EANM procedure guideline for the treatment of liver ca intra-arterial radioactive compounds

European Journal of Nuclear Medicine and Molecular Imaging 38, 1393-1406

DOI: 10.1007/s00259-011-1812-2

Citation Report

#	Article	IF	CITATIONS
1	Principles of radioembolization., 0,, 44-51.		0
2	New Imaging Techniques for 90Y Microsphere Radioembolization. Journal of Nuclear Medicine & Radiation Therapy, 2011, 01, .	0.2	11
3	Selective internal radiation therapy (SIRT) in primary or secondary liver cancer. Methods, 2011, 55, 253-257.	3.8	23
4	⁹⁰ Y Radioembolization After Radiation Exposure from Peptide Receptor Radionuclide Therapy. Journal of Nuclear Medicine, 2012, 53, 1663-1669.	5.0	62
6	Nuclear Medicine Therapy. , 2013, , .		5
7	Post-radioembolization yttrium-90 PET/CT - part 2: dose-response and tumor predictive dosimetry for resin microspheres. EJNMMI Research, 2013, 3, 57.	2.5	129
8	Added value of FDC-PET imaging in the diagnostic workup for yttrium-90 radioembolisation in patients with colorectal cancer liver metastases. European Radiology, 2013, 23, 931-937.	4.5	11
9	Multiagent imaging of liver tumors with reference to intra-arterial radioembolization. Clinical and Translational Imaging, 2013, 1, 423-432.	2.1	3
10	Antibody-Targeted Therapeutic Radionuclides in the Management of Colorectal Cancer. , 2013, , 207-237.		2
11	Safety of 90Y Radioembolization in Patients Who Have Undergone Previous External Beam Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2013, 87, 323-329.	0.8	38
12	Interventional Oncologic Approaches to Liver Metastases. Radiology, 2013, 266, 407-430.	7.3	109
13	Study-Parameter Impact in Quantitative 90-Yttrium PET Imaging for Radioembolization Treatment Monitoring and Dosimetry. IEEE Transactions on Medical Imaging, 2013, 32, 485-492.	8.9	33
14	Radioembolization for Treatment of Salvage Patients with Colorectal Cancer Liver Metastases: A Systematic Review. Journal of Nuclear Medicine, 2013, 54, 1890-1895.	5.0	36
15	Nuclear Medicine Procedures for Treatment Evaluation and Administration. Medical Radiology, 2013, , 63-75.	0.1	3
16	Technical Considerations of Phosphorous-32 Bremsstrahlung SPECT Imaging after Radioembolization of Hepatic Tumors: A Clinical Assessment with a Review of Imaging Parameters. Radiology Research and Practice, 2014, 2014, 1-7.	1.3	4
17	Three dosimetry models of lipoma arborescens treated by90Y synovectomy. Medical Physics, 2014, 41, 052501.	3.0	7
18	Radioembolization of Hepatic Lesions from a Radiobiology and Dosimetric Perspective. Frontiers in Oncology, 2014, 4, 210.	2.8	139
19	The role of SPECT/CT in radioembolization of liver tumours. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41, 115-124.	6.4	38

