TRACI 2.0: the tool for the reduction and assessment of impacts 2.0

Clean Technologies and Environmental Policy 13, 687-696 DOI: 10.1007/s10098-010-0338-9

Citation Report

#	Article	IF	CITATIONS
1	Implications of energy policy on a product system's dynamic life-cycle environmental impact: Survey and model. Renewable and Sustainable Energy Reviews, 2012, 16, 4744-4752.	8.2	29
2	Cradle-to-Gate Life Cycle Assessment for a Cradle-to-Cradle Cycle: Biogas-to-Bioplastic (and Back). Environmental Science & Technology, 2012, 46, 9822-9829.	4.6	104
3	Toward the development of process plans with reduced environmental impacts. Frontiers of Mechanical Engineering, 2012, 7, 231-246.	2.5	27
4	Potential Environmental Impacts from the Metals in Incandescent, Compact Fluorescent Lamp (CFL), and Light-Emitting Diode (LED) Bulbs. Environmental Science & Technology, 2013, 47, 1040-1047.	4.6	120
5	Life cycle energy and environmental benefits of a US industrial symbiosis. International Journal of Life Cycle Assessment, 2013, 18, 1524-1532.	2.2	59
6	Dynamic life cycle assessment: framework and application to an institutional building. International Journal of Life Cycle Assessment, 2013, 18, 538-552.	2.2	176
7	Introducing a streamlined life cycle assessment approach for evaluating sustainability in defense acquisitions. Environment Systems and Decisions, 2013, 33, 209-223.	1.9	5
8	PET bottle reverse logistics—environmental performance of California's CRV program. International Journal of Life Cycle Assessment, 2013, 18, 456-471.	2.2	26
9	Life cycle freshwater ecotoxicity, human health cancer, and noncancer impacts of corn ethanol and gasoline in the U.S Journal of Cleaner Production, 2013, 53, 149-157.	4.6	29
10	Indoor environmental quality in a dynamic life cycle assessment framework for whole buildings: Focus on human health chemical impacts. Building and Environment, 2013, 62, 182-190.	3.0	51
11	Sustainability assessments of bio-based polymers. Polymer Degradation and Stability, 2013, 98, 1898-1907.	2.7	376
12	European characterization factors for damage to natural vegetation by ozone in life cycle impact assessment. Atmospheric Environment, 2013, 77, 318-324.	1.9	19
13	Integrating Life-cycle Environmental and Economic Assessment with Transportation and Land Use Planning. Environmental Science & Technology, 2013, 47, 12020-12028.	4.6	40
14	Assessing the Potential for Reducing Life-Cycle Environmental Impacts through Transit-Oriented Development Infill along Existing Light Rail in Phoenix. Journal of Planning Education and Research, 2013, 33, 395-410.	1.5	40
15	Climate Change Mitigation and Internationalization: The Competitiveness of Multinational Corporations. Thunderbird International Business Review, 2013, 55, 673-688.	0.9	39
16	Enhanced Absorbent Products Incorporating Cellulose and Its Derivatives: A Review. BioResources, 2013, 8, .	0.5	45
17	Economics, Environmental Impacts, and Supply Chain Analysis of Cellulosic Biomass for Biofuels in the Southern US: Pine, Eucalyptus, Unmanaged Hardwoods, Forest Residues, Switchgrass, and Sweet Sorghum. BioResources, 2013, 9, .	0.5	19
18	Market-Driven Emissions from Recovery of Carbon Dioxide Gas. Environmental Science & Technology, 2014, 48, 14615-14623.	4.6	22

