The effect of CD47 modified polymer surfaces on inflam activation

Biomaterials 32, 4317-4326 DOI: 10.1016/j.biomaterials.2011.02.053

Citation Report

#	Article	IF	CITATIONS
1	Nanomedicine and Drug Delivery Strategies for Treatment of Genetic Diseases. , 0, , .		1
2	Selective Cell Recruitment and Spatially Controlled Cell Attachment on Instructive Chitosan Surfaces Functionalized with Antibodies. Biointerphases, 2012, 7, 65.	1.6	18
3	Challenges in design and characterization of ligand-targeted drug delivery systems. Journal of Controlled Release, 2012, 164, 125-137.	9.9	227
4	Erythrocyteâ€Inspired Delivery Systems. Advanced Healthcare Materials, 2012, 1, 537-547.	7.6	237
5	Strategies for delivery of therapeutics into the central nervous system for treatment of lysosomal storage disorders. Drug Delivery and Translational Research, 2012, 2, 169-186.	5.8	44
6	Diminished adhesion and activation of platelets and neutrophils with CD47 functionalized blood contacting surfaces. Biomaterials, 2012, 33, 5803-5811.	11.4	50
7	Correlating macrophage morphology and cytokine production resulting from biomaterial contact. Journal of Biomedical Materials Research - Part A, 2013, 101A, 203-212.	4.0	98
8	Liposome-like nanostructures for drug delivery. Journal of Materials Chemistry B, 2013, 1, 6569.	5.8	173
9	Hemocompatibility of chitosan/poly(acrylic acid) grafted polyurethane tubing. Journal of Materials Chemistry B, 2013, 1, 6382.	5.8	16
10	Intracellular signaling mechanisms associated with CD47 modified surfaces. Biomaterials, 2013, 34, 8640-8649.	11.4	17
11	Hyaluronan and dextran modified tubes resist cellular activation with blood contact. Colloids and Surfaces B: Biointerfaces, 2013, 108, 44-51.	5.0	9
12	Minimal "Self" Peptides That Inhibit Phagocytic Clearance and Enhance Delivery of Nanoparticles. Science, 2013, 339, 971-975.	12.6	809
13	â€~Marker-of-self' functionalization of nanoscale particles through a top-down cellular membrane coating approach. Nanoscale, 2013, 5, 2664.	5.6	253
14	Lysosomes and Nanotherapeutics: Diseases, Treatments, and Side Effects. Frontiers in Nanobiomedical Research, 2014, , 261-305.	0.1	2
15	Receptor-targeted drug delivery: current perspective and challenges. Therapeutic Delivery, 2014, 5, 1007-1024.	2.2	51
16	Addressing the Inflammatory Response to Clinically Relevant Polymers by Manipulating the Host Response Using ITIM Domain-Containing Receptors. Polymers, 2014, 6, 2526-2551.	4.5	22
17	Vascular Targeting of Nanocarriers: Perplexing Aspects of the Seemingly Straightforward Paradigm. ACS Nano, 2014, 8, 4100-4132.	14.6	154
18	Polymeric nanotherapeutics: clinical development and advances in stealth functionalization strategies. Nanoscale, 2014, 6, 65-75.	5.6	167