ATION REDO

CITATION REPORT

#	Article	IF	CITATIONS
20	Treatment of liver tumours with yttrium radioembolisation. Clinical and Translational Imaging, 2014, 2, 165-182.	2.1	2
21	The dosimetric importance of the number of 90Y microspheres in liver transarterial radioembolization (TARE). European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41, 634-638.	6.4	25
22	Three-dimensional personalized dosimetry for ¹⁸⁸ Re liver selective internal radiation therapy based on quantitative post-treatment SPECT studies. Physics in Medicine and Biology, 2014, 59, 119-134.	3.0	8
23	Locoregional therapies for metastatic colorectal carcinoma to the liver-An evidence-based review. Journal of Surgical Oncology, 2014, 110, 182-196.	1.7	29
24	Radiation-Induced Cholecystitis after Hepatic Radioembolization: Do We Need to Take Precautionary Measures?. Journal of Vascular and Interventional Radiology, 2014, 25, 1717-1723.	0.5	14
25	Personalized predictive lung dosimetry by technetium-99m macroaggregated albumin SPECT/CT for yttrium-90 radioembolization. EJNMMI Research, 2014, 4, 33.	2.5	50
26	The relationship between the percentage of lung shunting on Tc-99m macroaggregated albumin (Tc-99m MAA) scan and the grade of hepatocellular carcinoma vascularity. Egyptian Journal of Radiology and Nuclear Medicine, 2014, 45, 333-342.	0.6	3
27	Residual activity after radioembolization of liver tumours with 90Y resin microspheres. Nuklearmedizin - NuclearMedicine, 2014, 53, 95-98.	0.7	7
28	Hybrid Imaging for Patient-Specific Dosimetry in Radionuclide Therapy. Diagnostics, 2015, 5, 296-317.	2.6	19
29	Advances in SPECT for Optimizing the Liver Tumors Radioembolization Using Yttrium-90 Microspheres. World Journal of Nuclear Medicine, 2015, 14, 75-80.	0.5	13
30	⁹⁰ Y-glass microspheres for hepatic neoplasia. Future Oncology, 2015, 11, 1343-1354.	2.4	1
31	How to Prepare a Patient for Transarterial Radioembolization? A Practical Guide. CardioVascular and Interventional Radiology, 2015, 38, 794-805.	2.0	19
32	Prognostic factors for prediction of survival of hepatocellular cancer patients after selective internal radiation therapy. Annals of Nuclear Medicine, 2015, 29, 426-430.	2.2	9
33	Evaluation of factors affecting tumor response and survival in patients with primary and metastatic liver cancer treated with microspheres. Nuclear Medicine Communications, 2015, 36, 340-349.	1.1	22
34	Radioembolization with 90Y-microspheres for liver tumors. Revista Espanola De Medicina Nuclear E Imagen Molecular, 2015, 34, 244-257.	0.2	0
35	Shape-Controlled Synthesis of Isotopic Yttrium-90-Labeled Rare Earth Fluoride Nanocrystals for Multimodal Imaging. ACS Nano, 2015, 9, 8718-8728.	14.6	41
36	Impact of 3D Rotational Angiography on Liver Embolization Procedures: Review of Technique and Applications. CardioVascular and Interventional Radiology, 2015, 38, 523-535.	2.0	30
37	Comparing voxel-based absorbed dosimetry methods in tumors, liver, lung, and at the liver-lung interface for 90Y microsphere selective internal radiation therapy. EJNMMI Physics, 2015, 2, 16.	2.7	51

\sim	 	D	
		RE	JUDT
		NLI	

#	Article	IF	CITATIONS
38	Predictive Value of ^{99m} Tc-MAA SPECT for ⁹⁰ Y-Labeled Resin Microsphere Distribution in Radioembolization of Primary and Secondary Hepatic Tumors. Journal of Nuclear Medicine, 2015, 56, 1654-1660.	5.0	74
40	Clinical Features of Liver Cancer with Cerebral Hemorrhage. Medical Science Monitor, 2016, 22, 1716-1723.	1.1	5
41	Administered activity and outcomes of glass versus resin 90Y microsphere radioembolization in patients with colorectal liver metastases. Journal of Gastrointestinal Oncology, 2016, 7, 530-539.	1.4	15
42	Radioactive iodine. , 2016, , 49-54.		1
43	Impact of the activity calculation method used in transarterial radioembolization. Nuclear Medicine Communications, 2016, 37, 917-923.	1.1	6
44	Impact of SPECT corrections on 3Dâ€dosimetry for liver transarterial radioembolization using the patient relative calibration methodology. Medical Physics, 2016, 43, 4053-4064.	3.0	18
45	Yttrium-90 radioembolization for colorectal cancer liver metastases: a prospective cohort study on circulating angiogenic factors and treatment response. EJNMMI Research, 2016, 6, 92.	2.5	7
46	Preparation and quality control of 32P-labeled albumin particles for internal radiotherapy. Radiochemistry, 2016, 58, 177-181.	0.7	1
47	Abdo-Man: a 3D-printed anthropomorphic phantom for validating quantitative SIRT. EJNMMI Physics, 2016, 3, 17.	2.7	57
48	Calculation of tumour and normal tissue biological effective dose in 90 Y liver radioembolization with different dosimetric methods. Physica Medica, 2016, 32, 1738-1744.	0.7	12
49	A descriptive analysis of remnant activity during 90Y resin microspheres radioembolization of hepatic tumors: technical factors and dosimetric implications. Annals of Nuclear Medicine, 2016, 30, 255-261.	2.2	6
50	Insights into the Dose–Response Relationship of Radioembolization with Resin ⁹⁰ Y-Microspheres: A Prospective Cohort Study in Patients with Colorectal Cancer Liver Metastases. Journal of Nuclear Medicine, 2016, 57, 1014-1019.	5.0	88
51	Pharmacokinetics of ^{99m} Tc-MAA- and ^{99m} Tc-HSA-Microspheres Used in Preradioembolization Dosimetry: Influence on the Liver–Lung Shunt. Journal of Nuclear Medicine, 2016, 57, 925-927.	5.0	27
52	Yttrium-90 hepatic radioembolization: clinical review and current techniques in interventional radiology and personalized dosimetry. British Journal of Radiology, 2016, 89, 20150943.	2.2	79
53	Development of Semiautomated Module for Preparation of ¹³¹ I Labeled Lipiodol for Liver Cancer Therapy. Cancer Biotherapy and Radiopharmaceuticals, 2017, 32, 33-37.	1.0	6
54	Hepatobiliary scintigraphy may improve radioembolization treatment planning in HCC patients. EJNMMI Research, 2017, 7, 2.	2.5	16
55	Targeted Radionuclide Therapy: An Evolution Toward Precision Cancer Treatment. American Journal of Roentgenology, 2017, 209, 277-288.	2.2	68
56	Dosimetry and prescription in liver radioembolization with ⁹⁰ Y microspheres: 3D calculation of tumor-to-liver ratio from global ^{99m} Tc-MAA SPECT information. Physics in Medicine and Biology, 2017, 62, 9099-9111.	3.0	1