#	Article	IF	CITATIONS
19	Mechanism of the Selective Catalytic Oxidation of Slip Ammonia over Ru-Modified Ce–Zr Complexes Determined by in Situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy. Environmental Science & Technology, 2014, 48, 12199-12205.	4.6	89
20	Reflections on a massive open online life cycle assessment course. International Journal of Life Cycle Assessment, 2014, 19, 1901-1907.	2.2	11
21	From a literature review to a framework for environmental process impact assessment index. Journal of Cleaner Production, 2014, 64, 36-62.	4.6	80
22	A multidisciplinary decision support tool for evaluating multiple biorefinery conversion technologies and supply chain performance. Clean Technologies and Environmental Policy, 2014, 16, 1027-1044.	2.1	38
23	Life cycle assessment of bio-jet fuel from hydrothermal liquefaction of microalgae. Applied Energy, 2014, 122, 73-82.	5.1	212
24	Updated US and Canadian normalization factors for TRACI 2.1. Clean Technologies and Environmental Policy, 2014, 16, 329-339.	2.1	122
25	Life Cycle Assessment of "Green―Nanoparticle Synthesis Methods. Environmental Engineering Science, 2014, 31, 410-420.	0.8	50
26	Evaluating the Environmental Impacts of a Nano-Enhanced Field Emission Display Using Life Cycle Assessment: A Screening-Level Study. Environmental Science & Technology, 2014, 48, 1194-1205.	4.6	12
27	Integrating algaculture into small wastewater treatment plants: process flow options and life cycle impacts. Environmental Sciences: Processes and Impacts, 2014, 16, 1387-1399.	1.7	8
28	Environmental Performance of Green Building Code and Certification Systems. Environmental Science & Technology, 2014, 48, 2551-2560.	4.6	38
29	Life Cycle Water Consumption and Wastewater Generation Impacts of a Marcellus Shale Gas Well. Environmental Science & Technology, 2014, 48, 1911-1920.	4.6	173
30	Productivity metrics in dynamic LCA for whole buildings: Using a post-occupancy evaluation of energy and indoor environmental quality tradeoffs. Building and Environment, 2014, 82, 339-348.	3.0	49
31	Benefits and Risks of Emerging Technologies: Integrating Life Cycle Assessment and Decision Analysis To Assess Lumber Treatment Alternatives. Environmental Science & Technology, 2014, 48, 11543-11550.	4.6	32
32	Modeling Potential Freshwater Ecotoxicity Impacts Due to Pesticide Use in Biofuel Feedstock Production: The Cases of Maize, Rapeseed, <i>Salix</i> , Soybean, Sugar Cane, and Wheat. Environmental Science & Technology, 2014, 48, 11379-11388.	4.6	43
33	Bridging Arctic environmental science and life cycle assessment: a preliminary assessment of regional scaling factors. Clean Technologies and Environmental Policy, 2014, 16, 1713-1724.	2.1	3
34	Comparative Life Cycle Assessment of Conventional, Glass Powder, and Alkali-Activated Slag Concrete and Mortar. Journal of Infrastructure Systems, 2014, 20, .	1.0	116
35	Life cycle assessment for emerging materials: case study of a garden bed constructed from lumber produced with three different copper treatments. International Journal of Life Cycle Assessment, 2014, 19, 1345-1355.	2.2	10
36	Emerging approaches, challenges and opportunities in life cycle assessment. Science, 2014, 344, 1109-1113.	6.0	925

#	Article	IF	CITATIONS
37	Efficiency and life cycle environmental impacts of ion-exchange regeneration using sodium, potassium, chloride, and bicarbonate salts. Chemical Engineering Journal, 2014, 254, 198-209.	6.6	58
38	Transit-oriented smart growth can reduce life-cycle environmental impacts and household costs in Los Angeles. Transport Policy, 2014, 35, 21-30.	3.4	40
40	Environmental impacts of bioethanol using the NREL biochemical conversion route: multivariate analysis and single score results. Biofuels, Bioproducts and Biorefining, 2015, 9, 484-500.	1.9	14
41	Changes in environmental impacts of major crops in the US. Environmental Research Letters, 2015, 10, 094016.	2.2	49
42	Life ycle impacts of soybean and algae biodiesel: Case study of <scp>US</scp> marine vessels. Biofuels, Bioproducts and Biorefining, 2015, 9, 567-580.	1.9	9
43	Comparing Green and Grey Infrastructure Using Life Cycle Cost and Environmental Impact: A Rain Garden Case Study in Cincinnati, <scp>OH</scp> . Journal of the American Water Resources Association, 2015, 51, 1342-1360.	1.0	81
44	Case Study and Life Cycle Assessment of a Coastal Utility Facing Saltwater Intrusion. Journal - American Water Works Association, 2015, 107, E543.	0.2	9
45	Exploring the Use of Ecological Footprint in Life Cycle Impact Assessment. Journal of Industrial Ecology, 2015, 19, 416-426.	2.8	7
46	The NREL Biochemical and Thermochemical Ethanol Conversion Processes: Financial and Environmental Analysis Comparison. BioResources, 2015, 10, .	0.5	17
47	A life cycle assessment of in-place recycling and conventional pavement construction and maintenance practices. Structure and Infrastructure Engineering, 2015, 11, 1199-1217.	2.0	76
48	Performance and life cycle environmental benefits of recycling spent ion exchange brines by catalytic treatment of nitrate. Water Research, 2015, 80, 267-280.	5.3	71
50	Reassessing the Efficiency Penalty from Carbon Capture in Coal-Fired Power Plants. Environmental Science & Technology, 2015, 49, 12576-12584.	4.6	56
51	Integrating Life Cycle Assessment with Green Building and Product Rating Systems: North American Perspective. Procedia Engineering, 2015, 118, 662-669.	1.2	16
52	Comparing alternative cellulosic biomass biorefining systems: Centralized versus distributed processing systems. Biomass and Bioenergy, 2015, 74, 135-147.	2.9	89
53	The USEtox story: a survey of model developer visions and user requirements. International Journal of Life Cycle Assessment, 2015, 20, 299-310.	2.2	55
54	Cradle-to-gate life cycle impacts of redwood forest resource harvesting in northern California. Journal of Cleaner Production, 2015, 99, 217-229.	4.6	24
55	Comparative life cycle assessment of silver nanoparticle synthesis routes. Environmental Science: Nano, 2015, 2, 361-369.	2.2	68
56	Land cover change from cotton to corn in the USA relieves freshwater ecotoxicity impact but may aggravate other regional environmental impacts. International Journal of Life Cycle Assessment, 2015, 20, 196-203.	2.2	19

