Production, Composition, and Application of Coffee and

Food and Bioprocess Technology 4, 661-672 DOI: 10.1007/s11947-011-0565-z

Citation Report

#	Article	IF	CITATIONS
1	Extraction of antioxidant phenolic compounds from spent coffee grounds. Separation and Purification Technology, 2011, 83, 173-179.	3.9	311
2	A Decolorization Technique with Spent "Greek Coffee―Grounds as Zero-Cost Adsorbents for Industrial Textile Wastewaters. Materials, 2012, 5, 2069-2087.	1.3	46
3	Commercial Coffee Wastes as Materials for Adsorption of Heavy Metals from Aqueous Solutions. Materials, 2012, 5, 1826-1840.	1.3	127
4	Novel, Highly Specific <i>N</i> -Demethylases Enable Bacteria To Live on Caffeine and Related Purine Alkaloids. Journal of Bacteriology, 2012, 194, 2041-2049.	1.0	81
5	Carotenoids of Lettuce (Lactuca sativa L.) Grown on Soil Enriched with Spent Coffee Grounds. Molecules, 2012, 17, 1535-1547.	1.7	80
6	LC-MS Based Screening and Targeted Profiling Methods for Complex Plant: Coffee a Case Study. Current Drug Metabolism, 2012, 13, 1244-1250.	0.7	9
7	Sustainable management of coffee industry by-products and value addition—A review. Resources, Conservation and Recycling, 2012, 66, 45-58.	5.3	662
8	Effect of Mixed Microbial Culture Treatment on the Nutritive Value of Coffee, Green Tea and Oolong Tea Residues and the Effect of the Fermented Residues on in Vitro Rumen Fermentation. APCBEE Procedia, 2012, 4, 66-72.	0.5	5
9	Coffee melanoidins: structures, mechanisms of formation and potential health impacts. Food and Function, 2012, 3, 903.	2.1	229
10	Espresso Coffee Residues: A Valuable Source of Unextracted Compounds. Journal of Agricultural and Food Chemistry, 2012, 60, 7777-7784.	2.4	151
11	Removal of dyes from aqueous solutions with untreated coffee residues as potential low-cost adsorbents: Equilibrium, reuse and thermodynamic approach. Chemical Engineering Journal, 2012, 189-190, 148-159.	6.6	222
12	Sugars metabolism and ethanol production by different yeast strains from coffee industry wastes hydrolysates. Applied Energy, 2012, 92, 763-768.	5.1	193
13	Growth of fungal strains on coffee industry residues with removal of polyphenolic compounds. Biochemical Engineering Journal, 2012, 60, 87-90.	1.8	81
14	Biosorption of strontium from aqueous solutions onto spent coffee grounds. Journal of Radioanalytical and Nuclear Chemistry, 2013, 298, 893-902.	0.7	25
15	Recovery of Natural Antioxidants from Spent Coffee Grounds. Journal of Agricultural and Food Chemistry, 2013, 61, 4162-4168.	2.4	205
16	Maximization of Fructooligosaccharides and Î ² -Fructofuranosidase Production by Aspergillus japonicus under Solid-State Fermentation Conditions. Food and Bioprocess Technology, 2013, 6, 2128-2134.	2.6	50
17	Quality Characterization of Waste Olive Cake During Hot Air Drying: Nutritional Aspects and Antioxidant Activity. Food and Bioprocess Technology, 2013, 6, 1207-1217.	2.6	27
18	Enzymatic Hydrolysis of Spent Coffee Ground. Applied Biochemistry and Biotechnology, 2013, 169, 2248-2262.	1.4	42

#	Article	IF	CITATIONS
19	Determination of the Elemental Composition of Coffee Using Instrumental Methods. Food Analytical Methods, 2013, 6, 598-613.	1.3	70
20	The chemical composition of exhausted coffee waste. Industrial Crops and Products, 2013, 50, 423-429.	2.5	220
21	Generation of biogas from coffee-pulp and cow-dung co-digestion: Infrared studies of postcombustion emissions. Energy Conversion and Management, 2013, 74, 471-481.	4.4	78
22	Complete Utilization of Spent Coffee Grounds To Produce Biodiesel, Bio-Oil, and Biochar. ACS Sustainable Chemistry and Engineering, 2013, 1, 1286-1294.	3.2	246
23	Gaseous products and particulate matter emissions of biomass residential boiler fired with spent coffee grounds pellets. Fuel, 2013, 107, 323-329.	3.4	133
24	FT-NIR spectroscopy as a tool for valorization of spent coffee grounds: Application to assessment of antioxidant properties. Food Research International, 2013, 51, 579-586.	2.9	59
25	Preparation and Characterization of Magnetically Responsive Biosorbents from Coffee Industry Residues. Applied Mechanics and Materials, 0, 394, 3-7.	0.2	7
26	Applicability of ICP-OES, UV-VIS, and FT-IR Methods for the Analysis of Coffee Products. Analytical Letters, 2013, 46, 2927-2940.	1.0	12
28	Copper removal from aqueous systems with coffee wastes as low-cost materials. E3S Web of Conferences, 2013, 1, 25004.	0.2	7
29	The Current Status and Future Expectations in Industrial Production of Lactic Acid by Lactic Acid Bacteria. , 2013, , .		24
30	Energy and Greenhouse Gases Footprint of Food Processing. , 2014, , 82-99.		7
31	A new green approach to Fenton's chemistry using tea dregs and coffee grounds as raw material. Green Processing and Synthesis, 2014, 3, 117-125.	1.3	7
32	Effect of Roasting Conditions on Concentration in Elements of Vietnam Robusta Coffee. Acta Universitatis Cibiniensis Series E: Food Technology, 2014, 18, 19-34.	0.6	10
33	Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using coupled biochemical and thermochemical processes in a multi-stage biorefinery concept. Applied Microbiology and Biotechnology, 2014, 98, 8413-8431.	1.7	52
34	Enhanced biogas production from coffee pulp through deligninocellulosic photocatalytic pretreatment. Energy Science and Engineering, 2014, 2, 177-187.	1.9	38
35	Bioethanol Production from Coffee Mucilage. Energy Procedia, 2014, 57, 950-956.	1.8	20
36	Reusing coffee waste in manufacture of ceramics for construction. Advances in Applied Ceramics, 2014, 113, 159-166.	0.6	40
37	Extraction Behavior of Lipids Obtained from Spent Coffee Grounds Using Supercritical Carbon Dioxide. Chemical Engineering and Technology, 2014, 37, 1975-1981.	0.9	30

#	Article	IF	CITATIONS
38	Antioxidant activity and bioactive compounds of lettuce improved by espresso coffee residues. Food Chemistry, 2014, 145, 95-101.	4.2	34
39	Chemical characterization and antioxidant properties of a new coffee blend with cocoa, coffee silverskin and green coffee minimally processed. Food Research International, 2014, 61, 39-47.	2.9	35
40	Selection of the Solvent and Extraction Conditions for Maximum Recovery of Antioxidant Phenolic Compounds from Coffee Silverskin. Food and Bioprocess Technology, 2014, 7, 1322-1332.	2.6	80
41	A process for reduction in viscosity of coffee extract by enzymatic hydrolysis of mannan. Bioprocess and Biosystems Engineering, 2014, 37, 1459-1467.	1.7	28
42	Optimization of the supercritical fluid coextraction of oil and diterpenes from spent coffee grounds using experimental design and response surface methodology. Journal of Supercritical Fluids, 2014, 85, 165-172.	1.6	98
43	Review on utilization and composition of coffee silverskin. Food Research International, 2014, 61, 16-22.	2.9	98
44	Improvement of vegetables elemental quality by espresso coffee residues. Food Chemistry, 2014, 148, 294-299.	4.2	42
45	Production of polyhydroxyalkanoates from spent coffee grounds oil obtained by supercritical fluid extraction technology. Bioresource Technology, 2014, 157, 360-363.	4.8	110
46	How can science help to create new value in coffee?. Food Research International, 2014, 63, 477-482.	2.9	17
47	Spent coffee grounds for biodiesel production and other applications. Clean Technologies and Environmental Policy, 2014, 16, 1423-1430.	2.1	100
48	Supercritical fluid extraction of spent coffee grounds: Measurement of extraction curves, oil characterization and economic analysis. Journal of Supercritical Fluids, 2014, 86, 150-159.	1.6	98
49	Thermal characterization and pyrolysis kinetics of tropical biomass feedstocks for energy recovery. Energy for Sustainable Development, 2014, 23, 188-193.	2.0	61
50	Coffee Silverskin: Characterization, Possible Uses, and Safety Aspects. Journal of Agricultural and Food Chemistry, 2014, 62, 10836-10844.	2.4	94
51	Isolation, selection and evaluation of yeasts for use in fermentation of coffee beans by the wet process. International Journal of Food Microbiology, 2014, 188, 60-66.	2.1	124
52	Phytochemical and microbiological stability of spent espresso coffee grounds in capsules. Food Research International, 2014, 61, 93-99.	2.9	9
53	Advanced Characterisation of a Coffee Fermenting Tank by Multi-distributed Wireless Sensors: Spatial Interpolation and Phase Space Graphs. Food and Bioprocess Technology, 2014, 7, 3166-3174.	2.6	15
54	Ion beam analysis of ground coffee and roasted coffee beans. Nuclear Instruments & Methods in Physics Research B, 2014, 318, 202-206.	0.6	16
55	Pyrolysis kinetics and physicochemical properties of agropellets produced from spent ground coffee blended with conventional biomass. Chemical Engineering Research and Design, 2014, 92, 1876-1882.	2.7	53

		CITATION R	EPORT	
#	Article		IF	CITATIONS
56	Coffee, mycotoxins and climate change. Food Research International, 2014, 61, 1-15.		2.9	60
57	Optimization of antioxidants extraction from coffee silverskin, a roasting by-product, h a sustainable process. Industrial Crops and Products, 2014, 53, 350-357.	having in view	2.5	114
58	A novel antioxidant beverage for body weight control based on coffee silverskin. Food 2014, 150, 227-234.	Chemistry,	4.2	98
59	Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee S and Bioprocess Technology, 2014, 7, 3493-3503.	ilverskin. Food	2.6	532
60	Identification markers based on fatty acid composition to differentiate between roaste Canephora (Robusta) coffee varieties in mixtures. Journal of Food Composition and An 1-9.	d Arabica and alysis, 2014, 35,	1.9	66
61	Utilization of coffee by-products obtained from semi-washed process for production o compounds. Bioresource Technology, 2014, 166, 142-150.	f value-added	4.8	86
62	MICROBIAL ACTIVITY DURING COFFEE FERMENTATION CR IS T I NA F ER R EIR A SI LVA	., 2014, , 416-449.		0
63	Espresso coffee residues as a nitrogen amendment for small-scale vegetable productio the Science of Food and Agriculture, 2015, 95, 3059-3066.	n. Journal of	1.7	18
64	Experimental Study Of Minimum Ignition Temperature Of Spent Coffee Grounds. Trans VAB: Technical University of Ostrava, Safety Engineering Series, 2015, 10, 1-7.	sactions of the	0.1	0
65	Optimization of Bioethanol Production from Coffee Mucilage. BioResources, 2015, 10		0.5	4
66	Enhanced extraction of phenolic compounds from coffee industry's residues throu fermentation by Penicillium purpurogenum. Food Science and Technology, 2015, 35, 7		0.8	22
67	Capacidade antioxidante em resÃduos da indústria cafeeira. Brazilian Journal of Food 18, 307-313.	Technology, 2015,	0.8	6
68	The influence of extraction parameters on spent coffee grounds as a renewable tannin Journal of Cleaner Production, 2015, 101, 222-228.	resource.	4.6	37
69	A comprehensive review on utilization of wastewater from coffee processing. Environr and Pollution Research, 2015, 22, 6461-6472.	nental Science	2.7	81
70	Biotechnological conversion of spent coffee grounds into polyhydroxyalkanoates and New Biotechnology, 2015, 32, 569-574.	carotenoids.	2.4	111
71	Comprehensive monitoring and management of a long-term thermophilic CSTR treatir grounds, coffee liquid, milk waste, and municipal sludge. Bioresource Technology, 201	g coffee 5, 192, 202-211.	4.8	25
72	Conducting starter culture-controlled fermentations of coffee beans during on-farm w processing: Growth, metabolic analyses and sensorial effects. Food Research Internatio 348-356.		2.9	108
73	What's Inside That Seed We Brew? A New Approach To Mining the Coffee Microbiome Environmental Microbiology, 2015, 81, 6518-6527.	. Applied and	1.4	37