#	Article	IF	CITATIONS
57	Is a Technetium-99m Macroaggregated Albumin Scan Essential in the Workup for Selective Internal Radiation Therapy with Yttrium-90? An Analysis of 532 Patients. Journal of Vascular and Interventional Radiology, 2017, 28, 1536-1542.	0.5	19
58	Radioembolization in Colorectal Metastases: A Review. Digestive Disease Interventions, 2017, 01, 208-217.	0.2	0
59	Recommendations for radioembolisation after liver surgery using yttrium-90 resin microspheres based on a survey of an international expert panel. European Radiology, 2017, 27, 4923-4930.	4.5	8
60	Radioembolization of Hepatic Malignancies: Background, Quality Improvement Guidelines, and Future Directions. Journal of Vascular and Interventional Radiology, 2017, 28, 1-15.	0.5	107
61	Biodistribution of 99mTc-MAA on SPECT/CT performed for 90Y-radioembolization therapy planning: a pictorial review. Clinical and Translational Imaging, 2017, 5, 473-485.	2.1	9
62	Targeted radionuclide therapy frontiers in theranostics. Frontiers in Bioscience - Landmark, 2017, 22, 1750-1759.	3.0	8
63	From diagnosis to treatment of hepatocellular carcinoma: An epidemic problem for both developed and developing world. World Journal of Gastroenterology, 2017, 23, 5282.	3.3	232
64	The effect of selective internal radiation therapy with yttrium-90 resin microspheres on lung carbon monoxide diffusion capacity. EJNMMI Research, 2017, 7, 103.	2.5	3
65	Dosimetry-based treatment planning for molecular radiotherapy: a summary of the 2017 report from the Internal Dosimetry Task Force. EJNMMI Physics, 2017, 4, 27.	2.7	71
66	Impact of missing attenuation and scatter corrections on ^{99m} Tcâ€MAA SPECT 3D dosimetry for liver radioembolization using the patient relative calibration methodology: A retrospective investigation on clinical images. Medical Physics, 2018, 45, 1684-1698.	3.0	10
67	Medical Devices for Radioembolization. , 2018, , 107-118.		1
69	327. Radioembolization with Yttrium-90 Microspheres in Hepatocellular Carcinoma: Initial Experience. Physica Medica, 2018, 56, 260-261.	0.7	0
70	Transarterial Radioembolization (TARE) Agents beyond ⁹⁰ Y-Microspheres. BioMed Research International, 2018, 2018, 1-14.	1.9	45
71	Local Treatment Options for Unresectable Liver Metastases in Colorectal Cancer. , 0, , .		Ο
72	The physics of radioembolization. EJNMMI Physics, 2018, 5, 22.	2.7	65
73	90Y-PET/CT-based dosimetry after selective internal radiation therapy predicts outcome in patients with liver metastases from colorectal cancer. EJNMMI Research, 2018, 8, 60.	2.5	46
75	Yttrium-90 Transarterial Radioembolization for Chemotherapy-Refractory Intrahepatic Cholangiocarcinoma: AAProspective, Observational Study. Journal of Vascular and Interventional Radiology, 2019, 30, 1185-1192.	0.5	45
76	Radioembolization for the Treatment of Primary and Metastatic Liver Cancers. Nuclear Medicine and Molecular Imaging, 2019, 53, 367-373.	1.0	21

