The international reference ionosphere today and in the

Journal of Geodesy 85, 909-920 DOI: 10.1007/s00190-010-0427-x

Citation Report

#	Article	IF	CITATIONS
1	Adaptive Non-Linear Modeling for Ionospheric Disturbances Behavior Estimation on Spaceborne Synthetic Aperture Radar Interferometry. , 2012, , .		6
2	Retrieval of thermospheric parameters from routine ionospheric observations: assessment of method's performance at mid-latitudes daytime hours. Journal of Space Weather and Space Climate, 2012, 2, A03.	1.1	14
3	Global 3â€Ð ionospheric electron density reanalysis based on multisource data assimilation. Journal of Geophysical Research, 2012, 117, .	3.3	85
4	New Vary hap profile of the topside ionosphere electron density distribution for use with the IRI model and the GIRO real time data. Radio Science, 2012, 47, .	0.8	34
5	The Near-Earth Plasma Environment. Space Science Reviews, 2012, 168, 23-112.	3.7	31
6	Contribution of wind, conductivity, and geomagnetic main field to the variation in the geomagnetic <i>Sq</i> field. Journal of Geophysical Research: Space Physics, 2013, 118, 4516-4522.	0.8	26
7	Global empirical models of the density peak height and of the equivalent scale height for quiet conditions. Advances in Space Research, 2013, 52, 1756-1769.	1.2	77
8	Semi-empirical model of the maximum electron concentration in the ionosphere: Comparison with data from Toluca (México). Advances in Space Research, 2013, 51, 1878-1882.	1.2	0
9	The realization and convergence analysis of combined PPP based on raw observation. Advances in Space Research, 2013, 52, 211-221.	1.2	71
10	GPS TEC near the crest of the EIA at 95°E during the ascending half of solar cycle 24 and comparison with IRI simulations. Advances in Space Research, 2013, 52, 1247-1260.	1.2	35
11	Mapping seasonal trends of electron temperature in the topside ionosphere based on DEMETER data. Advances in Space Research, 2013, 52, 192-204.	1.2	8
12	Rapidâ€run ionosonde observations of traveling ionospheric disturbances in the auroral ionosphere. Journal of Geophysical Research: Space Physics, 2013, 118, 5265-5276.	0.8	26
13	Comparative analysis of international standard IRI releases. , 2013, , .		0
14	Longitudinal and seasonal structure of the ionospheric equatorial electric field. Journal of Geophysical Research: Space Physics, 2013, 118, 1298-1305.	0.8	23
15	Prediction of the HF Ionospheric Channel Stability Based on the Modified ITS Model. IEEE Transactions on Antennas and Propagation, 2013, 61, 3321-3333.	3.1	13
16	Variation in total electron content above large thunderstorms. Geophysical Research Letters, 2013, 40, 1945-1949.	1.5	42
17	Swarm SCARF equatorial electric field inversion chain. Earth, Planets and Space, 2013, 65, 1309-1317.	0.9	39
18	Evaluation of different approaches to modeling the secondâ€order ionospheric delay on GPS measurements, Journal of Geophysical Research: Space Physics, 2013, 118, 7864-7873	0.8	13

#	Article	IF	CITATIONS
19	Elevation angleâ€ofâ€arrival determination for a standard and a modified superDARN HF radar layout. Radio Science, 2013, 48, 709-721.	0.8	12
20	The influence of space weather on ionospheric total electron content during the 23rd solar cycle. Journal of Space Weather and Space Climate, 2013, 3, A25.	1.1	34
21	An Echo State Network for Ionospheric Disturbances Behavior Modeling on Spaceborne Interferometric Synthetic Aperture Radar. , 2013, , .		3
22	Long-Term Prediction of the Arctic Ionospheric TEC Based on Time-Varying Periodograms. PLoS ONE, 2014, 9, e111497.	1.1	10
23	An empirical model of the occurrence of an additional layer in the ionosphere from the occultation technique: Preliminary results. Journal of Geophysical Research: Space Physics, 2014, 119, 10,204.	0.8	15
24	The spatial and temporal structure of twin peaks and midday bite out in <i>f_oF</i> ₂ (with associated height changes) in the Australian and South Pacific low midlatitude ionosphere. Journal of Geophysical Research: Space Physics, 2014, 119, 10,294.	0.8	17
25	Spatial distribution of TEC across India in 2005: Seasonal asymmetries and IRI prediction. Advances in Space Research, 2014, 54, 1751-1767.	1.2	12
26	Correlation studies for B-spline modeled F2 Chapman parameters obtained from FORMOSAT-3/COSMIC data. Annales Geophysicae, 2014, 32, 1533-1545.	0.6	2
27	Strike-slip earthquakes can also be detected in the ionosphere. Earth and Planetary Science Letters, 2014, 405, 180-193.	1.8	66
28	Spherical cap harmonic analysis of the Arctic ionospheric TEC for one solar cycle. Journal of Geophysical Research: Space Physics, 2014, 119, 601-619.	0.8	37
30	A preliminary evaluation of the performance of multiple ionospheric models in low- and mid-latitude regions of China in 2010–2011. GPS Solutions, 2014, 18, 297-308.	2.2	36
31	Ionospheric electron density response to solar flares as viewed by Digisondes. Space Weather, 2014, 12, 205-216.	1.3	16
32	Semiempirical Model for Ionospheric Absorption based on the NRLMSISEâ€00 atmospheric model. Radio Science, 2014, 49, 81-93.	0.8	25
33	Fluctuations in the ionosphere related to Honshu Twin Large Earthquakes of September 2004 observed by the DEMETER and CHAMP satellites. Journal of Atmospheric and Solar-Terrestrial Physics, 2014, 121, 110-122.	0.6	9
34	Online service for monitoring the ionosphere based on data from the global navigation satellite system. Geomagnetism and Aeronomy, 2014, 54, 456-462.	0.2	7
35	A top to bottom evaluation of IRI 2007 within the polar cap. Journal of Geophysical Research: Space Physics, 2014, 119, 6689-6703.	0.8	56
36	Seasonal trends of nighttime plasma density enhancements in the topside ionosphere. Journal of Geophysical Research: Space Physics, 2014, 119, 6902-6912.	0.8	13
37	Ionospheric Anomalies During the March 2013 Geomagnetic Storm from BeiDou Navigation Satellite System (BDS) Observations. Lecture Notes in Electrical Engineering, 2014, , 97-104.	0.3	3

