vaginal drug delivery. Journal of Drug Targeting, 2018, 26, 533-550.	2.1	21
594	Desarrollo de vectores génicos basados en polÃmeros sintéticos: PEI y PDMAEMA. Revista Colombiar De Ciencias QuÃmico Farmacéuticas, 2018, 47, 350-374.	1a 0.3	0
595	Tilapia (Oreochromis aureus) Collagen for Medical Biomaterials. , 2018, , .		8
596	Alginate Biocomposite Films Incorporated with Cinnamon Essential Oil Nanoemulsions: Physical, Mechanical, and Antibacterial Properties. International Journal of Polymer Science, 2018, 2018, 1-8.	1.2	44
597	Synthesis and Characterization of Glycerol Citrate Polymer and Yttrium Oxide Nanoparticles as a Potential Antibacterial Material. Materials Transactions, 2018, 59, 1915-1919.	0.4	9
598	Biopolymer gels as a basis of cryoprotective medium for testicular tissue of rats. Cell and Tissue Banking, 2018, 19, 819-826.	0.5	12
599	Mechanical Properties of Structure-Tunable, Vapor-Deposited TPD Glass. Journal of Physical Chemistry C, 2018, 122, 27775-27781.	1.5	10
600	Deep Eutectic Solvent-Mediated FA- <i>g</i> -β-Alanine- <i>co</i> -PCL Drug Carrier for Sustainable and Site-Specific Drug Delivery. ACS Applied Bio Materials, 2018, 1, 2094-2109.	2.3	25
601	Selectively Deuterated Poly(ε-caprolactone)s: Synthesis and Isotope Effects on the Crystal Structures and Properties. Macromolecules, 2018, 51, 9393-9404.	2.2	20
602	Cell Uptake and Biocompatibility of Nanoparticles Prepared from Poly(benzyl malate) (Co)polymers Obtained through Chemical and Enzymatic Polymerization in Human HepaRG Cells and Primary Macrophages. Polymers, 2018, 10, 1244.	2.0	4
603	Development of a H3PW12O40/CeO2 catalyst for bulk ring-opening polymerization of a cyclic carbonate. Green Chemistry, 2018, 20, 4995-5006.	4.6	19
604	Application of Bonelike® as synthetic bone graft in orthopaedic and oral surgery in veterinary clinical cases. Biomaterials Research, 2018, 22, 38.	3.2	6
605	Novel Biocompatible and Biodegradable PCL-PLA/ Iron Oxide NPs Marker Clip Composite for Breast Cancer Biopsy. Polymers, 2018, 10, 1307.	2.0	7

#	Article	IF	CITATIONS
606	Implantable Polymeric Drug Delivery Devices: Classification, Manufacture, Materials, and Clinical Applications. Polymers, 2018, 10, 1379.	2.0	242
607	Nanoengineered Electroconductive Collagen-Based Cardiac Patch for Infarcted Myocardium Repair. ACS Applied Materials & Interfaces, 2018, 10, 44668-44677.	4.0	77
608	Controllable synthesis and AIE properties of fluorescent polyesters. European Polymer Journal, 2018, 109, 297-302.	2.6	12
609	Drug-free antibacterial polymers for biomedical applications. Biomedical Science and Engineering, 2018, 2, .	0.0	5
610	Efficient chemical fixation of CO ₂ into cyclic carbonates using poly(4â€vinylpyridine) supported iodine as an ecoâ€friendly and reusable heterogeneous catalyst. Heteroatom Chemistry, 2018, 29, .	0.4	7
611	Internal decompression of the acutely contused spinal cord: Differential effects of irrigation only versus biodegradable scaffold implantation. Biomaterials, 2018, 185, 284-300.	5.7	26
612	Surface-Restructuring Differences between Polyrotaxanes and Random Copolymers in Aqueous Environment. Langmuir, 2018, 34, 12463-12470.	1.6	6
613	Ocular Drug Delivery: Role of Degradable Polymeric Nanocarriers for Ophthalmic Application. International Journal of Molecular Sciences, 2018, 19, 2830.	1.8	154
614	PLGA: From a classic drug carrier to a novel therapeutic activity contributor. Journal of Controlled Release, 2018, 289, 10-13.	4.8	48
615	Impact of setup orientation on blend electrospinning of poly-ε-caprolactone-gelatin scaffolds for vascular tissue engineering. International Journal of Artificial Organs, 2018, 41, 801-810.	0.7	19
616	Development of new bioâ€based polyol ester from palm oil for potential polymeric drug carrier. Advances in Polymer Technology, 2018, 37, 3552-3560.	0.8	6
617	Comparative Characterization of Melt Electrospun Fibers and Films Based on PLAâ€PHB Blends: Diffusion, Drug Release, and Structural Features. Macromolecular Symposia, 2018, 381, 1800130.	0.4	9
618	Scaffolds with Tunable Properties Constituted by Electrospun Nanofibers of Polyglycolide and Poly(ε aprolactone). Macromolecular Materials and Engineering, 2018, 303, 1800100.	1.7	9
619	Oscillations, travelling fronts and patterns in a supramolecular system. Nature Nanotechnology, 2018, 13, 1021-1027.	15.6	180
620	A Novel Approach for Assessing the Fatigue Behavior of PEEK in a Physiologically Relevant Environment. Materials, 2018, 11, 1923.	1.3	10
621	Crystalline CO ₂ â€Based Aliphatic Polycarbonates with Long Alkyl Chains. Macromolecular Rapid Communications, 2018, 39, e1800558.	2.0	7
622	Present and future of tissue engineering scaffolds for dentinâ€pulp complex regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 58-75.	1.3	97
624	Ether-Oxygen Containing Electrospun Microfibrous and Sub-Microfibrous Scaffolds Based on Poly(butylene 1,4-cyclohexanedicarboxylate) for Skeletal Muscle Tissue Engineering. International Journal of Molecular Sciences, 2018, 19, 3212.	1.8	32

# 625	ARTICLE Functional biodegradable polymers <i>via</i> ring-opening polymerization of monomers without protective groups. Chemical Society Reviews, 2018, 47, 7739-7782.	IF 18.7	CITATIONS
626	Determination of geometrical and viscoelastic properties of PLA/PHB samples made by additive manufacturing for urethral substitution. Journal of Biotechnology, 2018, 284, 123-130.	1.9	35
627	Chitosan functionalized poly (ε-caprolactone) nanoparticles for amphotericin B delivery. Carbohydrate Polymers, 2018, 202, 345-354.	5.1	55
628	A combined compression molding, heating, and leaching process for fabrication of micro-porous poly(Îμ-caprolactone) scaffolds. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 1978-1993.	1.9	8
629	Exploring Oxidation State-Dependent Selectivity in Polymerization of Cyclic Esters and Carbonates with Zinc(II) Complexes. IScience, 2018, 7, 120-131.	1.9	13
630	Light-Triggered Drug Release from 3D-Printed Magnetic Chitosan Microswimmers. ACS Nano, 2018, 12, 9617-9625.	7.3	280
631	Mechanistic study on the hydrolytic degradation of polyphosphates. European Polymer Journal, 2018, 108, 286-294.	2.6	43
632	Next-Generation Biomaterials for Bone-Tissue Regeneration: Mg-Alloys on the Move. Key Engineering Materials, 2018, 778, 306-315.	0.4	6
633	Synthesis and characterization of novel biodegradable water dispersed poly(ether-urethane)s and their MWCNT-AS nanocomposites functionalized with aspartic acid as dispersing agent. Iranian Polymer Journal (English Edition), 2018, 27, 755-774.	1.3	7
634	Recent Advances in Nanocomposites Based on Aliphatic Polyesters: Design, Synthesis, and Applications in Regenerative Medicine. Applied Sciences (Switzerland), 2018, 8, 1452.	1.3	21
635	A bilayered PVA/PLGA-bioresorbable shuttle to improve the implantation of flexible neural probes. Journal of Neural Engineering, 2018, 15, 065001.	1.8	47
636	In vitro release study of sirolimus from a PDLLA matrix on a bioresorbable drug-eluting stent. Journal of Drug Delivery Science and Technology, 2018, 48, 88-95.	1.4	9
637	Ring-opening polymerization of propylene carbonate: Microstructural analysis of the polymer and selectivity of polymerization by 2D-NMR techniques. European Polymer Journal, 2018, 105, 95-106.	2.6	14
638	Multifunctional and Stimuliâ€Responsive Magnetic Nanoparticleâ€Based Delivery Systems for Biomedical Applications. Advanced Therapeutics, 2018, 1, 1800011.	1.6	71
639	Pinene: reichlich vorhandene und erneuerbare Bausteine für eine Vielzahl an nachhaltigen Polymeren. Angewandte Chemie, 2018, 130, 14560-14569.	1.6	10
640	Intra-vitreal αB crystallin fused to elastin-like polypeptide provides neuroprotection in a mouse model of age-related macular degeneration. Journal of Controlled Release, 2018, 283, 94-104.	4.8	40
641	Novel Conducting and Biodegradable Copolymers with Noncytotoxic Properties toward Embryonic Stem Cells. ACS Omega, 2018, 3, 5593-5604.	1.6	30
642	Enhanced radiographic visualization of resorbable foils for orbital floor reconstruction: A proof of principle. Journal of Cranio-Maxillo-Facial Surgery, 2018, 46, 1533-1538.	0.7	3
#	Article	IF	CITATIONS
-----	--	------	-----------
643	Pharmaceutical Additive Manufacturing: a Novel Tool for Complex and Personalized Drug Delivery Systems. AAPS PharmSciTech, 2018, 19, 3388-3402.	1.5	72
644	Multifunctional Electrospun Nanofibers for Enhancing Localized Cancer Treatment. Small, 2018, 14, e1801183.	5.2	52
645	Stimuli-responsive poly (ε-caprolactone)s for drug delivery applications. , 2018, , 501-529.		3
646	Current Trends in Biomaterial Utilization for Cardiopulmonary System Regeneration. Stem Cells International, 2018, 2018, 1-32.	1.2	6
647	Synthetic polymeric gel. , 2018, , 55-90.		15
648	Electrospun three-dimensional aligned nanofibrous scaffolds for tissue engineering. Materials Science and Engineering C, 2018, 92, 995-1005.	3.8	91
649	3D printing of poly(ε-caprolactone)/poly(D,L-lactide- <i>co</i> -glycolide)/hydroxyapatite composite constructs for bone tissue engineering. Journal of Materials Research, 2018, 33, 1972-1986.	1.2	51
650	Incorporation of BMP-2 nanoparticles on the surface of a 3D-printed hydroxyapatite scaffold using an ε-polycaprolactone polymer emulsion coating method for bone tissue engineering. Colloids and Surfaces B: Biointerfaces, 2018, 170, 421-429.	2.5	79
651	In vivo study on scaffolds based on chitosan, collagen, and hyaluronic acid with hydroxyapatite. International Journal of Biological Macromolecules, 2018, 118, 938-944.	3.6	41
652	Injectable Hydrogel versus Plastically Compressed Collagen Scaffold for Central Nervous System Applications. International Journal of Biomaterials, 2018, 2018, 1-10.	1.1	17
653	In Vivo and In Vitro Elution of Analgesics from Multilayered Poly(D,L)-lactide-co-glycolide Nanofibers Incorporated Ureteral Stents. Journal of Nanomaterials, 2018, 2018, 1-7.	1.5	4
654	Thermal, optical and structural properties of blocks and blends of PLA and P2HEB. Green Materials, 2018, 6, 85-96.	1.1	9
655	Hydrolytic Degradation and Erosion of Polyester Biomaterials. ACS Macro Letters, 2018, 7, 976-982.	2.3	275
656	Current Status of Tissue Engineering in the Management of Severe Hypospadias. Frontiers in Pediatrics, 2017, 5, 283.	0.9	24
657	Pharmapolymers in the 21st century: Synthetic polymers in drug delivery applications. Progress in Polymer Science, 2018, 87, 107-164.	11.8	177
658	Hybrid Polypeptide/Polylactide Copolymers with Short Phenylalanine Blocks. Macromolecular Chemistry and Physics, 2018, 219, 1800168.	1.1	9
659	Interface influence of materials and surface modifications. , 2018, , 371-409.		8
660	A bird's eye view of nanoparticles prepared by electrospraying: advancements in drug delivery field. Journal of Controlled Release, 2018, 286, 179-200.	4.8	58

#	Article	IF	Citations
661	A Simple Method to Functionalize PCL Surface by Grafting Bioactive Polymers Using UV Irradiation. Irbm, 2018, 39, 268-278.	3.7	22
662	Effect of Molecular Weight and Functionality on Acrylated Poly(caprolactone) for Stereolithography and Biomedical Applications. Biomacromolecules, 2018, 19, 3682-3692.	2.6	51
663	Polyphosphazene-Based Biomaterials for Regenerative Engineering. ACS Symposium Series, 2018, , 53-75.	0.5	10
664	A Degradable and Antimicrobial Surfaceâ€Attached Polymer Hydrogel. Macromolecular Chemistry and Physics, 2018, 219, 1800198.	1.1	6
665	Drug delivery systems based on nonimmunogenic biopolymers. , 2018, , 317-344.		14
666	Association and Internal Morphology of Self-Assembled HPPhOx/BSA Hybrid Nanoparticles in Aqueous Solutions. Journal of Physical Chemistry B, 2018, 122, 7426-7435.	1.2	4
667	Surface Treatment of PEOT/PBT (55/45) with a Dielectric Barrier Discharge in Air, Helium, Argon and Nitrogen at Medium Pressure. Materials, 2018, 11, 391.	1.3	41
668	Electrospun Composites of Polycaprolactone and Porous Silicon Nanoparticles for the Tunable Delivery of Small Therapeutic Molecules. Nanomaterials, 2018, 8, 205.	1.9	13
669	Protein-Based Fiber Materials in Medicine: A Review. Nanomaterials, 2018, 8, 457.	1.9	125
670	Alginate in Wound Dressings. Pharmaceutics, 2018, 10, 42.	2.0	478
671	Soy-Based Soft Matrices for Encapsulation and Delivery of Hydrophilic Compounds. Polymers, 2018, 10, 583.	2.0	3
672	Hyaluronan microenvironment enhances cartilage regeneration of human adipose-derived stem cells in a chondral defect model. International Journal of Biological Macromolecules, 2018, 119, 726-740.	3.6	21
673	Selection, engineering, and expression of microbial enzymes. , 2018, , 1-29.		2
674	Combination of Polymeric Supports and Drug Delivery Systems for Osteochondral Regeneration. Advances in Experimental Medicine and Biology, 2018, 1059, 301-313.	0.8	7
675	Pinenes: Abundant and Renewable Building Blocks for a Variety of Sustainable Polymers. Angewandte Chemie - International Edition, 2018, 57, 14362-14371.	7.2	96
676	Quickening: Translational design of resorbable synthetic vascular grafts. Biomaterials, 2018, 173, 71-86.	5.7	69
677	Production of polyhydroxybutyrate (PHB) from Pseudomonas plecoglossicida and its application towards cancer detection. Informatics in Medicine Unlocked, 2018, 11, 61-67.	1.9	48
678	Nanofiber technology in the ex vivo expansion of cord blood-derived hematopoietic stem cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1707-1718.	1.7	18

#	Article	IF	CITATIONS
679	Free-Standing Nanopatterned Poly(Ϊμ-Caprolactone) Thin Films as a Multifunctional Scaffold. IEEE Nanotechnology Magazine, 2018, 17, 389-392.	1.1	3
680	Cefazolin-loaded polycaprolactone fibers produced via different electrospinning methods: Characterization, drug release and antibacterial effect. European Journal of Pharmaceutical Sciences, 2018, 124, 26-36.	1.9	45
681	Facile Synthesis of a Degradable Poly(ethylene glycol) Platform with Tunable Acid Sensitivity at Physiologically Relevant pH. Macromolecules, 2018, 51, 6571-6579.	2.2	10
682	The road to market implantable drug delivery systems: a review on US FDA's regulatory framework and quality control requirements. Pharmaceutical Development and Technology, 2018, 23, 953-963.	1.1	8
683	Kefiran biopolymer: Evaluation of its physicochemical and biological properties. Journal of Bioactive and Compatible Polymers, 2018, 33, 461-478.	0.8	26
684	Redox-responsive phosphonate-functionalized poly(β-amino ester) gels and cryogels. European Polymer Journal, 2018, 108, 57-68.	2.6	11
685	Strategies to improve the hemocompatibility of biodegradable biomaterials. , 2018, , 253-278.		19
686	Water Soluble (Bio)degradable Poly(organo)phosphazenes. ACS Symposium Series, 2018, , 183-209.	0.5	4
687	Synthesis of a ROS-responsive analogue of poly(ε-caprolactone) by the living ring-opening polymerization of 1,4-oxathiepan-7-one. Polymer Chemistry, 2018, 9, 4574-4584.	1.9	26
688	Chemoenzymatic Synthesis of Nitrogen Polymers with Biomedical Applications Catalyzed by Lipases. Methods in Molecular Biology, 2018, 1835, 359-376.	0.4	3
689	Fabrication of a graphene oxide/nanoscale aramid fiber composite membrane with improved hydrophilicity and mechanical strength via a fast-drying method using absolute ethanol as proton donor. Journal of Materials Science, 2018, 53, 16383-16392.	1.7	5
690	Microporous Titanium-Based Materials Coated by Biocompatible Thin Films. , 2018, , .		2
691	Recent progress in selected bio-nanomaterials and their engineering applications: An overview. Journal of Science: Advanced Materials and Devices, 2018, 3, 263-288.	1.5	81
692	Resorbable Implants for Orbital Fractures. Annals of Plastic Surgery, 2018, 81, 372-379.	0.5	18
693	Material Processing and Design of Biodegradable Metal Matrix Composites for Biomedical Applications. Annals of Biomedical Engineering, 2018, 46, 1229-1240.	1.3	25
694	Biotin-Tagged Polysaccharide Vesicular Nanocarriers for Receptor-Mediated Anticancer Drug Delivery in Cancer Cells. Biomacromolecules, 2018, 19, 3572-3585.	2.6	43
695	Polymeric nanoparticles and sponges in the control and stagnation of bleeding and wound healing. , 2018, , 189-219.		2
696	The control of alginate degradation to dynamically manipulate scaffold composition for in situ transfection application. International Journal of Biological Macromolecules, 2018, 117, 1169-1178.	3.6	14

#	Article	IF	CITATIONS
697	Advances in Biomaterials for Drug Delivery. Advanced Materials, 2018, 30, e1705328.	11.1	565
698	Nanocomposites of TPU-PDMS blend based on chitosan wrapped hydroxyapatite nanorods. European Polymer Journal, 2018, 105, 194-203.	2.6	12
699	Preparation and characterization of PCL-coated porous hydroxyapatite scaffolds in the presence of MWCNTs and graphene for orthopedic applications. Journal of Porous Materials, 2019, 26, 247-259.	1.3	2
700	Polymeric Biomaterials for Scaffold-Based Bone Regenerative Engineering. Regenerative Engineering and Translational Medicine, 2019, 5, 128-154.	1.6	91
701	Biomaterials for Tissue Engineering and Regenerative Medicine. , 2019, , 462-482.		53
702	Regenerative Medicine Approaches for Tissue Engineered Heart Valves. , 2019, , 1041-1058.		6
703	Biodegradable polyol-based polymers for biomedical applications. International Materials Reviews, 2019, 64, 288-309.	9.4	24
704	Advances in Porous Scaffold Design for Bone and Cartilage Tissue Engineering and Regeneration. Tissue Engineering - Part B: Reviews, 2019, 25, 14-29.	2.5	166
705	Degradation and <i>in vivo</i> evaluation of polycaprolactone, poly(ε-caprolactone-co-L-lactide), and poly-L-lactic acid as scaffold sealant polymers for murine tissue-engineered vascular grafts. Regenerative Medicine, 2019, 14, 627-637.	0.8	16
706	A Thermalâ€Reflowâ€Based Lowâ€Temperature, Highâ€Pressure Sintering of Lyophilized Silk Fibroin for the Fast Fabrication of Biosubstrates. Advanced Functional Materials, 2019, 29, 1901134.	7.8	29
707	Effect of surface chemical modifications on the bioactivity of carbon fibers reinforced epoxy composites. Surface and Coatings Technology, 2019, 377, 124889.	2.2	11
708	Chemistry of biomaterials: future prospects. Current Opinion in Biomedical Engineering, 2019, 10, 181-190.	1.8	58
709	Generational biodegradable and regenerative polyphosphazene polymers and their blends with poly (lactic-co-glycolic acid). Progress in Polymer Science, 2019, 98, 101146.	11.8	40
710	New Absorbable Microvascular Anastomotic Devices Representing a Modified Sleeve Technique: Evaluation of Two Types of Source Material and Design. Scientific Reports, 2019, 9, 10945.	1.6	5
711	Pharmaceutical applications of natural polysaccharides. , 2019, , 15-57.		22
712	Hydrolytic crack in a rubbery network. Extreme Mechanics Letters, 2019, 31, 100531.	2.0	13
713	Novel Route of Synthesis of PCL-CuONPs Composites With Antimicrobial Properties. Dose-Response, 2019, 17, 155932581986950.	0.7	27
714	Design of Soft Nanocarriers Combining Hyaluronic Acid with Another Functional Polymer for Cancer Therapy and Other Biomedical Applications. Pharmaceutics, 2019, 11, 338.	2.0	18