CITATION REPORT

#	Article	IF	CITATIONS
77	Radioembolization in liver tumors. Revista Espanola De Medicina Nuclear E Imagen Molecular, 2019, 38, 370-381.	0.2	1
78	A Dual-layer Detector for Simultaneous Fluoroscopic and Nuclear Imaging. Radiology, 2019, 290, 833-838.	7.3	15
79	ICRP Publication 140: Radiological Protection in Therapy with Radiopharmaceuticals. Annals of the ICRP, 2019, 48, 5-95.	3.8	45
80	Radiosensitivity of colorectal cancer to ⁹⁰ Y and the radiobiological implications for radioembolisation therapy. Physics in Medicine and Biology, 2019, 64, 135018.	3.0	10
81	Multi-modal image analysis for semi-automatic segmentation of the total liver and liver arterial perfusion territories for radioembolization. EJNMMI Research, 2019, 9, 19.	2.5	21
82	Expected and Unexpected Imaging Findings after ⁹⁰ Y Transarterial Radioembolization for Liver Tumors. Radiographics, 2019, 39, 578-595.	3.3	39
83	A Pilot Study on Hepatobiliary Scintigraphy to Monitor Regional Liver Function in ⁹⁰ Y Radioembolization. Journal of Nuclear Medicine, 2019, 60, 1430-1436.	5.0	22
84	A guide to 90Y radioembolization and its dosimetry. Physica Medica, 2019, 68, 132-145.	0.7	61
85	History and development of radioembolization. Nuclear Medicine Communications, 2019, 40, 684-692.	1.1	4
86	Analysis of a National Programme for Selective Internal Radiation Therapy for Colorectal Cancer Liver Metastases. Clinical Oncology, 2019, 31, 58-66.	1.4	22
87	Bioactive Glasses for Cancer Therapy. , 2019, , 273-312.		5
88	Feasibility of imaging ⁹⁰ Y microspheres at diagnostic activity levels for hepatic radioembolization treatment planning. Medical Physics, 2020, 47, 1105-1114.	3.0	13
89	Transarterial Radioembolization for Hepatocellular Carcinoma and Hepatic Metastases: Clinical Aspects and Dosimetry Models. Seminars in Radiation Oncology, 2020, 30, 68-76.	2.2	23
90	Additional Local Therapy for Liver Metastases in Patients with Metastatic Castration-Resistant Prostate Cancer Receiving Systemic PSMA-Targeted Therapy. Journal of Nuclear Medicine, 2020, 61, 723-728.	5.0	13
91	Neutron-activated theranostic radionuclides for nuclear medicine. Nuclear Medicine and Biology, 2020, 90-91, 55-68.	0.6	21
92	Selective internal radiation therapy of hepatic tumors: Morphologic and functional imaging for voxel-based computer-aided dosimetry. Biomedicine and Pharmacotherapy, 2020, 132, 110865.	5.6	6
93	The utility of 99mTc-mebrofenin hepatobiliary scintigraphy with SPECT/CT for selective internal radiation therapy in hepatocellular carcinoma. Nuclear Medicine Communications, 2020, 41, 740-749.	1.1	8
95	The Impact of Radiobiologically Informed Dose Prescription on the Clinical Benefit of ⁹⁰ Y SIRT in Colorectal Cancer Patients. Journal of Nuclear Medicine, 2020, 61, 1658-1664.	5.0	8