#	Article	IF	CITATIONS
74	Pyrolysis of spent coffee grounds using a screw-conveyor reactor. Fuel Processing Technology, 2015, 137, 170-178.	3.7	81
75	The effect of temperature, heating rate, and ZSM-5 catalyst on the product selectivity of the fast pyrolysis of spent coffee grounds. RSC Advances, 2015, 5, 29252-29261.	1.7	32
76	Characterization of polysaccharides extracted from spent coffee grounds by alkali pretreatment. Carbohydrate Polymers, 2015, 127, 347-354.	5.1	142
77	Green composites based on polypropylene matrix and hydrophobized spend coffee ground (SCG) powder. Composites Part B: Engineering, 2015, 78, 256-265.	5.9	134
78	Bio-based polyurethane foams toward applications beyond thermal insulation. Materials & Design, 2015, 76, 77-85.	5.1	120
79	Coffee fermentation and flavor – An intricate and delicate relationship. Food Chemistry, 2015, 185, 182-191.	4.2	198
80	Antioxidative phenolics obtained from spent coffee grounds (Coffea arabica L.) by subcritical water extraction. Industrial Crops and Products, 2015, 76, 946-954.	2.5	84
81	The Role of Exhausted Coffee Compounds on Metal Ions Sorption. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	22
82	Green nanocomposites filled with spent coffee grounds. Journal of Applied Polymer Science, 2015, 132,	1.3	36
83	Cafestol, a Bioactive Substance in Coffee, Stimulates Insulin Secretion and Increases Glucose Uptake in Muscle Cells: Studies in Vitro. Journal of Natural Products, 2015, 78, 2447-2451.	1.5	53
84	Synergistic effect of lignin/polypropylene as a compatibilizer in multiphase eco-composites. Composites Science and Technology, 2015, 118, 193-197.	3.8	33
85	Analysis of mycotoxins in coffee and risk assessment in Spanish adolescents and adults. Food and Chemical Toxicology, 2015, 86, 225-233.	1.8	68
86	Coffee extract residue for production of ethanol and activated carbons. Journal of Cleaner Production, 2015, 91, 64-70.	4.6	58
87	Revalorization of coffee by-products. Prebiotic, antimicrobial and antioxidant properties. LWT - Food Science and Technology, 2015, 61, 12-18.	2.5	153
88	Phenolic Compounds in Coffee Compared to Other Beverages. , 2015, , 137-142.		11
89	Generating Biomedical Polyphenolic Compounds from Spent Coffee or Silverskin. , 2015, , 93-106.		15
90	A vital stage in the large-scale production of biofuels from spent coffee grounds: The drying kinetics. Fuel Processing Technology, 2015, 130, 188-196.	3.7	59
91	Spent coffee grounds as a renewable source for ecopolyols production. Journal of Chemical Technology and Biotechnology, 2015, 90, 1480-1488.	1.6	38

#	Article	IF	CITATIONS
92	Quantitative Measurement of Caffeine by Optical Methods. , 2016, , 815-826.		1
93	Characterization of Wastes and Coproducts from the Coffee Industry for Composite Material Production. BioResources, 2016, 11, .	0.5	83
94	Fruit Processing in Central America and Mexico. , 2016, , 21-48.		0
95	Challenges in Specialty Coffee Processing and Quality Assurance. Challenges, 2016, 7, 19.	0.9	80
96	Electrochemical Behavior and Determination of Chlorogenic Acid Based on Multi-Walled Carbon Nanotubes Modified Screen-Printed Electrode. Sensors, 2016, 16, 1797.	2.1	32
97	Determination of elemental composition of coffee using UV-pulsed laser induced breakdown spectroscopy. AIP Conference Proceedings, 2016, , .	0.3	6
98	Pulverization of coffee silverskin extract as a source of antioxidant. IOP Conference Series: Materials Science and Engineering, 2016, 162, 012027.	0.3	4
99	Impact of Coffee Grounds Addition on the Calorific Value of the Selected Biological Materials. Agricultural Engineering, 2016, 20, 177-183.	0.2	3
100	Fermentative utilization of coffee mucilage using Bacillus coagulans and investigation of down-stream processing of fermentation broth for optically pure l(+)-lactic acid production. Bioresource Technology, 2016, 211, 398-405.	4.8	84
101	A new technology for the treatment of chromium electroplating wastewater based on biosorption. Journal of Water Process Engineering, 2016, 11, 143-151.	2.6	44
102	Energy recovery from Tunisian agri-food wastes: Evaluation of combustion performance and emissions characteristics of green pellets prepared from tomato residues and grape marc. Energy, 2016, 107, 409-418.	4.5	60
103	Heterogeneous photodegradation of methylene blue with iron and tea or coffee polyphenols in aqueous solutions. Water Science and Technology, 2016, 73, 1872-1881.	1.2	5
104	Applying spent coffee grounds directly to urban agriculture soils greatly reduces plant growth. Urban Forestry and Urban Greening, 2016, 18, 1-8.	2.3	78
105	Evaluation of antioxidant capacity in coffees marketed in Colombia: Relationship with the extent of non-enzymatic browning. Food Chemistry, 2016, 209, 162-170.	4.2	37
106	Strength assessment of spent coffee grounds-geopolymer cement utilizing slag and fly ash precursors. Construction and Building Materials, 2016, 115, 565-575.	3.2	86
107	The anti-biofilm potential of commonly discarded agro-industrial residues against opportunistic pathogens. Industrial Crops and Products, 2016, 87, 150-160.	2.5	21
108	Spent Coffee Bioelastomeric Composite Foams for the Removal of Pb ²⁺ and Hg ²⁺ from Water. ACS Sustainable Chemistry and Engineering, 2016, 4, 5495-5502.	3.2	50
109	In-situ transesterification of wet spent coffee grounds for sustainable biodiesel production. Bioresource Technology, 2016, 221, 55-60.	4.8	113

#	Article	IF	CITATIONS
110	Effect of oil extraction on properties of spent coffee ground–plastic composites. Journal of Materials Science, 2016, 51, 10205-10214.	1.7	45
111	Rejuvenators for Asphalt Binders Using Oil Extracted from Spent Coffee Grounds. , 2016, , .		3
112	Characterization of dietary fiber from coffee silverskin: An optimization study using response surface methodology. Bioactive Carbohydrates and Dietary Fibre, 2016, 8, 58-64.	1.5	26
113	Variability of some diterpene esters in coffee beverages as influenced by brewing procedures. Journal of Food Science and Technology, 2016, 53, 3916-3927.	1.4	26
114	Microencapsulation of natural antioxidants for food application – The specific case of coffee antioxidants – A review. Trends in Food Science and Technology, 2016, 58, 21-39.	7.8	165
115	Growth, ethanol production, and inulinase activity on various inulin substrates by mutant <i>Kluyveromyces marxianus</i> strains NRRL Y-50798 and NRRL Y-50799. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 927-939.	1.4	20
116	Optimization of High Solids Dilute Acid Hydrolysis of Spent Coffee Ground at Mild Temperature for Enzymatic Saccharification and Microbial Oil Fermentation. Applied Biochemistry and Biotechnology, 2016, 180, 753-765.	1.4	19
117	Integration of chlorogenic acid recovery and bioethanol production from spent coffee grounds. Biochemical Engineering Journal, 2016, 116, 54-64.	1.8	53
118	A Superior All-Natural Antioxidant Biomaterial from Spent Coffee Grounds for Polymer Stabilization, Cell Protection, and Food Lipid Preservation. ACS Sustainable Chemistry and Engineering, 2016, 4,	3.2	50
	1169-1179.		
119	Green Coffee Bean. , 2016, , 653-667.		8
119 120		2.9	8
	Green Coffee Bean. , 2016, , 653-667. Hydrothermal liquefaction of spent coffee grounds in water medium for bio-oil production. Biomass	2.9	
120	Green Coffee Bean. , 2016, , 653-667. Hydrothermal liquefaction of spent coffee grounds in water medium for bio-oil production. Biomass and Bioenergy, 2016, 86, 191-198.		131
120 121	Green Coffee Bean., 2016,, 653-667. Hydrothermal liquefaction of spent coffee grounds in water medium for bio-oil production. Biomass and Bioenergy, 2016, 86, 191-198. Coffee and Liver Disease. Journal of Clinical and Experimental Hepatology, 2016, 6, 40-46. Overall adsorption rate of metronidazole, dimetridazole and diatrizoate on activated carbons prepared from coffee residues and almond shells. Journal of Environmental Management, 2016, 169,	0.4	131 46
120 121 122	Green Coffee Bean., 2016,, 653-667. Hydrothermal liquefaction of spent coffee grounds in water medium for bio-oil production. Biomass and Bioenergy, 2016, 86, 191-198. Coffee and Liver Disease. Journal of Clinical and Experimental Hepatology, 2016, 6, 40-46. Overall adsorption rate of metronidazole, dimetridazole and diatrizoate on activated carbons prepared from coffee residues and almond shells. Journal of Environmental Management, 2016, 169, 116-125. Spent Coffee Grounds–Fly Ash Geopolymer Used as an Embankment Structural Fill Material. Journal of	0.4 3.8	131 46 84
120 121 122 123	Green Coffee Bean., 2016,, 653-667. Hydrothermal liquefaction of spent coffee grounds in water medium for bio-oil production. Biomass and Bioenergy, 2016, 86, 191-198. Coffee and Liver Disease. Journal of Clinical and Experimental Hepatology, 2016, 6, 40-46. Overall adsorption rate of metronidazole, dimetridazole and diatrizoate on activated carbons prepared from coffee residues and almond shells. Journal of Environmental Management, 2016, 169, 116-125. Spent Coffee Groundsâć ^{er} Fly Ash Geopolymer Used as an Embankment Structural Fill Material. Journal of Materials in Civil Engineering, 2016, 28, . Rapid assessment of bioactive phenolics and methylxanthines in spent coffee grounds by FT-NIR	0.4 3.8 1.3	131 46 84 63
120 121 122 123 124	Green Coffee Bean., 2016,, 653-667. Hydrothermal liquefaction of spent coffee grounds in water medium for bio-oil production. Biomass and Bioenergy, 2016, 86, 191-198. Coffee and Liver Disease. Journal of Clinical and Experimental Hepatology, 2016, 6, 40-46. Overall adsorption rate of metronidazole, dimetridazole and diatrizoate on activated carbons prepared from coffee residues and almond shells. Journal of Environmental Management, 2016, 169, 116-125. Spent Coffee Groundsâ€"Fly Ash Geopolymer Used as an Embankment Structural Fill Material. Journal of Materials in Civil Engineering, 2016, 28, . Rapid assessment of bioactive phenolics and methylxanthines in spent coffee grounds by FT-NIR spectroscopy. Talanta, 2016, 147, 460-467. Nanoporous γ-alumina based novel sensor to detect trace moisture in high temperature and high	0.4 3.8 1.3 2.9	131 46 84 63 51

~			<u> </u>
	ΤΔΤΙ	ON	Report
<u> </u>			KLI OKI

#	Article	IF	CITATIONS
128	Microbial ecology and starter culture technology in coffee processing. Critical Reviews in Food Science and Nutrition, 2017, 57, 2775-2788.	5.4	86
129	Engineering and environmental evaluation of spent coffee grounds stabilized with industrial by-products as a road subgrade material. Clean Technologies and Environmental Policy, 2017, 19, 63-75.	2.1	28
130	Nanocarbons from acid pretreated Waste Coffee Grounds using microwave radiation. Materials Letters, 2017, 193, 46-49.	1.3	15
131	Microwaveâ€Assisted Valorization of Biowastes to Levulinic Acid. ChemistrySelect, 2017, 2, 1375-1380.	0.7	27
132	Levels of Antioxidant Activity and Fluoride Content in Coffee Infusions of Arabica, Robusta and Green Coffee Beans in According to their Brewing Methods. Biological Trace Element Research, 2017, 179, 327-333.	1.9	35
133	Towards a competitive solid state fermentation: Cellulases production from coffee husk by sequential batch operation and role of microbial diversity. Science of the Total Environment, 2017, 589, 56-65.	3.9	59
134	Impacts of discarded coffee waste on human and environmental health. Ecotoxicology and Environmental Safety, 2017, 141, 30-36.	2.9	78
135	Development of polylactic acid nanocomposite films reinforced with cellulose nanocrystals derived from coffee silverskin. Carbohydrate Polymers, 2017, 169, 495-503.	5.1	166
136	Valorisation of Biowastes for the Production of Green Materials Using Chemical Methods. Topics in Current Chemistry, 2017, 375, 46.	3.0	44
137	Bioethanol production from individual and mixed agricultural biomass residues. Industrial Crops and Products, 2017, 95, 718-725.	2.5	62
138	Integrated electrocoagulation-electrooxidation process for the treatment of soluble coffee effluent: Optimization of COD degradation and operation time analysis. Journal of Environmental Management, 2017, 200, 530-538.	3.8	48
139	Photoluminescence of carbon dots and their applications in Hela cell imaging and Fe3+ ion detection. Journal of Materials Science, 2017, 52, 9979-9989.	1.7	32
140	Compressive strength and microstructural properties of spent coffee grounds-bagasse ash based geopolymers with slag supplements. Journal of Cleaner Production, 2017, 162, 1491-1501.	4.6	60
141	Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chemistry, 2017, 237, 623-631.	4.2	308
142	Effect of industrial and domestic ash from biomass combustion, and spent coffee grounds, on soil fertility and plant growth: experiments at field conditions. Environmental Science and Pollution Research, 2017, 24, 15270-15277.	2.7	38
143	Fast pyrolysis of coffee ground in a tiltedâ€slide reactor and characteristics of biocrude oil. Environmental Progress and Sustainable Energy, 2017, 36, 655-661.	1.3	15
144	Chemical Characterization of Potentially Prebiotic Oligosaccharides in Brewed Coffee and Spent Coffee Grounds. Journal of Agricultural and Food Chemistry, 2017, 65, 2784-2792.	2.4	53
145	Fostering corporate sustainability in the Mexican coffee industry. PSU Research Review, 2017, 1, 51-62.	1.3	1