		CITATION REPORT	
# 58	ARTICLE The Glasgow consensus on the delineation between pesticide emission inventory and impact assessment for LCA. International Journal of Life Cycle Assessment, 2015, 20, 765-776.	IF 2.2	CITATIONS
59	Indoor Air Pollutant Exposure for Life Cycle Assessment: Regional Health Impact Factors for Households. Environmental Science & Technology, 2015, 49, 12823-12831.	4.6	52
60	Air Pollution Monitoring Changes to Accompany the Transition from a Control to a Systems Focus. Sustainability, 2016, 8, 1216.	1.6	27
61	Life Cycle Analysis of Biochar. , 2016, , 46-69.		7
62	Environmental Impacts of the U.S. Health Care System and Effects on Public Health. PLoS ONE, 2016, 11, e0157014.	1.1	502
63	Strategic Sustainable Assessment of Retrofit Design for Process Performance Evaluation. , 2016, , 249-273.		0
64	Teaching life cycle assessment in environmental engineering: a disinfection case study for students. International Journal of Life Cycle Assessment, 2016, 21, 1706-1718.	2.2	12
65	Systematic Evaluation of Industrial, Commercial, and Institutional Food Waste Management Strategies in the United States. Environmental Science & Technology, 2016, 50, 8444-8452.	4.6	56
66	Holistically evaluating the environmental impacts in modern computing systems. , 2016, , .		11
67	Life-Cycle Environmental Impact Assessment of Reinforced Concrete Buildings Subjected to Natural Hazards. Journal of Architectural Engineering, 2016, 22, .	0.8	34
68	Environmental footprint of aluminum production in China. Journal of Cleaner Production, 2016, 133, 1242-1251.	4.6	126
69	Conceptual Framework To Extend Life Cycle Assessment Using Near-Field Human Exposure Modeling and High-Throughput Tools for Chemicals. Environmental Science & Technology, 2016, 50, 11922-11934.	4.6	31
70	Assessment of environment impacts of egg production chain using life cycle assessment. Journal of Environmental Management, 2016, 183, 980-987.	3.8	24
71	Environmental Comparison of Biochar and Activated Carbon for Tertiary Wastewater Treatment. Environmental Science & Technology, 2016, 50, 11253-11262.	4.6	238
72	Carbon balance implications of land use change from pasture to managed eucalyptus forest in Hawaii. Carbon Management, 2016, 7, 171-181.	1.2	15
73	Comparative life cycle assessment of fossil and bio-based polyethylene terephthalate (PET) bottles. Journal of Cleaner Production, 2016, 137, 667-676.	4.6	139
74	The micro-environmental impact of volatile organic compound emissions from large-scale assemblies of people in a confined space. Environmental Research, 2016, 151, 304-312.	3.7	15
75	Comparative life cycle assessment of solid waste management strategies. Clean Technologies and Environmental Policy, 2016, 18, 1515-1524.	2.1	34

#	Article	IF	CITATIONS
76	Can Carbon Nanomaterials Improve CZTS Photovoltaic Devices? Evaluation of Performance and Impacts Using Integrated Life ycle Assessment and Decision Analysis. Risk Analysis, 2016, 36, 1916-1935.	1.5	15
77	Life Cycle Assessment Software: Selection Can Impact Results. Journal of Industrial Ecology, 2016, 20, 18-28.	2.8	69
78	Life cycle assessment (LCA) – from analysing methodology development to introducing an LCA framework for marine photovoltaic (PV) systems. Renewable and Sustainable Energy Reviews, 2016, 59, 352-378.	8.2	73
79	Life cycle inherent toxicity: a novel LCA-based algorithm for evaluating chemical synthesis pathways. Green Chemistry, 2016, 18, 3257-3264.	4.6	29
80	How Many Environmental Impact Indicators Are Needed in the Evaluation of Product Life Cycles?. Environmental Science & Technology, 2016, 50, 3913-3919.	4.6	95
81	Life-Cycle Assessment of Advanced Nutrient Removal Technologies for Wastewater Treatment. Environmental Science & Technology, 2016, 50, 3020-3030.	4.6	85
82	When considering no man is an island—assessing bioenergy systems in a regional and LCA context: a review. International Journal of Life Cycle Assessment, 2016, 21, 885-902.	2.2	28
83	Time-based life-cycle assessment for environmental policymaking: Greenhouse gas reduction goals and public transit. Transportation Research, Part D: Transport and Environment, 2016, 43, 49-58.	3.2	19
84	Life cycle sustainability assessment of RC buildings in seismic regions. Engineering Structures, 2016, 110, 347-362.	2.6	82
85	Reducing the life cycle environmental impacts of kesterite solar photovoltaics: comparing carbon and molybdenum back contact options. International Journal of Life Cycle Assessment, 2016, 21, 29-43.	2.2	6
86	Environmental burdens of regular and long-term pavement designs: a life cycle view. International Journal of Pavement Engineering, 2016, 17, 300-313.	2.2	19
87	Life Cycle Assessment of Catechols from Lignin Depolymerization. ACS Sustainable Chemistry and Engineering, 2016, 4, 708-718.	3.2	62
88	Methodology for assessing human health impacts due to pollutants emitted from building materials. Building and Environment, 2016, 95, 133-144.	3.0	45
89	Toward a more accurate regionalized life cycle inventory. Journal of Cleaner Production, 2016, 112, 308-315.	4.6	44
90	Novel effect of SO 2 on selective catalytic oxidation of slip ammonia from coal-fired flue gas over IrO 2 modified Ce–Zr solid solution and the mechanism investigation. Fuel, 2016, 166, 179-187.	3.4	62
91	Life cycle assessment of sunflower cultivation on abandoned mine land for biodiesel production. Journal of Cleaner Production, 2016, 112, 182-195.	4.6	36
92	Assessing the environmental, human health, and economic impacts of reprocessed medical devices in a Phoenix hospital's supply chain. Journal of Cleaner Production, 2016, 112, 1995-2003.	4.6	80
93	Parametric modeling approach for economic and environmental life cycle assessment of medium-duty truck electrification. Journal of Cleaner Production, 2017, 142, 3300-3321.	4.6	32