#	ARTICLE	IF	CITATIONS
38	Comparison of H+ and He+ plasmapause locations based on the resurrected and reevaluated OGO-5 ion composition data base. Journal of Atmospheric and Solar-Terrestrial Physics, 2014, 119, 27-34.	0.6	0
39	Investigation of the seasonal and local time variations of the highâ€altitude sporadic Na layer (Na _s) formation and the associated midlatitude descending <i>E</i> layer (<i>E</i> _s) in lower <i>E</i> region. Journal of Geophysical Research: Space Physics, 2014, 119. 5985-5999.	0.8	44
40	Ionospheric correction for spaceborne single-frequency GPS based on single layer model. Journal of Earth System Science, 2014, 123, 767-778.	0.6	10
41	Estimation of foF2 from GPS TEC over the South African region. Journal of Atmospheric and Solar-Terrestrial Physics, 2014, 112, 20-30.	0.6	22
42	Ionospheric tomography using ADS-B signals. Radio Science, 2014, 49, 549-563.	0.8	19
43	Determination of ionospheric parameters in real time using SuperDARN HF Radars. Journal of Geophysical Research: Space Physics, 2014, 119, 5830-5846.	0.8	22
44	Solar cycle effect on temporal and spatial variation of topside ion density measured by SROSS C2 and ROCSAT 1 over the Indian longitude sector. Advances in Space Research, 2014, 54, 290-305.	1.2	6
45	The multi-source data fusion global ionospheric modeling software—IonoGim. Advances in Space Research, 2014, 53, 1610-1622.	1.2	8
46	Distribution and mitigation of higherâ€order ionospheric effects on precise GNSS processing. Journal of Geophysical Research: Solid Earth, 2014, 119, 3823-3837.	1.4	28
47	Geomagnetic lunar and solar daily variations during the last 100 years. Journal of Geophysical Research: Space Physics, 2014, 119, 6732-6744.	0.8	23
48	Ionospheric imaging in Africa. Radio Science, 2014, 49, 19-27.	0.8	14
49	Plasma parameter estimation from multistatic, multibeam incoherent scatter data. Journal of Geophysical Research: Space Physics, 2014, 119, 10,528.	0.8	10
50	<i>D</i> region electron profiles observed with substantial spatial and temporal change near thunderstorms. Journal of Geophysical Research: Space Physics, 2014, 119, 4916-4928.	0.8	23
51	Electron density height profiles calculated by the theoretical upper atmosphere model: Comparison with the empirical IRI model. , 2014, , .		0
52	Inductiveâ€dynamic magnetosphereâ€ionosphere coupling via MHD waves. Journal of Geophysical Research: Space Physics, 2014, 119, 530-547.	0.8	12
53	Ray tracing technique for global 3-D modeling of ionospheric electron density using GNSS measurements. Radio Science, 2015, 50, 539-553.	0.8	20
54	Comparisons of ionospheric electron density distributions reconstructed by GPS computerized tomography, backscatter ionograms, and vertical ionograms. Journal of Geophysical Research: Space Physics, 2015, 120, 11,032.	0.8	5
55	Modeled and observed equatorial thermospheric winds and temperatures. Journal of Geophysical Research: Space Physics, 2015, 120, 5832-5844.	0.8	11

#	Article	IF	CITATIONS
56	New method for deriving the topside ionospheric Vary hap scale height. Radio Science, 2015, 50, 866-875.	0.8	8
57	Ampère force exerted by geomagnetic <i>Sq</i> currents and thermospheric pressure difference. Journal of Geophysical Research: Space Physics, 2015, 120, 3847-3853.	0.8	4
58	Detection of traveling ionospheric disturbances by mediumâ€frequency Doppler sounding using AM radio transmissions. Radio Science, 2015, 50, 249-263.	0.8	9
59	Atmospheric Drag, Occultation â€~N' Ionospheric Scintillation (ADONIS) mission proposal. Journal of Space Weather and Space Climate, 2015, 5, A2.	1.1	0
60	Bistatic Sounding of High-Latitude Ionospheric Irregularities Using a Decameter EKB Radar and an UTR-2 Radio Telescope: First Results. Radiophysics and Quantum Electronics, 2015, 58, 390-408.	0.1	14
61	Evidence for lightningâ€associated enhancement of the ionospheric sporadic <i>E</i> layer dependent on lightning stroke energy. Journal of Geophysical Research: Space Physics, 2015, 120, 9202-9212.	0.8	23
62	Mitigating satellite motion in GPS monitoring of traveling ionospheric disturbances. Radio Science, 2015, 50, 1150-1164.	0.8	4
63	Ionospheric variations over Indian low latitudes close to the equator and comparison with IRI-2012. Annales Geophysicae, 2015, 33, 997-1006.	0.6	22
64	Near real-time input to an HF propagation model for nowcasting of HF communications with aircraft on polar routes. , 2015, , .		0
65	Regional optimization of the IRI-2012 output (TEC, foF2) by using derived GPS-TEC. Journal of the Korean Physical Society, 2015, 66, 1599-1610.	0.3	11
66	Mathematical Modeling of Radio Tomographic Ionospheres Monitoring Via Satellite Constellation. Procedia Engineering, 2015, 104, 131-138.	1.2	0
67	Swarm equatorial electric field chain: First results. Geophysical Research Letters, 2015, 42, 673-680.	1.5	38
68	Comparison of peak characteristics of the F2 ionospheric layer obtained from the Cyprus Digisonde and IRI-2012 model during low and high solar activity period. Advances in Space Research, 2015, 56, 1927-1938.	1.2	17
69	Effects of Local Plasma Environment on Dynamics of Electrodynamic Tether Systems. Journal of Spacecraft and Rockets, 2015, 52, 496-505.	1.3	2
70	A comparison of the LPIM-COSMIC F2 peak parameters determinations against the IRI(CCIR). Advances in Space Research, 2015, 55, 2012-2019.	1.2	2
71	An attempt to establish a statistical model of the day-to-day variability of the NmF2 and hmF2 parameters computed from IRI. Advances in Space Research, 2015, 55, 2033-2040.	1.2	2
72	Towards better description of solar activity variation in the International Reference Ionosphere topside ion composition model. Advances in Space Research, 2015, 55, 2099-2105.	1.2	18
73	Comparison of E layer critical frequency over the Thai station Chumphon with IRI. Advances in Space Research, 2015, 55, 2131-2138.	1.2	8