#	Article	IF	CITATIONS
146	Stiffness and deformation properties of spent coffee grounds based geopolymers. Construction and Building Materials, 2017, 138, 79-87.	3.2	46
147	Waste Biomass Management – A Holistic Approach. , 2017, , .		16
148	Intensified Synthesis of Bioethanol from Sustainable Biomass. , 2017, , 251-287.		2
149	A review for coffee adsorbents. Journal of Molecular Liquids, 2017, 229, 555-565.	2.3	142
150	Utilization of Torrefied Coffee Grounds as Reinforcing Agent To Produce High-Quality Biodegradable PBAT Composites for Food Packaging Applications. ACS Sustainable Chemistry and Engineering, 2017, 5, 1906-1916.	3.2	132
151	Valorisation of Spent Coffee Grounds: Production of Biodiesel via Enzymatic Catalysis with Ethanol and a Co-solvent. Waste and Biomass Valorization, 2017, 8, 1981-1994.	1.8	41
152	Multi-frequency multimode modulated technology as a clean, fast, and sustainable process to recover antioxidants from a coffee by-product. Journal of Cleaner Production, 2017, 168, 14-21.	4.6	26
153	Co-pyrolysis of paper mill sludge and spend coffee ground using CO2 as reaction medium. Journal of CO2 Utilization, 2017, 21, 572-579.	3.3	31
154	Steam explosion pretreatment improved the biomethanization of coffee husks. Bioresource Technology, 2017, 245, 66-72.	4.8	45
155	Process optimization of biogas energy production from cow dung with alkali pre-treated coffee pulp. 3 Biotech, 2017, 7, 254.	1.1	21
156	Optimization of coffee oil extraction from spent coffee grounds using four solvents and prototype-scale extraction using circulation process. Agriculture and Natural Resources, 2017, 51, 181-189.	0.4	46
157	Utilization of chemically treated municipal solid waste (spent coffee bean powder) as reinforcement in cellulose matrix for packaging applications. Waste Management, 2017, 69, 445-454.	3.7	48
158	Cafestol, a Bioactive Substance in Coffee, Has Antidiabetic Properties in KKAy Mice. Journal of Natural Products, 2017, 80, 2353-2359.	1.5	29
159	Spent coffee grounds as heat source for coffee roasting plants: Experimental validation and case study. Applied Thermal Engineering, 2017, 126, 730-736.	3.0	37
160	Diversity of microbiota found in coffee processing wastewater treatment plant. World Journal of Microbiology and Biotechnology, 2017, 33, 211.	1.7	31
162	High Antioxidant Action and Prebiotic Activity of Hydrolyzed Spent Coffee Grounds (HSCG) in a Simulated Digestion–Fermentation Model: Toward the Development of a Novel Food Supplement. Journal of Agricultural and Food Chemistry, 2017, 65, 6452-6459.	2.4	33
163	Recycled glass as a supplementary filler material in spent coffee grounds geopolymers. Construction and Building Materials, 2017, 151, 18-27.	3.2	59
164	Influence of pretreatment and modifiers on subcritical water liquefaction of spent coffee grounds: A green waste valorization approach. Journal of Cleaner Production, 2017, 142, 3719-3727.	4.6	102

#	Article	IF	CITATIONS
165	Use of spent coffee grounds as food ingredient in bakery products. Food Chemistry, 2017, 216, 114-122.	4.2	158
166	Extraction of polysaccharides by autohydrolysis of spent coffee grounds and evaluation of their antioxidant activity. Carbohydrate Polymers, 2017, 157, 258-266.	5.1	99
167	Sustainable biodegradable coffee grounds filler and its effect on the hydrophobicity, mechanical and thermal properties of biodegradable PBAT composites. Journal of Applied Polymer Science, 2017, 134, .	1.3	109
168	Evaluation of the antioxidant capacity, furan compounds and cytoprotective/cytotoxic effects upon Caco-2 cells of commercial Colombian coffee. Food Chemistry, 2017, 219, 364-372.	4.2	38
169	Optimization of autohydrolysis conditions to extract antioxidant phenolic compounds from spent coffee grounds. Journal of Food Engineering, 2017, 199, 1-8.	2.7	88
170	Global Reaction Model to Describe the Kinetics of Catalytic Pyrolysis of Coffee Grounds Waste. Materials Science Forum, 0, 899, 173-178.	0.3	4
171	Mannanase Enzyme from Bacillus subtilis P2-5 with Waste Management. Energy Procedia, 2017, 138, 343-347.	1.8	8
172	Bioprocess for Solid Waste Management. , 2017, , 73-99.		1
173	Using cow dung and spent coffee grounds to enhance the two-stage co-composting of green waste. Bioresource Technology, 2017, 245, 152-161.	4.8	58
174	The biorefinery concept for the industrial valorization of coffee processing by-products. , 2017, , 63-92.		20
175	Energy applications of coffee processing by-products. , 2017, , 323-367.		9
176	State of the art in coffee processing by-products. , 2017, , 1-26.		42
177	Co-Combustion of Fast Pyrolysis Bio-Oil Derived from Coffee Bean Residue and Diesel in an Oil-Fired Furnace. Applied Sciences (Switzerland), 2017, 7, 1085.	1.3	13
178	Antioxidant Activity of Commercial Soluble Coffees. Beverages, 2017, 3, 27.	1.3	5
179	Vermicompost derived from spent coffee grounds: assessing the potential for enzymatic bioremediation. , 2017, , 369-398.		10
180	Comparison and Optimization of solvent extraction and microwave assisted extraction of phenolic compounds from spent coffee grounds , 2017, , .		1
181	Deep eutectic solvent-based valorization of spent coffee grounds. Food Chemistry, 2018, 255, 357-364.	4.2	102
182	Use of coffee byâ€products for the cultivation of <i>Pleurotus citrinopileatus</i> and <i>Pleurotus salmoneoâ€stramineus</i> and its impact on biological properties of extracts thereof. International Journal of Food Science and Technology, 2018, 53, 1914-1924.	1.3	16

IF

CITATIONS

183	Recycling coffee silverskin in sustainable composites based on a poly(butylene) Tj ETQq0 0 0 rgBT /Overlock 10 T Products, 2018, 118, 311-320.	f 50 747 1 2.5	Гd (adipate-co 45
184	Failure Detection in Row Crops From UAV Images Using Morphological Operators. IEEE Geoscience and Remote Sensing Letters, 2018, 15, 991-995.	1.4	39
185	Characterization of the promising poly(3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila. Bioresource Technology, 2018, 256, 552-556.	4.8	94
186	Neutron activation analysis of major and trace elements in Arabica and Robusta coffee beans samples consumed in Algeria. Radiochimica Acta, 2018, 106, 525-533.	0.5	3
187	Increase of content and bioactivity of total phenolic compounds from spent coffee grounds through solid state fermentation by Bacillus clausii. Journal of Food Science and Technology, 2018, 55, 915-923.	1.4	30
188	Application of FTIR Spectroscopy for Assessment of Green Coffee Beans According to Their Origin. Journal of Applied Spectroscopy, 2018, 84, 1051-1055.	0.3	29
189	Thermochemical decomposition of coffee ground residues by TG-MS: A kinetic study. Journal of Analytical and Applied Pyrolysis, 2018, 130, 358-367.	2.6	53
190	Pulsed Electric Field Assisted Extraction of Bioactive Compounds from Cocoa Bean Shell and Coffee Silverskin. Food and Bioprocess Technology, 2018, 11, 818-835.	2.6	103
191	The world's first carbon neutral coffee: Lessons on certification and innovation from a pioneer case in Costa Rica. Journal of Cleaner Production, 2018, 189, 485-501.	4.6	51
192	Sustainable Use of Coffee Husks For Reinforcing Polyethylene Composites. Journal of Polymers and the Environment, 2018, 26, 48-58.	2.4	49
193	Effect of the Addition of Biochar and Coffee Grounds on the Biological Properties and Ecotoxicity of Composts. Waste and Biomass Valorization, 2018, 9, 1389-1398.	1.8	25
194	Direct Dilute Acid Hydrolysis of Spent Coffee Grounds: A New Approach in Sugar and Lipid Recovery. Waste and Biomass Valorization, 2018, 9, 235-246.	1.8	32
195	Assessing the potential of non-harmful, natural feeding deterrents tested on captive primates. International Journal of Pest Management, 2018, 64, 59-65.	0.9	6
196	Nutritional, chemical and antioxidant/pro-oxidant profiles of silverskin, a coffee roasting by-product. Food Chemistry, 2018, 267, 28-35.	4.2	94
197	Assessment of the Physico-Chemical Properties of Waste Cooking Oil and Spent Coffee Grounds Oil for Potential Use as Asphalt Binder Rejuvenators. Waste and Biomass Valorization, 2018, 9, 2125-2132.	1.8	36
198	Evaluation of 5-hydroxymethylfurfural content in non-alcoholic drinks. European Food Research and Technology, 2018, 244, 11-18.	1.6	16
199	Acute Toxicity of Experimental Fertilizers Made of Spent Coffee Grounds. Waste and Biomass Valorization, 2018, 9, 2157-2164.	1.8	29
200	High pressure phase equilibrium of the crude green coffee oil – CO2 – ethanol system and the oil bioactive compounds. Journal of Supercritical Fluids, 2018, 133, 49-57.	1.6	17

ARTICLE

#

#	Article	IF	CITATIONS
201	Customizing the spent coffee for Trichoderma reesei cellulase immobilization by modification with activating agents. International Journal of Biological Macromolecules, 2018, 107, 1856-1863.	3.6	8
202	Chemical composition and value-adding applications of coffee industry by-products: A review. Resources, Conservation and Recycling, 2018, 128, 110-117.	5.3	236
203	Bio-refinery approach for spent coffee grounds valorization. Bioresource Technology, 2018, 247, 1077-1084.	4.8	153
204	Valorization of spent coffee grounds recycling as a potential alternative fuel resource in Turkey: An experimental study. Journal of the Air and Waste Management Association, 2018, 68, 196-214.	0.9	53
205	Determination of selenium in roasted beans coffee samples consumed in Algeria by radiochemical neutron activation analysis method. Radiochimica Acta, 2018, 106, 141-146.	0.5	5
206	Co-combustion of sewage sludge and coffee grounds under increased O2/CO2 atmospheres: Thermodynamic characteristics, kinetics and artificial neural network modeling. Bioresource Technology, 2018, 250, 230-238.	4.8	80
207	Properties of natural rubber filled with untreated and treated spent coffee grounds. Journal of Applied Polymer Science, 2018, 135, 46060.	1.3	23
208	A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites. Waste Management, 2018, 72, 240-254.	3.7	183
209	Production and physicochemical properties of carboxymethyl cellulose films enriched with spent coffee grounds polysaccharides. International Journal of Biological Macromolecules, 2018, 106, 647-655.	3.6	80
210	Effect of whitening toothpaste on the discoloration level of stained conventional glass ionomer cement. Journal of Physics: Conference Series, 2018, 1073, 062013.	0.3	1
211	Environmental Impact Associated with the Supply Chain and Production of Grounding and Roasting Coffee through Life Cycle Analysis. Sustainability, 2018, 10, 4598.	1.6	12
212	Assessment of spent coffee ground (SCG) and coffee silverskin (CS) as refuse derived fuel (RDF). IOP Conference Series: Earth and Environmental Science, 0, 195, 012056.	0.2	9
213	Growth of Black Soldier Fly (<i>Hermetia illucens</i>) Larvae Fed on Spent Coffee Ground. IOP Conference Series: Earth and Environmental Science, 0, 187, 012070.	0.2	15
214	Increasing the Sustainability of the Coffee Agro-Industry: Spent Coffee Grounds as a Source of New Beverages. Beverages, 2018, 4, 105.	1.3	26
215	Hypolipidemic effect of coffee silver skin in rats fed a high-fat diet. Food Science and Human Wellness, 2018, 7, 252-259.	2.2	5
216	Hydrogen Recovery from Hydrogen-Methane Gas Mixture Using Coffee Grounds Based Activated Carbon Bioadsorbent. E3S Web of Conferences, 2018, 67, 02046.	0.2	0
217	Effect of Different Compatibilizers on Sustainable Composites Based on a PHBV/PBAT Matrix Filled with Coffee Silverskin. Polymers, 2018, 10, 1256.	2.0	36
218	"Coffee Bean-Related―Agroecological Factors Affecting the Coffee. Reference Series in Phytochemistry, 2018, , 1-67.	0.2	8

	Сіт	ation Report	
#	Article	IF	CITATIONS
219	Antioxidant extracts of coffee leaves and its active ingredient 5-caffeoylquinic acid reduce chemically-induced inflammation in mice. Industrial Crops and Products, 2018, 126, 48-57.	2.5	23
220	Biobutanol production from coffee silverskin. Microbial Cell Factories, 2018, 17, 154.	1.9	38
221	A non-targeted metabolomic approach based on reversed-phase liquid chromatography–mass spectrometry to evaluate coffee roasting process. Analytical and Bioanalytical Chemistry, 2018, 410, 7859-7870.	1.9	25
222	Malachite Green Adsorption by Spent Coffee Grounds. IOP Conference Series: Materials Science and Engineering, 2018, 318, 012015.	0.3	4
223	Production of xylanolitic enzymes and xylooligosaccharides by Aureobasidium pullulans CCT 1261 in submerged cultivation. Industrial Crops and Products, 2018, 125, 335-345.	2.5	13
224	Circulating Polyphenols Extraction System with High-Voltage Electrical Discharge: Design and Performance Evaluation. ACS Sustainable Chemistry and Engineering, 2018, 6, 15402-15410.	3.2	20
225	Bio-succinic acid production from coffee husk treated with thermochemical and fungal hydrolysis. Bioprocess and Biosystems Engineering, 2018, 41, 1461-1470.	1.7	21
226	Smartphone-based monitoring system of a coffee roaster machine, applied to small industry. , 2018, , .		0
227	Can Elevated Air [CO2] Conditions Mitigate the Predicted Warming Impact on the Quality of Coffee Bean?. Frontiers in Plant Science, 2018, 9, 287.	1.7	59
228	Coffea canephora silverskin from different geographical origins: A comparative study. Science of the Total Environment, 2018, 645, 1021-1028.	3.9	44
229	Integrated strategies for water removal and lipid extraction from coffee industry residues. Sustainable Energy Technologies and Assessments, 2018, 29, 26-35.	1.7	12
230	Valorization of spent coffee ground with wheat or miscanthus straw: Yield improvement by the combined conversion to mushrooms and biomethane. Energy for Sustainable Development, 2018, 45, 171-179.	2.0	6
231	Coffee Silverskin: A Review on Potential Cosmetic Applications. Cosmetics, 2018, 5, 5.	1.5	67
232	Converting environmental risks to benefits by using spent coffee grounds (SCG) as a valuable resource. Environmental Science and Pollution Research, 2018, 25, 35776-35790.	2.7	56
233	Valorizing coffee pulp by-products as anti-inflammatory ingredient of food supplements acting on IL-8 release. Food Research International, 2018, 112, 129-135.	2.9	31
234	Influence of the temperature in the yield and composition of the bio-oil from the pyrolysis of spent coffee grounds: Characterization by comprehensive two dimensional gas chromatography. Fuel, 2018, 232, 572-580.	3.4	46
235	An image processing technique for coffee black beans identification. , 2018, , .		19
236	Contribution of pyrolytic gas medium to the fabrication of co-impregnated biochar. Journal of CO2 Utilization, 2018, 26, 476-486.	3.3	17