TATION REDO

#	Article	IF	CITATIONS
19	Biodegradable poly(ester urethane)urea elastomers with variable amino content for subsequent functionalization with phosphorylcholine. Acta Biomaterialia, 2014, 10, 4639-4649.	8.3	66
20	The Use of the Ex Vivo Chandler Loop Apparatus to Assess the Biocompatibility of Modified Polymeric Blood Conduits. Journal of Visualized Experiments, 2014, , .	0.3	10
21	CD47 Enhances <i>In Vivo</i> Functionality of Artificial Antigen-Presenting Cells. Clinical Cancer Research, 2015, 21, 2075-2083.	7.0	23
22	Nanocomposited silicone hydrogels with a laser-assisted surface modification for inhibiting the growth of bacterial biofilm. Journal of Materials Chemistry B, 2015, 3, 3234-3241.	5.8	9
23	Healing with medical implants: The body battles back. Science Translational Medicine, 2015, 7, 272fs4.	12.4	28
24	Perspectives on the Inflammatory, Healing, and Foreign Body Responses to Biomaterials and Medical Devices. , 2015, , 13-36.		17
25	The Biocompatibility of Implant Materials. , 2015, , 37-51.		26
26	Thiol Click Modification of Cyclic Disulfide Containing Biodegradable Polyurethane Urea Elastomers. Biomacromolecules, 2015, 16, 1622-1633.	5.4	32
27	Biomaterials for Cardiac Regeneration. , 2015, , .		5
28	Interplay between Cellular and Molecular Inflammatory Mediators in Lung Cancer. Mediators of Inflammation, 2016, 2016, 1-11.	3.0	29
29	Enhanced biocompatibility of CD47-functionalized vascular stents. Biomaterials, 2016, 87, 82-92.	11.4	37
30	Modulation of Immune Responses by Particulate Materials. Advanced Materials, 2016, 28, 5525-5541.	21.0	66
31	The use of CD47-modified biomaterials to mitigate the immune response. Experimental Biology and Medicine, 2016, 241, 1033-1041.	2.4	22
32	Biomolecular strategies to modulate the macrophage response to implanted materials. Journal of Materials Chemistry B, 2016, 4, 1600-1609.	5.8	61
33	Incorporation of a Ligand Peptide for Immune Inhibitory Receptor LAIRâ€1 on Biomaterial Surfaces Inhibits Macrophage Inflammatory Responses. Advanced Healthcare Materials, 2017, 6, 1700707.	7.6	20
34	Co-coating of receptor-targeted drug nanocarriers with anti-phagocytic moieties enhances specific tissue uptake versus non-specific phagocytic clearance. Biomaterials, 2017, 147, 14-25.	11.4	26
35	Red Blood Cells for Drug Delivery. Small Methods, 2017, 1, 1700270.	8.6	62
36	Linker-free covalent immobilization of heparin, SDF-1α, and CD47 on PTFE surface for antithrombogenicity, endothelialization and anti-inflammation. Biomaterials, 2017, 140, 201-211.	11.4	80

CITATION REPORT

# 37	ARTICLE Plenty more room on the glass bottom: Surface functionalization and nanobiotechnology for cell isolation. Nano Research, 2018, 11, 5107-5129.	lF 10.4	CITATIONS 8
38	Stabilization of dry protein coatings with compatible solutes. Biointerphases, 2018, 13, 06E401.	1.6	8
39	Understanding and utilizing the biomolecule/nanosystems interface. , 2018, , 207-297.		19
40	The quest for blood-compatible materials: Recent advances and future technologies. Materials Science and Engineering Reports, 2019, 138, 118-152.	31.8	66
41	Immuneâ€Informed Mucin Hydrogels Evade Fibrotic Foreign Body Response In Vivo. Advanced Functional Materials, 2019, 29, 1902581.	14.9	34
42	Cell isolation via spiral microfluidics and the secondary anchor targeted cell release system. AICHE Journal, 2019, 65, e16844.	3.6	1
43	Stealth functionalization of biomaterials and nanoparticles by CD47 mimicry. International Journal of Pharmaceutics, 2019, 569, 118628.	5.2	30
44	Bijel-templated implantable biomaterials for enhancing tissue integration and vascularization. Acta Biomaterialia, 2019, 94, 173-182.	8.3	27
45	Mechanobiology of Macrophages: How Physical Factors Coregulate Macrophage Plasticity and Phagocytosis. Annual Review of Biomedical Engineering, 2019, 21, 267-297.	12.3	148
46	Biomaterials: Been There, Done That, and Evolving into the Future. Annual Review of Biomedical Engineering, 2019, 21, 171-191.	12.3	82
47	Thermosensitive Exosome–Liposome Hybrid Nanoparticleâ€Mediated Chemoimmunotherapy for Improved Treatment of Metastatic Peritoneal Cancer. Advanced Science, 2020, 7, 2000515.	11.2	99
48	Development of an immunosuppressive camouflage-coating platform with nanocellulose and cell membrane vesicles. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 1912-1924.	3.5	3
49	Antifibrotic strategies for medical devices. Advanced Drug Delivery Reviews, 2020, 167, 109-120.	13.7	36
50	Is CD47 a potentially promising therapeutic target in cardiovascular diseases? — Role of CD47 in cardiovascular diseases. Life Sciences, 2020, 247, 117426.	4.3	9
51	Stability and bioactivity of pepCD47 attachment on stainless steel surfaces. Acta Biomaterialia, 2020, 104, 231-240.	8.3	7
52	Blockade of macrophage adhesion to CD200 â€ŧreated polystyrene culture surface. Journal of Biomedical Materials Research - Part A, 2021, 109, 365-373.	4.0	1
53	Biocompatibility Evolves: Phenomenology to Toxicology to Regeneration. Advanced Healthcare Materials, 2021, 10, e2002153.	7.6	46
54	Immunological and Phenotypic Considerations in Supplementing Cardiac Biomaterials with Cells. , 2015, , 239-273.		2