#	ARTICLE	IF	CITATIONS
74	Forecasting of ionospheric time delays using ARMA model under Geomagnetic storm conditions. , 2015, , .		6
75	Statistical investigation of the noise added to a model of the effect of solar activities on the plasma of the ionosphere using DEMETER satellite data. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 130-131, 172-181.	0.6	2
76	Forecasting foF2 and MUF(3000)F2 ionospheric characteristics – A challenging space weather frontier. Advances in Space Research, 2015, 56, 1973-1981.	1.2	15
78	Topside ionospheric Vary-Chap scale height retrieved from the COSMIC/FORMOSAT-3 data at midlatitudes. Advances in Space Research, 2015, 56, 893-899.	1.2	8
79	Regional modeling of ionospheric peak parameters using GNSS data—An update for IRI. Advances in Space Research, 2015, 55, 1981-1993.	1.2	11
80	Online, automatic, ionospheric maps: IRI-PLAS-MAP. Advances in Space Research, 2015, 55, 2106-2113.	1.2	22
81	Long-term dynamic modeling of tethered spacecraft using nodal position finite element method and symplectic integration. Celestial Mechanics and Dynamical Astronomy, 2015, 123, 363-386.	0.5	40
82	Validation of COSMIC values of foF2 and M(3000)F2 using ground-based ionosondes. Advances in Space Research, 2015, 55, 163-169.	1.2	35
83	Assessment of ionosphere models at Banting: Performance of IRI-2007, IRI-2012 and NeQuick 2 models during the ascending phase of Solar Cycle 24. Advances in Space Research, 2015, 55, 1928-1940.	1.2	26
84	E-region ionospheric storm on May 1–3, 2010: CSM TIP model representation and suggestions for IRI improvement. Advances in Space Research, 2015, 55, 2124-2130.	1.2	13
85	Diurnal, Seasonal, and 11-yr Solar Cycle Variation Effects on the Virtual Ionosphere Reflection Height and Implications for the Met Office's Lightning Detection System, ATDnet. Journal of Atmospheric and Oceanic Technology, 2016, 33, 1429-1441.	0.5	6
86	Ionosphere characterization using received HF communications. , 2016, , .		1
87	Space weather studies of IONOLAB group. , 2016, , .		5
88	Variability of Ionospheric TEC and the Performance of the IRI-2012 Model at the BJFS Station, China. Acta Geophysica, 2016, 64, 1970-1987.	1.0	16
89	Modeling the interference environment in the HF band. Radio Science, 2016, 51, 82-90.	0.8	16
90	Ionospheric tomography over South Africa: Comparison of MIDAS and ionosondes measurements. Advances in Space Research, 2016, 57, 245-256.	1.2	9
91	Validation of the TEC2F2 model over the African equatorial region. Advances in Space Research, 2016, 57, 2396-2406.	1.2	1
92	A new computerized ionosphere tomography model using the mapping function and an application to the study of seismic-ionosphere disturbance. Journal of Geodesy, 2016, 90, 741-755.	1.6	11

#	Article	IF	CITATIONS
93	Limits on the validity of the thin-layer model of the ionosphere for radio interferometric calibration. Monthly Notices of the Royal Astronomical Society, 2016, 459, 3525-3531.	1.6	7
94	Long-term monthly statistics of mid-latitudinal NmF2 in the northern geographic hemisphere during geomagnetically quiet and steadily low solar activity conditions. Journal of Atmospheric and Solar-Terrestrial Physics, 2016, 142, 83-97.	0.6	8
95	Local Ionospheric Modeling Using the Localized Global Ionospheric Map and Terrestrial GPS. Acta Geophysica, 2016, 64, 237-252.	1.0	5
97	Improvement of global ionospheric VTEC maps using the IRI 2012 ionospheric empirical model. Journal of Atmospheric and Solar-Terrestrial Physics, 2016, 146, 186-193.	0.6	18
98	A directional HF noise model: Calibration and validation in the Australian region. Radio Science, 2016, 51, 25-39.	0.8	21
99	IONONEST—A Bayesian approach to modeling the lower ionosphere. Radio Science, 2016, 51, 1332-1349.	0.8	1
100	Peculiar features of the lowâ€latitude and midlatitude ionospheric response to the St. Patrick's Day geomagnetic storm of 17 March 2015. Journal of Geophysical Research: Space Physics, 2016, 121, 7941-7960.	0.8	73
101	Ensemble Classifiers in Optimal Estimation for Ionospheric Disturbances Behavior on Spaceborne Interferometric SAR Systems. , 2016, , .		2
102	Solar activity variability in the IRI at high latitudes: Comparisons with GPS total electron content. Journal of Geophysical Research: Space Physics, 2016, 121, 3793-3807.	0.8	31
103	Variation of the topside ionosphere during the last solar minimum period studied with multisatellite measurements of electron density and temperature. Journal of Geophysical Research: Space Physics, 2016, 121, 7269-7286.	0.8	12
104	Quantifying the inversion accuracy of simplified physical models for the nighttime OI 135.6Ânm emission. Journal of Geophysical Research: Space Physics, 2016, 121, 5805-5814.	0.8	9
105	A twoâ€dimensional global simulation study of inductiveâ€dynamic magnetosphereâ€ionosphere coupling. Journal of Geophysical Research: Space Physics, 2016, 121, 11,861.	0.8	12
106	Ionospheric detection and localization of volcano eruptions on the example of the April 2015 Calbuco events. Journal of Geophysical Research: Space Physics, 2016, 121, 10,303.	0.8	76
107	SuperDARN scalar radar equations. Radio Science, 2016, 51, 1703-1724.	0.8	6
108	A numerical study of largeâ€scale ionospheric modulation due to the thermal process by powerful wave heating. Journal of Geophysical Research: Space Physics, 2016, 121, 2704-2714.	0.8	8
109	Magnetic field effects on the accuracy of ionospheric mirror models for geolocation. Radio Science, 2016, 51, 284-300.	0.8	7
110	Mid-Latitude Single Station F region Storm Morphology and Forecast. Acta Geophysica, 2016, 64, 541-566.	1.0	1
111	Near realâ€ŧime input to a propagation model for nowcasting of HF communications with aircraft on polar routes. Radio Science, 2016, 51, 1048-1059.	0.8	19