#	Article	IF	CITATIONS
94	Using site-specific life cycle assessment methodology to evaluate Chinese wastewater treatment scenarios: A comparative study of site-generic and site-specific methods. Journal of Cleaner Production, 2017, 144, 1-7.	4.6	37
95	A comparative life cycle assessment of flood and drip irrigation for guayule rubber production using experimental field data. Industrial Crops and Products, 2017, 99, 97-108.	2.5	35
96	Application of Life Cycle Assessment on Electronic Waste Management: A Review. Environmental Management, 2017, 59, 693-707.	1.2	42
97	Life cycle human health and ecosystem quality implication of biomass-based strategies to climate change mitigation. Renewable Energy, 2017, 108, 11-18.	4.3	25
99	Environmental Impacts from Photovoltaic Solar Cells Made with Single Walled Carbon Nanotubes. Environmental Science & Technology, 2017, 51, 4722-4732.	4.6	40
100	Screening-Level Life Cycle Assessment of Graphene-Poly(ether imide) Coatings Protecting Unalloyed Steel from Severe Atmospheric Corrosion. ACS Sustainable Chemistry and Engineering, 2017, 5, 2656-2667.	3.2	32
101	Greenhouse gas and air quality effects of auto first-last mile use with transit. Transportation Research, Part D: Transport and Environment, 2017, 53, 306-320.	3.2	22
102	Environmental and cost performance of building's envelope insulation materials to reduce energy demand: Thickness optimisation. Energy and Buildings, 2017, 150, 527-545.	3.1	82
103	Isolation and Surface Modification of Nanocellulose: Necessity of Enzymes over Chemicals. ChemBioEng Reviews, 2017, 4, 289-303.	2.6	44
104	Life cycle assessment in wastewater treatment: influence of site-oriented normalization factors, life cycle impact assessment methods, and weighting methods. RSC Advances, 2017, 7, 26335-26341.	1.7	17
105	Life Cycle Assessment and Release Studies for 15 Nanosilver-Enabled Consumer Products: Investigating Hotspots and Patterns of Contribution. Environmental Science & Technology, 2017, 51, 7148-7158.	4.6	75
106	Towards harmonizing natural resources as an area of protection in life cycle impact assessment. International Journal of Life Cycle Assessment, 2017, 22, 1912-1927.	2.2	70
107	Interpretation of comparative LCAs: external normalization and a method of mutual differences. International Journal of Life Cycle Assessment, 2017, 22, 2018-2029.	2.2	38
108	Evaluating the Life Cycle Environmental Benefits and Trade-Offs of Water Reuse Systems for Net-Zero Buildings. Environmental Science & Technology, 2017, 51, 1110-1119.	4.6	38
109	Sustainability of renewable fuel infrastructure: a screening LCA case study of anticorrosive graphene oxide epoxy liners in steel tanks for the storage of biodiesel and its blends. Environmental Sciences: Processes and Impacts, 2017, 19, 141-153.	1.7	9
110	A systematic assessment of road pavement sustainability through a review of rating tools. Resources, Conservation and Recycling, 2017, 120, 108-118.	5.3	38
111	Environmental, Technical, and Economic Evaluation of a New Treatment for Wastewater from Slaughterhouses. International Journal of Environmental Research, 2017, 11, 535-545.	1.1	9
112	Environmental Aspects. , 2017, , 87-97.		1