#	Article	IF	CITATIONS
237	Environmental and economic viability of Alkali Activated Material (AAM) comprising slag, fly ash and spent coffee ground. International Journal of Sustainable Engineering, 2019, 12, 223-232.	1.9	26
238	Comprehensive evaluation of the life cycle of liquid and solid fuels derived from recycled coffee waste. Resources, Conservation and Recycling, 2019, 150, 104446.	5.3	16
239	Development and validation of a HPLC-DAD method for simultaneous determination of main potential ABE fermentation inhibitors identified in agro-food waste hydrolysates. Microchemical Journal, 2019, 150, 104147.	2.3	7
240	Ultrasoundâ€assisted extraction (UAE) of bioactive compounds from coffee silverskin: Impact on phenolic content, antioxidant activity, and morphological characteristics. Journal of Food Process Engineering, 2019, 42, e13191.	1.5	37
241	How to measure the impact of biogenic residues, wastes and by-products: Development of a national resource monitoring based on the example of Germany. Biomass and Bioenergy, 2019, 127, 105275.	2.9	36
242	Estrogen Receptor-Mediated Transcriptional Activities of Spent Coffee Grounds and Spent Coffee Grounds Compost, and Their Phenolic Acid Constituents. Journal of Agricultural and Food Chemistry, 2019, 67, 8649-8659.	2.4	8
244	Capillary electrophoresis-mass spectrometry metabolic fingerprinting of green and roasted coffee. Journal of Chromatography A, 2019, 1605, 360353.	1.8	19
245	Valorization of spent coffee grounds by supramolecular solvent extraction. Separation and Purification Technology, 2019, 228, 115759.	3.9	48
246	Comparative evaluation of flavor compounds in fermented green and roasted coffee beans by solid phase microextractionâ€gas chromatography/mass spectrometry. Flavour and Fragrance Journal, 2019, 34, 365-376.	1.2	11
247	Response surface methodology to optimise the heat-assisted aqueous extraction of phenolic compounds from coffee parchment and their comprehensive analysis. Food and Function, 2019, 10, 4739-4750.	2.1	30
248	Spent coffee grounds as supporting materials to produce bio-composite PCM with natural waxes. Chemosphere, 2019, 235, 626-635.	4.2	45
249	Conceptualization of a spent coffee grounds biorefinery: A review of existing valorisation approaches. Food and Bioproducts Processing, 2019, 118, 149-166.	1.8	59
250	Soil and transport factors in potential distribution systems for biofertilisers derived from palm oil mill residues in Malaysia. Computers and Electronics in Agriculture, 2019, 166, 105005.	3.7	8
251	Spent coffee grounds cookies: Sensory and texture characteristics, proximate composition, antioxidant activity, and total phenolic content. Journal of Food Processing and Preservation, 2019, 43, e14223.	0.9	15
252	Coffee Silverskin Extract: Nutritional Value, Safety and Effect on Key Biological Functions. Nutrients, 2019, 11, 2693.	1.7	30
253	A Consortium of Three Enzymes: Xylanase, Arabinofuranosidase, and Cellulase from Aspergillus sp. which liquefied Coffee Pulp Wastes. IOP Conference Series: Materials Science and Engineering, 2019, 546, 022013.	0.3	11
254	Analysis of Critical Knowledge in a Coffee Supply Chain. , 2019, , .		3
255	The Optimized Production of 5-(Hydroxymethyl)furfural and Related Products from Spent Coffee Grounds. Applied Sciences (Switzerland), 2019, 9, 3369.	1.3	5

#	Article	IF	CITATIONS
256	Prospect of Fe non-heme on coffee flour made from solid coffee waste: Mini review. IOP Conference Series: Earth and Environmental Science, 2019, 293, 012035.	0.2	4
257	Cellulolytic and Xylanolytic Actinomycetes selection to degrade Lignocellulosic biomass of Robusta coffee pulp (Coffea canephora). IOP Conference Series: Earth and Environmental Science, 2019, 299, 012014.	0.2	3
258	Identification and quantification of phytoprostanes and phytofurans of coffee and cocoa by- and co-products. Food and Function, 2019, 10, 6882-6891.	2.1	12
259	Effect of spent coffee grounds filler on the physical and mechanical properties of poly(lactic acid) bio-composite films. Materials Today: Proceedings, 2019, 17, 2104-2110.	0.9	37
260	Densification behavior of dry spent coffee ground powders: Experimental analysis and predictive methods. Powder Technology, 2019, 357, 149-157.	2.1	9
261	Application of a screening design to recover phytochemicals from spent coffee grounds. Food and Bioproducts Processing, 2019, 118, 50-57.	1.8	14
262	Development and physical-chemical properties of pectin film reinforced with spent coffee grounds by continuous casting. Carbohydrate Polymers, 2019, 210, 92-99.	5.1	75
263	Elemental analysis of Brazilian coffee with ion beam techniques: From ground coffee to the final beverage. Food Research International, 2019, 119, 297-304.	2.9	30
264	Hydrogen Production from Coffee Mucilage in Dark Fermentation with Organic Wastes. Energies, 2019, 12, 71.	1.6	15
265	Caffeine metabolism during cultivation of oyster mushroom (Pleurotus ostreatus) with spent coffee grounds. Applied Microbiology and Biotechnology, 2019, 103, 5831-5841.	1.7	31
266	Effect of gamma radiation as a post-harvest disinfestation treatment against life stages of the coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae). International Journal of Radiation Biology, 2019, 95, 1301-1308.	1.0	8
267	Oxidation resistance of nanoscale zero-valent iron supported on exhausted coffee grounds. Chemosphere, 2019, 234, 179-186.	4.2	7
268	Valorization of spent coffee grounds into biofuels and value-added products: Pathway towards integrated bio-refinery. Fuel, 2019, 254, 115640.	3.4	100
269	High resolution liquid chromatography tandem mass spectrometry for the separation and identification of peptides in coffee silverskin protein hydrolysates. Microchemical Journal, 2019, 149, 103951.	2.3	10
270	Co-feeding spent coffee grounds in anaerobic food waste digesters: Effects of co-substrate and stabilization strategy. Bioresource Technology, 2019, 288, 121594.	4.8	9
271	Environmental impacts of biodiesel production from waste spent coffee grounds and its implementation in a compression ignition engine. Science of the Total Environment, 2019, 675, 13-30.	3.9	45
272	Extrusion Compounding Process for the Development of Eco-Friendly SCG/PP Composite Pellets. Sustainability, 2019, 11, 1720.	1.6	13
273	Use of coffee silverskin to improve the functional properties of cookies. Journal of Food Science and Technology, 2019, 56, 2979-2988.	1.4	25

#	Article	IF	CITATIONS
274	Spent coffee grounds compaction process: Its effects on the strength properties of biofuel pellets. Renewable Energy, 2019, 142, 173-183.	4.3	34
275	Porous frozen material approach to freeze-drying of instant coffee. Drying Technology, 2019, 37, 2126-2136.	1.7	8
276	The mixture of sewage sludge and biomass waste as solid biofuels: Process characteristic and environmental implication. Renewable Energy, 2019, 139, 707-717.	4.3	31
277	Analytical Approaches in Coffee Quality Control. , 2019, , 285-336.		3
278	Lactic Acid Production from a Whole Slurry of Acid-Pretreated Spent Coffee Grounds by Engineered Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology, 2019, 189, 206-216.	1.4	28
279	Wastewater Treatment of Wet Coffee Processing in an Anaerobic Baffled Bioreactor Coupled to Microfiltration System. Current Environmental Engineering, 2019, 6, 45-54.	0.6	6
280	Bacterial community structure of two Mediterranean agricultural soils amended with spent coffee grounds. Applied Soil Ecology, 2019, 137, 12-20.	2.1	13
281	Mechanical and thermal properties of spent coffee bean filler/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biocomposites: Effect of recycling. Chemical Engineering Research and Design, 2019, 124, 187-195.	2.7	28
282	Waste Coffee Ground Biochar: A Material for Humidity Sensors. Sensors, 2019, 19, 801.	2.1	49
283	Integrated valorization of waste cooking oil and spent coffee grounds for biodiesel production: Blending with higher alcohols, FT–IR, TGA, DSC and NMR characterizations. Fuel, 2019, 244, 419-430.	3.4	97
284	A critical review on the possible remediation of sediment in cocoa/coffee flavored milk. Trends in Food Science and Technology, 2019, 86, 199-208.	7.8	17
285	Prioritize the key parameters of Vietnamese coffee industries for sustainability. International Journal of Productivity and Performance Management, 2019, 69, 1153-1176.	2.2	12
286	The Role of ICT in Supporting Spent Coffee Grounds Collection and Valorization: A Quantitative Assessment. Sustainability, 2019, 11, 6572.	1.6	5
287	Volatile profile of green coffee beans from Coffea arabica L. plants grown at different altitudes in Ethiopia. Bulletin of the Chemical Society of Ethiopia, 2019, 33, 401.	0.5	12
288	Using Patent Analysis to Anticipate Technology Trends: A Case of Coffee Processing Technology in		1
	Thailand. , 2019, , .		
289	Comparison of Periodontal Status According to the Additives of Coffee: Evidence from Korean National Health and Nutrition Examination Survey (2013–2015). International Journal of Environmental Research and Public Health, 2019, 16, 4219.	1.2	8
289 290	Comparison of Periodontal Status According to the Additives of Coffee: Evidence from Korean National Health and Nutrition Examination Survey (2013–2015). International Journal of	1.2 0.4	8

#	Article	IF	CITATIONS
292	Fabrication and Properties of Hybrid Coffee-Cellulose Aerogels from Spent Coffee Grounds. Polymers, 2019, 11, 1942.	2.0	24
294	Enzymes in the Beverage Industry. , 2019, , 29-43.		11
295	Physical, chemical and sensory characteristics of fiber-enriched cakes prepared with coffee silverskin as wheat flour substitution. Journal of Food Measurement and Characterization, 2019, 13, 755-763.	1.6	31
296	Thermal insulation improvement in construction materials by adding spent coffee grounds: An experimental and simulation study. Journal of Cleaner Production, 2019, 209, 1411-1419.	4.6	71
297	Characterization of residual biomasses from the coffee production chain and assessment the potential for energy purposes. Biomass and Bioenergy, 2019, 120, 68-76.	2.9	60
298	Spent coffee grounds improve the nutritional value in elements of lettuce (Lactuca sativa L.) and are an ecological alternative to inorganic fertilizers. Food Chemistry, 2019, 282, 1-8.	4.2	52
299	Isothermal combustion characteristics of anthracite and spent coffee grounds briquettes. Journal of Thermal Analysis and Calorimetry, 2019, 136, 1447-1456.	2.0	7
300	Spent coffee grounds: A review on current utilization. Journal of Industrial and Engineering Chemistry, 2019, 71, 78-88.	2.9	169
301	Spent coffee grounds as a renewable source of energy: An analysis of bulk powder flowability. Particuology, 2019, 43, 92-100.	2.0	26
302	New use for spent coffee ground as an adsorbent for tetracycline removal in water. Chemosphere, 2019, 215, 163-172.	4.2	106
303	Green sonochemical synthesis of few-layer graphene in instant coffee. Materials Chemistry and Physics, 2019, 222, 11-19.	2.0	21
304	Taguchi method to improve the production of sugar-rich hydrolysate from non-delipidated spent coffee grounds, and subsequent recovery of lipids and bioactive compounds. Biofuels, 2019, 10, 193-205.	1.4	9
305	Enhancement of Sewage Sludge Bioconversion to Methane by the Addition of Exhausted Coffee Biowaste Liquid Fraction. Waste and Biomass Valorization, 2020, 11, 1125-1130.	1.8	3
306	Bioalcohol production from spent coffee grounds and okara waste biomass by engineered Bacillus subtilis. Biomass Conversion and Biorefinery, 2020, 10, 167-173.	2.9	16
307	Optimisation and characterisation of hydrochar production from spent coffee grounds by hydrothermal carbonisation. Renewable Energy, 2020, 147, 1380-1391.	4.3	100
308	The influence of sorption material preparation on the removal of metal ions from the aqueous solution. Chemistry and Ecology, 2020, 36, 16-29.	0.6	2
309	Effect of yerba mate (<i>llex paraguariensis</i>) residue and coupling agent on the mechanical and thermal properties of polyolefinâ€based composites. Polymer Composites, 2020, 41, 161-173.	2.3	9
310	Sustainable Management and Valorization of Spent Coffee Grounds Through the Optimization of Thin Layer Hot Air-Drying Process. Waste and Biomass Valorization, 2020, 11, 5015-5026.	1.8	16

#	Article	IF	CITATIONS
311	Effect of the drying process on the volatile compounds and sensory quality of agglomerated instant coffee. Drying Technology, 2020, 38, 1421-1432.	1.7	7
312	The potential of coffee stems gasification to provide bioenergy for coffee farms: a case study in the Colombian coffee sector. Biomass Conversion and Biorefinery, 2020, 10, 1137-1152.	2.9	14
313	Phytoremediation of real coffee industry effluent through a continuous two-stage constructed wetland system. Environmental Technology and Innovation, 2020, 17, 100502.	3.0	34
314	The life and times of yeasts in traditional food fermentations. Critical Reviews in Food Science and Nutrition, 2020, 60, 3103-3132.	5.4	46
315	Black Soldier Fly (Hermetia illucens) reared on roasted coffee by-product and Schizochytrium sp. as a sustainable terrestrial ingredient for aquafeeds production. Aquaculture, 2020, 518, 734659.	1.7	60
316	Feeding spent coffee ground powders with a non-mechanical L-valve: Experimental analysis and TFM simulation. Powder Technology, 2020, 360, 1055-1066.	2.1	6
317	Integrating spent coffee grounds and silver skin as biofuels using torrefaction. Renewable Energy, 2020, 148, 275-283.	4.3	18
318	Short-term impact of spent coffee grounds over soil organic matter composition and stability in two contrasted Mediterranean agricultural soils. Journal of Soils and Sediments, 2020, 20, 1182-1198.	1.5	18
319	High-pressure fractionation of spent coffee grounds oil using green solvents. Journal of Supercritical Fluids, 2020, 157, 104689.	1.6	15
320	Thermal Performance Analysis of Ionic Liquidâ€Pretreated Spent Coffee Ground Using Aspen Plus®. Chemical Engineering and Technology, 2020, 43, 2447-2456.	0.9	3
321	Optimization of Chemical Pretreatments Using Response Surface Methodology for Second-Generation Ethanol Production from Coffee Husk Waste. Bioenergy Research, 2021, 14, 815-827.	2.2	18
322	Environmental trade-offs associated with bioenergy from agri-residues in sub-tropical regions: A case study of the Colombian coffee sector. Biomass and Bioenergy, 2020, 140, 105581.	2.9	8
323	Embracing nutritional qualities, biological activities and technological properties of coffee byproducts in functional food formulation. Trends in Food Science and Technology, 2020, 104, 235-261.	7.8	53
324	Optimization of the extraction process of coffee pulp as a source of antioxidant. IOP Conference Series: Earth and Environmental Science, 2020, 443, 012052.	0.2	3
325	Effect of baking conditions on the physical properties of bread incorporated with green coffee beans (GCB). IOP Conference Series: Materials Science and Engineering, 2020, 736, 062019.	0.3	6
326	Biofuels from spent coffee grounds: comparison of processing routes. Biofuels, 2022, 13, 537-543.	1.4	12
327	Characterization of Odor-Active Compounds, Polyphenols, and Fatty Acids in Coffee Silverskin. Molecules, 2020, 25, 2993.	1.7	23
328	Pretreatment of spent coffee grounds with alkaline soju bottle-washing wastewater for enhanced biomethanation. Biomass Conversion and Biorefinery, 2022, 12, 803-808.	2.9	7

#	Article	IF	CITATIONS
329	Subcritical water and supercritical carbon dioxide: efficient and selective eco-compatible solvents for coffee and coffee by-products valorization. Green Chemistry, 2020, 22, 8544-8571.	4.6	34
330	Evaluation of the Use of a Coffee Industry By-Product in a Cereal-Based Extruded Food Product. Foods, 2020, 9, 1008.	1.9	24
331	Effects of drying on physical properties, phenolic compounds and antioxidant capacity of Robusta wet coffee pulp (Coffea canephora). Heliyon, 2020, 6, e04498.	1.4	32
332	Biorefining of Waste Coffee Grounds: Turning an Environmental Problem into an Opportunity. IOP Conference Series: Earth and Environmental Science, 2020, 505, 012026.	0.2	2
333	Feasibility of Vermicomposting of Spent Coffee Grounds and Silverskin from Coffee Industries: A Laboratory Study. Agronomy, 2020, 10, 1125.	1.3	16
334	Occurrence of ochratoxin A and its stereoisomeric degradation product in various types of coffee available in the Czech market. World Mycotoxin Journal, 2020, 13, 97-107.	0.8	7
335	Precision Techniques and Agriculture 4.0 Technologies to Promote Sustainability in the Coffee Sector: State of the Art, Challenges and Future Trends. IEEE Access, 2020, 8, 149854-149867.	2.6	81
336	Applications of Compounds from Coffee Processing By-Products. Biomolecules, 2020, 10, 1219.	1.8	57
337	Simulated gastrointestinal digestion influences the in vitro hypolipidemic properties of coffee pulp, a potential ingredient for the prevention of non-alcoholic fatty liver disease. , 2020, , .		2
338	Spent Coffee Grounds Alter Bacterial Communities in Latxa Dairy Ewes. Microorganisms, 2020, 8, 1961.	1.6	6
339	Coffee Microbiota and Its Potential Use in Sustainable Crop Management. A Review. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	21
340	Torrefaction of Coffee Husk Flour for the Development of Injection-Molded Green Composite Pieces of Polylactide with High Sustainability. Applied Sciences (Switzerland), 2020, 10, 6468.	1.3	22
341	Evaluation of Green Coffee-Roasting Biogas with Modeling Valorization of Possible Solutions. International Journal of Environmental Research and Public Health, 2020, 17, 6947.	1.2	0
342	Feeding spent coffee grounds into reactors: TFM simulation of a non-mechanical spouted bed type feeder. Waste Management, 2020, 109, 161-170.	3.7	5
343	Effect of altitude of coffee plants on the composition of fatty acids of green coffee beans. BMC Chemistry, 2020, 14, 36.	1.6	28
344	The cascade biorefinery approach for the valorization of the spent coffee grounds. Renewable Energy, 2020, 157, 1203-1211.	4.3	31
345	Study of Valorisation Routes of Spent Coffee Grounds. Waste and Biomass Valorization, 2020, 11, 5295-5306.	1.8	17
346	Roasted coffee wastes as a substrate for <i>Escherichia coli</i> to grow and produce hydrogen. FEMS Microbiology Letters, 2020, 367, .	0.7	11

#	Article	IF	CITATIONS
347	Revalorization of Coffee Waste. , 0, , .		9
348	Characterization of coffee parchment and innovative steam explosion treatment to obtain microfibrillated cellulose as potential composite reinforcement. Journal of Materials Research and Technology, 2020, 9, 9412-9421.	2.6	37
349	Silver nanoparticles on hydrolyzed spent coffee grounds (HSCC) for green antibacterial devices. Journal of Cleaner Production, 2020, 268, 122352.	4.6	21
350	Recent Advancement in Bio-precursor derived graphene quantum dots: Synthesis, Characterization and Toxicological Perspective. Nanotechnology, 2020, 31, 292001.	1.3	36
351	Polyol from spent coffee grounds: Performance in a model pour-in-place rigid polyurethane foam system. Journal of Cellular Plastics, 2020, 56, 630-645.	1.2	11
352	Structural characterization of cellulose nanofibers isolated from spent coffee grounds and their composite films with poly(vinyl alcohol): a new non-wood source. Cellulose, 2020, 27, 5017-5028.	2.4	40
353	Unravelling the relationship between aroma compounds and consumer acceptance: Coffee as an example. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 2380-2420.	5.9	30
354	Enzymatic potential for the valorization of agro-industrial by-products. Biotechnology Letters, 2020, 42, 1799-1827.	1.1	33
355	The chemistry of chlorogenic acid from green coffee and its role in attenuation of obesity and diabetes. Preparative Biochemistry and Biotechnology, 2020, 50, 969-978.	1.0	68
356	In silico guided structural and functional analysis of genes with potential involvement in resistance to coffee leaf rust: A functional marker based approach. PLoS ONE, 2020, 15, e0222747.	1.1	13
357	Added-value molecules recovery and biofuels production from spent coffee grounds. Renewable and Sustainable Energy Reviews, 2020, 131, 110007.	8.2	62
358	Valorization of agro-industry residues in the building and environmental sector: A review. Waste Management and Research, 2020, 38, 487-513.	2.2	48
359	The effect of roasting on the total polyphenols and antioxidant activity of coffee. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2020, 55, 495-500.	0.7	37
360	Food waste valorization opportunities for different food industries. , 2020, , 341-422.		20
361	Chemical composition and health properties of coffee and coffee by-products. Advances in Food and Nutrition Research, 2020, 91, 65-96.	1.5	68
362	Determination of coffee fruit antioxidants cultivated in Saudi Arabia under different drying conditions. Journal of Food Measurement and Characterization, 2020, 14, 1306-1313.	1.6	15
363	Evaluation of Potency Spent Coffee Grounds for Make Black Compost. E3S Web of Conferences, 2020, 142, 04002.	0.2	5
364	An analytical method for the simultaneous quantification of 30 bioactive compounds in spent coffee ground by HPLCâ€MS/MS, lournal of Mass Spectrometry, 2020, 55, e4519.	0.7	26

#	Article	IF	CITATIONS
365	Toward sustainable and eco-friendly production of coffee: abatement of wastewater and evaluation of its potential valorization. Clean Technologies and Environmental Policy, 2020, 22, 995-1014.	2.1	17
366	New trends in coffee diterpenes research from technological to health aspects. Food Research International, 2020, 134, 109207.	2.9	42
367	Green Composite of Instant Coffee and Poly(vinyl alcohol): An Excellent Transparent UV-Shielding Material with Superior Thermal-Oxidative Stability. Industrial & Engineering Chemistry Research, 2020, 59, 8640-8648.	1.8	17
368	A new analytical method for the simultaneous quantification of isoflavones and lignans in 25 green coffee samples by HPLC-MS/MS. Food Chemistry, 2020, 325, 126924.	4.2	22
369	Optimisation and characterisation of protein extraction from coffee silverskin assisted by ultrasound or microwave techniques. Biomass Conversion and Biorefinery, 2021, 11, 1575-1585.	2.9	28
370	Transfer kinetics of labeled aroma compounds from liquid media into coffee beans during simulated wet processing conditions. Food Chemistry, 2020, 322, 126779.	4.2	7
371	valorisation of spent coffee grounds as functional feed ingredient improves productive performance of Latxa dairy ewes. Animal Feed Science and Technology, 2020, 264, 114461.	1.1	14
372	Experimental studies on mass transfer during convective drying of spent coffee grounds generated in the soluble coffee industry. Journal of Thermal Analysis and Calorimetry, 2021, 145, 97-107.	2.0	6
373	Development and characterization of biopolymeric films of galactomannans recovered from spent coffee grounds. Journal of Food Engineering, 2021, 289, 110083.	2.7	22
374	Unraveling the science of coffee foam – a comprehensive review. Critical Reviews in Food Science and Nutrition, 2021, 61, 1704-1724.	5.4	10
375	Spent coffee ground as second-generation feedstuff for dairy cattle. Biomass Conversion and Biorefinery, 2021, 11, 589-599.	2.9	16
376	The use of spent coffee grounds in growing media for the production of Brassica seedlings in nurseries. Environmental Science and Pollution Research, 2021, 28, 24279-24290.	2.7	16
377	Structural characterization of native and oxidized procyanidins (condensed tannins) from coffee pulp (Coffea arabica) using phloroglucinolysis and thioglycolysis-HPLC-ESI-MS. Food Chemistry, 2021, 340, 127830.	4.2	26
378	Identification and characterization of Vietnamese coffee bacterial endophytes displaying in vitro antifungal and nematicidal activities. Microbiological Research, 2021, 242, 126613.	2.5	28
379	Novel bio-based composite phase change materials with reduced graphene oxide-functionalized spent coffee grounds for efficient solar-to-thermal energy storage. Solar Energy Materials and Solar Cells, 2021, 219, 110790.	3.0	51
380	Anabolism of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator DSM 545 from spent coffee grounds oil. New Biotechnology, 2021, 60, 12-19.	2.4	11
381	Studies on assessment of safety and nutritional quality of shallot waste fractions. Journal of Food Processing and Preservation, 2021, 45, e15147.	0.9	10
382	Endurance of Phragmites karka in removing colour and suspended solids from industrial coffee processing effluents in a continuous reed bed system. Journal of Water Process Engineering, 2021, 40, 101832	2.6	4

#	Article	IF	CITATIONS
383	Effect of moisture content on the extraction rate of coffee oil from spent coffee grounds using Norflurane as solvent. Chemical Engineering Research and Design, 2021, 165, 172-179.	2.7	11
384	Liquefaction of starch using solid-acid catalysts derived from spent coffee for the production of plasticized poly (vinyl alcohol) films. Carbohydrate Polymers, 2021, 254, 117427.	5.1	6
385	Processing spent coffee ground powders for renewable energy generation: Mechanical dewatering and thermal drying. Chemical Engineering Research and Design, 2021, 146, 300-311.	2.7	4
386	Food waste biorefinery: A case study for spent coffee grounds (SCGs) into bioactive compounds across the European Union. , 2021, , 459-473.		3
387	Spent coffee waste as a renewable source for the production of sustainable poly(butylene succinate) biocomposites from a circular economy perspective. RSC Advances, 2021, 11, 18580-18589.	1.7	25
388	Evaluation of fatty acids, phenolics and bioactivities of spent coffee grounds prepared from Vietnamese coffee. International Journal of Food Properties, 2021, 24, 1548-1558.	1.3	15
389	Coffee and Yeasts: From Flavor to Biotechnology. Fermentation, 2021, 7, 9.	1.4	25
390	Solid Fuel Characteristics of Pellets Comprising Spent Coffee Grounds and Wood Powder. Energies, 2021, 14, 371.	1.6	11
391	Green coffee beans. , 2021, , 725-748.		3
392	Recycling of spent coffee grounds for useful extracts and green composites. RSC Advances, 2021, 11, 2682-2692.	1.7	36
393	Cosmetics—food waste recovery. , 2021, , 503-528.		7
394	The Effect of Heat Removal during Thermophilic Phase on Energetic Aspects of Biowaste Composting Process. Energies, 2021, 14, 1183.	1.6	8
395	Thermo-physical and mechanical characteristics of composites based on high-density polyethylene (HDPE) e spent coffee grounds (SCG). Journal of Polymers and the Environment, 2021, 29, 2888-2900.	2.4	22
396	Potential applications of by-products from the coffee industry in polymer technology – Current state and perspectives. Waste Management, 2021, 121, 296-330.	3.7	42
397	Recycling of spent coffee grounds in construction materials: A review. Journal of Cleaner Production, 2021, 289, 125837.	4.6	71
398	Evaluation of thermochemical routes for the valorization of solid coffee residues to produce biofuels: A Brazilian case. Renewable and Sustainable Energy Reviews, 2021, 137, 110585.	8.2	44
399	Pyrolysis kinetics and activation thermodynamic parameters of exhausted coffee residue and coffee husk using thermogravimetric analysis. Canadian Journal of Chemical Engineering, 2021, 99, 1683-1695.	0.9	12
400	Addition of milk to coffee beverages; the effect on functional, nutritional, and sensorial properties. Critical Reviews in Food Science and Nutrition, 2022, 62, 6132-6152.	5.4	18

#	Article	IF	CITATIONS
401	Spent coffee ground characterization, pelletization test and emissions assessment in the combustion process. Scientific Reports, 2021, 11, 5119.	1.6	46
402	Delineation of groundwater quality locations suitable for target endâ€use purposes through deep neural network models. Journal of Environmental Quality, 2021, 50, 416-428.	1.0	2
403	An integrated forecasting model for the coffee bean supply chain. Applied Economics, 2021, 53, 3321-3333.	1.2	4
404	Biochar of Spent Coffee Grounds as Per Se and Impregnated with TiO2: Promising Waste-Derived Adsorbents for Balofloxacin. Molecules, 2021, 26, 2295.	1.7	29
405	Conversion of Spent Coffee and Donuts by Black Soldier Fly (Hermetia illucens) Larvae into Potential Resources for Animal and Plant Farming. Insects, 2021, 12, 332.	1.0	36
406	Spent ground coffee $\mathbf{\hat{a}} \in$ " awaking the sustainability prospects. Environmental and Toxicology Management, 2021, 1, 1-6.	0.3	9
407	Productivity, conversion ability, and biochemical composition of black soldier fly (Hermetia illucens) larvae fed with sweet potato, spent coffee or dough. International Journal of Tropical Insect Science, 2022, 42, 183-190.	0.4	15
409	Response surface methodology applied to spent coffee residue pyrolysis: effect of temperature and heating rate on product yield and product characterization. Biomass Conversion and Biorefinery, 2023, 13, 3555-3568.	2.9	3
410	Antioxidant and Anti-Inflammatory Profiles of Spent Coffee Ground Extracts for the Treatment of Neurodegeneration. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-19.	1.9	16
411	Coffee by-products derived resources. A review. Biomass and Bioenergy, 2021, 148, 106009.	2.9	38
412	Improved TGA-MS measurements for evolved gas analysis (EGA) during pyrolysis process of various biomass feedstocks. Syngas energy balance determination. Thermochimica Acta, 2021, 699, 178912.	1.2	22
413	Coffee by-products in topical formulations: A review. Trends in Food Science and Technology, 2021, 111, 280-291.	7.8	51
414	Anaerobic digestion of hydrothermal liquefaction wastewater from spent coffee grounds. Biomass and Bioenergy, 2021, 148, 106030.	2.9	14
415	Co-pyrolysis of coffee-grounds and waste polystyrene foam: Synergistic effect and product characteristics analysis. Fuel, 2021, 292, 120375.	3.4	24
416	Influence of Various Factors on Caffeine Content in Coffee Brews. Foods, 2021, 10, 1208.	1.9	23
417	Heavy-Metal Contents and the Impact of Roasting on Polyphenols, Caffeine, and Acrylamide in Specialty Coffee Beans. Foods, 2021, 10, 1310.	1.9	14
418	Coffee Brews: Are They a Source of Macroelements in Human Nutrition?. Foods, 2021, 10, 1328.	1.9	9
419	Caffeinating the biofuels market: Effect of the processing conditions during the production of biofuels and high-value chemicals by hydrothermal treatment of residual coffee pulp. Journal of Cleaner Production, 2021, 302, 127008.	4.6	9

#	Article	IF	CITATIONS
420	Search for Trichoderma isolates from rhizosphere of Coffea arabica for biocontrol against Gibberella xylarioides in some coffee growing area of southeastern Ethiopia. Indian Phytopathology, 0, , 1.	0.7	1
421	Pyrolysed coffee grounds as a conductive host agent for sulfur composite electrodes in Li–S batteries. Carbon Trends, 2021, 4, 100053.	1.4	7
422	Bored Coffee Beans for Production of Hyaluronic Acid by Streptococcus zooepidemicus. Fermentation, 2021, 7, 121.	1.4	5
423	Coffee farming business development: E-commerce technology utilization. IOP Conference Series: Earth and Environmental Science, 2021, 807, 032011.	0.2	4
424	On the design of conical hoppers for spent coffee grounds: Moisture content and particle-size effects. Journal of Food Engineering, 2021, 300, 110537.	2.7	3
425	A comprehensive analysis of operations and mass flows in postharvest processing of washed coffee. Resources, Conservation and Recycling, 2021, 170, 105554.	5.3	11
426	Microbiological and Chemical Characteristics of Wet Coffee Fermentation Inoculated With Hansinaspora uvarum and Pichia kudriavzevii and Their Impact on Coffee Sensory Quality. Frontiers in Microbiology, 2021, 12, 713969.	1.5	20
427	Efficacy of Two New Fungicides Against Colletotrichum Kahawae Infecting Coffee in Kenya. Current Agriculture Research Journal, 2021, 9, 83-90.	0.3	0
428	A Cyber-Physical Data Collection System Integrating Remote Sensing and Wireless Sensor Networks for Coffee Leaf Rust Diagnosis. Sensors, 2021, 21, 5474.	2.1	1
429	Paying for Sustainable Coffee in a Developing Country: Consumers' Profile in Costa Rica. Sustainability, 2021, 13, 9360.	1.6	3
430	Preparation of Activated Carbons from Spent Coffee Grounds and Coffee Parchment and Assessment of Their Adsorbent Efficiency. Processes, 2021, 9, 1396.	1.3	26
431	Innovative applications of freeze-drying to produce compound formula instant foods: A review. Drying Technology, 2022, 40, 2583-2597.	1.7	7
432	Fish skin gelatin based packaging films functionalized by subcritical water extract from spent coffee ground. Food Packaging and Shelf Life, 2021, 29, 100735.	3.3	15
433	Coffee biowaste valorization within circular economy: an evaluation method of spent coffee grounds potentials for mortar production. International Journal of Life Cycle Assessment, 2021, 26, 1805-1815.	2.2	27
434	Green coffee VS dietary supplements: A comparative analysis of bioactive compounds and antioxidant activity. Food and Chemical Toxicology, 2021, 155, 112377.	1.8	11
435	Effect of processing on bioaccessibility and bioavailability of bioactive compounds in coffee beans. Food Bioscience, 2022, 46, 101373.	2.0	21
436	Novel Correlations between Spectroscopic and Morphological Properties of Activated Carbons from Waste Coffee Grounds. Processes, 2021, 9, 1637.	1.3	7
437	Molecular recycling: A key approach to tailor the waste recycling for high-value nano silicon carbide. Journal of Cleaner Production, 2021, 316, 128344.	4.6	8

#	Article	IF	CITATIONS
438	Study on the feasibility of using agricultural waste in the production of concrete blocks. Journal of Building Engineering, 2021, 42, 102491.	1.6	9
439	Utilization of caffeine carbon supported cobalt catalyst in the tandem synthesis of pyrroles from nitroarenes and alkenyl diols. Journal of Catalysis, 2021, 402, 244-254.	3.1	7
440	Conversion of spent coffee grounds into vermicompost. Bioresource Technology, 2021, 341, 125925.	4.8	13
441	A state-of-the-art review on spent coffee ground (SCG) pyrolysis for future biorefinery. Chemosphere, 2022, 286, 131730.	4.2	39
442	The Effect of Atmosphere Media on Temperature and Mass of Torrefacted Coffee Beans. Lecture Notes in Mechanical Engineering, 2021, , 151-160.	0.3	3
443	Metal oxide-doped activated carbons from bakery waste and coffee grounds for application in supercapacitors. Materials Science for Energy Technologies, 2021, 4, 69-80.	1.0	12
444	Valorization of coffee wastes for effective recovery of value-added bio-based products: an aim to enhance the sustainability and productivity of the coffee industry. , 2021, , 199-218.		0
445	Advances in Microbial Bioresources for Sustainable Biofuels Production: Current Research and Future Challenges. Biofuel and Biorefinery Technologies, 2020, , 371-387.	0.1	9
446	"Coffee Bean-Related―Agroecological Factors Affecting the Coffee. Reference Series in Phytochemistry, 2020, , 641-705.	0.2	9
447	A study on the protein fraction of coffee silverskin: Protein/non-protein nitrogen and free and total amino acid profiles. Food Chemistry, 2020, 326, 126940.	4.2	32
448	Spent coffee ground as renewable energy source: Evaluation of the drying processes. Journal of Environmental Management, 2020, 275, 111204.	3.8	24
449	Physicochemical and structural characterization of biochar derived from the pyrolysis of biosolids, cattle manure and spent coffee grounds. Journal of the Energy Institute, 2020, 93, 2063-2073.	2.7	66
450	Chemical Nature of Spent Coffee Grounds and Husks. Australian Journal of Chemistry, 2020, 73, 1284.	0.5	5
451	Changes in antioxidant activities and flavor patterns of Coffea arabica beans during roasting. Korean Journal of Food Preservation, 2014, 21, 224-230.	0.2	18
452	Acute toxicity of experimental fertilizers made of blood meal, spent coffee ground and biomass ash. Journal of Water and Land Development, 2017, 34, 95-102.	0.9	4
453	Brazilian Lignocellulosic Wastes for Bioenergy Production: Characterization and Comparison with Fossil Fuels. BioResources, 2012, 8, .	0.5	47
454	Valorisation of the Residues of Coffee Agro-industry: Perspectives and Limitations. The Open Waste Management Journal, 2017, 10, 13-22.	2.8	55
455	Assessment of Environmental Impact of the Gayo Arabica Coffee Production by Wet Process using Life Cycle Assessment. Acta Universitatis Cibiniensis Series E: Food Technology, 2019, 23, 27-34.	0.6	3

#	Article	IF	CITATIONS
456	Optimization of Batch Conditions and Application to Fixed - Bed Columns for a Sequential Technique of Total Color Removal Using " Greek Coffee―Residues as Materials for Real Dyeing Effluents. Journal of Engineering Science and Technology Review, 2012, 5, 66-75.	0.2	10
457	Coffee crop science metric: A review. Coffee Science, 0, 15, 1-11.	0.5	5
458	APPLICATION OF COFFEE PEEL WASTE AS RAW MATERRIAL FOR XYLOOLIGOSACCHARIDE PRODUCTION. Coffee Science, 2019, 14, 446.	0.5	4
459	Isolation of Thermally Stable Cellulose Nanocrystals from Spent Coffee Grounds via Phosphoric Acid Hydrolysis. Journal of Renewable Materials, 2020, 8, 187-203.	1.1	33
460	Versatile Coffee Carbon Dots as Lead (ii) and Copper (ii) ion Fluorescence Detectors and Copper Corrosion Inhibitor. International Journal of Scientific Research in Science, Engineering and Technology, 2019, , 129-138.	0.1	1
462	Formulation of Nutraceutical Biscuits Based on Dried Spent Coffee Grounds. International Journal of Pharmacology, 2018, 14, 584-594.	0.1	16
463	Influence of Spent Coffee Ground as Fiber Source on Chemical, Rheological and Sensory Properties of Sponge Cake. Pakistan Journal of Biological Sciences, 2019, 22, 273-282.	0.2	8
464	Influence of Gender, Age, Marital Status and Farm Size on Coffee Production: A Case of Kisii County, Kenya. Asian Journal of Agricultural Extension Economics & Sociology, 2015, 5, 117-125.	0.1	11
465	Interest of Coffee Melanoidins as Sustainable Healthier Food Ingredients. Frontiers in Nutrition, 2021, 8, 730343.	1.6	22
466	Superhydrophilic three-dimensional porous spent coffee ground reduced palladium nanoparticles for efficient catalytic reduction. Journal of Colloid and Interface Science, 2022, 608, 1414-1421.	5.0	12
467	Dissecting coffee seeds metabolome in context of genotype, roasting degree, and blending in the Middle East using NMR and GC/MS techniques. Food Chemistry, 2022, 373, 131452.	4.2	24
468	Comparative Analysis of Nanosilver Particles Synthesized by Different Approaches and Their Antimicrobial Efficacy. Journal of Nanomaterials, 2021, 2021, 1-12.	1.5	19
469	Extraction and Chemical Characterization of Functional Phenols and Proteins from Coffee (Coffea) Tj ETQq0 0 0	rgBT /Over 1.8	lock 10 Tf 50
470	Novel food packaging materials including plant-based byproducts: A review. Trends in Food Science and Technology, 2021, 118, 471-489.	7.8	49
471	The effect of fat and coffee concentration on the consumer acceptance of iced offee beverages. Journal of Food Science, 2021, 86, 5004-5015.	1.5	2
472	Characteristics of regional biomass and its use. Journal of Japan Association on Odor Environment, 2012, 43, 112-119.	0.1	1
473	Effect of Mixed Microbial Culture on Fermentation of Beverage Residues and the Effect of the Fermented Beverage Residues on in Vitro Rumen Fermentation and Methane Production. International Journal of Bioscience, Biochemistry, Bioinformatics (IJBBB), 2012, , 349-353.	0.2	1
474	Effect of Byproducts Supplementation by Partically Replacing Soybean Meal to a Total Mixed Ration on Rumen Fermentation Characteristics In Vitro. Journal of the Korean Society of Grassland and Forage Science, 2014, 34, 129-140.	0.1	1