#	Article	IF	CITATIONS
112	Sources and characteristics of mediumâ€scale traveling ionospheric disturbances observed by highâ€frequency radars in the North American sector. Journal of Geophysical Research: Space Physics, 2016, 121, 3722-3739.	0.8	50
113	Comparison of ionospheric characteristic parameters obtained by GPS and ionosonde with IRI model over China. Journal of Earth System Science, 2016, 125, 745-759.	0.6	5
114	Modulation of total electron content by global Pc5 waves at low latitudes. Advances in Space Research, 2016, 57, 309-319.	1.2	9
115	Evaluation and correction of the IRI2016 topside ionospheric electron density model. Advances in Space Research, 2016, 58, 1229-1241.	1.2	9
116	Libration and transverse dynamic stability control of flexible bare electrodynamic tether systems in satellite deorbit. Aerospace Science and Technology, 2016, 49, 112-129.	2.5	32
117	Independent Verification of the Sentinel-1A System Calibration. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9, 994-1007.	2.3	32
118	Predicting ionospheric critical frequency of the F ₂ layer over Lycksele using the neural network improved by error compensation technology. Survey Review, 2016, 48, 130-139.	0.7	12
119	Performance of GPS slant total electron content and IRI-Plas-STEC for days with ionospheric disturbance. Geodesy and Geodynamics, 2016, 7, 1-10.	1.0	27
120	Atmospheric resonant oscillations by the 2014 eruption of the Kelud volcano, Indonesia, observed with the ionospheric total electron contents and seismic signals. Earth and Planetary Science Letters, 2016, 434, 112-116.	1.8	80
121	Ionospheric tomography using GNSS: multiplicative algebraic reconstruction technique applied to the area of Brazil. GPS Solutions, 2016, 20, 807-814.	2.2	19
122	The ionosphere electron density spatio-temporal modeling based on the Slepian basis functions. Acta Geodaetica Et Geophysica, 2017, 52, 5-18.	0.7	3
123	Ionosphere probing with simultaneous GNSS radio occultations. GPS Solutions, 2017, 21, 101-109.	2.2	1
124	An improved ray theory and transfer matrix methodâ€based model for lightning electromagnetic pulses propagating in Earthâ€ionosphere waveguide and its applications. Journal of Geophysical Research D: Atmospheres, 2017, 122, 712-727.	1.2	20
125	Comparison of midlatitude ionospheric F region peak parameters and topside Ne profiles from IRI2012 model prediction with ground-based ionosonde and Alouette II observations. Advances in Space Research, 2017, 60, 461-474.	1.2	11
126	Global ionospheric electron density estimation based on multisource TEC data assimilation. GPS Solutions, 2017, 21, 1125-1137.	2.2	24
127	Electrostatic thermal noise in a weakly ionized collisional plasma. Radio Science, 2017, 52, 70-77.	0.8	5
128	A statistical study on the <i>F</i> ₂ layer vertical variation during nighttime mediumâ€scale traveling ionospheric disturbances. Journal of Geophysical Research: Space Physics, 2017, 122, 3586-3601.	0.8	9
129	The importance of elevation angle measurements in HF radar investigations of the ionosphere. Radio Science, 2017, 52, 305-320.	0.8	13

#	Article	IF	CITATIONS
130	Project Loon based augmentation for global ionospheric modeling over Southern Hemisphere. Scientific Reports, 2017, 7, 45976.	1.6	4
131	Formation mechanisms of neutral Fe layers in the thermosphere at Antarctica studied with a thermosphereâ€ionosphere Fe/Fe ⁺ (TIFe) model. Journal of Geophysical Research: Space Physics, 2017, 122, 6812-6848.	0.8	34
132	Ingestion of FORMOSAT-3/COSMIC GPS data into La Plata Ionospheric Model: A preliminary assessment. Advances in Space Research, 2017, 60, 677-691.	1.2	2
133	A study of the nonlinear response of the upper atmosphere to episodic and stochastic acousticâ€gravity wave forcing. Journal of Geophysical Research: Space Physics, 2017, 122, 1178-1198.	0.8	15
134	A comparison of neural network-based predictions of foF2 with the IRI-2012 model at conjugate points in Southeast Asia. Advances in Space Research, 2017, 59, 2934-2950.	1.2	26
135	A comparison of GPS-TEC with IRI-TEC at low latitudes in China in 2006. Advances in Space Research, 2017, 60, 250-256.	1.2	10
136	Suppression of ionospheric scintillation during St. Patrick's Day geomagnetic super storm as observed over the anomaly crest region station Pingtung, Taiwan: A case study. Advances in Space Research, 2017, 60, 396-405.	1.2	35
137	Solar cycle variation of ionospheric parameters over the low latitude station Hainan, China, during 2002–2012 and its comparison with IRI-2012 model. Advances in Space Research, 2017, 60, 381-395.	1.2	10
138	Data Assimilation of Groundâ€Based GPS and Radio Occultation Total Electron Content for Global Ionospheric Specification. Journal of Geophysical Research: Space Physics, 2017, 122, 10,876.	0.8	33
139	Application of the IRI model to the HF propagation model with optimization of the ionosphere parameters to day-to-day variation. Advances in Space Research, 2017, 60, 2252-2267.	1.2	13
140	Application of SST to forecast ionospheric delays using GPS observations. IET Radar, Sonar and Navigation, 2017, 11, 1070-1080.	0.9	9
141	Ion Velocity Measurements for the Ionospheric Connections Explorer. Space Science Reviews, 2017, 212, 615-629.	3.7	61
142	A Technique for Realâ€Time Ionospheric Ranging Error Correction Based On Radar Dualâ€Frequency Detection. Radio Science, 2017, 52, 1604-1614.	0.8	2
143	Impact and Implementation of Higherâ€Order Ionospheric Effects on Precise GNSS Applications. Journal of Geophysical Research: Solid Earth, 2017, 122, 9420-9436.	1.4	40
144	Radio communication via Near Vertical Incidence Skywave propagation: an overview. Telecommunication Systems, 2017, 66, 295-309.	1.6	31
145	Realâ€ŧime geomagnetic monitoring for space weatherâ€related applications: Opportunities and challenges. Space Weather, 2017, 15, 820-827.	1.3	6
146	Comparison of the observed topside ionospheric and plasmaspheric electron content derived from the COSMIC podTEC measurements with the IRI_Plas model results. Advances in Space Research, 2017, 60, 222-227.	1.2	16
147	On improvement in representation of foE in IRI. Advances in Space Research, 2017, 60, 347-356.	1.2	14