CITATION REPORT

#	Article	IF	CITATIONS
55	Host Response to Implanted Materials and Devices: An Overview. , 2017, , 1-14.		5
56	Implications of the Acute and Chronic Inflammatory Response and the Foreign Body Reaction to the Immune Response of Implanted Biomaterials. , 2017, , 15-36.		18
57	Studies of combined NO-eluting/CD47-modified polyurethane surfaces for synergistic enhancement of biocompatibility. Colloids and Surfaces B: Biointerfaces, 2020, 192, 111060.	5.0	8
58	<i>In Vivo</i> Sensors for Continuous Monitoring of Blood Gases, Glucose, and Lactate: Biocompatibility Challenges and Potential Solutions. RSC Detection Science, 2013, , 129-155.	0.0	4
59	CD47 on artificial structures. Aging, 2015, 7, 513-514.	3.1	3
60	CD47-retargeted oncolytic adenovirus armed with melanoma differentiation-associated gene-7/interleukin-24 suppresses in vivo leukemia cell growth. Oncotarget, 2015, 6, 43496-43507.	1.8	8
62	Mitigation of Blood Borne Cell Attachment to Metal Implants through CD47-Derived Peptide Immobilization. Journal of Visualized Experiments, 2020, , .	0.3	1
63	Less phagocytosis of viral vectors by tethering with CD47 ectodomain. Journal of Materials Chemistry B, 2021, 10, 64-77.	5.8	2
64	Human CD47-Derived Cyclic Peptides Enhance Engulfment of mAb-Targeted Melanoma by Primary Macrophages. Bioconjugate Chemistry, 2022, 33, 1973-1982.	3.6	2
65	Suppressing or Enhancing Macrophage Engulfment through the Use of CD47 and Related Peptides. Bioconjugate Chemistry, 2022, 33, 1989-1995.	3.6	8
66	Applications of Extracellular Vesicles in Abdominal Aortic Aneurysm. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	5
67	Construction of tissue-engineered vascular grafts with high patency by mimicking immune stealth and blocking TGF-β mediated endothelial-to-mesenchymal transition. Composites Part B: Engineering, 2023, 251, 110487.	12.0	5
68	Nanoparticle delivery through the BBB in central nervous system tuberculosis. , 2023, 9, 43-62.		1
70	Hypercholesterolemia exacerbates in-stent restenosis in rabbits: Studies of the mitigating effect of stent surface modification with a CD47-derived peptide. Atherosclerosis, 2024, 390, 117432.	0.8	0
71	Covalently grafted human serum albumin coating mitigates the foreign body response against silicone implants in mice. Bioactive Materials, 2024, 34, 482-493.	15.6	1

CITATION REPORT