ARTICLE IF CITATIONS Şeker İçeriÄŸi Yüksek Gıdaların Püskürtülerek Kurutulması: Ürün Kazanımı ve Toz Ürün Özelliklerinin 475 GeliÅŸtirilmesi. Turkish Journal of Agriculture: Food Science and Technology, 2016, 4, 336. Studies on Utilization of Coffee Waste. SSRG International Journal of Engineering Trends and 0.3 Technology, 2016, 39, 226-231. Overview of Coffee Waste and Utilization for Biomass Energy Production in Vietnam. Journal of 478 0.2 0 Energy Engineering, 2017, 26, 76-83. Potansiyel Fonksiyonel Bileşen: Kahve ÇekirdeÄŸi Zarı. Akademik Gıda, O, , 66-66. 479 0.5 Essential oil of Coffee arabica L. husks: a brilliant source of antimicrobial and antioxidant agents. 480 0.1 6 Biomedical Research (Aligarh, India), 2018, 29, . Anti-quorum and biofilm formation inhibition by coffee husk oil (Coffee arabica L.). Biomedical 0.1 Research (Aligarh, India), 2018, 29, . Allelopathic Effect of the Coffee Residue in Emergency and <i>Urochloa brizantha</i> 482 0.3 1 Growth. American Journal of Plant Sciences, 2018, 09, 637-644. Effects of Microground Coffee on the Quality Characteristics and Acceptability of Instant Coffee 0.1 supplemented with Probiotics. Culinary Science & Hospitality Research, 2018, 24, 140-150. High yield carbonization and mesoporous activated carbon production from acid-treated spent coffee 484 0.1 0 grounds. Tanso, 2018, 2018, 49-54. Extraction of Caffeine from Spent Coffee Grounds and Oxidative Degradation of Caffeine. Journal of Environmental Science International, 2018, 27, 1205-1214. Glucose Production from Spent Coffee Grounds by Acid Pretreatment and Enzymatic Hydrolysis. KSBB 486 0 0.1 Journal, 2018, 33, 247-252. BIOLOGICAL METABOLITES RECOVERY FROM BEVERAGE PRODUCTION SOLID RESIDUES THROUGH 0.4 ACIDOGENIC FERMENTATION. Detritus, 2019, In Press, 1. Effects of Coffee Bean Grounds on Urochloa brizantha Growth. Journal of Agricultural Science, 488 0.1 0 2019, 11, 381. Physicochemical and Antioxidant Activity Changes during Storage of Green Coffee Beans according to Temperature and Relative Humidity. Journal of the Korean Society of Food Science and Nutrition, 2019, 489 0.2 48, 223-230. High Intensity Ultrasound Assisted Transesterification of Espresso Coffee Oil Methyl Ester: Optimization through Response Surface Methodology Approach. International Journal of Chemical 491 0 0.3Engineering and Applications (IJCEA), 2020, 11, 48-52. Quantitative and Qualitative Evaluation of Fatty Acids in Coffee Oil and Coffee Residue. Food Science and Technology Research, 2020, 26, 545-552. The assessment of bioactive potential and sensory acceptability of coffee and its byproducts- cascara and silverskin. Hrvatski Äasopis Za Prehrambenu Tehnologiju Biotehnologiju I Nutricionizam, 2021, 16, 493 0.2 1 35-40. Sensory Characteristics of Two Kinds of Alcoholic Beverages Produced with Spent Coffee Grounds 494 1.4

Extract Based on Electronic Senses and HS-SPME-GC-MS Analyses. Fermentation, 2021, 7, 254.

#	Article	IF	CITATIONS
495	Biorefinery strategies for microbial bioplastics production: Sustainable pathway towards Circular Bioeconomy. Bioresource Technology Reports, 2022, 17, 100875.	1.5	26
496	Biochemical Methane Potential of Spent Coffee Grounds Via Co-digestion with Food Waste. Bioenergy Research, 0, , 1.	2.2	6
497	Surface Microstructure Study of Self Cured Acrylic Resin after Immersion in Arabica Gayo Coffee. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 0, 48, 62-69.	0.5	0
498	Coffee berry and green bean chemistry – Opportunities for improving cup quality and crop circularity. Food Research International, 2022, 151, 110825.	2.9	27
499	Design and evaluation of non-conventional extraction for bioactive compounds recovery from spent coffee (Coffea arabica L.) grounds. Chemical Engineering Research and Design, 2022, 177, 418-430.	2.7	11
500	Alternative beverages for probiotic foods. European Food Research and Technology, 2022, 248, 301-314.	1.6	7
501	Microalgae cultivation in wastewater from agricultural industries to benefit next generation of bioremediation: a bibliometric analysis. Environmental Science and Pollution Research, 2022, 29, 22708-22720.	2.7	13
502	Reducing sugar production from spent coffee grounds using microbubble-assisted synthesis of silica acid catalyst. Catalysis Today, 2022, 388-389, 3-11.	2.2	7
503	Influence of sequential HTC pre-treatment and pyrolysis on wet food-industry wastes: Optimisation toward nitrogen-rich hierarchical carbonaceous materials intended for use in energy storage solutions. Science of the Total Environment, 2022, 816, 151648.	3.9	11
504	How do green and black coffee brews and bioactive interaction with gut microbiome affect its health outcomes? Mining evidence from mechanistic studies, metagenomics and clinical trials. Trends in Food Science and Technology, 2021, 118, 920-937.	7.8	5
505	Identification of antioxidant components of Gayo Arabica Coffee Cascara using the GC-MS method. IOP Conference Series: Earth and Environmental Science, 2022, 956, 012011.	0.2	2
506	Architectural technologies for life environment: Spent coffee ground reuse in lime-based mortars. A preliminary assessment for innovative green thermo-plasters. Construction and Building Materials, 2022, 319, 126079.	3.2	9
507	Biocarbon from spent coffee ground and their sustainable biocomposites with recycled water bottle and bale wrap: A new life for waste plastics and waste food residues for industrial uses. Composites Part A: Applied Science and Manufacturing, 2022, 154, 106759.	3.8	16
508	Larch Pellets Fabricated with Coffee Waste and the Commercializing Potential of the Pellets. Journal of the Korean Wood Science and Technology, 2018, 46, 48-59.	0.8	6
509	Changes in Physical, Chemical, and Biological Traits During Composting of Spent Coffee Grounds. Korean Journal of Environmental Agriculture, 2020, 39, 178-187.	0.0	2
510	Hypolipidemic Properties of Cocoa and Coffee By-Products after Simulated Gastrointestinal Digestion: A Comparative Approach. Biology and Life Sciences Forum, 2021, 7, 1.	0.6	0
511	Effects of roasting on bioavailability and bioactivities of <i>Vigna angularis</i> and potential of coffeeâ€like beverage. Journal of Food Science, 2022, 87, 911-918.	1.5	2
512	Chemistry potential and application of activated carbon manufactured from coffee grounds in the treatment of wastewater: A review. Materials Today: Proceedings, 2022, 60, 1914-1919.	0.9	6

#	Article	IF	CITATIONS
513	Pectin and cellulose extracted from coffee pulps and their potential in formulating biopolymer films. Biomass Conversion and Biorefinery, 0, , 1.	2.9	6
514	Cadmium and Lead Concentration in Drinking Instant Coffee, Instant Coffee Drinks and Coffee Substitutes: Safety and Health Risk Assessment. Biological Trace Element Research, 2023, 201, 425-434.	1.9	4
515	Valorization of Spent Coffee Grounds as Precursors for Biopolymers and Composite Production. Polymers, 2022, 14, 437.	2.0	21
516	Experimental and modeling investigation on pyrolysis of agricultural biomass residues: Khat stem and coffee husk for bio-oil application. Journal of Analytical and Applied Pyrolysis, 2022, 162, 105435.	2.6	7
517	The Effect of the Chemical Composition on the Sensory Characterization of Ecuadorian Coffee. SSRN Electronic Journal, 0, , .	0.4	0
518	Coffee-Derived Phenolic Compounds Activate Nrf2 Antioxidant Pathway in I/R Injury In Vitro Model: A Nutritional Approach Preventing Age Related-Damages. Molecules, 2022, 27, 1049.	1.7	10
520	Electronic Nose for Analysis of Coffee Beans Obtained from Different Altitudes and Origin. , 2022, , .		3
521	Comparative Life Cycle Assessment of Lightweight Aggregates Made from Waste—Applying the Circular Economy. Applied Sciences (Switzerland), 2022, 12, 1917.	1.3	6
522	Effect of the addition of organic wastes (cork powder, nut shell, coffee grounds and paper sludge) in clays to obtain expanded lightweight aggregates. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2023, 62, 88-105.	0.9	7
523	Molecular imprinting technology and poly (ionic liquid)s: Promising tools with industrial application for the removal of acrylamide and furanic compounds from coffee and other foods. Critical Reviews in Food Science and Nutrition, 2022, , 1-20.	5.4	2
524	Green Synthesis of Zinc Oxide Nanoparticles Using Pomegranate Fruit Peel and Solid Coffee Grounds vs. Chemical Method of Synthesis, with Their Biocompatibility and Antibacterial Properties Investigation. Molecules, 2022, 27, 1236.	1.7	57
525	Optimal extraction condition for the recovery of bioactive compounds and antioxidants from coffee silverskin. Journal of Food Process Engineering, 2022, 45, .	1.5	4
526	Carbon Dots from Coffee Grounds: Synthesis, Characterization, and Detection of Noxious Nitroanilines. Chemosensors, 2022, 10, 113.	1.8	8
527	Metabolomics-Based Approach for Coffee Beverage Improvement in the Context of Processing, Brewing Methods, and Quality Attributes. Foods, 2022, 11, 864.	1.9	15
528	Fabrication of Biochar Materials from Biowaste Coffee Grounds and Assessment of Its Adsorbent Efficiency for Remediation of Water-Soluble Pharmaceuticals. Sustainability, 2022, 14, 2931.	1.6	14
529	Identification of Non-Volatile Compounds Generated during Storage That Impact Flavor Stability of Ready-to-Drink Coffee. Molecules, 2022, 27, 2120.	1.7	4
530	Encapsulation of coffee silverskin extracts by foam mat drying and comparison with powders obtained by spray drying and freezeâ€drying. Journal of Food Science, 2022, 87, 1767-1779.	1.5	10
531	Fermentative Lactic Acid Production From Lignocellulosic Feedstocks: From Source to Purified Product. Frontiers in Chemistry, 2022, 10, 823005.	1.8	41

#	Article	IF	CITATIONS
532	Smart preparation of microporous carbons from spent coffee grounds. Comprehensive characterization and application in explosives removal from water samples. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, , 128889.	2.3	3
533	Comparative Analysis of Selected Chemical Parameters of Coffea arabica, from Cascara to Silverskin. Foods, 2022, 11, 1082.	1.9	8
534	A biorefinery approach for spent coffee grounds valorization using pressurized fluid extraction to produce oil and bioproducts: A systematic review. Bioresource Technology Reports, 2022, 18, 101013.	1.5	7
535	Bioaccessibility and bioactivities of phenolic compounds from roasted coffee beans during in vitro digestion and colonic fermentation. Food Chemistry, 2022, 386, 132794.	4.2	25
536	Exploring cellulolytic microorganisms from coffee industry by-products and their enzyme properties. IOP Conference Series: Earth and Environmental Science, 2021, 924, 012075.	0.2	0
537	Scientometric Overview of Coffee By-Products and Their Applications. Molecules, 2021, 26, 7605.	1.7	19
538	Nonconventional yeasts to produce aroma compounds by using agri-food waste materials. FEMS Yeast Research, 2021, 21, .	1.1	5
539	Valorization of Liquor Waste Derived Spent Coffee Grains for the Development of Injection-Molded Polylactide Pieces of Interest as Disposable Food Packaging and Serving Materials. Foods, 2022, 11, 1162.	1.9	11
540	Preparation of purified spent coffee ground and its reinforcement in natural rubber composite. Arabian Journal of Chemistry, 2022, 15, 103917.	2.3	13
550	Cocoa bean shells: a review into the chemical profile, the bioactivity and the biotransformation to enhance their potential applications in foods. Critical Reviews in Food Science and Nutrition, 2023, 63, 9111-9135.	5.4	3
551	Microalgae cultivation in wastewater from agro-industries: An approach integrated for bioremediation and biomass production. , 2022, , 101-125.		0
552	Effect of heat treatment on physicochemical and sensory properties of selected coffee varieties. European Food Research and Technology, 0, , 1.	1.6	0
553	Molecular Mechanisms of Coffee on Prostate Cancer Prevention. BioMed Research International, 2022, 2022, 1-12.	0.9	5
554	Spent coffee grounds: A sustainable approach toward novel perspectives of valorization. Journal of Food Biochemistry, 2022, 46, e14190.	1.2	10
555	Intensification of freeze-drying rate of coffee extract by vacuum freezing. Innovative Food Science and Emerging Technologies, 2022, 78, 103022.	2.7	5
556	Evaluation of coffee and coffee waste fractions as mineral sources based on their multi-element composition. International Journal of Environmental Analytical Chemistry, 0, , 1-20.	1.8	2
557	Proximate Composition, Antioxidant Activity, Mineral and Lipid Profiling of Spent Coffee Grounds Collected in Morocco Reveal a Great Potential of Valorization. Waste and Biomass Valorization, 2022, 13, 4495-4510.	1.8	14
558	A review on enhanced biofuel production from coffee by-products using different enhancement techniques. Materials for Renewable and Sustainable Energy, 2022, 11, 91-103.	1.5	8

#	Article	IF	CITATIONS
559	An overview of sustainable approaches for bioenergy production from agro-industrial wastes. Energy Nexus, 2022, 6, 100086.	3.3	26
560	Acrylamide in coffee: What is known and what still needs to be explored. A review. Food Chemistry, 2022, 393, 133406.	4.2	13
561	Effects of green coffee bean flour fortification on the chemical and nutritional properties of gluten-free cake. Journal of Food Measurement and Characterization, 0, , .	1.6	1
562	Valorizing Coffee Silverskin Based on Its Phytochemicals and Antidiabetic Potential: From Lab to a Pilot Scale. Foods, 2022, 11, 1671.	1.9	6
563	Preliminary Characterization of Phytochemicals and Polysaccharides in Diverse Coffee Cascara Samples: Identification, Quantification and Discovery of Novel Compounds. Foods, 2022, 11, 1710.	1.9	3
564	A Systematic Mapping Study of Coffee Quality throughout the Production-to-Consumer Chain. Journal of Food Quality, 2022, 2022, 1-18.	1.4	2
565	Synthesis of hybrid carbon aerogels from sugarcane bagasse and coffee grounds for oil adsorption application. Biomass Conversion and Biorefinery, 2024, 14, 2113-2127.	2.9	2
566	Valorization of Coffee Silverskin through Subcritical Water Extraction: An Optimization Based on T-CQA Using Response Surface Methodology. Sustainability, 2022, 14, 8435.	1.6	6
567	Fluidised bed combustion and ash fusibility behaviour of coal and spent coffee grounds blends: CO and NOx emissions, combustion performance and agglomeration tendency. Fuel, 2022, 326, 125008.	3.4	7
568	Valorization of spent coffee grounds for biogas production: A circular bioeconomy approach for a biorefinery. Fuel, 2022, 328, 125296.	3.4	6
570	Impact of a Pretreatment Step on the Acidogenic Fermentation of Spent Coffee Grounds. Bioengineering, 2022, 9, 362.	1.6	1
571	Caffeine. A critical review of contemporary scientific literature. Revista Bionatura, 2022, 7, 1-15.	0.1	0
572	Effects of roasting degrees on phenolic compounds and antioxidant activity in coffee beans from different geographic origins. LWT - Food Science and Technology, 2022, 168, 113965.	2.5	14
573	Enhancing growth environment for attached microalgae to populate onto spent coffee grounds in producing biodiesel. Renewable and Sustainable Energy Reviews, 2022, 169, 112940.	8.2	5
575	Use of Spent Coffee Ground as an Alternative Fuel and Possible Soil Amendment. Materials, 2022, 15, 6722.	1.3	7
576	El procesamiento del grano de café. Del tueste a la infusión. Revista Bionatura, 2022, 7, 1-23.	0.1	0
577	Digestibility, Blood Parameters, Rumen Fermentation, Hematology, and Nitrogen Balance of Goats after Receiving Supplemental Coffee Cherry Pulp as a Source of Phytochemical Nutrients. Veterinary Sciences, 2022, 9, 532.	0.6	7
578	Experimental Evaluation of Coffee Husk Ash as a Filler in Hot Mix Asphalt Concrete Productions. Advances in Civil Engineering, 2022, 2022, 1-12.	0.4	1

#	Article	IF	CITATIONS
579	Enzymatic Potential of Filamentous Fungi as a Biological Pretreatment for Acidogenic Fermentation of Coffee Waste. Biomolecules, 2022, 12, 1284.	1.8	3
580	Insights into the Impact of Activators on the †̃Catalytic' Graphitization to Design Anode Materials for Lithium Ion Batteries. ChemElectroChem, 0, , .	1.7	2
581	Experimental investigation on the combined effect of the water mixing ratio and the addition of spent coffee grounds on plaster's thermo-mechanical properties. Thermal Science and Engineering Progress, 2022, 36, 101488.	1.3	4
582	The effect of the chemical composition on the sensory characterization of Ecuadorian coffee. Current Research in Food Science, 2022, 5, 2022-2032.	2.7	1
583	The Embodiment of Muslim Intention Elements in Buying Halal Food Products: A Literature Review. Sustainability, 2022, 14, 13163.	1.6	4
584	Shade and Altitude Implications on the Physical and Chemical Attributes of Green Coffee Beans from Gorongosa Mountain, Mozambique. Agronomy, 2022, 12, 2540.	1.3	14
585	Effects of Different Processing Methods of Coffee Arabica on Colour, Acrylamide, Caffeine, Chlorogenic Acid, and Polyphenol Content. Foods, 2022, 11, 3295.	1.9	5
586	Microbiome Applications for Sustainable Food Systems. , 2023, , 243-273.		0
587	Pyrolysis of four waste biomasses and elucidation of reaction kinetics and pyrolytic products. Combustion Theory and Modelling, 2022, 26, 1217-1238.	1.0	2
588	Structure, morphology, thermal, and sorption characteristics of epoxidized natural rubber conjugated spent coffee via <scp>oneâ€pot</scp> synthesis. Journal of Applied Polymer Science, 0, , .	1.3	0
589	Evaluation of Physico-Mechanical Properties on Oil Extracted Ground Coffee Waste Reinforced Polyethylene Composite. Polymers, 2022, 14, 4678.	2.0	7
590	Fast Analysis of Caffeic Acid-Related Molecules in Instant Coffee by Reusable Sonogel–Carbon Electrodes. Sensors, 2022, 22, 8448.	2.1	1
591	Bioactive Compounds and Antioxidant Activity from Spent Coffee Grounds as a Powerful Approach for Its Valorization. Molecules, 2022, 27, 7504.	1.7	19
592	Different novel extraction techniques on chemical and functional properties of sugar extracts from spent coffee grounds. AIMS Agriculture and Food, 2022, 7, 897-915.	0.8	0
593	The recovery from agro-industrial wastes provides different profiles of anti-inflammatory polyphenols for tailored applications. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	4
594	Effects of waste coffee grounds on the mechanical properties, flame retardancy and toxic gas production of epoxy composites. Materials and Design, 2022, 224, 111347.	3.3	8
595	A Review on the Applications of Coffee Waste Derived from Primary Processing: Strategies for Revalorization. Processes, 2022, 10, 2436.	1.3	5
596	The enhancement of specific capacitance of carbon derived from spent coffee grounds with SiO2 nanoparticles. Chemical Papers, 2023, 77, 1669-1681.	1.0	1

#	Article	IF	CITATIONS
597	Effect of different chemical surface treatments on interfacial compatibility and properties of polyhydroxyalkanoates/coffee grounds composites. Polymer Composites, 2023, 44, 1175-1187.	2.3	2
598	Comparative study of the rhizosphere microbiome of Coffea arabica grown in different countries reveals a small set of prevalent and keystone taxa. Rhizosphere, 2023, 25, 100652.	1.4	2
599	Treatment Performance Assessment of Natural and Constructed Wetlands on Wastewater From Kege Wet Coffee Processing Plant in Dale Woreda, Sidama Regional State, Ethiopia. Environmental Health Insights, 2022, 16, 117863022211427.	0.6	4
600	Coffee fermentation: Expedition from traditional to controlled process and perspectives for industrialization. Applied Food Research, 2023, 3, 100253.	1.4	22
601	Fundamental Study on Combustion Characteristics of Bio-briquette as Alternative Fuels for Domestic Coffee Stove. IOP Conference Series: Earth and Environmental Science, 2022, 1121, 012013.	0.2	0
602	Hydrothermal Treatment of Coffee Residues for the Production of Pectinases by Paecilomyces Formosus. Waste and Biomass Valorization, 0, , .	1.8	1
603	Risk Assessment of Coffee Cherry (Cascara) Fruit Products for Flour Replacement and Other Alternative Food Uses. Molecules, 2022, 27, 8435.	1.7	7
604	The Physical Properties and Crystallization Kinetics of Biocomposite Films Based on PLLA and Spent Coffee Grounds. Materials, 2022, 15, 8912.	1.3	1
605	Spent Coffee Grounds Valorization in Biorefinery Context to Obtain Valuable Products Using Different Extraction Approaches and Solvents. Plants, 2023, 12, 30.	1.6	4
606	Sustainable Development in the Colombian Post-Conflict—The Impact of Renewable Energies in Coffee-Growing Women. Sustainability, 2023, 15, 1618.	1.6	1
607	Investigation of the mechanical and hygrothermal behavior of coffee ground wastes valorized as a building material: analysis of mix designs performance and sorption curve linearization effect. Archives of Civil and Mechanical Engineering, 2023, 23, .	1.9	3
608	Comparative Study on Adsorption of Crystal Violet and Chromium (VI) by Activated Carbon Derived from Spent Coffee Grounds. Applied Sciences (Switzerland), 2023, 13, 985.	1.3	5
609	Multi-objective operation optimization of spent coffee ground torrefaction for carbon–neutral biochar production. Bioresource Technology, 2023, 370, 128584.	4.8	11
610	Coffee Industry and Ways of Using By-Products as Bioadsorbents for Removal of Pollutants. Water (Switzerland), 2023, 15, 112.	1.2	2
611	Application of Spent Coffee Grounds (SCGs) as a Fuel and Alternative Reducer of Slags from the Copper Industry. Energies, 2023, 16, 2415.	1.6	2
612	The potential of adopting natural fibers reinforcements for fused deposition modeling: Characterization and implications. Heliyon, 2023, 9, e15023.	1.4	5
613	Advances in the Food Packaging Production from Agri-Food Waste and By-Products: Market Trends for a Sustainable Development. Sustainability, 2023, 15, 6153.	1.6	8
614	Spent coffee grounds and orange peel residues based biorefinery for microbial oil and biodiesel conversion estimation. Renewable Energy, 2023, 209, 382-392.	4.3	6

#	Article	IF	CITATIONS
615	Rheology and microstructure effects of waste spent coffee grounds in modifying asphalt binder. , 2023, 1, .		2
616	Green synthesis of carbon dots from spent coffee grounds via ball-milling: Application in fluorescent chemosensors. Journal of Cleaner Production, 2023, 392, 136250.	4.6	16
617	Characteristics of Bio Pellets from Spent Coffee Grounds and Pinewood Charcoal Based on Composition and Grinding Method. Journal of the Korean Wood Science and Technology, 2023, 51, 23-37.	0.8	5
618	First report on the occurrence of aflatoxin B1 in coffee marketed in eastern Algeria. International Journal of Environmental Studies, 0, , 1-9.	0.7	Ο
619	Comparative transcriptome analysis in peaberry and regular bean coffee to identify bean quality associated genes. BMC Genomic Data, 2023, 24, .	0.7	2
620	Slow Pyrolysis of Specialty Coffee Residues towards the Circular Economy in Rural Areas. Energies, 2023, 16, 2300.	1.6	0
621	"Sustainab-lizationâ€: Sustainability and Digitalization as a Strategy for Resilience in the Coffee Sector. Sustainability, 2023, 15, 4893.	1.6	4
622	Trends in removal of pharmaceuticals in contaminated water using waste coffee and teaâ€based materials with their derivatives. Water Environment Research, 2023, 95, .	1.3	1
623	An environmental and economic sustainability assessment of coffee production in the UK. Chemical Engineering Journal, 2023, 465, 142793.	6.6	7
624	Developing PMMA/Coffee Husk Green Composites to Meet the Individual Requirements of People with Disabilities: Hip Spacer Case Study. Journal of Functional Biomaterials, 2023, 14, 200.	1.8	4
625	Formulation of Edible Films Based on W/O/W Emulsions Stabilized by Coffee Byproducts. Food and Bioprocess Technology, 2023, 16, 2531-2540.	2.6	1
626	Development of Biscuit Products from Coffee Cherry Pulp. Journal of Culinary Science and Technology, 0, , 1-21.	0.6	1
627	Value-Added Products from Coffee Waste: A Review. Molecules, 2023, 28, 3562.	1.7	15
637	1.8. Caffeine Extraction from Tea and Coffee. , 2016, , 30-34.		0
642	Conversion of Cellulosic Raw Feed Stock Into Cellulose Nanocrystals (CNC). Advances in Business Strategy and Competitive Advantage Book Series, 2023, , 283-300.	0.2	0
655	Spent coffee ground: transformation from environmental burden into valuable bioactive metabolites. Reviews in Environmental Science and Biotechnology, 0, , .	3.9	1
660	Potential of coffee waste as nanocomposite and activated carbon for efficiency removal of PFOA and PFOS in water. AIP Conference Proceedings, 2023, , .	0.3	0
664	A comprehensive overview of eco-friendly bio-fertilizers extracted from living organisms. Environmental Science and Pollution Research, 2023, 30, 113119-113137.	2.7	3

 CITATION REPORT

 #
 ARTICLE
 IF
 CITATIONS

 675
 Extraction of coffee and tea., 2024,, 247-277.
 o

 681
 Potential Application of Agro-Industrial Byproduct for Bacterial Cellulose Production; Its Challenges
 0.4
 o

 691
 Polyethylene terephthalate ultrafiltration membrane for separation and purification process of coffee pulp extract solution. AIP Conference Proceedings, 2024, ,...
 0.3
 o