#	Article	IF	CITATIONS
148	Investigating Miniaturized Electrodynamic Tethers for Picosatellites and Femtosatellites. Journal of Spacecraft and Rockets, 2017, 54, 55-66.	1.3	13
149	Vector ionosphere modeling by vector spherical Slepian base functions. GPS Solutions, 2017, 21, 675-684.	2.2	4
150	The \$F\$-Region Gravity and Pressure Gradient Current Systems: A Review. Space Science Reviews, 2017, 206, 451-469.	3.7	23
151	Comparison of GPS TEC variations with Holt-Winter method and IRI-2012 over Langkawi, Malaysia. Advances in Space Research, 2017, 60, 276-285.	1.2	24
152	Irregularities of ionospheric VTEC during lightning activity over Antarctic Peninsula. Journal of Physics: Conference Series, 2017, 852, 012017.	0.3	1
153	Deep Convolutional Neural Networks for Modeling Patterns of Spaceborne Interferometric SAR Systems Signals. , 2017, , .		3
154	Online international reference ionosphere extended to plasmasphere (IRI-Plas) model. , 2017, , .		2
155	Numerical Simulations to Assess ART and MART Performance for Ionospheric Tomography of Chapman Profiles. Anais Da Academia Brasileira De Ciencias, 2017, 89, 1531-1542.	0.3	10
156	Numerical modelling of the Earth's ionosphere F region. IOP Conference Series: Earth and Environmental Science, 2017, 96, 012011.	0.2	8
157	Ionosphere Model for European Region Based on Multi-GNSS Data and TPS Interpolation. Remote Sensing, 2017, 9, 1221.	1.8	35
158	Spatial and Temporal Ionospheric Monitoring Using Broadband Sferic Measurements. Journal of Geophysical Research: Space Physics, 2018, 123, 3111-3130.	0.8	13
159	The 4Dâ€var Estimation of North Korean Rocket Exhaust Emissions Into the Ionosphere. Journal of Geophysical Research: Space Physics, 2018, 123, 2315-2326.	0.8	15
160	Performance of Solar Proxy Options of IRIâ€Plas Model for Equinox Seasons. Journal of Geophysical Research: Space Physics, 2018, 123, 1441-1456.	0.8	29
161	Spatial and Temporal Features of the Topside Ionospheric Electron Density by a New Model Based On GPS Radio Occultation Data. Journal of Geophysical Research: Space Physics, 2018, 123, 2104-2115.	0.8	21
162	The 11ÂYear Solar Cycle Response of the Equatorial Ionization Anomaly Observed by GPS Radio Occultation. Journal of Geophysical Research: Space Physics, 2018, 123, 848-861.	0.8	11
163	The Lower Ionospheric VLF/LF Response to the 2017 Great American Solar Eclipse Observed Across the Continent. Geophysical Research Letters, 2018, 45, 3348-3355.	1.5	20
164	Effective Solar Indices for Ionospheric Modeling: A Review and a Proposal for a Real-Time Regional IRI. Surveys in Geophysics, 2018, 39, 125-167.	2.1	32
165	Performance of MIDAS Over East African Longitude Sector: Case Study During 4–14 March 2012 Quiet to Disturbed Geomagnetic Conditions. Space Weather, 2018, 16, 126-137.	1.3	3

#	Article	IF	CITATIONS
166	Reconstructing Regional Ionospheric Electron Density: A Combined Spherical Slepian Function and Empirical Orthogonal Function Approach. Surveys in Geophysics, 2018, 39, 289-309.	2.1	26
167	A 2D Numerical Study of the Langmuir Parametric Instability in the Ionospheric Modification. , 2018, , .		0
168	Polarization measurements of unusual cases of medium frequency burst emissions extending below 1.5ÂMHz. Earth, Planets and Space, 2018, 70, .	0.9	5
169	Improvements and validation of the IRI UP method under moderate, strong, and severe geomagnetic storms. Earth, Planets and Space, 2018, 70, .	0.9	17
170	Improvement of the IRI Model Using <i>F</i> ₂ Layer Parameters Derived From GPS/COSMIC Radio Occultation Observations. Journal of Geophysical Research: Space Physics, 2018, 123, 9815-9835.	0.8	8
171	Ionospheric Variability Effects on Impulsive ELF Antipodal Propagation About the Earth Sphere. IEEE Transactions on Antennas and Propagation, 2018, 66, 6244-6254.	3.1	8
172	Numerical simulation of oblique ionospheric heating by powerful radio waves. Annales Geophysicae, 2018, 36, 855-866.	0.6	4
173	A Prediction Model of Ionospheric <i>f</i> _{<i>o</i>} <i>F</i> ₂ Based on Extreme Learning Machine. Radio Science, 2018, 53, 1292-1301.	0.8	20
174	Comparison of the Thermospheric Nitric Oxide Emission Observations and the GITM Simulations: Sensitivity to Solar and Geomagnetic Activities. Journal of Geophysical Research: Space Physics, 2018, 123, 10,239.	0.8	4
175	Density disturbance of small-scale field-aligned irregularities in the ionosphere heating experiments. Plasma Science and Technology, 2018, 20, 125001.	0.7	Ο
176	Comparison of GPS TEC with modelled values from IRI 2016 and IRI-PLAS over Istanbul, Turkey. Astrophysics and Space Science, 2018, 363, 1.	0.5	20
177	Faraday Rotation, Total Electron Content, and Their Sensitivity to the Average Parallel Component of the Magnetic Field. Radio Science, 2018, 53, 1075-1088.	0.8	3
178	Online computation of International Reference Ionosphere Extended to Plasmasphere (IRI-Plas) model for space weather. Geodesy and Geodynamics, 2018, 9, 347-357.	1.0	25
179	FIRIâ€2018, an Updated Empirical Model of the Lower Ionosphere. Journal of Geophysical Research: Space Physics, 2018, 123, 6737-6751.	0.8	44
180	Prediction of global ionospheric VTEC maps using an adaptive autoregressive model. Earth, Planets and Space, 2018, 70, .	0.9	40
181	Polarization Characteristics Inferred From the Radio Receiver Instrument on the Enhanced Polar Outflow Probe. Journal of Geophysical Research: Space Physics, 2018, 123, 1648-1662.	0.8	7
182	Cokriging based statistical approximation model for forecasting ionospheric VTEC during high solar activity and storm days. Astrophysics and Space Science, 2019, 364, 1.	0.5	1
183	Assessment of GPS-TEC with the IRI-2016 model, the IRI-Plas model and GIM-TEC during low solar activity at KMITL, Thailand. , 2019, , .		1