#	Article	IF	CITATIONS
113	Evaluation of Life Cycle Assessment (LCA) for Roadway Drainage Systems. Environmental Science & Technology, 2017, 51, 9261-9270.	4.6	25
114	A multi-objective optimization-based pavement management decision-support system for enhancing pavement sustainability. Journal of Cleaner Production, 2017, 164, 1380-1393.	4.6	80
115	Life cycle assessment (LCA) of urban water infrastructure: emerging approaches to balance objectives and inform comprehensive decision-making. Environmental Science: Water Research and Technology, 2017, 3, 1002-1014.	1.2	47
116	Environmental analysis of perovskites and other relevant solar cell technologies in a tandem configuration. Energy and Environmental Science, 2017, 10, 1874-1884.	15.6	104
117	Entity Normalization in Life Cycle Assessment: Hybrid Schemes Applied to a Transportation Agency Case Study. Journal of Industrial Ecology, 2017, 21, 1090-1102.	2.8	2
118	Evaluation of bioaugmentation using multiple life cycle assessment approaches: A case study of constructed wetland. Bioresource Technology, 2017, 244, 407-415.	4.8	18
119	Comparison of Life-Cycle Assessment Tools for Road Pavement Infrastructure. Transportation Research Record, 2017, 2646, 28-38.	1.0	21
120	Rapid Life-Cycle Impact Screening Using Artificial Neural Networks. Environmental Science & Technology, 2017, 51, 10777-10785.	4.6	67
121	Effect of solids loading on ethanol production: Experimental, economic and environmental analysis. Bioresource Technology, 2017, 244, 108-116.	4.8	39
122	Life Cycle Assessment of heat transfer fluids in parabolic trough concentrating solar power technology. Solar Energy Materials and Solar Cells, 2017, 171, 91-97.	3.0	28
123	Using multi criteria decision analysis to evaluate nanotechnology: nAg enabled textiles as a case study. Environmental Science: Nano, 2017, 4, 1647-1655.	2.2	11
124	Recycle, Bury, or Burn Wood Waste Biomass?: LCA Answer Depends on Carbon Accounting, Emissions Controls, Displaced Fuels, and Impact Costs. Journal of Industrial Ecology, 2017, 21, 844-856.	2.8	30
125	A comparison of major petroleum life cycle models. Clean Technologies and Environmental Policy, 2017, 19, 735-747.	2.1	1
126	Assessing sustainability benefits of cybermanufacturing systems. International Journal of Advanced Manufacturing Technology, 2017, 90, 1365-1382.	1.5	47
127	Environmental and economic assessment of pavement construction and management practices for enhancing pavement sustainability. Resources, Conservation and Recycling, 2017, 116, 15-31.	5.3	133
128	Sustainable Logistics Network Design Under Uncertainty. Springer Optimization and Its Applications, 2017, , 115-151.	0.6	2
129	How to quantify biodiversity footprints of consumption? A review of multi-regional input–output analysis and life cycle assessment. Current Opinion in Environmental Sustainability, 2017, 29, 75-81.	3.1	42
130	Life Cycle Impact Assessment in the Arctic: Challenges and Research Needs. Sustainability, 2017, 9, 1605.	1.6	9

#	Article	IF	CITATIONS
131	Effect of Moisture Content on Lignocellulosic Power Generation: Energy, Economic and Environmental Impacts. Processes, 2017, 5, 78.	1.3	5
132	How does technology pathway choice influence economic viability and environmental impacts of lignocellulosic biorefineries?. Biotechnology for Biofuels, 2017, 10, 268.	6.2	29
133	Is open-loop recycling the lowest preference in a circular economy? Answering through LCA of glass powder in concrete. Journal of Cleaner Production, 2018, 185, 14-22.	4.6	67
134	A multi-objective optimisation approach for sustainable pavement management. Structure and Infrastructure Engineering, 2018, 14, 854-868.	2.0	46
135	Use phase assessment of photocatalytic cool pavements. Journal of Cleaner Production, 2018, 190, 722-728.	4.6	28
136	Life cycle considerations of nano-enabled agrochemicals: are today's tools up to the task?. Environmental Science: Nano, 2018, 5, 1057-1069.	2.2	26
137	Case Studies and Examples. , 2018, , 325-360.		0
138	Extending the geopolitical supply risk method: material "substitutability―indicators applied to electric vehicles and dental X-ray equipment. International Journal of Life Cycle Assessment, 2018, 23, 2024-2042.	2.2	32
139	Trace Metal Content of Coal Exacerbates Air-Pollution-Related Health Risks: The Case of Lignite Coal in Kosovo. Environmental Science & Technology, 2018, 52, 2359-2367.	4.6	31
140	Life cycle assessment of UV-Curable bio-based wood flooring coatings. Journal of Cleaner Production, 2018, 192, 932-939.	4.6	28
141	A bi-level environmental impact assessment framework for comparing construction and demolition waste management strategies. Waste Management, 2018, 77, 401-412.	3.7	40
142	Life Cycle Assessment and Costing Methods for Device Procurement: Comparing Reusable and Single-Use Disposable Laryngoscopes. Anesthesia and Analgesia, 2018, 127, 434-443.	1.1	142
143	Comparative LCA of concrete with natural and recycled coarse aggregate in the New York City area. International Journal of Life Cycle Assessment, 2018, 23, 1163-1173.	2.2	61
144	Representativeness of environmental impact assessment methods regarding Life Cycle Inventories. Science of the Total Environment, 2018, 621, 1264-1271.	3.9	28
145	Catalysis as an Enabling Science for Sustainable Polymers. Chemical Reviews, 2018, 118, 839-885.	23.0	669
146	Overview of Existing LCIA Methods—Annex to Chapter 10. , 2018, , 1147-1183.		5
147	Life-cycle economic and environmental assessment of warm stone mastic asphalt. Transportmetrica A: Transport Science, 2018, 14, 562-575.	1.3	14
148	Geographic variability of agriculture requires sector-specific uncertainty characterization. International Journal of Life Cycle Assessment, 2018, 23, 1581-1589.	2.2	23

#	Article	IF	CITATIONS
149	Techno-economic and Life Cycle Analysis for Bioleaching Rare-Earth Elements from Waste Materials. ACS Sustainable Chemistry and Engineering, 2018, 6, 1602-1609.	3.2	98
150	An exploration of the relationship between improvements in energy efficiency and life-cycle energy and carbon emissions using the BIRDS low-energy residential database. Energy and Buildings, 2018, 160, 19-33.	3.1	35
151	â€~Woods-to-Wake' Life Cycle Assessment of residual woody biomass based jet-fuel using mild bisulfite pretreatment. Biomass and Bioenergy, 2018, 108, 207-216.	2.9	42
152	Total environmental impacts of biofuels from corn stover using a hybrid life cycle assessment model combining process life cycle assessment and economic input–output life cycle assessment. Integrated Environmental Assessment and Management, 2018, 14, 139-149.	1.6	15
154	Lessons Learned from Life Cycle Assessment and Life Cycle Costing of Two Residential Towers at the University of British Columbia. Procedia CIRP, 2018, 69, 172-177.	1.0	23
155	Effect of Nutrient Removal and Resource Recovery on Life Cycle Cost and Environmental Impacts of a Small Scale Water Resource Recovery Facility. Sustainability, 2018, 10, 3546.	1.6	33
156	Environmental assessment of medical nanotechnologies. , 2018, , 381-397.		0
157	Dynamic Life Cycle Assessments of a Conventional Green Building and a Net Zero Energy Building: Exploration of Static, Dynamic, Attributional, and Consequential Electricity Grid Models. Environmental Science & Technology, 2018, 52, 11429-11438.	4.6	39
158	Incorporation of sustainability in process control of hydraulic fracturing in unconventional reservoirs. Chemical Engineering Research and Design, 2018, 139, 62-76.	2.7	10
160	Optimization of Surfactant Addition in Cellulosic Ethanol Process Using Integrated Techno-economic and Life Cycle Assessment for Bioprocess Design. ACS Sustainable Chemistry and Engineering, 2018, 6, 13687-13695.	3.2	30
161	Organized youth sports and commuting behavior: The environmental impact of decentralized community sport facilities. Transportation Research, Part D: Transport and Environment, 2018, 65, 387-395.	3.2	9
162	An optimization model for fleet management with economic and environmental considerations, under a cap-and-trade market. Journal of Cleaner Production, 2018, 204, 130-143.	4.6	13
163	Optimal Replacement of a Fleet of Assets with Economic and Environmental Considerations. , 2018, , .		1
164	An Iterative Approach To Evaluate and Guide Fine Chemical Processes: An Example from Chloroaluminum Phthalocyanine for Photovoltaic Applications. ACS Sustainable Chemistry and Engineering, 2018, 6, 8230-8237.	3.2	11
165	Embodied life cycle assessment comparison of single family residential houses considering the 1970s transition in construction industry: Atlanta case study. Building and Environment, 2018, 140, 55-67.	3.0	13
166	Life Cycle Energy and Carbon Analysis of Single Family Residential Buildings: Atlanta Case Study. , 2018, , .		1
167	Comparative Life Cycle Assessment of Advanced Wastewater Treatment Processes for Removal of Chemicals of Emerging Concern. Environmental Science & Technology, 2018, 52, 11346-11358.	4.6	52
168	Developing Timber Volume Calculators Through a Comparative Case Study Analysis of Wood Utilization in On-Site and Off-Site Construction Methods. Technology Architecture and Design, 2018, 2, 55-67.	0.6	2

#	Article	IF	CITATIONS
169	Life cycle assessment of residual lignocellulosic biomass-based jet fuel with activated carbon and lignosulfonate as co-products. Biotechnology for Biofuels, 2018, 11, 139.	6.2	41
170	Life cycle energy and environmental benefits of novel design-for-deconstruction structural systems in steel buildings. Building and Environment, 2018, 143, 421-430.	3.0	65
171	Life-cycle greenhouse-gas emissions assessment: An Australian commercial building perspective. Journal of Cleaner Production, 2018, 199, 236-247.	4.6	27
172	Integrating site-specific dispersion modeling into life cycle assessment, with a focus on inhalation risks in chemical production. Journal of the Air and Waste Management Association, 2018, 68, 1224-1238.	0.9	5
173	Life cycle assessment of adipic acid production from lignin. Green Chemistry, 2018, 20, 3857-3866.	4.6	116
174	A framework for increasing the availability of life cycle inventory data based on the role of multinational companies. International Journal of Life Cycle Assessment, 2018, 23, 1744-1760.	2.2	19
175	Radiological impact assessment approaches for Life Cycle Assessment: a review and possible ways forward. Environmental Reviews, 2018, 26, 239-254.	2.1	4
176	Life cycle assessment of end-of-life treatments for plastic film waste. Journal of Cleaner Production, 2018, 201, 1052-1060.	4.6	90
177	Green and sustainable remediation of polluted sites: new concept, assessment tools, and challenges. Ce/Papers, 2018, 2, 83-92.	0.1	13
178	The tradeoff between water and carbon footprints of Barnett Shale gas. Journal of Cleaner Production, 2018, 197, 47-56.	4.6	16
179	Ecosystem services in life cycle assessment - Part 1: A computational framework. Journal of Cleaner Production, 2018, 197, 314-322.	4.6	31
180	Integrating Life Cycle Assessment and Agent-Based Modeling: AÂDynamic Modeling Framework for Sustainable Agricultural Systems. Journal of Cleaner Production, 2019, 238, 117853.	4.6	42
181	Global Warming Potential of Biomass-to-Ethanol: Review and Sensitivity Analysis through a Case Study. Energies, 2019, 12, 2535.	1.6	37
182	Life Cycle Assessment of Forest-Based Products: A Review. Sustainability, 2019, 11, 4722.	1.6	45
183	Sustainable Bioleaching of Rare Earth Elements from Industrial Waste Materials Using Agricultural Wastes. ACS Sustainable Chemistry and Engineering, 2019, 7, 15311-15319.	3.2	51
184	Building impact assessment—A combined life cycle assessment and multi-criteria decision analysis framework. Resources, Conservation and Recycling, 2019, 150, 104410.	5.3	30
185	The Life-Cycle Environmental Impact of Recycling of Restaurant Food Waste in Lanzhou, China. Applied Sciences (Switzerland), 2019, 9, 3608.	1.3	24
186	New ultralight automotive door life cycle assessment. International Journal of Life Cycle Assessment, 2019, 24, 310-323.	2.2	11

#	Article	IF	CITATIONS
187	The effect of geographic boundaries on the results of a regional life cycle assessment of using recycled aggregate in concrete. Resources, Conservation and Recycling, 2019, 143, 201-209.	5.3	22
188	Life cycle assessment of wastewater treatment in developing countries: A review. Water Research, 2019, 153, 63-79.	5.3	206
189	Life Cycle Analysis with Multi-Criteria Decision Making: A review of approaches for the sustainability evaluation of renewable energy technologies. Renewable and Sustainable Energy Reviews, 2019, 104, 343-366.	8.2	171
190	Expansion of the Petroleum Refinery Life Cycle Inventory Model to Support Characterization of a Full Suite of Commonly Tracked Impact Potentials. Environmental Science & Technology, 2019, 53, 2238-2248.	4.6	11
191	Applying Environmental Release Inventories and Indicators to the Evaluation of Chemical Manufacturing Processes in Early Stage Development. ACS Sustainable Chemistry and Engineering, 2019, 7, 10937-10950.	3.2	26
192	Comparison of life-cycle assessment between bio-catalyzed and promoted potassium carbonate processes and amine-based carbon capture technologies. International Journal of Greenhouse Gas Control, 2019, 88, 134-155.	2.3	15
193	"Alternative―materials in the green building and construction sector. Smart and Sustainable Built Environment, 2019, 8, 270-291.	2.2	22
194	Gas vs electric: Heating system fuel source implications on low-energy single-family dwelling sustainability performance. Journal of Building Engineering, 2019, 25, 100779.	1.6	7
196	Life Cycle Assessment for the Production Phase of Nano-Silica-Modified Asphalt Mixtures. Applied Sciences (Switzerland), 2019, 9, 1315.	1.3	17
197	Life Cycle Assessment Contribution in the Product Development Process: Case Study of Wood Aluminum-Laminated Panel. Sustainability, 2019, 11, 2258.	1.6	13
198	Validation of Sustainability Benchmarking Tool in the Context of Value-Added Wood Products Manufacturing Activities. Sustainability, 2019, 11, 2361.	1.6	12
200	Exploring the impact of holiday gifts: An economic and environmental comparison of DVDs and books received as gifts. Sustainable Production and Consumption, 2019, 19, 11-24.	5.7	3
201	Life cycle assessment of rice production systems in different paddy field size levels in north of Iran. Environmental Monitoring and Assessment, 2019, 191, 202.	1.3	39
202	A flexible framework for assessing the sustainability of alternative water supply options. Science of the Total Environment, 2019, 671, 1257-1268.	3.9	25
204	Use of bio-based polymers in agricultural exclusion nets: A perspective. Biosystems Engineering, 2019, 180, 121-145.	1.9	33
205	IMPACT World+: a globally regionalized life cycle impact assessment method. International Journal of Life Cycle Assessment, 2019, 24, 1653-1674.	2.2	262
206	Life cycle assessment of proposed space elevator designs. Acta Astronautica, 2019, 161, 465-474.	1.7	11
207	Framework toward More Sustainable Chemical Synthesis Design—A Case Study of Organophosphates. ACS Sustainable Chemistry and Engineering, 2019, 7, 6744-6757.	3.2	14

#	Article	IF	CITATIONS
208	Environmental Assessment of Energy Scenarios for a Low-Carbon Electrical Network in Chile. Sustainability, 2019, 11, 5066.	1.6	11
209	Combining Hydrologic Analysis and Life Cycle Assessment Approaches to Evaluate Sustainability of Water Infrastructure: Uncertainty Analysis. Water (Switzerland), 2019, 11, 2592.	1.2	9
210	Current options in the life cycle assessment of additive manufacturing products. Open Engineering, 2019, 9, 674-682.	0.7	15
211	Structural dynamics of logistic networks: A sustainable approach. IFAC-PapersOnLine, 2019, 52, 2704-2709.	0.5	1
212	Life Cycle Assessment for Transportation Infrastructure Policy Evaluation and Procurement for State and Local Governments. Sustainability, 2019, 11, 6377.	1.6	11
213	Evaluating reactor hydraulics in a costâ€effective and environmentâ€friendly way: Numerical tracer study. AWWA Water Science, 2019, 1, e1163.	1.0	5
214	Life-cycle sustainability assessment of pavement maintenance alternatives: Methodology and case study. Journal of Cleaner Production, 2019, 213, 659-672.	4.6	94
216	Life cycle assessment of permanent magnet electric traction motors. Transportation Research, Part D: Transport and Environment, 2019, 67, 263-274.	3.2	48
217	A tool to guide the selection of impact categories for LCA studies by using the representativeness index. Science of the Total Environment, 2019, 658, 768-776.	3.9	18
218	Carbon footprint of corn-soy-oats rotations in the US Midwest using data from real biological farm management practices. Journal of Cleaner Production, 2019, 210, 170-180.	4.6	8
219	Material Recycling and the Myth of Landfill Diversion. Journal of Industrial Ecology, 2019, 23, 541-548.	2.8	46
221	Development of Eco-factors for the European Union based on the Ecological Scarcity Method. International Journal of Life Cycle Assessment, 2019, 24, 1701-1714.	2.2	18
222	Cradle-to-grave life cycle assessment (LCA) of low-impact-development (LID) technologies in southern Ontario. Journal of Environmental Management, 2019, 231, 98-109.	3.8	53
223	Overview and recommendations for regionalized life cycle impact assessment. International Journal of Life Cycle Assessment, 2019, 24, 856-865.	2.2	57
224	System-Level Approach for Identifying Main Uncertainty Sources in Pavement Construction Life-Cycle Assessment for Quantifying Environmental Impacts. Journal of Construction Engineering and Management - ASCE, 2019, 145, .	2.0	3
225	GreenChip: A tool for evaluating holistic sustainability of modern computing systems. Sustainable Computing: Informatics and Systems, 2019, 22, 322-332.	1.6	9
226	Ecosystem Services in Life Cycle Assessment while Encouraging Technoâ€Ecological Synergies. Journal of Industrial Ecology, 2019, 23, 347-360.	2.8	35
227	Life-cycle sustainability design of RC frames under the seismic loads. Asian Journal of Civil Engineering, 2020, 21, 293-310.	0.8	0

#	Article	IF	Citations
228	Life cycle sustainability assessment in the energy sector. , 2020, , 115-163.		6
229	Effect of manufacturing and installation location on environmental impact payback time of solar power. Clean Technologies and Environmental Policy, 2020, 22, 187-196.	2.1	20
230	Life cycle assessment of preserved plum production in Southern China. Clean Technologies and Environmental Policy, 2020, 22, 197-209.	2.1	3
231	Understanding the future of lithium: Part 2, temporally and spatially resolved lifeâ€cycle assessment modeling. Journal of Industrial Ecology, 2020, 24, 90-100.	2.8	45
232	Environmental and economic impacts of solarâ€powered integrated greenhouses. Journal of Industrial Ecology, 2020, 24, 234-247.	2.8	41
233	A comparative life-cycle assessment of talc- and biochar-reinforced composites for lightweight automotive parts. