The identification of synthetic organic pigments in moduling pyrolysis-gas chromatography–mass spectrom

Analytical and Bioanalytical Chemistry 400, 1473-1491 DOI: 10.1007/s00216-011-4822-9

Citation Report

#	Article	IF	CITATIONS
1	Investigation of the materials found in the studio of Francis Bacon (1909–1992). Studies in Conservation, 2012, 57, 195-206.	0.6	9
2	The materials and techniques used in the paintings of Francis Bacon (1909–1992). Studies in Conservation, 2012, 57, 207-217.	0.6	7
3	Acrylic and Vinyl Resins Identification by Pyrolysis-Gas Chromatography/Mass Spectrometry: A Study of Cases in Modern Art Conservation. Analytical Letters, 2013, 46, 1869-1884.	1.0	12
4	Multivariate analysis studies of the ageing effect for artist's oil paints containing modern organic pigments. Surface and Interface Analysis, 2014, 46, 786-790.	0.8	1
5	The use of laser pyrolysis–GC–MS for the analysis of paint cross sections. Journal of Analytical and Applied Pyrolysis, 2014, 105, 327-334.	2.6	12
6	The use of Raman microscopy and laser desorption ionization mass spectrometry in the examination of synthetic organic pigments in modern works of art. Journal of Raman Spectroscopy, 2014, 45, 448-455.	1.2	17
7	Formation of highly toxic hydrogen cyanide upon ruby laser irradiation of the tattoo pigment phthalocyanine blue. Scientific Reports, 2015, 5, 12915.	1.6	47
8	Py-GC/MS applied to the analysis of synthetic organic pigments: characterization and identification in paint samples. Analytical and Bioanalytical Chemistry, 2015, 407, 1415-1431.	1.9	51
9	Durable and flexible graphene composites based on artists' paint for conductive paper applications. Carbon, 2015, 87, 163-174.	5.4	41
10	Pyrolysis gas chromatography mass spectrometry of two green phthalocyanine pigments and their identification in paint systems. Journal of Analytical and Applied Pyrolysis, 2015, 115, 175-183.	2.6	16
11	A multi-analytical study on the photochemical degradation of synthetic organic pigments. Dyes and Pigments, 2015, 123, 396-403.	2.0	51
12	Trends in High Performance Liquid Chromatography for Cultural Heritage. Topics in Current Chemistry, 2016, 374, 20.	3.0	33
13	Multi-analytical investigation on felt-tip pen inks: Formulation and preliminary photo-degradation study. Microchemical Journal, 2016, 124, 919-928.	2.3	16
14	Identification and hazard prediction of tattoo pigments by means of pyrolysis—gas chromatography/mass spectrometry. Archives of Toxicology, 2016, 90, 1639-1650.	1.9	36
15	Revealing the composition of organic materials in polychrome works of art: the role of mass spectrometry-based techniques. Analytical and Bioanalytical Chemistry, 2016, 408, 6957-6981.	1.9	30
16	Influence of phthalocyanine pigments on the photo-degradation of alkyd artists' paints under different conditions of artificial solar radiation. Polymer Degradation and Stability, 2016, 134, 157-168.	2.7	36
17	Analytical Approaches Based on Gas Chromatography Mass Spectrometry (GC/MS) to Study Organic Materials in Artworks and Archaeological Objects. Topics in Current Chemistry, 2016, 374, 6.	3.0	49
18	Chemical characterisation of spray paints by a multi-analytical (Py/GC–MS, FTIR, μ-Raman) approach. Microchemical Journal, 2016, 124, 929-939.	2.3	50

#	Article	IF	CITATIONS
19	A chemical study of organic materials in three murals by Keith Haring: A comparison of painting techniques. Microchemical Journal, 2016, 124, 940-948.	2.3	38
20	Identification and imaging of modern paints using Secondary Ion Mass Spectrometry with MeV ions. Nuclear Instruments & Methods in Physics Research B, 2017, 406, 296-301.	0.6	8
21	HPLC-DAD and HPLC-ESI-Q-ToF characterisation of early 20th century lake and organic pigments from Lefranc archives. Heritage Science, 2017, 5, .	1.0	37
22	Synthesis of Historical Azo Pigments: The Challenge and Opportunity of the Nearly Forgotten. MRS Advances, 2017, 2, 2007-2019.	0.5	3
23	Photostability and influence of phthalocyanine pigments on the photodegradation of acrylic paints under accelerated solar radiation. Polymer Degradation and Stability, 2017, 146, 13-23.	2.7	20
24	Pyrolysis gas chromatography–mass spectrometry of triarylmethane dyes. Journal of Analytical and Applied Pyrolysis, 2017, 127, 229-239.	2.6	16
25	Forensic applications of direct analysis in real time (DART) coupled to Q-orbitrap tandem mass spectrometry for the in situ analysis of pigments from paint evidence. Forensic Science International, 2017, 277, 179-187.	1.3	15
26	A colourful bond between art and chemistry. Foundations of Chemistry, 2017, 19, 125-138.	0.4	1
27	Direct and indirect approaches based on paper analysis by Py-GC/MS for estimating the age of documents. Journal of Analytical and Applied Pyrolysis, 2018, 131, 9-16.	2.6	20
28	Spectroscopic methods for the identification and photostability study of red synthetic organic pigments in alkyd and acrylic paints. Microchemical Journal, 2018, 139, 155-163.	2.3	19
29	Chemical composition of felt-tip pen inks. Analytical and Bioanalytical Chemistry, 2018, 410, 1079-1094.	1.9	25
30	A preliminary study on the physicochemical properties of pigmented Sty/nBA/MMA emulsion films: The effect of thermal ageing. Polymer Degradation and Stability, 2018, 158, 157-167.	2.7	2
31	Mass Spectrometric Analysis of Synthetic Organic Pigments. Journal of AOAC INTERNATIONAL, 2018, 101, 1328-1340.	0.7	2
32	Analytical characterization of artist's paint systems based on emulsion polymers and synthetic organic pigments. Journal of Analytical and Applied Pyrolysis, 2018, 135, 231-241.	2.6	21
33	A novel methodological approach for the assessment of surface cleaning of acrylic emulsion paints. Microchemical Journal, 2018, 141, 25-39.	2.3	13
34	Triarylmethine dyes: Characterization of isomers using integrated mass spectrometry. Dyes and Pigments, 2019, 160, 587-596.	2.0	29
35	OPLS multivariate regression of FTIR-ATR spectra of acrylic paints for age estimation in contemporary artworks. Talanta, 2019, 205, 120114.	2.9	20
36	Unmasking Art Forgery: Scientific Approaches. , 2019, , 381-406.		20

#	Article	IF	CITATIONS
37	Synthetic materials in art: a new comprehensive approach for the characterization of multi-material artworks by analytical pyrolysis. Heritage Science, 2019, 7, .	1.0	34
38	The deposition from the Cross in the church of Saint-Germain-en-Laye (France): A masterpiece of Romanesque sculpture? Materials characterization to solve a 20th c. mystery. Journal of Cultural Heritage, 2019, 40, 133-142.	1.5	2
39	Disclosing the composition of historical commercial felt-tip pens used in art by integrated vibrational spectroscopy and pyrolysis-gas chromatography/mass spectrometry. Journal of Cultural Heritage, 2019, 35, 242-253.	1.5	15
40	Non-invasive identification of synthetic organic pigments in contemporary art paints by visible–excited spectrofluorimetry and visible reflectance spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 229, 117907.	2.0	10
42	Identification of Synthetic Organic Pigments (SOPs) Used in Modern Artist's Paints with Secondary Ion Mass Spectrometry with MeV Ions. Analytical Chemistry, 2020, 92, 9287-9294.	3.2	10
43	Chemistry of modern paint media: The strained and collapsed painting by Alexis Harding. Microchemical Journal, 2020, 155, 104659.	2.3	11
44	Painting on polyurethane foam: "Composizione-Superficie Lunare―by Giulio Turcato. Microchemical Journal, 2020, 156, 104872.	2.3	7
45	Development of a method based on highâ€performance liquid chromatography coupled with diode array, fluorescence, and mass spectrometric detectors for the analysis of eosin at trace levels. Separation Science Plus, 2020, 3, 207-215.	0.3	9
46	Discoloration of Historical Plastic Objects: New Insight into the Degradation of β-Naphthol Pigment Lakes. Polymers, 2021, 13, 2278.	2.0	11
47	Analytical approaches for the characterization of early synthetic organic pigments for artists' paints. Microchemical Journal, 2021, 170, 106708.	2.3	11
48	PLS-DA and data fusion of visible Reflectance, XRF and FTIR spectroscopy in the classification of mixed historical pigments. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 265, 120384.	2.0	18
49	A Study on Conservation of Outdoor Painted Sculptures: Niki de Saint Phalle's 'Black Nana'. Journal of Conservation Science, 2016, 32, 333-343.	0.1	5
50	Comparison Study on the Material Characteristics of Oil Paints (I). Journal of Conservation Science, 2017, 33, 85-95.	0.1	0
51	An in-and-out-the-lab Raman spectroscopy study on street art murals from Reggio Emilia in Italy. European Physical Journal Plus, 2022, 137, 1.	1.2	10
52	Mass spectrometry in art conservation—With focus on paintings. Mass Spectrometry Reviews, 2023, 42, 1625-1646.	2.8	2
53	The Nucleus of Color: Analysis of Hélio Oiticica's Studio Materials. Studies in Conservation, 2023, 68, 627-656.	0.6	1
54	Analysis of Natural and Synthetic Organic Lakes and Pigments by Chromatographic and Mass Spectrometric Techniques. Cultural Heritage Science, 2022, , 247-287.	0.3	1
55	Analytical Pyrolysis of Organic Paint Materials for Authentication and Attribution. Cultural Heritage Science, 2022, , 157-180.	0.3	2

#	Article	IF	CITATIONS
56	Review of recent advances on the use of mass spectrometry techniques for the study of organic materials in painted artworks. Analytica Chimica Acta, 2023, 1246, 340575.	2.6	5

CITATION REPORT