#	Article	IF	CITATIONS
184	Validating the performance of the Empirical Canadian High Arctic Ionospheric Model (E-CHAIM) with in situ observations from DMSP and CHAMP. Journal of Space Weather and Space Climate, 2019, 9, A21.	1.1	13
185	Model assessment of GNSS-based regional TEC modeling: polynomial, trigonometric series, spherical harmonic and multi-surface function. Acta Geodaetica Et Geophysica, 2019, 54, 333-357.	0.7	8
186	Modeling of the Ionospheric Critical Frequency of the <i>F</i> ₂ layer over Asia based on Modified Temporal‧patial Reconstruction. Radio Science, 2019, 54, 680-691.	0.8	15
187	Comparison of IRIâ€2016 F2 Layer Model Parameters with Ionosonde Measurements. Journal of Geophysical Research: Space Physics, 2019, 124, 8092-8109.	0.8	17
188	On Imaging South African Regional Ionosphere Using 4Dâ€var Technique. Space Weather, 2019, 17, 1584-1604.	1.3	15
189	foF2 variability at a southern low-latitude station and the performance of IRI-2016 model during ascending phase of solar cycle-24. Advances in Space Research, 2019, 64, 2269-2279.	1.2	4
190	Prediction of ionospheric vertical total electron content from GPS data using ordinary kriging-based surrogate model. Astrophysics and Space Science, 2019, 364, 1.	0.5	9
191	Highlights about the performances of storm-time TEC modelling techniques for low/equatorial and mid-latitude locations. Advances in Space Research, 2019, 63, 3102-3118.	1.2	10
192	Assimilation of Multiple Data Types to a Regional Ionosphere Model With a 3Dâ€Var Algorithm (IDA4D). Space Weather, 2019, 17, 1018-1039.	1.3	18
193	On the Development of a Method for Updating an Empirical Climatological Ionospheric Model by Means of Assimilated vTEC Measurements From a GNSS Receiver Network. Space Weather, 2019, 17, 1131-1164.	1.3	27
194	Dynamical Coupling Between Hurricane Matthew and the Middle to Upper Atmosphere via Gravity Waves. Journal of Geophysical Research: Space Physics, 2019, 124, 3589-3608.	0.8	29
195	Linear Vary-Chap Topside Electron Density Model with Topside Sounder and Radio-Occultation Data. Surveys in Geophysics, 2019, 40, 277-293.	2.1	24
196	On the advantage of stochastic methods in the modeling of ionospheric total electron content: Southeast Asia case study. Measurement Science and Technology, 2019, 30, 044008.	1.4	4
197	MoMo: a new empirical model of the Mars ionospheric total electron content based on Mars Express MARSIS data. Journal of Space Weather and Space Climate, 2019, 9, A36.	1.1	10
198	Analysis of Electromagnetic Wave Propagation in Variable Magnetized Plasma via Polynomial Chaos Expansion. IEEE Transactions on Antennas and Propagation, 2019, 67, 438-449.	3.1	11
199	Comparison of IRI-2016 model with IGS VTEC maps during low and high solar activity period. Results in Physics, 2019, 12, 555-561.	2.0	26
200	Evaluation of the improvement of IRI-2016 over IRI-2012 at the India low-latitude region during the ascending phase of cycle 24. Advances in Space Research, 2019, 63, 1860-1881.	1.2	14
201	The study of BDS RTK algorithm based on zero-combined observations and ionosphere constraints. Advances in Space Research, 2019, 63, 2687-2695.	1.2	9

#	Article	IF	CITATIONS
202	Improved Frequency Monitoring System for Sky-Wave Over-the-Horizon Radar in Canada. IEEE Geoscience and Remote Sensing Letters, 2020, 17, 606-610.	1.4	13
203	Ionospheric Multi-Spacecraft Analysis Tools. , 2020, , .		12
204	Ionospheric Sounding and Tomography Using Automatic Identification System (AIS) and Other Signals of Opportunity. Radio Science, 2020, 55, e2019RS006872.	0.8	8
205	An Adaptive Forecasting Method for Ionospheric Critical Frequency of <i>F</i> 2 Layer. Radio Science, 2020, 55, e2019RS007001.	0.8	7
206	Improved IRI-2016 model based on BeiDou GEO TEC ingestion across China. GPS Solutions, 2020, 24, 1.	2.2	5
207	Daytime Dynamo Electrodynamics With Spiral Currents Driven by Strong Winds Revealed by Vapor Trails and Sounding Rocket Probes. Geophysical Research Letters, 2020, 47, e2020GL088803.	1.5	12
208	A New Frontier in Ionospheric Observations: GPS Total Electron Content Measurements From Ocean Buoys. Space Weather, 2020, 18, e2020SW002571.	1.3	4
209	A Least Squares Solution to Regionalize VTEC Estimates for Positioning Applications. Remote Sensing, 2020, 12, 3545.	1.8	2
210	The Limits of Empirical Electron Density Modeling: Examining the Capacity of Eâ€CHAIM and the IRI for Modeling Intermediate (1―to 30â€Day) Timescales at High Latitudes. Radio Science, 2020, 55, e2018RS006763	.0.8	13
211	Implementation of VARMA Model for Ionospheric TEC Forecast over an Indian GNSS Station. , 2020, , .		0
212	Clobal ionospheric maps forecasting based on an adaptive autoregressive modeling of grid point VTEC values. Astrophysics and Space Science, 2020, 365, 1.	0.5	6
213	A regional model for the prediction of M(3000)F2 over East Asia. Advances in Space Research, 2020, 65, 2036-2051.	1.2	7
214	Challenges to Understanding the Earth's Ionosphere and Thermosphere. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027497.	0.8	53
215	New Varyâ€Chap Scale Height Profile Retrieved From COSMIC Radio Occultation Data. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027637.	0.8	5
216	First Precise Spaceborne Sea Surface Altimetry With GNSS Reflected Signals. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 102-112.	2.3	64
217	A Combination Prediction Model of Long-Term Ionospheric foF2 Based on Entropy Weight Method. Entropy, 2020, 22, 442.	1.1	23
218	VLF Transmitters and Lightningâ€Generated Whistlers: 1.ÂModeling Waves From Source to Space. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027029.	0.8	24
219	An Updated Experimental Model of IGâ,â,, Indices Over the Antarctic Region via the Assimilation of IRI2016 With GNSS TEC. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 1700-1717.	2.7	7