#	Article	IF	Citations
715	A glimpse of biodegradable polymers and their biomedical applications. E-Polymers, 2019, 19, 385-410.	1.3	77
716	Synthetic polymers for skin biomaterials. , 2019, , 125-149.		8
717	Two dimensional carbon based nanocomposites as multimodal therapeutic and diagnostic platform: A biomedical and toxicological perspective. Journal of Controlled Release, 2019, 308, 130-161.	4.8	30
718	A review on the challenges of 3D printing of organic powders. Bioprinting, 2019, 16, e00057.	2.9	20
719	Switchable Ringâ€Opening Polymerization by a Ferrocene Supported Aluminum Complex. ChemCatChem, 2019, 11, 4210-4218.	1.8	38
720	Degradation of Polymer Films on Surfaces: A Model Study with Poly(sebacic anhydride). Macromolecular Chemistry and Physics, 2019, 220, 1900121.	1.1	6
721	Degradable poly(ester amide)s from olive oil for biomedical applications. Emergent Materials, 2019, 2, 153-168.	3.2	8
722	A Review on Versatile Applications of Degradable Polymers. Materials Horizons, 2019, , 403-422.	0.3	10
723	Molecular Massâ€Dependent Resorption and Bone Regeneration of 3D Printed PPF Scaffolds in a Criticalâ€Sized Rat Cranial Defect Model. Advanced Healthcare Materials, 2019, 8, e1900646.	3.9	28
724	Translational prospects of untethered medical microrobots. Progress in Biomedical Engineering, 2019, 1, 012002.	2.8	120
725	Study on mechanical & thermal properties of PCL blended graphene biocomposites. Polimeros, 2019, 29, .	0.2	24
726	Mechanical and Biodegradation Properties of Nanostructured Polymer Composites Under Degradation Behavior. , 2019, , 69-86.		3
727	Chito-Protein Matrices in Arthropod Exoskeletons and Peritrophic Matrices. Biologically-inspired Systems, 2019, , 3-56.	0.4	10
728	Properties of solvent-cast chitin membranes and exploration of potential applications. Materialia, 2019, 8, 100452.	1.3	4
729	Synthesis and characterization of thermally stable bio-based poly(ester amide)s from sustainable feedstock. European Polymer Journal, 2019, 120, 109228.	2.6	6
730	In vitro evaluation of biodegradable nHAPâ€Chitosanâ€Gelatinâ€based scaffold for tissue engineering application. IET Nanobiotechnology, 2019, 13, 301-306.	1.9	6
731	Biocompatible Aloe vera and Tetracycline Hydrochloride Loaded Hybrid Nanofibrous Scaffolds for Skin Tissue Engineering. International Journal of Molecular Sciences, 2019, 20, 5174.	1.8	55
733	Bioengineered Scaffolds as Substitutes for Grafts for Urethra Reconstruction. Materials, 2019, 12, 3449.	1.3	11

#	Article	IF	CITATIONS
734	Polyisobutylene-Based Thermoplastic Elastomers for Manufacturing Polymeric Heart Valve Leaflets: In Vitro and In Vivo Results. Applied Sciences (Switzerland), 2019, 9, 4773.	1.3	21
735	Poly(lactic acid) and poly(lactic-co-glycolic) acid nanoparticles: versatility in biomedical applications. , 2019, , 199-216.		3
737	Influence of the PLGA/gelatin ratio on the physical, chemical and biological properties of electrospun scaffolds for wound dressings. Biomedical Materials (Bristol), 2019, 14, 045006.	1.7	28
738	Ionic-Liquid-Based Polyurethane Dispersions for Stabilizing Graphene in Water. MRS Advances, 2019, 4, 2289-2298.	0.5	4
739	Hyperstar Polyesterâ€Based Functional Nanotheranostics for the Targeted Drug Delivery and Treatment of Cancer. ChemNanoMat, 2019, 5, 1506-1514.	1.5	5
740	Lignin, a biomass crosslinker, in a shape memory polycaprolactone network. Journal of Polymer Science Part A, 2019, 57, 2121-2130.	2.5	17
741	Injectable Biodegradable Multimodal Mammography Marker. ACS Applied Bio Materials, 2019, 2, 5069-5076.	2.3	1
742	Polymeric microneedles for controlled transdermal drug delivery. Journal of Controlled Release, 2019, 315, 97-113.	4.8	140
743	Vastly extended drug release from poly(pro-17β-estradiol) materials facilitates in vitro neurotrophism and neuroprotection. Nature Communications, 2019, 10, 4830.	5.8	22
744	Added-value porous materials for controlled thymol release obtained by supercritical CO ₂ impregnation process. Frontiers in Forests and Global Change, 2019, 38, 153-166.	0.6	6
745	Biocompatible Polymer Nanoparticles for Drug Delivery Applications in Cancer and Neurodegenerative Disorder Therapies. Journal of Functional Biomaterials, 2019, 10, 4.	1.8	291
746	Biadhesive Peptides for Assembling Stainless Steel and Compound Loaded Micro ontainers. Macromolecular Bioscience, 2019, 19, e1900125.	2.1	17
747	Biodegradable polymers and constructs: A novel approach in drug delivery. European Polymer Journal, 2019, 120, 109191.	2.6	181
748	Atomic-scale and experimental investigation on the micro-structures and mechanical properties of PLA blending with CMC for additive manufacturing. Materials and Design, 2019, 183, 108158.	3.3	31
749	Injectable Pasty Biodegradable Polyesters Derived from Castor Oil and Hydroxyl-Acid Lactones. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 736-741.	1.3	7
750	Thermoreversible Supramolecular Networks from Poly(trimethylene Carbonate) Synthesized by Condensation with Triuret and Tetrauret. Macromolecules, 2019, 52, 6585-6599.	2.2	12
751	Hardness maps analysis of the layered nanocomposites for tissue repair of the cardiovascular system. AIP Conference Proceedings, 2019, , .	0.3	1
752	Use of samarium (III) acetate as initiator in ring-opening polymerization of trimethylene carbonate. Journal of Macromolecular Science - Pure and Applied Chemistry, 2019, 56, 1114-1120.	1.2	3

#	Article	IF	CITATIONS
753	Poly(3-ethylglycolide): a well-defined polyester matching the hydrophilic hydrophobic balance of PLA. Polymer Chemistry, 2019, 10, 5440-5451.	1.9	11
754	Synthesis of Rapidly Surface Eroding Polyorthoesters and Polyacetals Using Thiol–ene Click Chemistry. ACS Macro Letters, 2019, 8, 1268-1274.	2.3	20
755	Pioglitazone-loaded three-dimensional composite polymeric scaffolds: A proof of concept study in wounded diabetic rats. International Journal of Pharmaceutics, 2019, 570, 118667.	2.6	14
756	Magnesium Based Biodegradable Metallic Implant Materials: Corrosion Control and Evaluation of Surface Coatings. Innovations in Corrosion and Materials Science, 2019, 9, 3-27.	0.2	1
757	Biodegradable implantable balloons: Mechanical stability under physiological conditions. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 100, 103404.	1.5	5
758	Characterization of biomimetic silicate- and strontium-containing hydroxyapatite microparticles embedded in biodegradable electrospun polycaprolactone scaffolds for bone regeneration. European Polymer Journal, 2019, 113, 67-77.	2.6	46
759	Polyhydroxyalkanoates (PHA) – Applications in Wound Treatment and as Precursors for Oral Drugs. , 2019, , 227-270.		3
760	Synthesis and characterisation of composite sulphonated polyurethane/polyethersulphone membrane for blood purification application. Materials Science and Engineering C, 2019, 99, 491-504.	3.8	27
761	Alginate/chitosan hydrogel containing olfactory ectomesenchymal stem cells for sciatic nerve tissue engineering. Journal of Cellular Physiology, 2019, 234, 15357-15368.	2.0	75
762	Synthesis of Bio-based Polymer Composites: Fabrication, Fillers, Properties, and Challenges. Lecture Notes in Bioengineering, 2019, , 29-55.	0.3	16
763	Nanotechnology in cell replacement therapies for type 1 diabetes. Advanced Drug Delivery Reviews, 2019, 139, 116-138.	6.6	56
764	Shape Memory Polymer Composites in Biomedical Field. Lecture Notes in Bioengineering, 2019, , 299-329.	0.3	Ο
765	Metabolically Active, Fully Hydrolysable Polymersomes. Angewandte Chemie - International Edition, 2019, 58, 4581-4586.	7.2	20
766	An eco-friendly strategy using flax/polylactide composite to tackle the marine invasive sponge Celtodoryx ciocalyptoides (Burton, 1935). Oceanologia, 2019, 61, 218-226.	1.1	0
767	Pharmaceutical and Biomedical Applications of Polymers. , 2019, , 203-267.		25
768	Nanoparticle-mediated local delivery of pioglitazone attenuates bleomycin-induced skin fibrosis. Journal of Dermatological Science, 2019, 93, 41-49.	1.0	12
769	<i>En route</i> to CO ₂ -containing renewable materials: catalytic synthesis of polycarbonates and non-isocyanate polyhydroxyurethanes derived from cyclic carbonates. Chemical Communications, 2019, 55, 1360-1373.	2.2	85
770	Degradable vinyl copolymers through thiocarbonyl addition–ring-opening (TARO) polymerization. Chemical Communications, 2019, 55, 55-58.	2.2	81

#	Article	IF	Citations
771	Overview of Proteinâ€Based Biopolymers for Biomedical Application. Macromolecular Chemistry and Physics, 2019, 220, 1900126.	1.1	50
772	Biotechnological implications of hydrolytic enzymes from marine microbes. , 2019, , 103-118.		3
773	CELL growth and viability analysis in poli membranes (L-lactic acid-CO-glycolic acid): an in vitro study. Rgo, 0, 67, .	0.2	0
774	Scaffold for facial nerve reconstruction. , 2019, , 95-121.		1
775	Scaffolds for tracheal tissue engineering. , 2019, , 361-391.		3
776	Scaffolds for tissue engineering of the urethra. , 2019, , 549-561.		1
777	Scaffolds for gingival tissues. , 2019, , 521-543.		0
778	Impacts of cross-linker chain length on the physical properties of polyampholyte hydrogels. Biointerphases, 2019, 14, 031002.	0.6	10
779	Absorption, distribution, metabolism and excretion of the biomaterials used in Nanocarrier drug delivery systems. Advanced Drug Delivery Reviews, 2019, 143, 97-114.	6.6	130
780	Biochemical Characteristics of Microbial Enzymes and Their Significance from Industrial Perspectives. Molecular Biotechnology, 2019, 61, 579-601.	1.3	58
782	Novel chitosan derivative based composite scaffolds with enhanced angiogenesis; potential candidates for healing chronic non-healing wounds. Journal of Materials Science: Materials in Medicine, 2019, 30, 72.	1.7	11
783	Development of biodegradation process for Poly(DL-lactic acid) degradation by crude enzyme produced by Actinomadura keratinilytica strain T16-1. Electronic Journal of Biotechnology, 2019, 40, 52-57.	1.2	23
784	Aliphatic Diacidic Long-Chain C16 Polyesters from 10,16-Dihydroxyhexadecanoic Acid Obtained from Tomato Residual Wastes. Molecules, 2019, 24, 1524.	1.7	4
785	Advances in Halloysite Nanotubes–Polysaccharide Nanocomposite Preparation and Applications. Polymers, 2019, 11, 987.	2.0	38
786	Osteogenic effects of magnesium substitution in nano-structured β-tricalcium phosphate produced by microwave synthesis. Journal of Materials Science, 2019, 54, 11197-11212.	1.7	10
787	Biomaterials: Been There, Done That, and Evolving into the Future. Annual Review of Biomedical Engineering, 2019, 21, 171-191.	5.7	82
788	The Application of microRNAs in Biomaterial Scaffoldâ€Based Therapies for Bone Tissue Engineering. Biotechnology Journal, 2019, 14, e1900084.	1.8	32
789	Chitosan/poly(γ-glutamic acid) nanoparticles incorporating IFN-γ for immune response modulation in the context of colorectal cancer. Biomaterials Science, 2019, 7, 3386-3403.	2.6	32

#	Article	IF	CITATIONS
790	Energy-efficiency improvements in polyester production. Proceedings of Institution of Civil Engineers: Energy, 2019, 172, 91-104.	0.5	1
791	Performance of Polyester-Based Electrospun Scaffolds under In Vitro Hydrolytic Conditions: From Short-Term to Long-Term Applications. Nanomaterials, 2019, 9, 786.	1.9	15
792	Post-manufacture loading of filaments and 3D printed PLA scaffolds with prednisolone and dexamethasone for tissue regeneration applications. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 141, 100-110.	2.0	51
793	Production and Characterization of Porous Polymeric Membranes of PLA/PCL Blends with the Addition of Hydroxyapatite. Journal of Composites Science, 2019, 3, 45.	1.4	28
794	Physicochemical characterization of barrier membranes for bone regeneration. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 97, 13-20.	1.5	25
795	Advances in Conducting, Biodegradable and Biocompatible Copolymers for Biomedical Applications. Frontiers in Materials, 2019, 6, .	1.2	42
796	Microporous biocomposite scaffolds with tunable degradation and interconnected microarchitecture-A synergistic integration of bioactive chain silicate glass-ceramic and poly(ε-caprolactone). Polymer Degradation and Stability, 2019, 165, 20-26.	2.7	15
797	Synthesis, Physicochemical Analysis, and Side Group Optimization of Degradable Dipeptide-Based Polyphosphazenes as Potential Regenerative Biomaterials. ACS Applied Polymer Materials, 2019, 1, 1568-1578.	2.0	24
798	Synthesis and characterization of polylactideâ€PAMAM "Janusâ€ŧype―linearâ€dendritic hybrids. Journal of Polymer Science Part A, 2019, 57, 1448-1459.	2.5	7
799	Naturally-derived electrospun wound dressings for target delivery of bio-active agents. International Journal of Pharmaceutics, 2019, 566, 307-328.	2.6	117
800	Unique animal friendly 3D culturing of human cancer and normal cells. Toxicology in Vitro, 2019, 60, 51-60.	1.1	15
801	Polyhydroxybutyrate/Chitosan 3D Scaffolds Promote In Vitro and In Vivo Chondrogenesis. Applied Biochemistry and Biotechnology, 2019, 189, 556-575.	1.4	26
802	Salalens and Salans Derived from 3-Aminopyrrolidine: Aluminium Complexation and Lactide Polymerisation. European Journal of Inorganic Chemistry, 2019, 2019, 2768-2773.	1.0	3
803	Preparation, Characterization and In Vitro Biological Evaluation of a Novel Pearl Powder/Poly-Amino Acid Composite as a Potential Substitute for Bone Repair and Reconstruction. Polymers, 2019, 11, 831.	2.0	12
804	Prospects for Using Styrene-Isobutylene-Styrene (SIBS) Triblock Copolymer as a Cusp Material for Leaflet Heart Valve Prostheses: Evaluation of Physicochemical and Mechanical Properties. Russian Journal of Applied Chemistry, 2019, 92, 9-19.	0.1	6
805	Boron Nitride Doped Polyhydroxyalkanoate/Chitosan Nanocomposite for Antibacterial and Biological Applications. Nanomaterials, 2019, 9, 645.	1.9	40
806	Relating Advanced Electrospun Fiber Architectures to the Temporal Release of Active Agents to Meet the Needs of Next-Generation Intravaginal Delivery Applications. Pharmaceutics, 2019, 11, 160.	2.0	8
808	Analysis of a poly(ε-decalactone)/silver nanowire composite as an electrically conducting neural interface biomaterial. BMC Biomedical Engineering, 2019, 1, 9.	1.7	7

#	Article	IF	CITATIONS
809	Pectin-based silver nanocomposite film for transdermal delivery of Donepezil. International Journal of Biological Macromolecules, 2019, 134, 269-279.	3.6	55
810	Negatively Charged Carbon Nanodots with Bacteria Resistance Ability for Highâ€Performance Antibiofilm Formation and Anticorrosion Coating Design. Small, 2019, 15, e1900007.	5.2	46
811	Polymeric and lipid-based systems for controlled drug release: an engineering point of view. , 2019, , 267-304.		12
812	Biodegradable polymers for modern vaccine development. Journal of Industrial and Engineering Chemistry, 2019, 77, 12-24.	2.9	43
813	Study on the Degradation Property of nHAC/PLA Composite Wire Material. Lecture Notes in Electrical Engineering, 2019, , 1016-1021.	0.3	0
814	Composites based on bioderived polymers: potential role in tissue engineering: Vol VI: resorbable polymer fibers. , 2019, , 259-296.		1
815	Ethylene oxide based copolymers functionalized with terminal alkynes: Structure influence on their micelle formation. Reactive and Functional Polymers, 2019, 140, 14-21.	2.0	6
816	Polyhydroxybutyrate. , 2019, , 405-444.		5
817	Mechanical and Biochemical Stimulation of 3D Multilayered Scaffolds for Tendon Tissue Engineering. ACS Biomaterials Science and Engineering, 2019, 5, 2953-2964.	2.6	66
818	Tissue Engineering in Pediatric Bladder Reconstruction—The Road to Success. Frontiers in Pediatrics, 2019, 7, 91.	0.9	33
819	Mechanical and chemical characterisation of bioresorbable polymeric stent over two-year in vitro degradation. Journal of Biomaterials Applications, 2019, 34, 61-73.	1.2	12
820	A compendium of current developments on polysaccharide and protein-based microneedles. International Journal of Biological Macromolecules, 2019, 136, 704-728.	3.6	37
821	Polylactic acid: synthesis and biomedical applications. Journal of Applied Microbiology, 2019, 127, 1612-1626.	1.4	485
822	ROS-triggered degradation of selenide-containing polymers based on selenoxide elimination. Polymer Chemistry, 2019, 10, 2039-2046.	1.9	38
823	Reversible networks of degradable polyesters containing weak covalent bonds. Polymer Chemistry, 2019, 10, 1848-1872.	1.9	39
824	Bi-layered α-tocopherol acetate loaded membranes for potential wound healing and skin regeneration. Materials Science and Engineering C, 2019, 101, 438-447.	3.8	38
825	Augmented re-endothelialization and anti-inflammation of coronary drug-eluting stent by abluminal coating with magnesium hydroxide. Biomaterials Science, 2019, 7, 2499-2510.	2.6	25
826	Thermodynamic Principles for the Design of Polymers for Drug Formulations. Annual Review of Chemical and Biomolecular Engineering, 2019, 10, 311-335.	3.3	11

#	Article	IF	CITATIONS
827	Nonionic Aliphatic Polycarbonate Diblock Copolymers Based on CO ₂ , 1,2-Butylene Oxide, and mPEG: Synthesis, Micellization, and Solubilization. Langmuir, 2019, 35, 5221-5231.	1.6	11
828	Formation of Hydrophobic Domains on the poly(MPC- <i>co</i> -Dodecyl Methacrylate)-Coated Surface Recognized by Macrophage-like Cells. Langmuir, 2019, 35, 12229-12235.	1.6	13
829	Biocompatible zinc(II) 8-(dihydroimidazolyl)quinoline complex and its catalytic application for synthesis of poly(L,L-lactide). Journal of Catalysis, 2019, 372, 362-369.	3.1	3
830	Poly(propylene fumarate)-based materials: Synthesis, functionalization, properties, device fabrication and biomedical applications. Biomaterials, 2019, 208, 45-71.	5.7	73
831	Synthesis of degradable-polar-hydrophobic-ionic co-polymeric microspheres by membrane emulsion photopolymerization: In vitro and in vivo studies. Acta Biomaterialia, 2019, 89, 279-288.	4.1	13
832	Bone repair biomaterials in orthopedic surgery. , 2019, , 301-327.		7
833	Recovery of the polymers formed during thermal cracking of <i>N</i> -substituted dicarbamates over Fe–Ni/Al ₂ O ₃ . Catalysis Science and Technology, 2019, 9, 2282-2290.	2.1	5
834	Ecotoxicological impact of selected polyethylenimines toward their potential application as nitrogen fertilizers with prolonged activity. Chemosphere, 2019, 226, 800-808.	4.2	16
835	Introduction in thermoplastic and thermosetting polymers. , 2019, , 1-28.		18
836	Using sonochemistry for the production of poly(vinyl alcohol)/MWCNT–vitamin B ₁ nanocomposites: exploration of morphology, thermal and mechanical properties. New Journal of Chemistry, 2019, 43, 7502-7510.	1.4	14
837	Comprehensive review on electrospinning techniques as versatile approaches toward antimicrobial biopolymeric composite fibers. Materials Science and Engineering C, 2019, 101, 306-322.	3.8	133
838	Noble Metal Composite Porous Silk Fibroin Aerogel Fibers. Materials, 2019, 12, 894.	1.3	30
839	Implantable Nanotube Sensor Platform for Rapid Analyte Detection. Macromolecular Bioscience, 2019, 19, e1800469.	2.1	8
840	Development of bone screw using novel biodegradable composite orthopedic biomaterial: from material design to <i>in vitro</i> biomechanical and <i>in vivo</i> biocompatibility evaluation. Biomedical Materials (Bristol), 2019, 14, 045020.	1.7	12
841	Uptake and intracellular distribution of different types of nanoparticles in primary human myoblasts and myotubes. International Journal of Pharmaceutics, 2019, 560, 347-356.	2.6	21
842	Porous Yolk–Shell Particle Engineering via Nonsolvent-Assisted Trineedle Coaxial Electrospraying for Burn-Related Wound Healing. ACS Applied Materials & Interfaces, 2019, 11, 7823-7835.	4.0	26
843	Enzyme-Embedded Degradation of Poly(ε-caprolactone) using Lipase-Derived from Probiotic <i>Lactobacillus plantarum</i> . ACS Omega, 2019, 4, 2844-2852.	1.6	46
844	Metal-free Lewis pair catalyst synergy for fully alternating copolymerization of norbornene anhydride and epoxides: Biocompatible tests for derived polymers. Materials Today Communications, 2019, 19, 306-314.	0.9	21

#	Article	IF	CITATIONS
845	Preparation and Characterization of Polymeric Microfibers of PLGA and PLGA/PPy Composite Fabricated by Solution Blow Spinning. Macromolecular Symposia, 2019, 383, 1800030.	0.4	5
846	Octa-arginine boosts the penetration of elastin-like polypeptide nanoparticles in 3D cancer models. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 137, 175-184.	2.0	23
847	A polyester with hyperbranched architecture as potential nano-grade antibiotics: An in-vitro study. Materials Science and Engineering C, 2019, 99, 1246-1256.	3.8	6
848	Polymers from macrolactones: From pheromones to functional materials. Progress in Polymer Science, 2019, 91, 29-50.	11.8	40
849	Metabolically Active, Fully Hydrolysable Polymersomes. Angewandte Chemie, 2019, 131, 4629-4634.	1.6	3
850	3D-Printed Biodegradable Microswimmer for Theranostic Cargo Delivery and Release. ACS Nano, 2019, 13, 3353-3362.	7.3	334
851	Porous morphology and mechanical properties of poly(lactide-co-glycolide) hollow fiber membranes governed by ternary-phase inversion. Journal of Membrane Science, 2019, 579, 180-189.	4.1	16
852	Cationic indium complexes for the copolymerization of functionalized epoxides with cyclic ethers and lactide. Chemical Communications, 2019, 55, 3347-3350.	2.2	21
853	A hybrid platform for three-dimensional printing of bone scaffold by combining thermal-extrusion and electrospinning methods. Microsystem Technologies, 0, , 1.	1.2	0
854	Conducting Polymers, Hydrogels and Their Composites: Preparation, Properties and Bioapplications. Polymers, 2019, 11, 350.	2.0	127
855	Latest Advances in Cryogel Technology for Biomedical Applications. Advanced Therapeutics, 2019, 2, 1800114.	1.6	187
856	Synthesis, Characterization and in vitro Antimicrobial, Antioxidant and Anticancer Activity of Random Copolyester Using 1,4-Dithiane-2,5-diol. Asian Journal of Chemistry, 2019, 31, 2341-2344.	0.1	3
857	Azidopyrazole as Initiator for Ethylene Carbonate Ring Opening Polymerization. Polymer Science - Series B, 2019, 61, 735-742.	0.3	0
858	Preparing a Peptide Polymer Structures on Example of L-arginine Grafted Peptide-like Biodegradable Polymer. , 2019, , .		0
859	Determination of Endothelial Cell Attachment and Proliferation on Nanofiber Based Microtubes Modified with Laminin-Derived Peptide. , 2019, , .		0
860	Degradation versus resorption. , 2019, , 1-18.		0
861	Silhouette Instalift. Facial Plastic Surgery Clinics of North America, 2019, 27, 341-353.	0.9	13
862	The Influence of Mucin-Based Artificial Saliva on Properties of Polycaprolactone and Polylactide. Polymers, 2019, 11, 1880.	2.0	22

#	Article	IF	CITATIONS
863	3D Printing Technology in Design of Pharmaceutical Products. Current Pharmaceutical Design, 2019, 24, 5009-5018.	0.9	15
864	Improving the biocompatibility of biomaterial constructs and constructs delivering cells for the pelvic floor. Current Opinion in Urology, 2019, 29, 419-425.	0.9	7
865	Progress in electrospun composite nanofibers: composition, performance and applications for tissue engineering. Journal of Materials Chemistry B, 2019, 7, 7075-7089.	2.9	95
867	Tissue engineering for the pelvic floor. Current Opinion in Urology, 2019, 29, 426-430.	0.9	2
868	DFT Visualization and Experimental Evidence of BHT-Mg-Catalyzed Copolymerization of Lactides, Lactones and Ethylene Phosphates. Polymers, 2019, 11, 1641.	2.0	10
869	Polymeric Electrospun Fibrous Dressings for Topical Co-delivery of Acyclovir and Omega-3 Fatty Acids. Frontiers in Bioengineering and Biotechnology, 2019, 7, 390.	2.0	20
870	Perspectives of Molecularly Imprinted Polymer-Based Drug Delivery Systems in Cancer Therapy. Polymers, 2019, 11, 2085.	2.0	38
871	Fully amino acid-based hydrogel as potential scaffold for cell culturing and drug delivery. Beilstein Journal of Nanotechnology, 2019, 10, 2579-2593.	1.5	14
872	Mesenchymal stem cell-based bone tissue engineering for veterinary practice. Heliyon, 2019, 5, e02808.	1.4	16
873	Current state of urethral tissue engineering. Current Opinion in Urology, 2019, 29, 385-393.	0.9	25
874	Enhanced interfacial and mechanical property of biodegradable poly(butylene succinate) film via introducing ultrahigh molecular weight polyethylene shish-kebab fibers. Materials Research Express, 2019, 6, 125374.	0.8	3
875	Potential of Novel Bacterial Cellulose Dressings Chemisorbed with Antiseptics for the Treatment of Oral Biofilm Infections. Applied Sciences (Switzerland), 2019, 9, 5321.	1.3	9
876	Comparison of Supermacroporous Polyester Matrices Fabricated by Thermally Induced Phase Separation and 3D Printing Techniques. Key Engineering Materials, 0, 822, 277-283.	0.4	7
877	Antiplatelet adhesion behavior of hyperbranched poly(<scp>l</scp> ″actide)s containing glutamic acid terminal groups. Journal of Applied Polymer Science, 2019, 136, 46910.	1.3	6
878	A review on processing techniques of bast fibers nanocellulose and its polylactic acid (PLA) nanocomposites. International Journal of Biological Macromolecules, 2019, 121, 1314-1328.	3.6	120
879	Electrospinning of Cyclodextrin Functional Nanofibers for Drug Delivery Applications. Pharmaceutics, 2019, 11, 6.	2.0	111
880	Controlled dual drug release by coaxial electrospun fibers – Impact of the core fluid on drug encapsulation and release. International Journal of Pharmaceutics, 2019, 556, 363-371.	2.6	62
881	Design, development and evaluation of PEGylated rhGH with preserving its bioactivity at highest level after modification. International Journal of Pharmaceutics, 2019, 557, 9-17.	2.6	6

ARTICLE IF CITATIONS On-line microfluidic immobilized-enzyme reactors: A new tool for characterizing synthetic polymers. 882 2.6 20 Analytica Chimica Acta, 2019, 1053, 62-69. Dynamic Self-Assembly and Synthesis of Polylactide Bearing 5-Hydroxymethylfurfural Chain Ends. ACS 9 Applied Polymer Materials, 2019, 1, 267-274. 884 Polymeric Nanomaterials., 2019, , 557-653. 22 Current advances and future perspectives of 3D printing natural-derived biopolymers. Carbohydrate 5.1 270 Polymers, 2019, 207, 297-316. Enzymatic Activity in Fractal Networks of Self-Assembling Peptides. Biomacromolecules, 2019, 20, 886 2.6 7 422-434. Functionalization of PLLA with Polymer Brushes to Trigger the Assembly of Fibronectin into Nanonetworks. Advanced Healthcare Materials, 2019, 8, e1801469. 887 Production and characterization of PHBâ€HV copolymer by <i>Bacillus thuringiensis</i> isolated from 888 1.4 14 <i>Eisenia foetida</i>. Biotechnology and Applied Biochemistry, 2019, 66, 340-352. Surface modification of nanodiamond: Toward the dispersion of reinforced phase in poly-l-lactic acid 3.6 scaffolds. International Journal of Biological Macromolecules, 2019, 126, 1116-1124. Molecular Structures and Mechanisms of Waterborne Biodegradable Polyurethane Nanoparticles. 890 1.9 12 Computational and Structural Biotechnology Journal, 2019, 17, 110-117. Assessment of doxorubicin delivery devices based on tailored bare polycaprolactone against 2.6 glioblastoma. International Journal of Pharmaceutics, 2019, 558, 110-119 Hydroxyapatite Nanoparticle Coating on Polymer for Constructing Effective Biointeractive Interfaces. 892 179 1.5 Journal of Nanomaterials, 2019, 2019, 1-23. Recent advancements in biopolymer and metal nanoparticle-based materials in diabetic wound healing 3.6 261 management. International Journal of Biological Macromolecules, 2019, 122, 137-148. Investigation of the batch-to-batch inconsistencies of Collagen in PCL-Collagen nanofibers. Materials 894 3.8 29 Science and Engineering C, 2019, 95, 217-225. Design and fabrication of a hybrid alginate hydrogel/poly(εâ€caprolactone) mold for auricular cartilage reconstruction. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1.6 1711-1721. <i>Lactobacillus pentosus</i> CECT 4023 T coâ€utilizes glucose and xylose to produce lactic acid from 896 1.3 23 wheat straw hydrolysate: Anaerobiosis as a key factor. Biotechnology Progress, 2019, 35, e2739. Plasma Modified Polymeric Materials for Implant Applications., 2019, , 367-407. Long-term drug delivery using implantable electrospun woven polymeric nanotextiles. Nanomedicine: 898 1.7 33 Nanotechnology, Biology, and Medicine, 2019, 15, 274-284. Technology assessment of new biodegradable poly(R-3-hydroxybutyrate-co -1,4-butylene adipate) copolymers for drug delivery. Journal of Applied Polymer Science, 2019, 136, 47233. 899 1.3

		CITATION REPORT		
#	Article		IF	CITATIONS
900	Structure and Dynamics of Biobased Polyester Nanocomposites. Biomacromolecules, 2019	9, 20, 164-176.	2.6	10
901	A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications. Bioactive Materials, 2019, 4, 22-36.		8.6	208
902	Keratin as a Biopolymer. Springer Series on Polymer and Composite Materials, 2019, , 163-	185.	0.5	14
903	Effect of bamboo fiber on the degradation behavior and in vitro cytocompatibility of the nano-hydroxyapatite/poly(lactide-co-glycolide) (n-HA/PLGA) composite. Cellulose, 2019, 26	s, 1099-1110.	2.4	10
904	PLLA/nHA Composite Films and Scaffolds for Medical Implants: In Vitro Degradation, Thern Mechanical Properties. Journal of Inorganic and Organometallic Polymers and Materials, 20 121-131.	1al and 119, 29,	1.9	11
905	Ring-Opening Polymerization of Cyclic Phosphorus Monomers. , 2019, , .			0
906	Super Toughening, Strengthening, and Antimicrobial Behaviors of Cyclic Olefinic Copolyme Layer Graphene Nanocomposites. Polymer Composites, 2019, 40, 536-543.	≥r/Few	2.3	2
907	Fabrication of chitosan-alginate polyelectrolyte complexed hydrogel for controlled release cilnidipine: a statistical design approach. Materials Technology, 2020, 35, 697-707.	of	1.5	14
908	Poly-ε-caprolactone (PCL), a promising polymer for pharmaceutical and biomedical applica on nanomedicine in cancer. International Journal of Polymeric Materials and Polymeric Bior 2020, 69, 85-126.	itions: Focus naterials,	1.8	102
909	Emerging role of nanomedicine in the treatment of neuropathic pain. Journal of Drug Targe 28, 11-22.	ting, 2020,	2.1	9
910	Novel Alginate Frankincense Oil Blend Films for Biomedical Applications. Proceedings of th Academy of Sciences India Section B - Biological Sciences, 2020, 90, 303-312.	e National	0.4	7
911	Sustainable Future Alternative: (Bio)degradable Polymers for the Environment. , 2020, , 27	4-284.		8
912	Facile synthesis of poly(trimethylene carbonate) by alkali metal carboxylate-catalyzed ring- polymerization. Polymer Journal, 2020, 52, 103-110.	opening	1.3	15
913	Smart thermosensitive copolymer incorporating chitosan–zinc–insulin electrostatic co controlled delivery of insulin: effect of chitosan chain length. International Journal of Polym Materials and Polymeric Biomaterials, 2020, 69, 1054-1068.	mplexes for eric	1.8	13
914	Collagen multifilament spinning. Materials Science and Engineering C, 2020, 106, 110105		3.8	26
915	Alveolar bone grafting: Rationale and clinical applications. , 2020, , 43-87.			3
916	A Review on the Potential and Limitations of Recyclable Thermosets for Structural Applicat Polymer Reviews, 2020, 60, 359-388.	ions.	5.3	206
917	A variational framework for the modeling of glassy polymers under finite strains. Continuu Mechanics and Thermodynamics, 2020, 32, 1037-1055.	m	1.4	4

#	Article	IF	Citations
918	Bioresorbable Polymers for Surgical Suture Applications. , 2020, , 698-714.		2
919	Extract of curcuminoids loaded on polycaprolactone and pluronic nanoparticles: chemical and structural properties. Applied Nanoscience (Switzerland), 2020, 10, 1141-1156.	1.6	5
920	Electro-conductive carbon nanofibers as the promising interfacial biomaterials for bone tissue engineering. Journal of Molecular Liquids, 2020, 298, 112021.	2.3	48
921	Design, synthesis, characterization, and cytotoxicity of PCL/PLGA scaffolds through plasma treatment in the presence of pyrrole for possible use in urethral tissue engineering. Journal of Biomaterials Applications, 2020, 34, 840-850.	1.2	9
922	Preparation and characterization of cellulose acetate-Laponite® composite membranes produced by supercritical phase inversion. Journal of Supercritical Fluids, 2020, 155, 104651.	1.6	11
923	Molecular Dynamics Investigation of Self- Association of Synthetic Collagen and Spider Silk Composite System for Biomaterial Applications. MRS Advances, 2020, 5, 797-804.	0.5	0
924	Preparation of PCL/(+)-catechin/gelatin film for wound healing using air-jet spinning. Applied Surface Science, 2020, 509, 145033.	3.1	31
925	Synthesis of amphiphilic pullulan-graft-poly(ε-caprolactone) via click chemistry. International Journal of Biological Macromolecules, 2020, 145, 701-711.	3.6	24
926	Current Status of Therapeutic Approaches against Peripheral Nerve Injuries: A Detailed Story from Injury to Recovery. International Journal of Biological Sciences, 2020, 16, 116-134.	2.6	129
927	Protein and Polysaccharide-Based Magnetic Composite Materials for Medical Applications. International Journal of Molecular Sciences, 2020, 21, 186.	1.8	40
928	Polymer Nanocomposites Based on Poly(ε-caprolactone), Hydroxyapatite and Graphene Oxide. Journal of Polymers and the Environment, 2020, 28, 331-342.	2.4	23
929	Azido-Functionalized Polyurethane Designed for Making Tunable Elastomers by Click Chemistry. ACS Biomaterials Science and Engineering, 2020, 6, 852-864.	2.6	5
930	Surface characterizations of membranes and electrospun chitosan derivatives by optical speckle analysis. Surface and Interface Analysis, 2020, 52, 132-139.	0.8	4
931	Preparation of biomimetic composites of hydroxyapatite and star-shaped poly(2,2-dimethyl) Tj ETQq1 1 0.78431	4 rgBT /O\ £8	verlock 10 Tf
932	Design of biodegradable, implantable devices towards clinical translation. Nature Reviews Materials, 2020, 5, 61-81.	23.3	440
933	Pentamidine-Loaded Lipid and Polymer Nanocarriers as Tunable Anticancer Drug Delivery Systems. Journal of Pharmaceutical Sciences, 2020, 109, 1297-1302.	1.6	13
934	Polymeric Nanoparticles. , 2020, , 303-324.		23
935	Advances in hydrogels based on dynamic covalent bonding and prospects for its biomedical application. European Polymer Journal, 2020, 139, 110024.	2.6	46

#	Article	IF	CITATIONS
936	Biomimetic Aspects of Oral and Dentofacial Regeneration. Biomimetics, 2020, 5, 51.	1.5	19
937	A Comprehensive Review on Corn Starch-Based Nanomaterials: Properties, Simulations, and Applications. Polymers, 2020, 12, 2161.	2.0	33
938	Bioresorbable and degradable behaviors of <scp>PGA</scp> : Current state and future prospects. Polymer Engineering and Science, 2020, 60, 2657-2675.	1.5	45
939	Cracks outrun erosion in degradable polymers. Extreme Mechanics Letters, 2020, 40, 100978.	2.0	9
940	The impact of size and charge on the pulmonary pharmacokinetics and immunological response of the lungs to PLGA nanoparticles after intratracheal administration to rats. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 30, 102291.	1.7	22
941	Poly(ethylene glycol)s With a Single Cinnamaldehyde Acetal Unit for Fabricating Acid-Degradable Hydrogel. Frontiers in Chemistry, 2020, 8, 839.	1.8	7
942	Polypyrrole-chitosan hydrogel reinforced with collagen-grafted PLA sub-micron fibers as an electrically responsive scaffold. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 302-314.	1.8	3
943	Drug-Eluting Stents and Balloons—Materials, Structure Designs, and Coating Techniques: A Review. Molecules, 2020, 25, 4624.	1.7	40
944	Engineering nanoparticles to overcome immunological barriers for enhanced drug delivery. Engineered Regeneration, 2020, 1, 35-50.	3.0	35
945	Engineered Microneedle Patches for Controlled Release of Active Compounds: Recent Advances in Release Profile Tuning. Advanced Therapeutics, 2020, 3, 2000171.	1.6	52
946	Zeroâ€valent iron nanoparticles containing nanofiber scaffolds for nerve tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1815-1826.	1.3	7
947	Synthesis and characterization of biocompatible semi-interpenetrating polymer networks based on polyurethane and cross-linked poly (acrylic acid). European Polymer Journal, 2020, 140, 109974.	2.6	20
948	Hydrolytic stability of PEC-grafted γ-alumina membranes: Alkoxysilane vs phosphonic acid linking groups. Microporous and Mesoporous Materials, 2020, 307, 110516.	2.2	14
949	Microstructure, mechanical properties and in vitro biocompatibilities of a novel bionic hydroxyapatite bone scaffold prepared by the addition of boron nitride. Journal of Materials Science, 2020, 55, 14501-14515.	1.7	10
950	Target grafting of poly(2â€(dimethylamino)ethyl methacrylate) to biodegradable block copolymers. Journal of Polymer Science, 2020, 58, 2168-2180.	2.0	10
951	Improved mechanical and biological properties of biodegradable thinner poly(l-lactic acid) tubes by bi-directional drawing. Journal of Industrial and Engineering Chemistry, 2020, 90, 85-94.	2.9	4
952	Comparative study of enzyme-catalyzed biodegradation and crystallization behavior of PCL-PTEGMA amphiphilic hypergraft copolymers. European Polymer Journal, 2020, 135, 109868.	2.6	1
953	Characterization of biodegradable poly(<scp>l</scp> ″actide) tube over accelerated degradation. Polymer Engineering and Science, 2020, 60, 1430-1436.	1.5	6

	С	tation Report	
#	Article	IF	CITATIONS
954	Burn Dressings and Skin Substitutes. , 2020, , 1169-1180.		0
955	Drug Delivery Systems. , 2020, , 1237-1266.		9
956	Overview of Tissue Engineering Concepts and Applications. , 2020, , 1289-1316.		4
957	Polymeric Gelatin Scaffolds Affect Mesenchymal Stem Cell Differentiation and Its Diverse Applications in Tissue Engineering. International Journal of Molecular Sciences, 2020, 21, 8632.	s 1.8	13
958	Physicochemical characterization and mechanical performance analysis of biaxially oriented PLA/PCL tubular scaffolds for intended stent application. SN Applied Sciences, 2020, 2, 1.	1.5	7
959	Advanced Biomaterials and Techniques for Oral Tissue Engineering and Regeneration—A Review. Materials, 2020, 13, 5303.	1.3	55
960	Biomaterials for Drug Delivery: Sources, Classification, Synthesis, Processing, and Applications. , 0, , .		8
961	Smart Porous Multi-Stimulus Polysaccharide-Based Biomaterials for Tissue Engineering. Molecules, 2020, 25, 5286.	1.7	10
962	Synthesis and characterization of PLGA/HAP scaffolds with DNA-functionalised calcium phosphate nanoparticles for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2020, 31, 102.	1.7	28
963	Polyetheretherketone and Its Composites for Bone Replacement and Regeneration. Polymers, 2020, 2858.	12, 2.0	69
964	Degradable Poly(2-oxazoline) Analogues from Partially Oxidized Poly(ethylene imine). Macromolecules, 2020, 53, 10837-10846.	2.2	11
965	Ultrasmall gold and silver/gold nanoparticles (2 nm) as autofluorescent labels for poly(D,L-lactide-co-glycolide) nanoparticles (140 nm). Journal of Materials Science: Materials in Medicine, 2020, 31, 117.	1.7	10
966	Biocompatibility analysis of high molecular weight chitosan obtained from Pleoticus muelleri shrimps. Evaluation in prokaryotic and eukaryotic cells. Biochemistry and Biophysics Reports, 2020, 2 100842.	24, 0.7	4
967	Immunomodulatory Dual-Sized Microparticle System Conditions Human Antigen Presenting Cells Into a Tolerogenic Phenotype In Vitro and Inhibits Type 1 Diabetes-Specific Autoreactive T Cell Responses. Frontiers in Immunology, 2020, 11, 574447.	2.2	18
968	Application of Shark Teeth–Derived Bioapatites as a Bone Substitute in Veterinary Orthopedics. Preliminary Clinical Trial in Dogs and Cats. Frontiers in Veterinary Science, 2020, 7, 574017.	0.9	2
969	Hydrogel as a Biomaterial for Bone Tissue Engineering: A Review. Nanomaterials, 2020, 10, 1511.	1.9	129

970	The influence of the molecular weight of polymer on the morphology, functional properties and L929 fibroblasts growth on polylactide membranes for tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 45-57.	1.8	1
971	Full Factorial Design and Optimization of Olmesartan Medoxomil–Loaded Oily-Core Polymeric Nanocapsules with Improved In-Vitro Stability. Journal of Pharmaceutical Innovation, 2020, , 1.	1.1	1

IF ARTICLE CITATIONS Optimization and physical performance evaluation of electrospun nanofibrous mats of PLA, PCL and 972 1.1 32 their blends. Journal of Industrial Textiles, 2022, 51, 6640S-6665S. Structure and Thermomechanical Properties of Tubes Based on Poly(L-lactide) Microfibers. Polymer 0.4 Science - Series A, 2020, 62, 354-360. Tooth-Supporting Hard Tissue Regeneration Using Biopolymeric Material Fabrication Strategies. 974 1.7 12 Molecules, 2020, 25, 4802. Conductive fabric patch with controllable porous structure and elastic properties for tissue engineering applications. Journal of Materials Science, 2020, 55, 17120-17133. Fabrication and Characterization of Electrospun Membranes Based on "Poly(ε-caprolactone)â€, "Poly(3-hydroxybutyrate)―and Their Blend for Tunable Drug Delivery of Curcumin. Polymers, 2020, 12, 976 2.0 24 2239. Fabrication of biodegradable particles with tunable morphologies by the addition of resveratrol to oil in water emulsions. International Journal of Pharmaceutics, 2020, 590, 119917. 2.6

CITATION REPORT

978 Methods of synthesis, characterization and biomedical applications of biodegradable poly(ester) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 5

979	An organocatalytic ring-opening polymerization approach to highly alternating copolymers of lactic acid and glycolic acid. Polymer Chemistry, 2020, 11, 6365-6373.	1.9	18
980	Production of Porous Films Based on Biodegradable Polyesters by the Casting Solution Technique Using a Co-Soluble Porogen (Camphor). Polymers, 2020, 12, 1950.	2.0	9
981	Biodegradable engineered fiber scaffolds fabricated by electrospinning for periodontal tissue regeneration. Journal of Biomaterials Applications, 2021, 36, 55-75.	1.2	20
982	The Thermal Properties and Degradability of Chiral Polyester-Imides Based on Several I/d-Amino Acids. Polymers, 2020, 12, 2053.	2.0	6
983	Pharmacokinetic Advantage of ASD Device Promote Drug Absorption through the Epicardium. Pharmaceutical Research, 2020, 37, 173.	1.7	5
984	Evaluation of the Biodegradation Efficiency of Four Various Types of Plastics by Pseudomonas aeruginosa Isolated from the Gut Extract of Superworms. Microorganisms, 2020, 8, 1341.	1.6	38
985	Aminoethyl substitution enhances the self-assembly properties of an aminocellulose as a potential archaeological wood consolidant. European Biophysics Journal, 2020, 49, 791-798.	1.2	12
986	Effect of Stereolithography 3D Printing on the Properties of PEGDMA Hydrogels. Polymers, 2020, 12, 2015.	2.0	22
987	Stem Cell-Friendly Scaffold Biomaterials: Applications for Bone Tissue Engineering and Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2020, 8, 598607.	2.0	57
988	Applications of Nanovaccines for Disease Prevention in Cattle. Frontiers in Bioengineering and Biotechnology, 2020, 8, 608050.	2.0	27
989	Chitosan and Cellulose-Based Hydrogels for Wound Management. International Journal of Molecular Sciences, 2020, 21, 9656.	1.8	157

#	Article	IF	CITATIONS
990	Structural and Biomedical Properties of Common Additively Manufactured Biomaterials: A Concise Review. Metals, 2020, 10, 1677.	1.0	24
991	The Effect of Diclofenac Sodium-Loaded Poly(Lactide-co-Glycolide) Rods on Bone Formation and Inflammation: A Histological and Histomorphometric Study in the Femora of Rats. Micromachines, 2020, 11, 1098.	1.4	10
992	Scaffolds and Extracellular Vesicles as a Promising Approach for Cardiac Regeneration after Myocardial Infarction. Pharmaceutics, 2020, 12, 1195.	2.0	11
993	Stability Evaluation and Degradation Studies of DAC® Hyaluronic-Polylactide Based Hydrogel by DOSY NMR Spectroscopy. Biomolecules, 2020, 10, 1478.	1.8	5
994	Chemical Modification of Pullulan Exopolysaccharide by Grafting Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) via Click Chemistry. Polymers, 2020, 12, 2527.	2.0	8
995	A novel tropoelastin-based resorbable surgical mesh for pelvic organ prolapse repair. Materials Today Bio, 2020, 8, 100081.	2.6	17
996	Synthesis of Zwitterionic and Trehalose Polymers with Variable Degradation Rates and Stabilization of Insulin. Biomacromolecules, 2020, 21, 2147-2154.	2.6	17
997	The effect of electron beam sterilization on the physical properties of the bioresorbable polymer coatings on the titanium 6â€eluminum 4â€vanadium substrate. Materialwissenschaft Und Werkstofftechnik, 2020, 51, 631-644.	0.5	2
998	Enhancement of hydrophilicity, biocompatibility and biodegradability of poly(ε-caprolactone) electrospun nanofiber scaffolds using poly(ethylene glycol) and poly(L-lactide-co-ε-caprolactone-co-glycolide) as additives for soft tissue engineering. Journal of Biomaterials Science. Polymer Edition. 2020. 31. 1648-1670.	1.9	28
999	Orally ingestible medical devices for gut engineering. Advanced Drug Delivery Reviews, 2020, 165-166, 142-154.	6.6	39
1000	Poly(ethylene glycol)-based biofunctional hydrogels mediated by peroxidase-catalyzed cross-linking reactions. Polymer Journal, 2020, 52, 899-911.	1.3	11
1001	Modification of PCL Scaffolds by Reactive Magnetron Sputtering: A Possibility for Modulating Macrophage Responses. ACS Biomaterials Science and Engineering, 2020, 6, 3967-3974.	2.6	8
1002	Bioresorbable composite polymeric materials for tissue engineering applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 0, , 1-15.	1.8	23
1003	Degradation and excretion of poly(2-oxazoline) based hemostatic materials. Materialia, 2020, 12, 100763.	1.3	8
1004	Microneedle patch based on dissolving, detachable microneedle technology for improved skin quality of the periorbital region. Part 2: Clinical Evaluation. International Journal of Cosmetic Science, 2020, 42, 429-435.	1.2	14
1005	Biodegradable Polymers for Biomedical Additive Manufacturing. Applied Materials Today, 2020, 20, 100700.	2.3	86
1006	Development and characterization of collagen-based electrospun scaffolds containing silver sulphadiazine and Aspalathus linearis extract for potential wound healing applications. SN Applied Sciences, 2020, 2, 1.	1.5	22
1007	Simulations of the Biodegradation of Citrate-Based Polymers for Artificial Scaffolds Using Accelerated Reactive Molecular Dynamics. Journal of Physical Chemistry B, 2020, 124, 5311-5322.	1.2	14

#	Article	IF	CITATIONS
1008	Threeâ€dimensional imaging and quantification of realâ€ŧime cytosolic calcium oscillations in microglial cells cultured on electrospun matrices using laser scanning confocal microscopy. Biotechnology and Bioengineering, 2020, 117, 3108-3123.	1.7	13
1009	Mucoadhesive Electrospun Fibre-Based Technologies for Oral Medicine. Pharmaceutics, 2020, 12, 504.	2.0	33
1010	Effect of chitosan infiltration on hydroxyapatite scaffolds derived from New Zealand bovine cancellous bones for bone regeneration. International Journal of Biological Macromolecules, 2020, 160, 1009-1020.	3.6	20
1011	Enzymatically degradable, starch-based layer-by-layer films: application to cytocompatible single-cell nanoencapsulation. Soft Matter, 2020, 16, 6063-6071.	1.2	15
1012	<p>Oxygen Generating Polymeric Nano Fibers That Stimulate Angiogenesis and Show Efficient Wound Healing in a Diabetic Wound Model</p> . International Journal of Nanomedicine, 2020, Volume 15, 3511-3522.	3.3	48
1013	Lignocellulosic feedstock: A review of a sustainable platform for cleaner production of nature's plastics. Journal of Cleaner Production, 2020, 270, 122521.	4.6	65
1014	Alphaâ€amylase immobilized on polycaprolactoneâ€grafted magnetic nanoparticles: improving stability and reusability. Journal of Chemical Technology and Biotechnology, 2020, 95, 2243-2250.	1.6	13
1015	A New Nanocomposite Copolymer Based On Functionalised Graphene Oxide for Development of Heart Valves. Scientific Reports, 2020, 10, 5271.	1.6	31
1016	Effect of UV and Gamma Irradiation Sterilization Processes in the Properties of Different Polymeric Nanoparticles for Biomedical Applications. Materials, 2020, 13, 1090.	1.3	35
1017	Glycogen as an advantageous polymer carrier in cancer theranostics: Straightforward in vivo evidence. Scientific Reports, 2020, 10, 10411.	1.6	24
1018	Degradable Polymer Films Made from Poly(salicylicâ€acid―co â€sebacic acid) and Poly(sebacic) Tj ETQq0 0 0 rs Polymer Multilayer Systems. Macromolecular Chemistry and Physics, 2020, 221, 2000106.	zBT /Overlo 1.1	ock 10 Tf 50 3 4
1019	Fabrication of Silk Resin with High Bending Properties by Hot-Pressing and Subsequent Hot-Rolling. Materials, 2020, 13, 2716.	1.3	4
1020	Stimulus-responsive sequential release systems for drug and gene delivery. Nano Today, 2020, 34, 100914.	6.2	125
1021	Colon specific enzyme responsive oligoester crosslinked dextran nanoparticles for controlled release of 5-fluorouracil. International Journal of Pharmaceutics, 2020, 586, 119605.	2.6	40
1022	<p>Burgeoning Polymer Nano Blends for Improved Controlled Drug Release: A Review</p> . International Journal of Nanomedicine, 2020, Volume 15, 4363-4392.	3.3	76
1023	A review on synthesis and biomedical applications of polyglycolic acid. Journal of Polymer Research, 2020, 27, 1.	1.2	94
1024	Protein and peptide-based delivery systems. , 2020, , 145-161.		7
1025	Nature and molecular structure of polymers. , 2020, , 13-19.		0 _

#	Article	IF	CITATIONS
1026	Exploiting ionisable nature of PEtOx- <i>co</i> -PEI to prepare pH sensitive, doxorubicin-loaded micelles. Journal of Microencapsulation, 2020, 37, 467-480.	1.2	8
1027	Polymers for Extrusion-Based 3D Printing of Pharmaceuticals: A Holistic Materials–Process Perspective. Pharmaceutics, 2020, 12, 124.	2.0	208
1028	Reversible control of biomaterial properties for dynamically tuning cell behavior. Journal of Applied Polymer Science, 2020, 137, 49058.	1.3	20
1029	A hybrid platform for three-dimensional printing of bone scaffold by combining thermal-extrusion and electrospinning methods. Microsystem Technologies, 2020, 26, 1847-1861.	1.2	4
1030	Development of a Biodegradable Subcutaneous Implant for Prolonged Drug Delivery Using 3D Printing. Pharmaceutics, 2020, 12, 105.	2.0	109
1031	Preparation of functionalized poly(caprolactone diol)/castor oils blends to be applied as photocrosslinkable tissue adhesives. Journal of Applied Polymer Science, 2020, 137, 49092.	1.3	10
1032	Multistep Mass-Remainder Analysis and its Application in Copolymer Blends. Macromolecules, 2020, 53, 1199-1204.	2.2	8
1033	<p>Oral Deliverable Mucoadhesive Chitosan-Salmonella Subunit Nanovaccine for Layer Chickens</p> . International Journal of Nanomedicine, 2020, Volume 15, 761-777.	3.3	54
1034	Biodegradable Magnesiumâ€Based Implants in Orthopedics—A General Review and Perspectives. Advanced Science, 2020, 7, 1902443.	5.6	267
1035	A Study on the Synthesis of Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Bacillus megaterium Utilizing Cheese Whey Permeate. Journal of Polymers and the Environment, 2020, 28, 1390-1405.	2.4	24
1036	Microchamber arrays made of biodegradable polymers for enzymatic release of small hydrophilic cargos. Soft Matter, 2020, 16, 2266-2275.	1.2	18
1037	Keratinocytes-hair follicle bulge stem cells-fibroblasts co-cultures on a tri-layer skin equivalent derived from gelatin/PEG methacrylate nanofibers. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 869-894.	1.9	7
1038	Complicity of degradable polymers in health-care applications. Materials Today Chemistry, 2020, 16, 100236.	1.7	38
1039	Growing a backbone – functional biomaterials and structures for intervertebral disc (IVD) repair and regeneration: challenges, innovations, and future directions. Biomaterials Science, 2020, 8, 1216-1239.	2.6	26
1040	<p>Polycaprolactone: How a Well-Known and Futuristic Polymer Has Become an Innovative Collagen-Stimulator in Esthetics</p> . Clinical, Cosmetic and Investigational Dermatology, 2020, Volume 13, 31-48.	0.8	62
1041	Fiber Diameter Differentially Regulates Function of Retinal Pigment and Corneal Epithelial Cells on Nanofibrous Tissue Scaffolds. ACS Applied Bio Materials, 2020, 3, 823-837.	2.3	14
1042	Introduction of biopolymers. , 2020, , 1-45.		5
1043	Preclinical biological and physicochemical evaluation of two-photon engineered 3D biomimetic copolymer scaffolds for bone healing. Biomaterials Science, 2020, 8, 1683-1694.	2.6	8

#	Article	IF	Citations
1044	Biodegradable polymer nanocomposites for ligament/tendon tissue engineering. Journal of Nanobiotechnology, 2020, 18, 23.	4.2	91
1045	Ciprofloxacin-Modified Degradable Hybrid Polyurethane-Polylactide Porous Scaffolds Developed for Potential Use as an Antibacterial Scaffold for Regeneration of Skin. Polymers, 2020, 12, 171.	2.0	19
1046	Numerical approach to simulate the mechanical behavior of biodegradable structures considering degradation time and heterogeneous stress field. Polymer Engineering and Science, 2020, 60, 1566-1578.	1.5	3
1047	Levan-based nanostructured systems: An overview. International Journal of Pharmaceutics, 2020, 580, 119242.	2.6	31
1048	Experiment and modelling of the strain-rate-dependent response during in vitro degradation of PLA fibres. SN Applied Sciences, 2020, 2, 1.	1.5	3
1049	Implantable drug delivery systems. , 2020, , 111-146.		5
1050	Enzymes and their production strategies. , 2020, , 31-48.		7
1051	Biodegradable calcium phosphate nanoparticles for cancer therapy. Advances in Colloid and Interface Science, 2020, 279, 102157.	7.0	99
1052	Polymer-based biosensor for estrogenic endocrine-disrupting chemicals in water. International Journal of Environmental Analytical Chemistry, 2022, 102, 1963-1986.	1.8	4
1053	Spun Biotextiles in Tissue Engineering and Biomolecules Delivery Systems. Antibiotics, 2020, 9, 174.	1.5	25
1054	Electrochemical and Biological Performance of Biodegradable Polymer Coatings on Ti6Al7Nb Alloy. Materials, 2020, 13, 1758.	1.3	5
1055	Chitosan/PAMAM/Hydroxyapatite Engineered Drug Release Hydrogels with Tunable Rheological Properties. Polymers, 2020, 12, 754.	2.0	19
1056	Synthesis and Characterization of Inulin-Based Responsive Polyurethanes for Breast Cancer Applications. Polymers, 2020, 12, 865.	2.0	8
1057	Block Copolymers Composed of PEtOx and Polyesteramides Based on Glycolic Acid, <scp>l</scp> -Valine, and <scp>l</scp> -Isoleucine. Macromolecules, 2020, 53, 3580-3590.	2.2	12
1058	Lignin-Graft-Poly(lactic- <i>co</i> -glycolic) Acid Biopolymers for Polymeric Nanoparticle Synthesis. ACS Omega, 2020, 5, 9892-9902.	1.6	20
1059	The role of polycaprolactone-triol (PCL-T) in biomedical applications: A state-of-the-art review. European Polymer Journal, 2020, 131, 109701.	2.6	59
1060	Synthesis and characterization of guanidinate tin(<scp>ii</scp>) complexes for ring-opening polymerization of cyclic esters. Dalton Transactions, 2020, 49, 8460-8471.	1.6	14
1061	Polyphosphazene polymers: The next generation of biomaterials for regenerative engineering and therapeutic drug delivery. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, 030801.	0.6	28

#	Article	IF	CITATIONS
1062	Therapeutic cobalt ion incorporated in poly(vinyl alcohol)/bioactive glass scaffolds for tissue engineering. Journal of Materials Science, 2020, 55, 8710-8727.	1.7	27
1063	Rheumatoid arthritis: basic pathophysiology and role of chitosan nanoparticles in therapy. , 2020, , 481-507.		6
1064	Long-term glycemic control and prevention of diabetes complications in vivo using oleic acid-grafted-chitosan‑zinc-insulin complexes incorporated in thermosensitive copolymer. Journal of Controlled Release, 2020, 323, 161-178.	4.8	37
1065	New biodegradable nanoparticles-in-nanofibers based membranes for guided periodontal tissue and bone regeneration with enhanced antibacterial activity. Journal of Advanced Research, 2021, 28, 51-62.	4.4	83
1066	Modified poly(3-hydroxybutyrate)-based scaffolds in tissue engineering applications: A review. International Journal of Biological Macromolecules, 2021, 166, 986-998.	3.6	67
1067	Three dimensional polyurethane/ hydroxyapatite bioactive scaffolds: The role of hydroxyapatite on pore generation. Journal of Applied Polymer Science, 2021, 138, 50017.	1.3	15
1068	Influence of pre-polymerisation atmosphere on the properties of pre- and poly(glycerol sebacate). Materials Science and Engineering C, 2021, 119, 111429.	3.8	9
1069	Combinatorial effects of coral addition and plasma treatment on the properties of chitosan/polyethylene oxide nanofibers intended for bone tissue engineering. Carbohydrate Polymers, 2021, 253, 117211.	5.1	26
1070	Biomimetic design of photonic materials for biomedical applications. Acta Biomaterialia, 2021, 121, 143-179.	4.1	9
1071	Shape memory composite film for bacteria killing and biofilm detaching. Materials Letters, 2021, 286, 129186.	1.3	3
1072	Synthesis and characterization of anti-adhesion tricomposite electrospun nanofiber barrier membrane for use in post-surgical adhesion conditions. Materials Letters, 2021, 285, 129038.	1.3	10
1073	A novel technique to produce tubular scaffolds based on collagen and elastin. Artificial Organs, 2021, 45, E113-E122.	1.0	15
1074	Mechanical and Micro-structural behaviour of graphene coated with magnesium alloy. Materials Today: Proceedings, 2021, 44, 3589-3594.	0.9	2
1075	Synthesis of Sustainable Polyesters via Organocatalytic Ringâ€Opening Polymerization of <i>O</i> â€carboxyanhydrides: Advances and Perspectives. Macromolecular Rapid Communications, 2021, 42, e2000535.	2.0	15
1076	New Polylactide-Based Materials by Chemical Crosslinking of PLA. Polymer Reviews, 2021, 61, 493-519.	5.3	22
1077	Biodegradable Materials for Sustainable Health Monitoring Devices. ACS Applied Bio Materials, 2021, 4, 163-194.	2.3	133
1078	Four modified sodium alginate/carboxymethylcellulose blends for prednisone delivery. Journal of Applied Polymer Science, 2021, 138, 50383.	1.3	4
1079	Ultraâ€ŧhin, high strength, antibioticâ€eluting sutures for prevention of ophthalmic infection. Bioengineering and Translational Medicine, 2021, 6, e10204.	3.9	21

#	Article	IF	CITATIONS
1081	Functionalization strategies of electrospun nanofibrous scaffolds for nerve tissue engineering. Smart Materials in Medicine, 2021, 2, 260-279.	3.7	21
1082	Fabrication and characterization of polycaprolactone-based green materials for drug delivery. , 2021, , 395-423.		2
1083	Applications of Hydrogel with Special Physical Properties in Bone and Cartilage Regeneration. Materials, 2021, 14, 235.	1.3	33
1084	Alginate-based bionanocomposites in tissue engineering. , 2021, , 327-350.		2
1085	Role of Biodegradable Polymer-Based Biomaterials in Advanced Wound Care. , 2021, , 599-620.		1
1086	Biological evaluation of the modified nano-amorphous phosphate calcium doped with citrate/poly-amino acid composite as a potential candidate for bone repair and reconstruction. Journal of Materials Science: Materials in Medicine, 2021, 32, 16.	1.7	6
1087	Functional and eco-friendly polymers in medical and biomedical applications. , 2021, , 257-270.		0
1088	Future Directions and Requirements for Tissue Engineering Biomaterials. , 2022, , 195-218.		8
1089	Recent Advances in Biopolymeric Composite Materials for Tissue Engineering and Regenerative Medicines: A Review. Molecules, 2021, 26, 619.	1.7	48
1090	Natural Biopolymer-Based Biocompatible Conductors for Stretchable Bioelectronics. Chemical Reviews, 2021, 121, 2109-2146.	23.0	199
1091	Modern Porous Polymer Implants: Synthesis, Properties, and Application. Polymer Science - Series C, 2021, 63, 29-46.	0.8	5
1092	Biodegradable Polymeric Materials for Medicinal Applications. Materials Horizons, 2021, , 351-372.	0.3	6
1093	Poly(L-glutamic acid) via catalytical hydrogenation for the fabrication of carbon nanotube nanocomposites. Materials Research, 2021, 24, .	0.6	4
1094	Biodegradable natural materials in dentistry: fiction or real?. , 2021, , 77-88.		0
1095	Current Advances in 3D Tissue and Organ Reconstruction. International Journal of Molecular Sciences, 2021, 22, 830.	1.8	30
1096	Polymeric nanocarriers for delivery of combination drugs. , 2021, , 85-118.		0
1097	Polysaccharides for inorganic nanomaterials synthesis. , 2021, , 201-225.		1
1098	Introduction to green biocomposites. , 2021, , 3-18.		0

		HATION REPC) R I	
#	Article	I	F	CITATIONS
1099	Advances in Biopolymer Tribology. Composites Science and Technology, 2021, , 129-160.	C).4	0
1100	Biomaterials and Its Advances for Delivering Anticancer Drugs. Gels Horizons: From Science To Smart Materials, 2021, , 21-56.).3	0
1101	Current and future challenges in polymeric nanomaterials for biomedical applications. , 2021, , 327-3	59.		0
1102	Fibrillar pharmacology of functionalized nanocellulose. Scientific Reports, 2021, 11, 157.	1	6	8
1103	Nanocomposites in Drug Delivery and Imaging Applications. , 2021, , 1539-1554.			0
1104	Structural polymer biomaterials. , 2021, , 395-439.			16
1105	Sustainable End-of-Life Management of Wind Turbine Blades: Overview of Current and Coming Solutions. Materials, 2021, 14, 1124.	1	.3	59
1106	Degradation and thermal behavior of copolyesters synthesized by direct liquefy polycondensation. Materials Today: Proceedings, 2021, , .	C).9	1
1107	Collagen Type I Biomaterials as Scaffolds for Bone Tissue Engineering. Polymers, 2021, 13, 599.	2	2.0	107
1108	In-vitro Degradation Behaviors of Poly(L-lactide-co-glycolide-co-ε-caprolactone) Microspheres. Journa of Macromolecular Science - Physics, 2021, 60, 521-529.	l c).4	8
1109	Bioresorbable Polymers: Advanced Materials and 4D Printing for Tissue Engineering. Polymers, 2021, 563.	13, ₂	2.0	74
1110	Design of Polymeric Carriers for Intracellular Peptide Delivery in Oncology Applications. Chemical Reviews, 2021, 121, 11653-11698.	2	23.0	51
1111	Impact of Excipients on Stability of Polymer Microparticles for Autoimmune Therapy. Frontiers in Bioengineering and Biotechnology, 2020, 8, 609577.	2	2.0	3
1112	Fabrication of macroporous soft hydrogels of Chitosan scaffolds by hydrothermal reaction and cytotoxicity to 3T3 L1 cells. Journal of Polymer Research, 2021, 28, 1.	1	.2	4
1113	Biodegradable Hydrophobic Injectable Polymers for Drug Delivery and Regenerative Medicine. Advanced Functional Materials, 2021, 31, 2010284.	7	.8	35
1114	A Polymer for Application as a Matrix Phase in a Concept of In Situ Curable Bioresorbable Bioactive Load-Bearing Continuous Fiber Reinforced Composite Fracture Fixation Plates. Molecules, 2021, 26, 1256.	1	7	4
1115	Fabrication and Evaluation of Transdermal Microneedles for a Recombinant Human Keratinocyte Growth Factor. Turkish Journal of Pharmaceutical Sciences, 2021, 18, 96-103.	().6	11
1116	Novel Fluorinated Poly (Lactic-Co-Glycolic acid) (PLGA) and Polyethylene Glycol (PEG) Nanoparticles for Monitoring and Imaging in Osteoarthritis. Pharmaceutics, 2021, 13, 235.	2	2.0	10

#	Article	IF	CITATIONS
1117	Fused filament fabrication of scaffolds for tissue engineering; how realistic is shape-memory? A review. Polymer, 2021, 217, 123440.	1.8	14
1118	Antimicrobial Hybrid Coatings Combining Enhanced Biocidal Activity under Visible-Light Irradiation with Stimuli-Renewable Properties. ACS Applied Materials & amp; Interfaces, 2021, 13, 17183-17195.	4.0	30
1119	Personalized Bone Reconstruction and Regeneration in the Treatment of Craniosynostosis. Applied Sciences (Switzerland), 2021, 11, 2649.	1.3	6
1120	Osteogenic response under the periosteum by magnesium implantation in rat tibia. Dental Materials Journal, 2021, 40, 498-507.	0.8	1
1121	Irreversible bonding techniques for the fabrication of a leakage-free printed circuit board-based lab-on-chip in microfluidic platforms—a review. Measurement Science and Technology, 2021, 32, 052001.	1.4	8
1122	Bioresorbable tyrosolâ€derived poly(esterâ€arylate)s with tunable properties. Journal of Polymer Science, 2021, 59, 860-869.	2.0	5
1123	Functionalized polylysine biomaterials for advanced medical applications: A review. European Polymer Journal, 2021, 146, 110248.	2.6	62
1124	Hot melt extrusion: An emerging manufacturing method for slow and sustained protein delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1712.	3.3	19
1125	Biological analysis of an innovative biodegradable antibiotic eluting bioactive glass/gypsum composite bone cement for treating experimental chronic MRSA osteomyelitis. Journal of Pharmaceutical Analysis, 2022, 12, 164-177.	2.4	7
1126	Functionalized Biodegradable Polymers via Termination of Ring-Opening Polymerization by Acyl Chlorides. Polymers, 2021, 13, 868.	2.0	3
1127	Preparation of multilayer electrospun nanofibrous scaffolds containing soluble eggshell membrane as potential dermal substitute. Journal of Biomedical Materials Research - Part A, 2021, 109, 1812-1827.	2.1	18
1128	Development of Polymeric Nanoparticles for Blood–Brain Barrier Transfer—Strategies and Challenges. Advanced Science, 2021, 8, 2003937.	5.6	143
1129	Polycaprolactone/alendronate systems intended for production of biomaterials. Journal of Applied Polymer Science, 2021, 138, 50678.	1.3	1
1130	Customized Fading Scaffolds: Strong Polyorthoester Networks via Thiol–Ene Cross-linking for Cytocompatible Surface-Eroding Materials in 3D Printing. Biomacromolecules, 2021, 22, 1472-1483.	2.6	7
1131	Application of Nanocellulose Derivatives as Drug Carriers; A Novel Approach in Drug Delivery. Anti-Cancer Agents in Medicinal Chemistry, 2021, 21, 692-702.	0.9	7
1132	Degradable polymeric vehicles for postoperative pain management. Nature Communications, 2021, 12, 1367.	5.8	30
1133	Influence of Materials Properties on Bio-Physical Features and Effectiveness of 3D-Scaffolds for Periodontal Regeneration. Molecules, 2021, 26, 1643.	1.7	22
1134	Polymer-based biomaterials for chronic wound management: Promises and challenges. International Journal of Pharmaceutics, 2021, 598, 120270.	2.6	66

#	Article	IF	CITATIONS
1135	Optimally controlled morphology and physico-mechanical properties of inclusion complex loaded electrospun polyvinyl alcohol based nanofibrous mats for therapeutic applications. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 1182-1202.	1.9	20
1136	Poly(εâ€caprolactone): A potential polymer for biodegradable food packaging applications. Packaging Technology and Science, 2021, 34, 449-461.	1.3	54
1137	Performance of <scp>3D</scp> printed <scp>PCL</scp> / <scp>PLGA</scp> / <scp>HA</scp> biological bone tissue engineering scaffold. Polymer Composites, 2021, 42, 3593-3602.	2.3	12
1138	Natural bio-based monomers for biomedical applications: a review. Biomaterials Research, 2021, 25, 8.	3.2	57
1139	Degradation Behavior of Polymers Used as Coating Materials for Drug Delivery—A Basic Review. Polymers, 2021, 13, 1272.	2.0	47
1140	Engineered synthetic cell penetrating peptide with intracellular antiâ€inflammatory bioactivity: An in vitro and in vivo study. Journal of Biomedical Materials Research - Part A, 2021, 109, 2001-2016.	2.1	5
1141	Design and fabrication of drugâ€delivery systems toward adjustable release profiles for personalized treatment. View, 2021, 2, 20200126.	2.7	49
1142	Plant-based biocomposite films as potential antibacterial patches for skin wound healing. European Polymer Journal, 2021, 150, 110414.	2.6	20
1143	Hard Dental Tissues Regeneration—Approaches and Challenges. Materials, 2021, 14, 2558.	1.3	19
1145	Biomimetic Scaffolds with a Mineral Gradient and Funnelâ€ 6 haped Channels for Spatially Controllable Osteogenesis. Advanced Healthcare Materials, 2022, 11, e2100828.	3.9	8
1146	On the Effectiveness of Oxygen Plasma and Alkali Surface Treatments to Modify the Properties of Polylactic Acid Scaffolds. Polymers, 2021, 13, 1643.	2.0	9
1147	Development of Polymer-Assisted Nanoparticles and Nanogels for Cancer Therapy: An Update. Gels, 2021, 7, 60.	2.1	31
1148	A Review on the Role of Polymers in Pharmaceutical Applications. Venoms and Toxins, 2021, 1, 41-55.	0.3	0
1149	Prospects of Using Biocatalysis for the Synthesis and Modification of Polymers. Molecules, 2021, 26, 2750.	1.7	16
1150	Influence of Hydroxyproline on Mechanical Behavior of Collagen Mimetic Proteins Under Fraying Deformation—Molecular Dynamics Investigations. Journal of Biomechanical Engineering, 2021, 143, .	0.6	1
1151	Modern World Applications for Nano-Bio Materials: Tissue Engineering and COVID-19. Frontiers in Bioengineering and Biotechnology, 2021, 9, 597958.	2.0	21
1152	3D printing in biomedical engineering: Processes, materials, and applications. Applied Physics Reviews, 2021, 8, .	5.5	46
1153	Ultra-Thin Porous PDLLA Films Promote Generation, Maintenance, and Viability of Stem Cell Spheroids. Frontiers in Bioengineering and Biotechnology, 2021, 9, 674384.	2.0	2

#	Article	IF	CITATIONS
1154	Trends of Chitosan Based Delivery Systems in Neuroregeneration and Functional Recovery in Spinal Cord Injuries. Polysaccharides, 2021, 2, 519-537.	2.1	8
1155	Enhancement of Radio-Thermo-Sensitivity of 5-Iodo-2-Deoxyuridine-Loaded Polymeric-Coated Magnetic Nanoparticles Triggers Apoptosis in U87MG Human Glioblastoma Cancer Cell Line. Cellular and Molecular Bioengineering, 2021, 14, 365-377.	1.0	3
1156	Polymeric drug delivery systems by additive manufacturing. Advanced Drug Delivery Reviews, 2021, 173, 349-373.	6.6	86
1157	The impact of microplastic-microbe interactions on animal health and biogeochemical cycles: A mini-review. Science of the Total Environment, 2021, 773, 145697.	3.9	91
1158	Urinary bladder and urethral tissue engineering, and 3D bioprinting approaches for urological reconstruction. Journal of Materials Research, 2021, 36, 3781-3820.	1.2	6
1159	Electrospinning for drug delivery applications: A review. Journal of Controlled Release, 2021, 334, 463-484.	4.8	345
1160	Local delivery systems of morphogens/biomolecules in orthopedic surgical challenges. Materials Today Communications, 2021, 27, 102424.	0.9	4
1161	Prefunctionalised PLGA microparticles with dimethylaminoethyl moieties promote surface cell adhesion at physiological condition. European Polymer Journal, 2021, 152, 110466.	2.6	4
1162	A systematic review of carbohydrate-based microneedles: current status and future prospects. Journal of Materials Science: Materials in Medicine, 2021, 32, 89.	1.7	16
1163	Amphiphilic copolymeric stabilizer for the formation of polycaprolactone particles. Polymer Bulletin, 0, , 1.	1.7	0
1164	A comprehensive review on techniques to create the anti-microbial surface of biomaterials to intervene in biofouling. Colloids and Interface Science Communications, 2021, 43, 100464.	2.0	44
1165	Aesthetic Nasal Lobule Correction Using a Three-Dimensional Printed Polycaprolactone Implant. Journal of Craniofacial Surgery, 2021, Publish Ahead of Print, e808-e812.	0.3	0
1166	Nanocarrier-Mediated Topical Insulin Delivery for Wound Healing. Materials, 2021, 14, 4257.	1.3	7
1167	Recent developments in biodegradable block copolymers. Polymers for Advanced Technologies, 2021, 32, 3877-3899.	1.6	7
1168	Tissue engineering: recent advances and review of clinical outcome for urethral strictures. Current Opinion in Urology, 2021, 31, 498-503.	0.9	7
1169	Controllable Degradation of Poly (trimethylene carbonate) via Self-blending with Different Molecular Weights. Polymer Degradation and Stability, 2021, 189, 109596.	2.7	11
1170	Solvent-Free and Catalyst-Free Synthesis of Cross-Linkable Polyfumaramides via Topochemical Azide-Alkyne Cycloaddition Polymerization. ACS Sustainable Chemistry and Engineering, 2021, 9, 9871-9878.	3.2	4
1171	2,2-Bis(hydroxymethyl) propionic acid based cyclic carbonate monomers and their (co)polymers as advanced materials for biomedical applications. Biomaterials, 2021, 275, 120953.	5.7	12

#	Article	IF	CITATIONS
1172	Zn-0.4Li alloy shows great potential for the fixation and healing of bone fractures at load-bearing sites. Chemical Engineering Journal, 2021, 417, 129317.	6.6	25
1173	Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers. ACS Applied Materials & Interfaces, 2021, 13, 38969-38978.	4.0	6
1174	Electroconductive biomaterials for cardiac tissue engineering. Acta Biomaterialia, 2022, 139, 118-140.	4.1	61
1175	Wound dressings coated with silver nanoparticles and essential oil of Labdanum. Applied Nanoscience (Switzerland), 2023, 13, 1345-1354.	1.6	4
1176	Tyrosol-Derived Biodegradable Inks with Tunable Properties for 3D Printing. ACS Biomaterials Science and Engineering, 2021, 7, 4454-4462.	2.6	2
1177	Implantable application of polymerâ€based biosensors. Journal of Polymer Science, 2022, 60, 328-347.	2.0	24
1178	Polymeric Composite Matrix with High Biobased Content as Pharmaceutically Relevant Molecular Encapsulation and Release Platform. ACS Applied Materials & Interfaces, 2021, 13, 40229-40248.	4.0	10
1179	Structure–Property Relationships of 3D-Printable Chain-Extended Block Copolymers with Tunable Elasticity and Biodegradability. ACS Applied Polymer Materials, 2021, 3, 4708-4716.	2.0	8
1180	XPS and ToFâ€SIMS Characterization of New Biodegradable Poly(Peptideâ€Urethaneâ€Urea) Block Copolymers. Advanced Healthcare Materials, 2022, 11, e2100894.	3.9	3
1181	Polypeptide-based drug delivery systems for programmed release. Biomaterials, 2021, 275, 120913.	5.7	36
1182	Recent advances of emerging green chitosan-based biomaterials with potential biomedical applications: A review. Carbohydrate Research, 2021, 506, 108368.	1.1	90
1183	Sulfated carboxymethylcellulose conjugated electrospun fibers as a growth factor presenting system for tissue engineering. Carbohydrate Polymers, 2021, 268, 118256.	5.1	11
1184	Preparation and evaluation of rapid disintegrating formulation from coated microneedle. Drug Delivery and Translational Research, 2022, 12, 415-425.	3.0	7
1185	Nonwoven Releasing Propolis as a Potential New Wound Healing Method—A Review. Molecules, 2021, 26, 5701.	1.7	11
1186	Cellulose nanocrystals-based materials as hemostatic agents for wound dressings: a review. Biomedical Microdevices, 2021, 23, 43.	1.4	11
1187	Single-Walled Carbon Nanotube-Based Biosensors for Detection of Bronchial Inflammation. International Journal of Nanoscience, 0, , 2130002.	0.4	0
1188	Programmed core-shell electrospun nanofibers to sequentially regulate osteogenesis-osteoclastogenesis balance for promoting immediate implant osseointegration. Acta Biomaterialia, 2021, 135, 274-288.	4.1	12
1189	Polycaprolactone and poly- \hat{l}^2 -cyclodextrin polymer blend: a Biopolymers composite film for drug release. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2022, 102, 65-76.	0.9	1

#	Article	IF	CITATIONS
1190	Reactive TiO2 Nanoparticles Compatibilized PLLA/PBSU Blends: Fully Biodegradable Polymer Composites with Improved Physical, Antibacterial and Degradable Properties. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1645-1656.	2.0	11
1191	Degradable polymers via olefin metathesis polymerization. Progress in Polymer Science, 2021, 120, 101427.	11.8	48
1192	Review of multifarious applications of polymers in medical and health care textiles. Materials Today: Proceedings, 2022, 55, 330-336.	0.9	12
1193	Clinical translation and challenges of biodegradable magnesium-based interference screws in ACL reconstruction. Bioactive Materials, 2021, 6, 3231-3243.	8.6	28
1194	Electrospun microstructured PLA-based scaffolds featuring relevant anisotropic, mechanical and degradation characteristics for soft tissue engineering. Materials Science and Engineering C, 2021, 129, 112339.	3.8	16
1195	Responsiveness assessment of cell cultures exposed to poly(tartaric acid) and its corresponding magnetic nanostructures. Journal of Molecular Structure, 2022, 1248, 131459.	1.8	2
1196	Therapeutic platforms based on silicon nanotubes. , 2022, , 207-230.		1
1197	Classification, material types, and design approaches of long-acting and implantable drug delivery systems. , 2022, , 17-59.		3
1198	Role of Curing Temperature of Poly(Glycerol Sebacate) Substrates on Protein-Cell Interaction and Early Cell Adhesion. Polymers, 2021, 13, 382.	2.0	5
1199	The role of antibacterial coatings in the development of biomaterials. , 2021, , 1-36.		1
1200	Microbial Products and Their Role in Soil Health and Sustainable Agriculture. Advances in Environmental Engineering and Green Technologies Book Series, 2021, , 181-204.	0.3	0
1201	A sulfobetaine zwitterionic polymer–drug conjugate for multivalent paclitaxel and gemcitabine co-delivery. Biomaterials Science, 2021, 9, 5000-5010.	2.6	18
1202	Hydrogel Processing Techniques and Vascular Tissue Engineering. Biomaterials Science Series, 2021, , 207-237.	0.1	0
1203	â€~Lactobacillus sp. strain TERI-D3', as microbial cell factory for fermentative production of lactic acid' Current Research in Green and Sustainable Chemistry, 2021, 4, 100059.	2.9	9
1204	Tissue engineering applications. , 2021, , 323-347.		0
1207	Developing a Clinically Relevant Tissue Engineered Heart Valve—A Review of Current Approaches. Advanced Healthcare Materials, 2017, 6, 1700918.	3.9	27
1208	Hydrolytically Sensitive Fiber-Forming Bioresorbable Polymers. SpringerBriefs in Materials, 2014, , 23-41.	0.1	1
1209	Nanowear of Polymers. Nanoscience and Technology, 2015, , 545-587.	1.5	3

#	Article	IF	CITATIONS
1210	Bioactive Coatings. , 2018, , 361-406.		3
1211	Synthetic Materials: Processing and Surface Modifications for Vascular Tissue Engineering. , 2020, , 1-50.		1
1212	Biodegradable Polymeric Implants for Retina and Posterior Segment Disease. , 2018, , 273-291.		1
1213	Valorization of cheese whey using microbial fermentations. Applied Microbiology and Biotechnology, 2020, 104, 2749-2764.	1.7	97
1214	Recent progress in development and chemical modification of poly(hydroxybutyrate)-based blends for potential medical applications. International Journal of Biological Macromolecules, 2020, 160, 77-100.	3.6	62
1215	Functionalized poly l-lactic acid synthesis and optimization of process parameters for 3D printing of porous scaffolds via digital light processing (DLP) method. Journal of Manufacturing Processes, 2020, 56, 550-561.	2.8	50
1216	Biodegradation and thermal stability of bacterial cellulose as biomaterial: The relevance in biomedical applications. Polymer Degradation and Stability, 2020, 179, 109232.	2.7	87
1218	CHAPTER 10. Swelling-controlled Drug Delivery Systems. Biomaterials Science Series, 0, , 232-264.	0.1	3
1219	Additive manufacturing of natural biopolymers and composites for bone tissue engineering. Materials Horizons, 2020, 7, 2011-2027.	6.4	81
1221	Rhein laden pH-responsive polymeric nanoparticles for treatment of osteoarthritis. AMB Express, 2020, 10, 158.	1.4	20
1222	Preparation and Characterization of Phthalic Acid-Propane-1, 2-Diol-Glycerol Co-Polyester as A Biodegradable Polymer. Journal of Composites and Biodegradable Polymers, 2014, 2, 80-87.	0.3	1
1224	Biodegradable Polycaprolactone Nanoparticles Based Drug Delivery Systems: A Short Review. Biosciences, Biotechnology Research Asia, 2018, 15, 679-685.	0.2	20
1225	Additive manufacturing of PLA-based scaffolds intended for bone regeneration and strategies to improve their biological properties. E-Polymers, 2020, 20, 571-599.	1.3	78
1226	Perspective highlights on biodegradable polymeric nanosystems for targeted therapy of solid tumors. Biolmpacts, 2017, 7, 49-57.	0.7	31
1227	Characteristics of novel polymer based on pseudo-polyamino acids GluLa-DPG-PEG600: binding of albumin, biocompatibility, biodistribution and potential crossing the blood-brain barrier in rats. Ukrainian Biochemical Journal, 2017, 89, 13-21.	0.1	9
1228	Poliglikolik Asit' in (PGA) Biyomedikal Uygulamaları. Sakarya University Journal of Science, 0, , 1-1.	0.3	5
1229	Critical evaluation of biodegradable polymers used in nanodrugs. International Journal of Nanomedicine, 2013, 8, 3071.	3.3	127
1230	Three-Dimensional (3-D) Printing Technology Exploited for the Fabrication of Drug Delivery Systems. Current Pharmaceutical Design, 2019, 24, 5019-5028.	0.9	9

#	Article	IF	CITATIONS
1231	Inorganic Gold and Polymeric Poly(Lactide-co-glycolide) Nanoparticles as Novel Strategies to Ameliorate the Biological Properties of Antimicrobial Peptides. Current Protein and Peptide Science, 2020, 21, 429-438.	0.7	7
1232	Biodegradable Polyester of Poly (Ethylene glycol)-sebacic Acid as a Backbone for β -Cyclodextrin-polyrotaxane: A Promising Gene Silencing Vector. Current Gene Therapy, 2019, 19, 274-287.	0.9	2
1233	Uncovering the Diversification of Tissue Engineering on the Emergent Areas of Stem Cells, Nanotechnology and Biomaterials. Current Stem Cell Research and Therapy, 2020, 15, 187-201.	0.6	10
1234	Development and Characterization of Glipizide Loaded Sustained Release Nanoparticles. Current Nanomedicine, 2019, 9, 232-242.	0.2	1
1235	Poly-ϵ-caprolactone/chitosan nanoparticles provide strong adjuvant effect for hepatitis B antigen. Nanomedicine, 2017, 12, 2335-2348.	1.7	29
1236	Can regenerative medicine and nanotechnology combine to heal wounds? The search for the ideal wound dressing. Nanomedicine, 2017, 12, 2403-2422.	1.7	160
1237	Polysaccharides as Cell Carriers for Tissue Engineering: the Use of Cellulose in Vascular Wall Reconstruction. Physiological Research, 2014, 63, S29-S47.	0.4	98
1238	Rifampicin-Loaded Alginate-Gelatin Fibers Incorporated within Transdermal Films as a Fiber-in-Film System for Wound Healing Applications. Membranes, 2021, 11, 7.	1.4	19
1239	Agarose-Based Biomaterials: Opportunities and Challenges in Cartilage Tissue Engineering. Polymers, 2020, 12, 1150.	2.0	120
1240	Caffeic acid phenethyl ester (CAPE): cornerstone pharmacological studies and drug delivery systems. Pharmacia, 2019, 66, 223-231.	0.4	7
1241	Evaluation of eliciting activity of peptidil prolyl cys/trans isomerase from Pseudonomas fluorescens encapsulated in sodium alginate regarding plant resistance to viral and fungal pahogens. AIMS Microbiology, 2018, 4, 192-208.	1.0	8
1242	Fabrication and Evaluation of Porous Keratin/chitosan (KCS) Scaffolds for Effectively Accelerating Wound Healing. Biomedical and Environmental Sciences, 2015, 28, 178-89.	0.2	34
1243	A Novel Dual Non-Invasive Ventilator Continuous Positive Airway Pressure Non-Aerosolization Circuit for Emergency Use in the COVID-19 Pandemic. Journal of Open Hardware, 2020, 4, .	0.2	3
1244	Recent advances in polymer scaffolds for biomedical applications. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 342-408.	1.9	20
1245	3D-printed Poly-Lactic Co-Glycolic Acid (PLGA) scaffolds in non-critical bone defects impede bone regeneration in rabbit tibia bone. Bio-Medical Materials and Engineering, 2021, 32, 1-7.	0.4	0
1246	Highly Active Homoleptic Zinc and Magnesium Complexes Supported by Constrained Reduced Schiff Base Ligands for the Ring-Opening Polymerization of Lactide. Inorganic Chemistry, 2021, 60, 17114-17122.	1.9	12
1247	A comprehensive review on biocompatible Mg-based alloys as temporary orthopaedic implants: Current status, challenges, and future prospects. Journal of Magnesium and Alloys, 2022, 10, 627-669.	5.5	96
1248	Tailoring the biodegradability and bioactivity of green-electrospun polycaprolactone fibers by incorporation of bioactive glass nanoparticles for guided bone regeneration. European Polymer Journal, 2021, 161, 110841.	2.6	10

#	Article	IF	CITATIONS
1249	Surface Modification of Porous Polyethylene Implants with an Albumin-Based Nanocarrier-Release System. Biomedicines, 2021, 9, 1485.	1.4	2
1250	Stereolithography 3D printing technology in pharmaceuticals: a review. Drug Development and Industrial Pharmacy, 2021, 47, 1362-1372.	0.9	24
1251	Development of a new poly-ε-caprolactone with low melting point for creating a thermoset mask used in radiation therapy. Scientific Reports, 2021, 11, 20409.	1.6	2
1252	Copolymerization of carbon dioxide and oxetane catalyzed by aluminum porphyrin complex system. Journal of Polymer Science, 2021, 59, 3122-3130.	2.0	5
1253	Synthesis and Antiplatelet Adhesion Behavior of a Poly(L-lactide- <i>co</i> -glycolide)–Poly(1,5-dioxepan-2-one) Multiblock Copolymer. ACS Omega, 2021, 6, 27968-27975.	1.6	4
1254	Enzymatically Sensitive Fiber-Forming Bioresorbable Polymers. SpringerBriefs in Materials, 2014, , 49-65.	0.1	0
1255	DESENVOLVIMENTO E CARACTERIZAÇÃO DE COMPÓSITOS DE MATRIZ POLIMÉRICA (PLGA/PHB) COM FOSFATO DE CÃŁCIO BIFÃSICO PELO MÉTODO SOLVENTE CASTING. , 0, , .		0
1257	Dendritic Nanomaterials for Therapeutic and Diagnostic Applications. Biosystems and Biorobotics, 2016, , 41-75.	0.2	Ο
1258	Polyhydroxyalkanoates: Cost-Effective Production Strategies. , 0, , 6375-6390.		0
1259	Effect of Phase Composition of Calcium Phosphate (CaP) on Bioactivity of Osteon-like Composite Scaffolds. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2016, 31, 107.	0.6	0
1260	Aliphatic Polyesters: Particulate Vaccine Delivery. , 0, , 147-185.		0
1261	Inhaler Systems: Dry Powder. , 0, , 4063-4074.		Ο
1262	Neural Tissue Engineering: Applications. , 0, , 5678-5692.		0
1263	Synthetic Biopolymers. , 2016, , 307-335.		Ο
1264	Polyester Particles for Curcumin Delivery. , 2016, , 651-673.		0
1265	Smart Biomaterials in Tissue-Engineering Applications. , 2016, , 125-150.		0
1266	Alternative Strategies for Nerve Reconstruction. , 2017, , 79-96.		5
1267	Chapter 10 Role of UV-Vis Radiations in Analysis of Polymer Systems for Drug Delivery Applications. , 2017, , 159-174.		0

#	Article	IF	CITATIONS
1268	Carbon Nanotube-Based Biodegradable Polymeric Nanocomposites: 3Rs (Reduce, Reuse, and Recycle) in the Design. , 2017, , 1-17.		0
1269	Degradable copolymers with incorporated ester groups by radical ring-opening polymerization using atom transfer radical polymerization. Polimery, 2017, 62, 262-271.	0.4	1
1270	Nanocomposites in Drug Delivery and Imaging Applications. Advances in Medical Technologies and Clinical Practice Book Series, 2018, , 415-430.	0.3	0
1271	Carbon Nanotube-Based Biodegradable Polymeric Nanocomposites: 3Rs (Reduce, Reuse, and Recycle) in the Design. , 2019, , 2787-2802.		0
1272	A Novel Protocol to Generate Decellularized Bovine Spinal Cord Extracellular Matrix-Based Scaffolds (3D-dCBS). Bio-protocol, 2019, 9, e3380.	0.2	1
1273	Biodegradable Composite Scaffold for Bone Tissue Regeneration. , 2019, , 657-679.		0
1274	Biodegradable Polymer-Based Nanohybrids for Controlled Drug Delivery and Implant Applications. Materials Horizons, 2019, , 3-19.	0.3	2
1275	PLGA-GENTAMICIN BIOCOMPOSITE MATERIALS WITH POTENTIAL ANTIMICROBIAL APPLICATIONS IN ORTHOPEDICS. Farmacia, 2019, 67, 580-586.	0.1	2
1276	Tissue Engineering in Urethral Reconstruction. , 2020, , 437-445.		0
1277	Biomaterials and Scaffolds for Repair of the Peripheral Nervous System. , 2020, , 1-35.		1
1278	Properties and Applications of Biodegradable Polymers. Journal of Research Updates in Polymer Science, 0, 9, 32-41.	0.3	5
1279	Stress–Strain Relationship of Polycaprolactone in Liquid Nitrogen for Finite Element Simulation of Cryogenic Micropunching Process. Journal of Engineering and Science in Medical Diagnostics and Therapy, 2020, 3, .	0.3	3
1280	Pullulan/ <scp>polyHEMA</scp> cryogels: Synthesis, physicochemical properties, and cell viability. Journal of Applied Polymer Science, 2022, 139, 51822.	1.3	3
1281	A bio-based and non-toxic polyurethane film derived from Luffa cylindrica cellulose and ÊŸ-Lysine diisocyanate ethyl ester. European Polymer Journal, 2021, 161, 110856.	2.6	17
1283	Effect of Die Clearance on Peak Punching Force During Cryogenic Micropunching of Polycaprolactone. Journal of Engineering and Science in Medical Diagnostics and Therapy, 2021, 4, .	0.3	0
1285	Nanobiomaterials for neural regenerative medicine. , 2020, , 25-45.		1
1286	Plastics and Sustainability. , 2021, , 489-504.		1
1287	Polycaprolactone (PCL) Chains Grafting on the Surface of Cellulose Nanocrystals (CNCs) during <i>ln Situ</i> Polymerization of <i>lµ</i> -Caprolactone at Room Temperature. Materials Sciences and Applications 2020 11 744-756	0.3	0

#	Article	IF	CITATIONS
1288	Synthetic Materials: Processing and Surface Modifications for Vascular Tissue Engineering. , 2020, , 137-186.		2
1289	Tissue-Engineered Vascular Grafts for Children. , 2020, , 533-548.		1
1291	Scale-up, Preclinical and Clinical Status of Poly (Lactide-Co-Glycolide) and its Copolymers based Drug Delivery Systems. , 2021, , 246-292.		0
1293	Photocrosslinkable Col/PCL/Mg composite membrane providing spatiotemporal maintenance and positive osteogenetic effects during guided bone regeneration. Bioactive Materials, 2022, 13, 53-63.	8.6	15
1294	Promising polymeric compounds for coronary stent graft membrane. Cardiovascular Therapy and Prevention (Russian Federation), 2020, 19, 2318.	0.4	0
1296	Promoting peripheral nerve regeneration with biodegradable poly (DL-lactic acid) films. International Journal of Clinical and Experimental Pathology, 2015, 8, 8057-65.	0.5	6
1297	Evaluation of biocompatibility and toxicity of biodegradable poly (DL-lactic acid) films. American Journal of Translational Research (discontinued), 2015, 7, 1357-70.	0.0	8
1298	Development of Absorbable, Antibiotic-Eluting Sutures for Ophthalmic Surgery. Translational Vision Science and Technology, 2017, 6, 1.	1.1	20
1300	Biological macromolecules in drug delivery. , 2022, , 339-379.		9
1301	Biodegradable film based on lemon peel powder containing xanthan gum and TiO2–Ag nanoparticles: Investigation of physicochemical and antibacterial properties. Polymer Testing, 2022, 106, 107445.	2.3	49
1303	Enhancing the mechanical properties of photosensitive binder jetting <scp>PLA</scp> via dual curing and thermal treatment. Journal of Applied Polymer Science, 2022, 139, 51942.	1.3	3
1304	Evaluation of angiogenic potential of heparin and thyroxine releasing wound dressings. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 1164-1175.	1.8	3
1305	Innovations in applications and prospects of bioplastics and biopolymers: a review. Environmental Chemistry Letters, 2022, 20, 379-395.	8.3	134
1306	Bioengineering Strategies for Developing Vaccines against Respiratory Viral Diseases. Clinical Microbiology Reviews, 2022, 35, e0012321.	5.7	10
1307	Preparation and Properties of Poly(D,L-lactide-co-glycolide-co-ε-caprolactone)/1,4-Butanediamine Modified Poly(lactide-co-glycolide) Blend Porous Microspheres. Journal of Macromolecular Science - Physics, 2022, 61, 270-280.	0.4	6
1308	Controlled Delivery of Pan-PAD-Inhibitor Cl-Amidine Using Poly(3-Hydroxybutyrate) Microspheres. International Journal of Molecular Sciences, 2021, 22, 12852.	1.8	4
1309	Biomedicine: electrospun nanofibrous hormonal therapies through skin/tissue—a review. International Journal of Polymeric Materials and Polymeric Biomaterials, 0, , 1-19.	1.8	3
1310	COMPOSITE BIODEGRADABLE POLYMERIC MATRIX DOPED WITH HALLOYSITE NANOTUBES FOR THE REPAIR OF BONE DEFECTS IN DOGS. Clays and Clay Minerals, 2021, 69, 522-532.	0.6	10
ARTICLE IF CITATIONS # Cell-cell adhesion impacts epithelia response to substrate stiffness: Morphology and gene expression. 1311 0.2 7 Biophysical Journal, 2022, 121, 336-346. Oxidative esterification of aliphatic \hat{l}_{\pm} ; \hat{l}_{∞} -diols, an alternative route to polyester precursors for the synthesis of polyurethanes. Polymer Chemistry, 2021, 12, 7031-7037. 1.9 Advances in the Development of Biodegradable Polymeric Materials for Biomedical Applications. , 2021, 1313 0 , . Polymer pollution and its solutions with special emphasis on Poly (butylene adipate terephthalate) Tj ETQq1 1 0.784314 rgBT // Overlo 1314 Enkapsülasyon Teknikleri ve Kontrollü Salım. European Journal of Science and Technology, 0, , . 1315 0.5 1 Multimodal sensing and therapeutic systems for wound healing and management: A review. Sensors 2.3 and Actuators Reports, 2022, 4, 100075. Development and evaluation of novel nanofibers based on mango kernel starch obtained by 1317 2.3 17 electrospinning. Polymer Testing, 2022, 106, 107462. Dual-jet electrospun PDLGA/PCU nonwovens and their mechanical and hydrolytic degradation 1.5 properties. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 126, 105050. Polymer Characteristics Study to be Utilized as Waste to Energy Conversion System. Smart Moves 1319 0.0 0 Journal Ijoscience, 2020, 6, 44-47. Polyvalent design in the cGAS-STING pathway. Seminars in Immunology, 2021, 56, 101580. 2.7 Advances in the Development of Biodegradable Polymeric Materials for Biomedical Applications. , 2022, 1321 1 , 532-566. Metronidazole Topically Immobilized Electrospun Nanofibrous Scaffold: Novel Secondary Intention Wound Healing Accelerator. Polymers, 2022, 14, 454. Biomedical Applications of Carbohydrate-based Polyurethane: From Biosynthesis to Degradation. 1323 0.9 3 Current Pharmaceutical Design, 2022, 28, 1669-1687. Repurposing the Antibacterial Activity of Etoposideâ"€A Chemotherapeutic Drug in Combination with Eggshell-Derived Hydroxyapatite. ACS Biomaterials Science and Engineering, 2022, 8, 682-693. 1324 2.6 1325 Chitosan-based scaffolds in tissue engineering and regenerative medicine., 2022, , 329-354. 4 Biodegradable and crosslinkable poly(propylene fumarate) liquid crystal polymers. Polymer Chemistry, 2022, 13, 1267-1273. Curcumin-Alginate Mixed Nanocomposite: An Evolving Therapy for Wound Healing., 0, , . 1327 0 A comprehensive review on polymer matrix composites: material selection, fabrication, and

CITATION REPORT

application. Polymer Bulletin, 2023, 80, 47-87.

#	Article	IF	CITATIONS
1329	Modification of carbon-based nanomaterials by polyglycerol: recent advances and applications. RSC Advances, 2021, 12, 181-192.	1.7	8
1330	Advanced graphene ceramics and their future in bone regenerative engineering. International Journal of Applied Ceramic Technology, 2022, 19, 893-905.	1.1	5
1331	Biodegradable Polymers and their Applications: A Review. Mini-Reviews in Medicinal Chemistry, 2022, 22, 2081-2101.	1.1	8
1332	Poloxamer188 composite electrospun poly L-lactic acid fibrous nonwoven: Sustained in vitro and in vivo release letrozole as a subcutaneous implant. Journal of Industrial Textiles, 0, , 152808372110620.	1.1	1
1333	Stability and mechanical performance of collagen films under different environmental conditions. Polymer Degradation and Stability, 2022, 197, 109853.	2.7	10
1334	Recent progress of novel biodegradable zinc alloys: from the perspective of strengthening and toughening. Journal of Materials Research and Technology, 2022, 17, 244-269.	2.6	46
1335	Perfusable vascular tree like construction in 3D cell-dense tissues using artificial vascular bed. Microvascular Research, 2022, 141, 104321.	1.1	5
1336	Bone tissue engineering: Anionic polysaccharides as promising scaffolds. Carbohydrate Polymers, 2022, 283, 119142.	5.1	55
1337	Biodegradable two-dimensional nanomaterials for cancer theranostics. Coordination Chemistry Reviews, 2022, 458, 214415.	9.5	31
1338	Production of biopolymer-based nanoparticles. , 2022, , 53-65.		0
1339	Bio-based nanomaterials for properties and applications. , 2022, , 67-72.		1
1342	DOE-based synthesis of gellan gum-acrylic acid-based biodegradable hydrogels: screening of significant process variables and <i>in situ</i> field studies. RSC Advances, 2022, 12, 4780-4794.	1.7	13
1343	N3/4-pyridinyl Schiff base copper(II) benzoate complexes: synthesis, crystal structures and ring-opening polymerization studies. Transition Metal Chemistry, 2022, 47, 113-126.	0.7	4
1344	Urineâ€Microenvironmentâ€Initiated Composite Hydrogel Patch Reconfiguration Propels Scarless Memory Repair and Reinvigoration of the Urethra. Advanced Materials, 2022, 34, e2109522.	11.1	42
1345	Magnesium-Based Alloys Used in Orthopedic Surgery. Materials, 2022, 15, 1148.	1.3	47
1346	Clinical and radiological comparison of bioactive glass and poly-L-lactic acid/hydroxyapatite bioabsorbable interference screws for tibial graft fixation in anterior cruciate ligament reconstruction. Orthopaedics and Traumatology: Surgery and Research, 2022, 108, 103247.	0.9	5
1347	3D Printed Graphene-PLA Scaffolds Promote Cell Alignment and Differentiation. International Journal of Molecular Sciences, 2022, 23, 1736.	1.8	21
1348_	Thiolâ€Mediated Chain Transfer as a Tool to Improve the Toughness of Acrylate Photoâ€Crosslinked Poly(Îμ) Tj E	TQq1 1 0.	784314 rg8

#	Article	IF	CITATIONS
1349	Integrating plant molecular farming and materials research for next-generation vaccines. Nature Reviews Materials, 2022, 7, 372-388.	23.3	65
1352	Polycaprolactone-based shape memory polymeric nanocomposites for biomedical applications. , 2022, , 413-433.		3
1353	Advanced Analytical, Chemometric, and Genomic Tools to Identify Polymer's Degradation Products and Potential Microbial Consumers in Wastewater Environments. SSRN Electronic Journal, 0, , .	0.4	0
1354	Advances in the Development of Biodegradable Polymeric Materials for Biomedical Applications with Respect to Their Synthesis Procedures, Degradation Properties, Toxicity, Stability and Applications. , 2022, , 567-592.		1
1355	Advanced Optical Methods and Materials for Fabricating 3D Tissue Scaffolds. Light Advanced Manufacturing, 2022, 3, 1.	2.2	1
1356	Regenerative medicine relating to urethroplasty. , 2022, , 253-265.		0
1357	Polymer Microfabrication for Biomedical Applications. , 2022, , 1-24.		0
1358	Ceramic Biomaterials in Advanced Biomedical Applications. , 2022, , 371-408.		1
1359	Formulation development and pharmacokinetic studies of long acting in situ depot injection of risperidone. Brazilian Journal of Pharmaceutical Sciences, 0, 58, .	1.2	2
1361	Spirulina Biomass‣oaded Thermoplastic Polyurethane/Polycaprolacton (TPU/PCL) Nanofibrous Mats: Fabrication, Characterization, and Antibacterial Activity as Potential Wound Healing. ChemistrySelect, 2022, 7, .	0.7	7
1362	Nano-Architectonics of Antibiotic-Loaded Polymer Particles as Vehicles for Active Molecules. Applied Sciences (Switzerland), 2022, 12, 1998.	1.3	5
1363	Trends in Polymer Degradation Across All Scales. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	11
1364	Recent Advances on Bacterial Cellulose-Based Wound Management: Promises and Challenges. International Journal of Polymer Science, 2022, 2022, 1-24.	1.2	12
1365	From Chain Growth to Step Growth Polymerization of Photoreactive Poly‵â€Caprolactone: The Network Topology of Bioresorbable Networks as Tool in Tissue Engineering. Advanced Functional Materials, 2022, 32, .	7.8	14
1366	Evaluation of mechanical properties of poly(<scp>L</scp> ″actic acid) braided stents with axial stiffeners. Journal of Applied Polymer Science, 2022, 139, .	1.3	1
1367	Batch and fed-batch strategies of lactic acid production by Lactobacillus plantarum BL011 using soybean hull hydrolysates as substrate. Biomass Conversion and Biorefinery, 2024, 14, 3249-3259.	2.9	3
1369	Concurrent Ring-Opening/Ring-Closing Polymerization of Glycidyl Acetate to Acid-Degradable Poly(ether- <i>co</i> -orthoester) Materials Using a Mono(μ-alkoxo)bis(alkylaluminum) Initiator. Macromolecules, 2022, 55, 2797-2805.	2.2	1
1370	Stereoselective Ring-Opening Polymerization of Lactones with a Fused Ring Leading to Semicrystalline Polyesters. Macromolecules, 2022, 55, 2777-2786.	2.2	17

ARTICLE IF CITATIONS Heavy Metal Ions Removal From Wastewater Using Cryogels: A Review. Frontiers in Sustainability, 1371 1.3 32 2022, 3, . Fabrication of Polymer/Graphene Biocomposites for Tissue Engineering. Polymers, 2022, 14, 1038. 1373 Starch: A Veritable Natural Polymer for Economic Revolution. Biochemistry, 0, , . 0.8 3 Thermal, Mechanical and Biocompatibility Analyses of Photochemically Polymerized PEGDA250 for 1374 2.0 Photopolymerization-Based Manufacturing Processes. Pharmaceutics, 2022, 14, 628. Addressing the Needs of the Rapidly Aging Society through the Development of Multifunctional Bioactive Coatings for Orthopedic Applications. International Journal of Molecular Sciences, 2022, 23, 1375 12 1.8 2786. Characterization and Evaluation of Injectable Biodegradable Polymer Multimodality Radiologic Markers in an In Vivo Murine Model. Biomacromolecules, 2022, 23, 1672-1679. 2.6 Two-Step Geometry Design Method, Numerical Simulations and Experimental Studies of Bioresorbable 1377 1.3 0 Stents. Materials, 2022, 15, 2385. Three-dimensional scaffolds for tissue bioengineering cartilages. Biocybernetics and Biomedical 3.3 Engineering, 2022, , . Tetracycline-Loaded Electrospun Poly(<scp>l</scp>-lactide-<i>co</i>-ε-caprolactone) Membranes for One-Step Periodontal Treatment. ACS Applied Polymer Materials, 2022, 4, 2459-2469. 1379 2.0 6 Thermosensitive Tri-Block Polymer Nanoparticle-Hydrogel Composites as Payloads of Natamycin for Antifungal Therapy Against Fusarium Solani. International Journal of Nanomedicine, 2022, Volume 17, 3.3 1463-1478. Continuous Microfiber Wire Mandrelâ€Less Biofabrication for Soft Tissue Engineering Applications. 1381 0 3.9 Advanced Healthcare Materials, 2022, , 2102613. Pharmaceutical, biomedical and ophthalmic applications of biodegradable polymers (BDPs): literature 1.1 and patent review. Pharmaceutical Development and Technology, 2022, 27, 341-356. Biocompatible poly(ethylene succinate) polyester with molecular weight dependent drug release 1383 2.6 4 properties. International Journal of Pharmaceutics, 2022, 618, 121653. A review on super-wettable porous membranes and materials based on bio-polymeric chitosan for 1384 oil-water separation. Advances in Colloid and Interface Science, 2022, 303, 102635. Latest development and versatile applications of highly integrating drug delivery patch. European 1385 2.6 5 Polymer Journal, 2022, 170, 111164. Fabrication of wheatgrass incorporated PCL/chitosan biomimetic nanoscaffold for skin wound healing: In vitro and In silico analysis. Journal of Drug Delivery Science and Technology, 2022, 71, 1.4 103286. L-Glutamic acid loaded collagen chitosan composite scaffold as regenerative medicine for the 1387 2.33 accelerated healing of diabetic wounds. Arabian Journal of Chemistry, 2022, 15, 103841.

Biodegradable polyester platform for extrusion-based bioprinting. Bioprinting, 2022, 26, e00198.

CITATION REPORT

#	Article	IF	CITATIONS
1389	Advanced analytical, chemometric, and genomic tools to identify polymer degradation products and potential microbial consumers in wastewater environments. Chemical Engineering Journal, 2022, 442, 136175.	6.6	10
1390	Synthesis and Characterization of Carboxymethyl Cellulose-graft-Poly(Acrylamide-co-Crotonic Acid) Hydrogel: Matrix for Ammonium Nitrate Release, as Agrochemical. Russian Journal of Applied Chemistry, 2021, 94, 1499-1512.	0.1	3
1391	Biocompatibility of electrospinning polycaprolactone, polylactic acid, their blends and copolymers scaffolds in in vitro tests if mesenchyme stem cells. Translational Medicine, 2022, 8, 38-49.	0.1	0
1392	Hydrolytic Degradation of Polylactic Acid Fibers as a Function of pH and Exposure Time. Molecules, 2021, 26, 7554.	1.7	25
1393	Recent Advances of Poly(ester amide)s-Based Biomaterials. Biomacromolecules, 2022, 23, 1892-1919.	2.6	24
1394	Pushing the Natural Frontier: Progress on the Integration of Biomaterial Cues toward Combinatorial Biofabrication and Tissue Engineering. Advanced Materials, 2022, 34, e2105645.	11.1	21
1401	Hydrogels and their role in bone tissue engineering: An overview. Journal of Pharmacy and Bioallied Sciences, 2021, 13, 908.	0.2	6
1403	Fabrication and Applications of Wrinkled Soft Substrates: An Overview. ChemistrySelect, 2022, 7, .	0.7	6
1404	Elastomer–Hydrogel Systems: From Bio-Inspired Interfaces to Medical Applications. Polymers, 2022, 14, 1822.	2.0	10
1405	Effect of piezoelectricity of nanocomposite electrospun scaffold on cell behavior in bone tissue engineering. Iranian Polymer Journal (English Edition), 0, , 1.	1.3	4
1406	Barrier Membrane in Regenerative Therapy: A Narrative Review. Membranes, 2022, 12, 444.	1.4	23
1407	Recent advancements in blended and reinforced polymeric systems as bioscaffolds. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 834-855.	1.8	1
1408	Biomedical polymers: synthesis, properties, and applications. Science China Chemistry, 2022, 65, 1010-1075.	4.2	85
1409	Recent progress in Mg-based alloys as a novel bioabsorbable biomaterials for orthopedic applications. Journal of Magnesium and Alloys, 2022, 10, 1428-1456.	5.5	59
1411	Effect of crosslinking, hydroxyapatite addition, and fiber alignment to stimulate human mesenchymal stem cells osteoinduction in polycaprolactoneâ€based electrospun scaffolds. Polymers for Advanced Technologies, 2022, 33, 2682-2695.	1.6	0
1412	Fused filament fabrication of polycaprolactone bioscaffolds: Influence of fabrication parameters and thermal environment on geometric fidelity and mechanical properties. Bioprinting, 2022, 27, e00206.	2.9	4
1413	The importance of polymers in the preparation of medical devices for human body applications. , 2022, , 1-39.		0
1414	Design and fabrication of biodegradable electrospun nanofibers loaded with biocidal agents. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 433-459.	1.8	13

		CITATION RE	PORT	
#	Article		IF	Citations
1415	Advances in the polymeric delivery of nucleic acid vaccines. Theranostics, 2022, 12, 408	1-4109.	4.6	23
1416	Biomaterials and Scaffolds for Repair of the Peripheral Nervous System. Reference Series Biomedical Engineering, 2022, , 245-279.	s in	0.1	2
1417	3D-printed Bioresorbable Stent Coated with Dipyridamole-Loaded Nanofiber for Restend and Endothelialization. International Journal of Bioprinting, 2022, 8, 543.	osis Prevention	1.7	4
1418	Thermal degradation of polylactic acid (PLA)/polyhydroxybutyrate (PHB) blends: A system Polymer Degradation and Stability, 2022, 201, 109995.	matic review.	2.7	58
1420	Outcome Analysis of Osseous Ingrowth in an Artificially Created Gap Non-union Using t Biodegradable Polycaprolactone Poly-l-Lactide Polymer Scaffold: Insights from an Experi Indian Journal of Orthopaedics, 0, , .	he Novel 3D mental Study.	0.5	0
1421	Drug eluting titanium implants for localised drug delivery. Journal of Materials Research, 2491-2511.	2022, 37,	1.2	9
1422	Brain drug delivery and neurodegenerative diseases: Polymeric PLGA-based nanoparticle forefront platform. Ageing Research Reviews, 2022, 79, 101658.	s as a	5.0	22
1423	Testing in Living Systems. , 2023, , 317-357.			1
1424	Polyurethanes for Biomedical Applications. ACS Symposium Series, 0, , 363-392.		0.5	1
1425	Biomedical textiles for orthopaedic and surgical applications. , 2022, , 213-253.			0
1426	Fabrication and Characterization of Sericin-PVA Composite Films from <i>Gonometa po <i>Gonometa rufobrunnea</i>, and <i>Argema mimosae</i>: Potentially Applicable in B Omega, 2022, 7, 19328-19336.</i>	stica, iomaterials. ACS	1.6	6
1427	Investigating Potential Effects of Ultra-Short Laser-Textured Porous Poly-Îμ-Caprolacton Bacterial Adhesion and Bone Cell Metabolism. Polymers, 2022, 14, 2382.	e Scaffolds on	2.0	7
1428	Bioengineering Human Tissues and the Future of Vascular Replacement. Circulation Res 109-126.	earch, 2022, 131,	2.0	27
1429	The release kinetic of drug encapsulated poly(L-lactide-co-É-caprolactone) core-shell na fabricated by emulsion electrospinning. Journal of Macromolecular Science - Pure and Ap Chemistry, 0, , 1-15.	nofibers oplied	1.2	2
1430	Tunable Synthesis of Hydrogel Microfibers via Interfacial Tetrazine Ligation. Biomacromo 2022, 23, 3017-3030.	olecules,	2.6	4
1431	Enhanced drug release from a pH-responsive nanocarrier can augment colon cancer trea blocking PD-L1 checkpoint and consuming tumor glucose. Materials and Design, 2022,	tment by 219, 110824.	3.3	9
1432	Recent advancements of nanoparticles application in cancer and neurodegenerative dis- glance. Biomedicine and Pharmacotherapy, 2022, 153, 113305.	orders: At a	2.5	50
1434	Basic polymer concepts II. , 2022, , 49-81.			0

#	Article	IF	CITATIONS
1436	Metal oxide photonic crystals and their application (designing, properties, and applications). , 2022, , 191-204.		0
1437	PLGA Nanoparticles Grafted with Hyaluronic Acid to Improve Site-Specificity and Drug Dose Delivery in Osteoarthritis Nanotherapy. Nanomaterials, 2022, 12, 2248.	1.9	5
1438	Biodegradable polyphosphazene – hydroxyapatite composites for bone tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 1093-1111.	1.8	7
1439	Preparation and Characterization of Poly(lactide-co-glycolide-co-ε-caprolactone)- 1,4-Butanediamine-Modified Poly(lactide-co-glycolide)/Nano-Biaoactive Class-β-Tricalcium Phosphate Composite Scaffolds. Journal of Macromolecular Science - Physics, 2022, 61, 622-635.	0.4	1
1440	Differential Drug Release Kinetics from Paclitaxel-Loaded Polydioxanone Membranes and Capsules. Recent Advances in Drug Delivery and Formulation, 2022, 16, 241-252.	0.3	0
1441	Modified Starch in Composition with Polyvinyl Alcohol as a Basis for Development of the Polymeric Materials for Pharmaceutical Use. Starch/Staerke, 0, , 2200062.	1.1	0
1442	Biopolymeric sustainable materials and their emerging applications. Journal of Environmental Chemical Engineering, 2022, 10, 108159.	3.3	106
1443	Genipin cross-linked chitosan–PVA composite films: An investigation on the impact of cross-linking on accelerating wound healing. Reactive and Functional Polymers, 2022, 178, 105339.	2.0	17
1444	Zinc Ion-crosslinked polycarbonate/heparin composite coatings for biodegradable Zn-alloy stent applications. Colloids and Surfaces B: Biointerfaces, 2022, 218, 112725.	2.5	14
1445	Biodegradable Polymer Matrix Composites Containing Graphene-Related Materials for Antibacterial Applications: A Critical Review. Acta Biomaterialia, 2022, 151, 1-44.	4.1	39
1446	Preparation of CO ₂ â€Based Cationic Polycarbonate/Polyacrylonitrile Nanofibers with an Optimal Fibrous Microstructure for Antibacterial Applications. Macromolecular Bioscience, 2022, 22,	2.1	10
1447	Flavonoid-based polymeric nanoparticles: A promising approach for cancer and diabetes treatment. European Polymer Journal, 2022, 177, 111455.	2.6	9
1448	Additive Manufacturing of Biomaterials—Design Principles and Their Implementation. Materials, 2022, 15, 5457.	1.3	31
1449	Electrospun Polycaprolactone (PCL) Degradation: An In Vitro and In Vivo Study. Polymers, 2022, 14, 3397.	2.0	57
1450	Type 1 diabetes and engineering enhanced islet transplantation. Advanced Drug Delivery Reviews, 2022, 189, 114481.	6.6	13
1451	Biodegradable interbody cages for lumbar spine fusion: Current concepts and future directions. Biomaterials, 2022, 288, 121699.	5.7	18
1452	The Effect of PCL Addition on 3D-Printable PLA/HA Composite Filaments for the Treatment of Bone Defects. Polymers, 2022, 14, 3305.	2.0	23
1453	Tracheal Anatomy and Factors Contributing to Tissue Engineering. Gene, Cell and Tissue, 2022, 10, .	0.2	2

#	Article	IF	CITATIONS
1454	Advanced Electrospun Nanofibrous Stem Cell Niche for Bone Regenerative Engineering. Regenerative Engineering and Translational Medicine, 0, , .	1.6	2
1455	Pellet-Based Fused Filament Fabrication (FFF)-Derived Process for the Development of Polylactic Acid/Hydroxyapatite Scaffolds Dedicated to Bone Regeneration. Materials, 2022, 15, 5615.	1.3	8
1456	Recent Trends in the Development of Polyphosphazenes for Bio-applications. Regenerative Engineering and Translational Medicine, 2023, 9, 202-223.	1.6	3
1457	Environment-friendly transesterification to seawater-degradable polymers expanded: Computational construction guide to breaking points. Chemosphere, 2022, 308, 136381.	4.2	4
1458	Synthesis and properties of ABA-triblock copolymers from polyester A-blocks and easily degradable polyacetal B-blocks. Polymer Chemistry, 2022, 13, 5243-5255.	1.9	6
1459	Aluminium complexes containing indolyl-phenolate ligands as catalysts for ring-opening polymerization of cyclic esters. RSC Advances, 2022, 12, 28052-28058.	1.7	1
1460	Tissue Engineering Strategies in Cleft Palate. , 2022, , 429-438.		1
1461	The exploitation of correlation between mechanobiology of bone fracture healing, osteosynthesis, and biomaterials for optimization process and design principles to develop ame. Journal of Long-Term Effects of Medical Implants, 2022, , .	0.2	0
1462	Applications of Polymers for Drug Delivery, Cancer Therapy and Antibacterial. , 0, 11, 100-106.		0
1464	Additive Manufactured Polymers in Dentistry, Current State-of-the-Art and Future Perspectives-A Review. Polymers, 2022, 14, 3658.	2.0	18
1466	Engineered Magnetic Polymer Nanoparticles Can Ameliorate Breast Cancer Treatment Inducing Pyroptosis–Starvation along with Chemotherapy. ACS Applied Materials & Interfaces, 2022, 14, 42541-42557.	4.0	19
1468	Synthesis, characterization, thermal stability, and inÂvitro and inÂvivo degradation study of polycaprolactone and polyglycolide block copolymers. Journal of Biomaterials Science, Polymer Edition, 2023, 34, 302-314.	1.9	2
1469	Electrospun Polyurethane/Small Intestinal Submucosa Blended Nanofibrous Mats for Potential Wound Healing. Fibers and Polymers, 2022, 23, 2557-2564.	1.1	1
1470	Therapeutic application of hydrogels for bone-related diseases. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	3
1471	<scp>Ringâ€Opening</scp> Polymerization of a <scp>Benzylâ€Protected</scp> Cyclic Ester towards Functional Aliphatic Polyester ^{â€} . Chinese Journal of Chemistry, 2022, 40, 2973-2980.	2.6	6
1472	Factors Controlling Degradation of Biologically Relevant Synthetic Polymers in Solution and Solid State. ACS Applied Bio Materials, 2022, 5, 5057-5076.	2.3	9
1473	Evaluating polymeric biomaterials to improve next generation wound dressing design. Biomaterials Research, 2022, 26, .	3.2	20
1474	Sustainable Biopolymers. , 2022, , 1-31.		0

ARTICLE IF CITATIONS Application Progress of Degradable Materials in Cardiovascular Intervention. Advances in Clinical 1475 0.0 0 Medicine, 2022, 12, 9037-9043. Synthetic (bio)degradable polymers – when does recycling fail?. Green Chemistry, 2023, 25, 13-31. 1476 4.6 Chain-End Functionalization of Poly(ε-caprolactone) for Chemical Binding with Gelatin: Binary Electrospun Scaffolds with Improved Physico-Mechanical Characteristics and Cell Adhesive 1477 3 2.0 Properties. Polymers, 2022, 14, 4203. Development of Biodegradable Polyesters: Study of Variations in Their Morphological and Thermal Properties through Changes in Composition of Alkyl-Substituted (ε-DL) and Non-Substituted (ε-CL, EB,) Tj ETQq1 2.0.784314 rgBT (1478 3D printed polyetheretherketone bone tissue substitute modified via amoxicillin-laden hydroxyapatite 1479 1.7 8 nanocoating. Journal of Materials Science, 2022, 57, 18601-18614. Influence of ceramic phosphate powders on the physicochemical and biological properties of poly(l-lactide). Ceramics International, 2023, 49, 7692-7709. 2.3 Investigating the Effect of PCL Concentrations on the Characterization of PLA Polymeric Blends for 1481 1.3 3 Biomaterial Applications. Materials, 2022, 15, 7396. Advances in Biodegradable Soft Robots. Polymers, 2022, 14, 4574. 2.0 1483 Lactide and Ethylene Brassylate-Based Thermoplastic Elastomers and Their Nanocomposites with 1484 Carbon Nanotubes: Synthesis, Mechanical Properties and Interaction with Astrocytes. Polymers, 2022, 2.0 2 14, 4656. Hydrogels can control the presentation of growth factors and thereby improve their efficacy in 1485 tissue engineering. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 181, 1-21. Evaluation of electrospun PCL diol-based elastomer fibers as a beneficial matrix for vascular tissue 1486 2.5 6 engineering. Colloids and Surfaces B: Biointerfaces, 2022, 220, 112963. Degradation behavior of multilayer packaging films in the presence of a highly acidic sauce. Journal of 2.7 Food Engineering, 2023, 340, 111318. Doxorubicin and tamoxifen loaded graphene oxide nanoparticle functionalized with chitosan and 1488 1.7 4 folic acid for anticancer drug delivery. Polymer Bulletin, 2023, 80, 2171-2185. Influence of PCL and PHBV on PLLA Thermal and Mechanical Properties in Binary and Ternary Polymer 1489 1.7 Blends. Molecules, 2022, 27, 7633. Recent Advances in Biodegradable Polymers and Their Biological Applications: A Brief Review. 1490 2.0 12 Polymers, 2022, 14, 4924. Sustainable Biopolymers., 2023, , 1-31. 1491 Multifunctional Filter Membranes Based on Self-Assembled Core–Shell Biodegradable Nanofibers for 1492 7.3 27 Persistent Electrostatic Filtration through the Triboelectric Effect. ACS Nano, 2022, 16, 19451-19463. PEO/Polymer hybrid coatings on magnesium alloy to improve biodegradation and biocompatibility 1.5 properties. Surfaces and Interfaces, 2023, 36, 102495.

#	Article	IF	CITATIONS
1495	Nanotechnology as a tool to overcome macromolecules delivery issues. Colloids and Surfaces B: Biointerfaces, 2023, 222, 113043.	2.5	11
1496	Nanofiber-coated, tacrolimus-eluting sutures inhibit post-operative neointimal hyperplasia in rats. Journal of Controlled Release, 2023, 353, 96-104.	4.8	1
1497	Biodegradable Polymers in Biomedical Applications: A Focus on Skin and Bone Regeneration. , 2022, , 1-29.		0
1498	Advanced strategies for constructing interfacial tissues of bone and tendon/ligament. Journal of Tissue Engineering, 2022, 13, 204173142211447.	2.3	5
1500	Parametric Numerical Modeling and Fabrication of PCL Scaffolds for Bone Tissue Engineering Applications. Applied Sciences (Switzerland), 2022, 12, 12280.	1.3	1
1501	Physical, Mechanical, and Thermal Properties and Characterization of Natural Fiber Composites Reinforced Poly(Lactic Acid): Miswak (Salvadora Persica L.) Fibers. International Journal of Polymer Science, 2022, 2022, 1-20.	1.2	6
1502	Antibacterial Properties of Honey Nanocomposite Fibrous Meshes. Polymers, 2022, 14, 5155.	2.0	2
1503	Self-therapeutic nanomaterials: Applications in biology and medicine. Materials Today, 2023, 62, 190-224.	8.3	4
1504	A Compendious Review on Biodegradable Polymeric Nanoparticles. Asian Journal of Pharmacy and Technology, 2022, , 371-381.	0.2	0
1505	Hydrophilic Natural Polylysine as Drug Nanocarrier for Preparation of Helical Delivery System. Pharmaceutics, 2022, 14, 2512.	2.0	3
1506	Effects of decellularized extracellular matrix on Polyhydroxybutyrate electrospun scaffolds for cartilage tissue engineering. Polymer-Plastics Technology and Materials, 0, , 1-19.	0.6	1
1507	Polyanhydride Chemistry. Biomacromolecules, 2022, 23, 4959-4984.	2.6	8
1508	Ultrasoundâ€Driven Onâ€Demand Transient Triboelectric Nanogenerator for Subcutaneous Antibacterial Activity. Advanced Science, 2023, 10, .	5.6	34
1509	Biocompatible and biodegradable copper-protocatechuic metal-organic frameworks as rifampicin carrier. , 2023, 146, 213269.		1
1510	Chemical Structures, Properties, and Applications of Selected Crude Oil-Based and Bio-Based Polymers. Polymers, 2022, 14, 5551.	2.0	2
1511	Fabrication of nanofibrous mat surrounded hydrogel scaffold as an encapsulation device for encapsulating pancreas \hat{I}^2 cells. Scientific Reports, 2022, 12, .	1.6	Ο
1512	Electrochemical detection of lead and cadmium ions in water by sensors based on modified track-etched membranes. Sensors and Actuators A: Physical, 2023, 354, 114094.	2.0	3
1513	3D printed polylactic acid/gelatin-nano-hydroxyapatite/platelet-rich plasma scaffold for critical-sized skull defect regeneration. BioMedical Engineering OnLine, 2022, 21, .	1.3	12

# 1514	ARTICLE Dual-Crosslinked Degradable Elastomeric Networks With Self-Healing Properties: Bringing Multi(catechol) Star-Block Copolymers into Play. ACS Applied Materials & Interfaces, 0, , .	IF 4.0	CITATIONS
1515	Risedronate-loaded aerogel scaffolds for bone regeneration. Drug Delivery, 2023, 30, 51-63.	2.5	5
1516	Biodegradable synthetic polymer in orthopaedic application: A review. Materials Today: Proceedings, 2023, 74, 540-546.	0.9	11
1517	Management of Brain Cancer and Neurodegenerative Disorders with Polymer-Based Nanoparticles as a Biocompatible Platform. Molecules, 2023, 28, 841.	1.7	7
1518	Potential antimicrobial and antibiofilm efficacy of essential oil nanoemulsion loaded polycaprolactone nanofibrous dermal patches. European Polymer Journal, 2023, 184, 111782.	2.6	8
1519	Polyphenolic compounds affect the long-term degradation behaviour of polymer and composite materials based on PCL, PLGA, and bioactive glass. Sustainable Materials and Technologies, 2023, 35, e00568.	1.7	2
1520	Surface Modification Techniques for Metallic Biomedical Alloys: A Concise Review. Metals, 2023, 13, 82.	1.0	9
1521	Fabrication and Characterization Techniques of In Vitro 3D Tissue Models. International Journal of Molecular Sciences, 2023, 24, 1912.	1.8	6
1522	Ceramic particle–dispersed polymer composites. , 2023, , 399-432.		0
1523	Recent trends in polymeric composites and blends for three-dimensional printing and bioprinting. , 2023, , 131-157.		1
1524	Plant polysaccharides for orthopedic drug delivery. , 2023, , 513-532.		2
1525	Degradation of biomaterials. , 2023, , 213-259.		0
1526	Smart biomaterials and constructs for Bone tissue regeneration. , 2023, , 177-209.		0
1527	Introduction to biomedical polymer and composites. , 2023, , 1-30.		0
1528	Microfluidic Organ-on-A-chip: A Guide to Biomaterial Choice and Fabrication. International Journal of Molecular Sciences, 2023, 24, 3232.	1.8	22
1529	Bioresorbable Scaffolds for Cardiovascular Tissue Engineering. European Medical Journal Interventional Cardiology, 0, , 91-99.	0.0	24
1530	General overview of biopolymers: structure and properties. ChemistrySelect, 2023, .	0.7	0
1531	Polymer-Based Nanostructures for Pancreatic Beta-Cell Imaging and Non-Invasive Treatment of Diabetes. Pharmaceutics, 2023, 15, 1215.	2.0	0

#	Article	IF	CITATIONS
1532	Thermosensitive TMPO-oxidized lignocellulose/cationic agarose hydrogel loaded with deferasirox nanoparticles for photothermal therapy in melanoma. International Journal of Biological Macromolecules, 2023, 238, 124126.	3.6	9
1533	Human beta defensin-2 loaded PLGA nanoparticles impregnated in collagen-chitosan composite scaffold for the management of diabetic wounds. Biomedicine and Pharmacotherapy, 2023, 161, 114540.	2.5	5
1534	Recent advances in biodegradable polymers – Properties, applications and future prospects. European Polymer Journal, 2023, 192, 112068.	2.6	29
1535	Controlling self-assembling co-polymer coatings of hydrophilic polysaccharide substrates via co-polymer block length ratio. Journal of Colloid and Interface Science, 2023, 640, 809-819.	5.0	3
1536	Biodegradable Polymers for Industrial Applications. , 2022, , 1-26.		0
1537	Preparation of niacinamide imprinted starch-based biomaterials for treating of hyperpigmentation. International Journal of Biological Macromolecules, 2023, 232, 123382.	3.6	3
1538	A simple and fast method for screening production of polymer-ceramic filaments for bone implant printing using commercial fused deposition modelling 3D printers. , 2023, 146, 213317.		8
1539	Method of Starch Acetylation and Use of Acetylated Starch as Polymer in Pharmaceutical Formulations. Research Journal of Pharmacy and Technology, 2022, , 5337-5343.	0.2	0
1540	A Review of 3D Polymeric Scaffolds for Bone Tissue Engineering: Principles, Fabrication Techniques, Immunomodulatory Roles, and Challenges. Bioengineering, 2023, 10, 204.	1.6	19
1541	Antibacterial polyurethane composite scaffolds for minimally invasive alveolar bone repair. Applied Materials Today, 2023, 31, 101752.	2.3	1
1542	Acceleration of Electrospun PLA Degradation by Addition of Gelatin. International Journal of Molecular Sciences, 2023, 24, 3535.	1.8	5
1543	Electrospun Poly(L-lactide-co-ε-caprolactone) Scaffold Potentiates C2C12 Myoblast Bioactivity and Acts as a Stimulus for Cell Commitment in Skeletal Muscle Myogenesis. Bioengineering, 2023, 10, 239.	1.6	2
1544	Design and synthesis of photocrosslinker and light blocker based on l-Amino acid polyester and their application in solvent-free resin formulation for DLP/SLA 3D printing. Polymer, 2023, 270, 125781.	1.8	4
1545	Cannabidiolâ€Loaded Poly Lacticâ€Coâ€Glycolic Acid Nanoparticles with Improved Bioavailability as a Potential for Osteoarthritis Therapeutic. ChemBioChem, 2023, 24, .	1.3	3
1546	The Importance of Polymers in Medicine and Their FTIR and Raman Spectroscopic Investigations. Advances in Chemical and Materials Engineering Book Series, 2023, , 170-187.	0.2	0
1547	Drug Delivery Systems in Regenerative Medicine: An Updated Review. Pharmaceutics, 2023, 15, 695.	2.0	25
1548	A Systematic Review of Different Classes of Biopolymers and Their Use as Antimicrobial Agents. Russian Journal of Bioorganic Chemistry, 0, , .	0.3	0
1549	<scp>3Dâ€Printed</scp> conductive polymeric scaffolds with direct current electrical stimulation for enhanced bone regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2023, 111, 1351-1364.	1.6	2

# 1550	ARTICLE Enzymes and their significance in the industrial bioprocesses. , 2023, , 273-284.	IF	CITATIONS 0
1551	Nanoengineering/technology for diagnosis and treatment of ophthalmic diseases. , 2023, , 165-188.		0
1552	Aligned Polyhydroxyalkanoate Blend Electrospun Fibers as Intraluminal Guidance Scaffolds for Peripheral Nerve Repair. ACS Biomaterials Science and Engineering, 2023, 9, 1472-1485.	2.6	5
1553	Green composites materials as a carrier for pulmonary drug delivery. , 2023, , 131-186.		0
1554	Anisotropic van der Waals dispersion forces in polymers: Structural symmetry breaking leads to enhanced conformational search. Physical Review Research, 2023, 5, .	1.3	5
1555	Biodegradable Polymers for Industrial Applications. , 2023, , 451-476.		0
1556	Sustainable Biopolymers. , 2023, , 319-349.		0
1557	Biodegradable Polymers in Biomedical Applications: A Focus on Skin and Bone Regeneration. , 2023, , 1015-1043.		0
1558	Advances in Antiviral Delivery Systems and Chitosan-Based Polymeric and Nanoparticulate Antivirals and Antiviral Carriers. Viruses, 2023, 15, 647.	1.5	11
1559	Recent Advances in the Application of ATRP in the Synthesis of Drug Delivery Systems. Polymers, 2023, 15, 1234.	2.0	6
1560	Natural rubber latex films with effective growth inhibition against <i>S. aureus</i> via surface conjugated gentamicin. Journal of Bioactive and Compatible Polymers, 0, , 088391152311538.	0.8	0
1561	An Investigation of the Nonlinear Viscoelastic Behavior of PMMA Near the Glass Transition Using the Spectral Hole Burning Method. Advanced Structured Materials, 2023, , 85-97.	0.3	0
1562	Design And Statistical Optimization Of Novel Polyelectrolyte Complex Microbeads To Improve Entrapment Efficiency And Release Study Of Vildagliptin. Recent Advances in Drug Delivery and Formulation, 2023, 17, .	0.3	0
1563	Biodegradable Block Poly(ester amine)s with Pendant Hydroxyl Groups for Biomedical Applications. Polymers, 2023, 15, 1473.	2.0	1
1564	Scaffold Using Chitosan, Agarose, Cellulose, Dextran and Protein for Tissue Engineering—A Review. Polymers, 2023, 15, 1525.	2.0	12
1565	Recent advances in modified poly (lactic acid) as tissue engineering materials. Journal of Biological Engineering, 2023, 17, .	2.0	17
1566	Nature-Inspired Dual Purpose Strategy toward Cell-Adhesive PCL Networks: C(-linker-)RGD Incorporation via Thiol-ene Crosslinking. Biomacromolecules, 2023, 24, 1638-1647.	2.6	2
1567	Polysaccharide-based nanogels for biomedical applications: A comprehensive review. Journal of Drug Delivery Science and Technology, 2023, 84, 104447.	1.4	10

# 1568	ARTICLE Biomaterial strategies to combat implant infections: new perspectives to old challenges. International Materials Reviews, 2023, 68, 1011-1049.	IF 9.4	Citations 3
1569	Exploring microRNAs in craniofacial regenerative medicine. Biochemical Society Transactions, 2023, 51, 841-854.	1.6	2
1570	Natural polysaccharides and their derivatives as potential medical materials and drug delivery systems for the treatment of peripheral nerve injuries. Carbohydrate Polymers, 2023, 315, 120934.	5.1	5
1571	Green nanobiopolymers for ecological applications: a step towards a sustainable environment. RSC Advances, 2023, 13, 12411-12429.	1.7	6
1572	Introduction ofÂSuperabsorbent Polymers. , 2023, , 1-18.		0
1577	Current industrial- and commercial-scale applications of biomolecules. , 2023, , 551-574.		0
1583	Stimuli-responsive dynamic hydrogels: design, properties and tissue engineering applications. Materials Horizons, 2023, 10, 3325-3350.	6.4	16
1594	A Review on Physicochemical Properties of Polymers Used as Filaments in 3D-Printed Tablets. AAPS PharmSciTech, 2023, 24, .	1.5	2
1607	Bone Contouring in Oral and Maxillofacial Surgery: Definition, Indications, and Manufacturing Considerations. , 2023, , 85-100.		0
1608	Polymer Based Biofilms: Development and Clinical Application in Medical Science. , 2024, 2, 275-287.		0
1611	Printability of Pharmaceutical Polymers: Issues and Solutions. AAPS Introductions in the Pharmaceutical Sciences, 2023, , 69-112.	0.1	0
1613	Drug Delivery. , 2023, , 193-214.		0
1614	Natural biopolymers in ophthalmology. , 2023, , 369-405.		0
1624	Polycaprolactone as biomaterial. , 2023, , 425-443.		0
1639	Polymers in drug delivery and targeting. , 2023, , 595-634.		0
1640	Development of 3D-printed biocompatible materials for tendons substitution. , 2024, , 453-465.		0
1641	Bioresorbable polymers for medical applications. , 2023, , 357-400.		0
1642	Biodegradable/bioresorbable polymers for medical applications. , 2023, , 327-355.		0

0

IF ARTICLE CITATIONS Biocompatibility of polymers., 2023, , 87-142. 1643 0 Bioplastic as an Alternative to Microplastic., 2023, , 156-172. 1645 Biology of Resorbable Bone Substitutes: CaP-Based and Polymers., 2023, , 341-376. 1654 0 Designing biodegradable alternatives to commodity polymers. Chemical Society Reviews, 2023, 52, 8085-8105. Role of thermal and reactive oxygen species-responsive synthetic hydrogels in localized cancer 1659 2.6 0 treatment (bibliometric analysis and review). Materials Advances, 2023, 4, 6118-6151. Intestinal retentive systems – recent advances and emerging approaches. Journal of Materials 1662 Chemistry B, O, , . 1663 Role of Block Copolymers in the Treatment of Brain Disorders., 2023, , 121-142. 0 Recent Developments in Metallic Degradable Micromotors for Biomedical and Environmental 1664 14.4 Remediation Applications. Nano-Micro Letters, 2024, 16, . Application of Hydrogels in Cardiac Regeneration. Cardiology and Therapy, 2023, 12, 637-674. 1668 1.1 0 1677 Polymers and Polymeric Composites in Nano/Bio-Medicine., 2023, , 153-176. Polymeric Nanoparticles in Drug Delivery. Advances in Medical Diagnosis, Treatment, and Care, 2023, , 1684 0.1 0 137-177. A review: polysaccharide-based hydrogels and their biomedical applications. Polymer Bulletin, 0, , . Bioresorbable polymers/HNT blend composite wound dressings., 2024, , 385-419. 1692 0 Polymer interactions with blood., 2024, , 457-486.

1694 PCL-based composites and their utilizations in the medical sector. , 2024, , 63-83.