#	Article	IF	CITATIONS
96	Biodegradable ¹³¹ lodineâ€Labeled Microspheres: Potential Transarterial Radioembolization Biomaterial for Primary Hepatocellular Carcinoma Treatment. Advanced Healthcare Materials, 2020, 9, e2000028.	7.6	15
97	Outpatient Yttrium-90 microsphere radioembolization: assessment of radiation safety and quantification of post-treatment adverse events causing hospitalization. Radiologia Medica, 2020, 125, 971-980.	7.7	16
98	Eficacia y seguridad de la radioembolización con 90Y en el tratamiento de metástasis hepáticas de tumores neuroendocrinos. Seguimiento a largo plazo y repercusión en la supervivencia. Revista Espanola De Medicina Nuclear E Imagen Molecular, 2021, 40, 82-90.	0.0	2
99	EANM position paper on article 56 of the Council Directive 2013/59/Euratom (basic safety standards) for nuclear medicine therapy. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 67-72.	6.4	62
100	Clinical Application of Trans-Arterial Radioembolization in Hepatic Malignancies in Europe: First Results from the Prospective Multicentre Observational Study CIRSE Registry for SIR-Spheres Therapy (CIRT). CardioVascular and Interventional Radiology, 2021, 44, 21-35.	2.0	49
101	Yttrium-90 radioembolization using MIRD dosimetry with resin microspheres. European Radiology, 2021, 31, 1316-1324.	4.5	12
102	Radiopharmaceuticals in Clinical Diagnosis and Therapy. , 2021, , 103-118.		1
103	Selective internal radiation therapy in the management of primary and metastatic disease in the liver. British Journal of Hospital Medicine (London, England: 2005), 2021, 82, 1-11.	0.5	2
104	In Silico Validation of MCID Platform for Monte Carlo-Based Voxel Dosimetry Applied to 90Y-Radioembolization of Liver Malignancies. Applied Sciences (Switzerland), 2021, 11, 1939.	2.5	8
105	Diagnostic and prognostic value of 99mTc-MAA SPECT/CT for treatment planning of 90Y-resin microsphere radioembolization for hepatocellular carcinoma: comparison with planar image. Scientific Reports, 2021, 11, 3207.	3.3	9
106	Current Status and Future Direction of Hepatic Radioembolisation. Clinical Oncology, 2021, 33, 106-116.	1.4	16
107	Factors affecting the response to treatment and survival in hepatocellular carcinoma patients treated with transarterial radioembolisation: a single-centre experience. European Journal of Gastroenterology and Hepatology, 2021, 33, 926-931.	1.6	1
108	Efficacy and safety of Yttrium-90 radioembolization in the treatment of neuroendocrine liver metastases. Long-term monitoring and impact on survival. Revista Espanola De Medicina Nuclear E Imagen Molecular, 2021, 40, 82-90.	0.2	0
109	Lung shunt and lung dose calculation methods for radioembolization treatment planning. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2021, 65, 32-42.	0.7	10
110	Impact of contouring methods on pre-treatment and post-treatment dosimetry for the prediction of tumor control and survival in HCC patients treated with selective internal radiation therapy. EJNMMI Research, 2021, 11, 24.	2.5	6
111	Prediction of tumor response and patient outcome after radioembolization of hepatocellular carcinoma using 90Y-PET-computed tomography dosimetry. Nuclear Medicine Communications, 2021, 42, 747-754.	1.1	9
112	Some aspects of radiation protection in radionuclide therapy departments. Radiacionnaâ Gigiena, 2021, 14, 75-85.	0.7	2
113	Clinical Management of Liver Cancer in India and Other Developing Nations: A Focus on Radiation Based Strategies. Oncology and Therapy, 2021, 9, 273-295.	2.6	2