#	Article	IF	CITATIONS
220	Assessment of IRI-2016 hmF2 model predictions with COSMIC observations over the African region. Advances in Space Research, 2021, 68, 2115-2123.	1.2	14
221	Regional Refined Long-Term Predictions Method of Usable Frequency for HF Communication Based on Machine Learning Over Asia. IEEE Transactions on Antennas and Propagation, 2022, 70, 4040-4055.	3.1	20
222	The Data Comparison of Electron Density Between CSES and DEMETER Satellite, Swarm Constellation and IRI Model. Earth and Space Science, 2021, 8, e2020EA001475.	1.1	18
223	A Novel Method for Deriving the Varyâ€Chap Scale Height Profile in the Topside Ionosphere. Journal of Geophysical Research: Space Physics, 2021, 126, .	0.8	1
224	Navigation and ionosphere characterization using highâ€frequency signals: Models and solution concepts. Navigation, Journal of the Institute of Navigation, 2021, 68, 353-367.	1.7	2
225	Rate maximizing OFDM parameter optimization on HF channels. Physical Communication, 2021, 45, 101280.	1.2	2
226	Complementing regional ground GNSS-STEC computerized ionospheric tomography (CIT) with ionosonde data assimilation. GPS Solutions, 2021, 25, 1.	2.2	7
229	Analysis of ionospheric parameters retrieved from Feng-Yun 3C and COSMIC radio occultation. Advances in Space Research, 2021, 68, 214-224.	1.2	4
231	Assessment of IRI-2016 hmF2 model options with digisonde, COSMIC and ISR observations for low and high solar flux conditions. Advances in Space Research, 2021, 68, 2093-2103.	1.2	11
232	Evaluating the Performance of IRI-2016 Using GPS-TEC Measurements over the Equatorial Region. Atmosphere, 2021, 12, 1243.	1.0	5
233	Estimating Currents and Electric Fields at Low Latitudes from Satellite Magnetic Measurements. , 2020, , 233-254.		6
234	Remote Sensing of the Ignorosphere: Need for a Complete Earth-Ionosphere Radio Wave Propagation Model. Thirty Years of Astronomical Discovery With UKIRT, 2018, , 527-543.	0.3	2
235	Ionospheric Effects on Microwave Signals. Springer Atmospheric Sciences, 2013, , 35-71.	0.4	21
236	The F \$F\$ -Region Gravity and Pressure Gradient Current Systems: A Review. Space Sciences Series of ISSI, 2018, , 459-477.	0.0	2
237	New Modes and Mechanisms of Longâ€Term Ionospheric TEC Variations From Global Ionosphere Maps. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027703.	0.8	12
238	Modification of the solar activity indices in the International Reference Ionosphere IRI and IRI-Plas models due to recent revision of sunspot number time series. SolneÄno-zemnaâ Fizika, 2016, 2, 59-68.	0.2	13
239	Modification of the solar activity indices in the International Reference Ionosphere IRI and IRI-Plas models due to recent revision of sunspot number time series. SolneÄno-zemnaâ Fizika, 2016, 2, 87-98.	0.2	14
240	Analysis of different propagation models for the estimation of the topside ionosphere and plasmasphere with an ensemble Kalman filter. Annales Geophysicae, 2020, 38, 1171-1189.	0.6	3

#	Article	IF	CITATIONS
241	Comparison of quiet-time ionospheric total electron content from the IRI-2016 model and from gridded and station-level GPS observations. Annales Geophysicae, 2020, 38, 725-748.	0.6	4
242	Ionospheric response to solar EUV variations: Preliminary results. Advances in Radio Science, 0, 16, 157-165.	0.7	12
243	Algorithm Research Using GNSS-TEC Data to Calibrate TEC Calculated by the IRI-2016 Model over China. Remote Sensing, 2021, 13, 4002.	1.8	5
244	E HAIM as a Model of Total Electron Content: Performance and Diagnostics. Space Weather, 2021, 19, e2021SW002872.	1.3	8
246	The Near-Earth Plasma Environment. Space Sciences Series of ISSI, 2012, , 23-112.	0.0	3
247	Applied Optimal Estimation for Ionospheric Disturbances Behavior on Spaceborne Interferometric Synthetic Aperture Radar Systems. , 2014, , .		0
248	Introduction of new data into the South African Ionospheric Map to improve the estimation of F2 layer parameters. Annals of Geophysics, 2015, 58, .	0.5	1
249	A Study on the Effect of Atmosphere on the Space Surveillance Radar. The Journal of Korean Institute of Electromagnetic Engineering and Science, 2018, 29, 648-659.	0.0	2
250	Comparison of VTEC due to GPS and assimilation of the IRI-Plas model during a geomagnetic storm condition over Indian region. , 2020, , .		1
251	Regional application of C1 finite element interpolation method in modeling of ionosphere total electron content over Europe. Advances in Space Research, 2022, 69, 1351-1365.	1.2	2
252	Effect of Frequency Monitoring System for Over-The-Horizon Radar due to the presence of patches and arcs within the polar cap ionosphere. , 2020, , .		1
253	A review and prospects of operational frequency selecting techniques for HF radio communication. Advances in Space Research, 2022, 69, 2989-2999.	1.2	11
254	Quiet-time seasonal behaviour of the ionosphere measured by the Ionosphere PhotoMeter (IPM) on the Chinese meteorological satellite FY-3D compared with the IRI2016 model predictions. Advances in Space Research, 2022, , .	1.2	1
255	A comparative study of observed lonospheric critical frequency (using ionosonde) and the IRI-2016 model. , 2021, , .		0
256	Evaluation of foF2 and hmF2 Parameters of IRI-2016 Model in Different Latitudes over China under High and Low Solar Activity Years. Remote Sensing, 2022, 14, 860.	1.8	8
258	An Approach for Predicting Global Ionospheric TEC Using Machine Learning. Remote Sensing, 2022, 14, 1585.	1.8	17
259	Analysis of foF2 Observations and Predictions of Modified Ionosphere Model in East-Asia. , 2021, , .		0
261	New lightningâ€derived vertical total electron content data provides unique global ionospheric measurements. Space Weather, 0, , .	1.3	0

#	Article	IF	CITATIONS
262	Modelling <i>M(3000)F2</i> at an African Equatorial Location for Better IRIâ€Model Prediction. Radio Science, 2022, 57, .	0.8	3
263	Climatology and modeling of ionospheric irregularities over Greenland based on empirical orthogonal function method. Journal of Space Weather and Space Climate, 2022, 12, 23.	1.1	4
264	Virtual Height Characteristics of Ionospheric and Ground Scatter Observed by Mid‣atitude SuperDARN HF Radars. Radio Science, 2022, 57, .	0.8	4
265	Modeling and forecasting of ionosphere TEC using least squares SVM in central Europe. Advances in Space Research, 2022, 70, 2035-2046.	1.2	4
266	Combined model of topside ionosphere and plasmasphere derived from radio-occultation and Van Allen Probes data. Scientific Reports, 2022, 12, .	1.6	8
268	High-Frequency Channel Modeling Based on the Multi-Source Ionospheric Assimilation Model. Remote Sensing, 2022, 14, 4133.	1.8	0
269	Evaluation of NeQuick2 Model over Mid-Latitudes of Northern Hemisphere. Remote Sensing, 2022, 14, 4124.	1.8	3
270	Network Theory to Reveal Ionospheric Anomalies over North America and Australia. Atmosphere, 2022, 13, 1333.	1.0	1
271	The Improvement of IRI2016 global maps by the integration of Swarm and GPS observations. Journal of Geospatial Information Technology, 2022, 9, 87-107.	0.2	0
272	An Algorithm for Compensating Distortions of Broadband Signals during Propagation through Satellite Ionospheric Radio Channels. Geomagnetism and Aeronomy, 2022, 62, 444-452.	0.2	0
273	The International Reference Ionosphere Model: A Review and Description of an Ionospheric Benchmark. Reviews of Geophysics, 2022, 60, .	9.0	72
274	Directivity of Coseismic Ionospheric Disturbances Propagation Following the 2016 West Sumatra Earthquake Using Three-Dimensional Tomography GNSS-TEC. Atmosphere, 2022, 13, 1532.	1.0	1
275	A Review of Marine Gravity Field Recovery from Satellite Altimetry. Remote Sensing, 2022, 14, 4790.	1.8	14
276	Mathematical Molecular Modeling of an Edge Plasma. Journal of Machinery Manufacture and Reliability, 2022, 51, 457-462.	0.1	0
277	Multi-GNSS global ionosphere modeling enhanced by virtual observation stations based on IRI-2016 model. Journal of Geodesy, 2022, 96, .	1.6	3
278	Occurrence and Characteristics of Traveling Ionospheric Disturbances in the Antarctic Peninsula Region. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	1
279	Variation of ionosonde <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si19.svg"><mml:mrow><mml:msub><mml:mrow><mml:mi>f</mml:mi></mml:mrow><mml:mrow><mm and its comparison with IRI-2016 & a local model over Pakistan longitude sector during solar cycle 22. Advances in Space Research, 2022, , .</mm </mml:mrow></mml:msub></mml:mrow></mml:math>	l:mi>o1.2	ml:mi>
280	Enhanced neural network model for regional ionospheric modeling and evaluation under different solar-geomagnetic conditions. Measurement Science and Technology, 2023, 34, 035801.	1.4	0

#	Article	IF	CITATIONS
281	Effects of a nuclear-disturbed environment on electromagnetic wave propagation through the atmosphere. Optics Express, 2023, 31, 3881.	1.7	2
282	Head-on collision of magnetosonic solitary waves at low latitudes ionosphere plasma. Physics of Plasmas, 2023, 30, .	0.7	2
283	A novel neural network model of Earth's topside ionosphere. Scientific Reports, 2023, 13, .	1.6	9
284	Singular spectrum analysis and modeling of the temporal variations of the global ionospheric F2-layer peak electron density retrieved from COSMIC radio occultation measurements. Advances in Space Research, 2023, 71, 4613-4625.	1.2	0
285	Analysis of Spatial Variation Characteristics of Regional Ionospheric TEC Grid Based on Crustal Movement Observation Network of China. Kongjian Kexue Xuebao, 2020, 40, 197.	0.2	0
286	Comparison of f ₀ F ₂ between observation and the prediction based on IRI-2012 over Guangzhou. Kongjian Kexue Xuebao, 2015, 35, 166.	0.2	0
287	An Explainable Dynamic Prediction Method for Ionospheric foF2 Based on Machine Learning. Remote Sensing, 2023, 15, 1256.	1.8	6
288	Resonance Method for Measurement of the Ionospheric Plasma Density on Board Microsatellites. Technical Physics, 2022, 67, 771-778.	0.2	1
289	Near real-time global ionospheric total electron content modeling and nowcasting based on GNSS observations. Journal of Geodesy, 2023, 97, .	1.6	1
290	Application of convolution neural networks for critical frequency fâ,'F2 prediction. SolneÄno-zemnaâ Fizika, 2023, 9, 60-72.	0.1	0
291	An Ionospheric Total Electron Content Model with a Storm Option over Japan Based on a Multi-Layer Perceptron Neural Network. Atmosphere, 2023, 14, 634.	1.0	1
292	Application of convolution neural networks for critical frequency fâ,'F2 prediction. SolneÄno-zemnaâ Fizika, 2023, 9, 56-67.	0.2	0
294	Ionosphere Modelling using Spherical harmonics with in-equality constraints over IRNSS service area. , 2022, , .		0
299	Observations of Ionospheric Propagation Factor at Two African Equatorial Ionization Anomaly Stations Using Ionosonde Measurements. , 2023, , .		0
306	Over-The-Horizon Radar Frequency Management System using the Assimilation Canadian High Arctic Ionospheric Model (A-CHAIM). , 2023, , .		0