#	Article	IF	CITATIONS
114	Evaluation of different CT maps for attenuation correction and segmentation in static ^{99m} Tcâ€MAA SPECT/CT for ⁹⁰ Y radioembolization treatment planning: A simulation study. Medical Physics, 2021, 48, 3842-3851.	3.0	11
115	Microspheres Used in Liver Radioembolization: From Conception to Clinical Effects. Molecules, 2021, 26, 3966.	3.8	29
116	Comparison of Y-90 and Ho-166 Dosimetry Using Liver Phantom: A Monte Carlo Study. Anti-Cancer Agents in Medicinal Chemistry, 2021, 21, .	1.7	0
117	Exposición a la radiación de los operadores en la preparación y administración de microesferas de itrio-90 en el tratamiento de lesiones hepáticas malignas: ¿cuál es el riesgo?. Revista Espanola De Medicina Nuclear E Imagen Molecular, 2021, 40, 293-298.	0.0	1
118	Radiation exposure of the operators in the preparation and administration of yttrium-90 microspheres in the treatment of malignant hepatic lesions: What is the risk?. Revista Espanola De Medicina Nuclear E Imagen Molecular, 2021, 40, 293-298.	0.2	1
119	Accurate non-tumoral 99mTc-MAA absorbed dose prediction to plan optimized activities in liver radioembolization using resin microspheres. Physica Medica, 2021, 89, 250-257.	0.7	11
120	Transarterial Radioembolization in Hepatocellular Carcinoma. , 2021, , 137-169.		0
121	International recommendations for personalised selective internal radiation therapy of primary and metastatic liver diseases with yttrium-90 resin microspheres. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 1570-1584.	6.4	140
122	Minimal-activity PET/CT for efficacy control after SIRT (MAPECSI)–Âclinical implementation of a resource-saving, liver-focused protocol. Nuklearmedizin - NuclearMedicine, 2019, 58, 363-370.	0.7	2
123	IPEM topical report: current molecular radiotherapy service provision and guidance on the implications of setting up a dosimetry service. Physics in Medicine and Biology, 2020, 65, 245038.	3.0	7
124	Impact of the dosimetry approach on the resulting 90Y radioembolization planned absorbed doses based on 99mTc-MAA SPECT-CT: is there agreement between dosimetry methods?. EJNMMI Physics, 2020, 7, 72.	2.7	15
125	Combined quality and dose-volume histograms for assessing the predictive value of 99mTc-MAA SPECT/CT simulation for personalizing radioembolization treatment in liver metastatic colorectal cancer. EJNMMI Physics, 2020, 7, 75.	2.7	7
126	Quality Assessment of Clinical Practice Guidelines on the Treatment of Hepatocellular Carcinoma or Metastatic Liver Cancer. PLoS ONE, 2014, 9, e103939.	2.5	17
127	68Ca and 188Re Starch-Based Microparticles as Theranostic Tool for the Hepatocellular Carcinoma: Radiolabeling and Preliminary In Vivo Rat Studies. PLoS ONE, 2016, 11, e0164626.	2.5	16
128	A review of 3D image-based dosimetry, technical considerations and emerging perspectives in 90Y microsphere therapy. Journal of Diagnostic Imaging in Therapy, 2015, 2, 1-34.	0.2	19
129	Selective targeting of liver cancer with the endothelial marker CD146. Oncotarget, 2014, 5, 8614-8624.	1.8	15
130	Clinical Application of Radioembolization in Hepatic Malignancies: Protocol for a Prospective Multicenter Observational Study. JMIR Research Protocols, 2020, 9, e16296.	1.0	8
131	Neo-adjuvant therapy for hepatocellular carcinoma before liver transplantation: Where do we stand?. World Journal of Gastroenterology, 2014, 20, 5308.	3.3	25

	СПАНО	N REPORT	
#	Article	IF	CITATIONS
132	Current status of transarterial radioembolization. World Journal of Radiology, 2016, 8, 449.	1.1	43
133	Assessment of radiation sensitivity of unresectable intrahepatic cholangiocarcinoma in a series of patients submitted to radioembolization with yttrium-90 resin microspheres. Scientific Reports, 2021, 11, 19745.	3.3	3
134	Therapy of Hepatocellular Carcinoma with Iodine-131-Lipidiol. , 0, , .		1
135	Radionuclide Therapy of Tumors of the Liver and Biliary Tract. , 2016, , 1-24.		0
137	Radiopharmaceuticals for Therapy. , 2016, , 1-16.		0
138	Radiopharmaceuticals for Therapy. , 2017, , 99-113.		0
139	Radionuclide Therapy of Tumors of the Liver and Biliary Tract. , 2017, , 1337-1360.		0
141	Guidelines on Radioisotope Treatment of Liver Cancer and Liver Metastases with Intra-arterial Radioactive Compounds. , 2018, , 199-203.		0
142	Radioembolization of Hepatic Metastases with 90Y-Microspheres: Indications and Procedure. , 2018, , 165-198.		0
143	Radiopharmaceuticals for Therapy. , 2019, , 99-116.		0
144	Radionuclide Therapy for Tumors of the Liver and Biliary Tract. , 2019, , 859-879.		0
146	Radioembolización en tumores hepáticos. Revista Espanola De Medicina Nuclear E Imagen Molecular, 2019, 38, 370-381.	0.0	0
148	Standardizing SPECT/CT dosimetry following radioembolization with yttrium-90 microspheres. EJNMMI Physics, 2021, 8, 71.	2.7	2
149	Prognostic value of imaging-based parameters in patients with intermediate-stage hepatocellular carcinoma undergoing transarterial radioembolization. Nuclear Medicine Communications, 2021, 42, 337-344.	1.1	3
151	Radiothérapie. , 2020, , 48-55.e4.		0
152	Radioactive Microspheres. , 2020, , 951-959.		1
153	Review of extremity dosimetry in nuclear medicine. Journal of Radiological Protection, 2021, 41, R60-R87.	1.1	12
154	A hepatic cancer patient with Guillain-Barré syndrome during the perioperative period of partial hepatectomy: a case report. International Journal of Clinical and Experimental Medicine, 2015, 8, 14242-5.	1.3	1

CITATION REPORT

#	Article	IF	CITATIONS
155	Significance of incorporation of DNMT1 and HLA-DRα with TNM staging in patients with hepatocellular carcinoma after curative resection. International Journal of Clinical and Experimental Pathology, 2017, 10, 9372-9381.	0.5	0
156	Antireflux catheter improves tumor targeting in liver radioembolization with resin microspheres. , 2021, 27, 768-773.		8
157	Lung Dose Measured on Postradioembolization ⁹⁰ Y PET/CT and Incidence of Radiation Pneumonitis. Journal of Nuclear Medicine, 2022, 63, 1075-1080.	5.0	5
158	EANM dosimetry committee series on standard operational procedures: a unified methodology for 99mTc-MAA pre- and 90Y peri-therapy dosimetry in liver radioembolization with 90Y microspheres. EJNMMI Physics, 2021, 8, 77.	2.7	61
159	Beyond the MAA-Y90 Paradigm: The Evolution of Radioembolization Dosimetry Approaches and Scout Particles. Seminars in Interventional Radiology, 2021, 38, 542-553.	0.8	1
160	Modelling a new approach for radio-ablation after resection of breast ductal carcinoma in-situ based on the BAT-90 medical device. Scientific Reports, 2022, 12, 14.	3.3	1
161	Ytrrium-90 transarterial radioembolization in patients with gastrointestinal malignancies. Clinical and Translational Oncology, 2022, 24, 796-808.	2.4	4
163	EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 1682-1699.	6.4	72
164	Personalized Dosimetry in Targeted Radiation Therapy: A Look to Methods, Tools and Critical Aspects. Journal of Personalized Medicine, 2022, 12, 205.	2.5	14
166	Transarterial Yttrium-90 Radioembolization for Unresectable Intrahepatic Cholangiocarcinoma: A Systematic Review and Meta-Analysis. Journal of Vascular and Interventional Radiology, 2022, 33, 679-686.	0.5	11
167	Liver-Directed Therapy for Neuroendocrine Metastases: From Interventional Radiology to Nuclear Medicine Procedures. Cancers, 2021, 13, 6368.	3.7	11
168	Clinical and prognostic significance of CD14 (+) HLAâ€DR (â^'/low) myeloidâ€derived suppressor cells in patients with hepatocellular carcinoma received transarterial radioembolization with Yttriumâ€90. Scandinavian Journal of Immunology, 2022, 95, e13132.	2.7	4
169	New Radionuclides and Technological Advances in SPECT and PET Scanners. Cancers, 2021, 13, 6183.	3.7	16
170	Dosimetry for Radiopharmaceutical Therapy: The European Perspective. Journal of Nuclear Medicine, 2021, 62, 73S-79S.	5.0	7
172	The American Brachytherapy Society consensus statement for permanent implant brachytherapy using Yttrium-90 microsphere radioembolization for liver tumors. Brachytherapy, 2022, 21, 569-591.	0.5	3
173	Regional Therapy for Colorectal Cancer Liver Metastases: Which Modality and When?. Journal of Clinical Oncology, 2022, 40, 2806-2817.	1.6	9
174	ÄẶC Äŀá»,M HÃŒNH ẢNH PET/CT SAU XẠTRỊ CHIẾU TRONG CHỌN LỌC BẺNG HáºT VI CẦU (TRÆ⁻ỚC ÄŀỀU TRỊ Ở BỆNH NHÃ,N UNG THÆ⁻ GAN Äá»ŀ CHIẾU. , 2022, , 62-69.	Já⁰®N90 Y	VỚi HÌNI

176	Radionuclide Therapy of Tumors of the Liver and Biliary Tract. , 2022, , 1515-1545.	
-----	---	--

0

ARTICLE IF CITATIONS Radiopharmaceuticals for Therapy., 2022, , 133-149. 0 177 Fundamentals of Radiation Safety and Dosimetric Approach in Radionuclide Therapy Applications., 178 2022, , 29-62. The Radiation Dose Absorbed by Healthy Parenchyma Is a Predictor for the Rate of Contralateral Hypertrophy After Unilobar Radioembolization of the Right Liver. Nuclear Medicine and Molecular 179 1.0 0 Imaging, 0, , . Reduction of Hepatopulmonary and Intrahepatic Shunts after Treatment with Sorafenib in 2.0 Hepatocellular Carcinoma Patients. CardioVascular and Interventional Radiology, 2022, 45, 1842-1847. Theranostic approach in liver cancer: an emerging paradigm to optimize personalized medicine. 181 2.1 1 Clinical and Translational Imaging, 2023, 11, 51-70. Hepatic decompensation after transarterial radioembolization: A retrospective analysis of risk factors and outcome in patients with hepatocellular carcinoma. Hepatology Communications, 2022, 6, 4.3 3223-3233. Prediction of Lung Shunt Fraction for Yttrium-90 Treatment of Hepatic Tumors Using Dynamic 183 1.8 1 Contrast Enhanced MRI with Quantitative Perfusion Processing. Tomography, 2022, 8, 2687-2697. Survival and Toxicities after Yttrium-90 Transarterial Radioembolization of Cholangiocarcinoma in 184 0.5 the RESiN Registry. Journal of Vascular and Interventional Radiology, 2023, 34, 694-701.e3. Voxel-S-value methods adapted to heterogeneous media for quantitative Y-90 microsphere 185 3 1.5 radioembolization dosimetry. Zeitschrift Fur Medizinische Physik, 2023, 33, 35-45. Stereotactic body radiation therapy (SBRT) following Yttrium-90 (⁹⁰Y) selective internal radiation therapy (SIRT): a feasibility planning study using ⁹⁰Y delivered dose. Physics in Medicine and Biology, 2023, 68, 065003. Predictive Factors for Adverse Event Outcomes After Transarterial Radioembolization with Yttrium-90 Resin Microspheres in Europe: Results from the Prospective Observational CIRT Study. 188 7 2.0 CardioVascular and Interventional Radiology, 2023, 46, 852-867. Predictive Value of [99mTc]-MAA-Based Dosimetry in Hepatocellular Carcinoma Patients Treated with 2.6 [90Y]-TARE: A Single-Center Experience. Diagnostics, 2023, 13, 2432. Current status of yttrium-90 microspheres radioembolization in primary and metastatic liver cancer. 190 0.5 1 Journal of Interventional Medicine, 2023, , . Emerging theragnostic radionuclide applications for hepatocellular carcinoma. Frontiers in Nuclear 1.2 Medicine, 0, 3, . Portal hypertension increases the risk of hepatic decompensation after 90Yttrium radioembolization 192 in patients with hepatocellular carcinoma: a cohort study. Therapeutic Advances in 0 3.2Gastroenterology, 2023, 16, . Radioembolization in the Treatment of Primary Liver Cancer., 2023, , 1-19. Monte Carlo calculations of critical organ doses in radioembolization therapy of primary liver 194 0 tumors via 90Y microspheres. , 2023, 21, 353-360. CT texture features and lung shunt fraction measured using 99mTc-macroaggregated albumin SPECT/CT before trans-arterial radioembolization for hepatocellular carcinoma patients. Scientific Reports, 2023, 13, .

CITATION REPORT

#	Article	IF	CITATIONS
196	Phantom study for 90Y liver radioembolization dosimetry with a long axial field-of-view PET/CT. Physica Medica, 2024, 118, 103296.	0.7	0
197	Movement towards patient-specific scatter correction in Lung Shunt Fraction (LSF) quantification. Physica Medica, 2024, 118, 103269.	0.7	0
198	Applications of Yttrium-90 (90Y) in Hepatocellular Carcinoma. OncoTargets and Therapy, 0, Volume 17, 149-157.	2.0	0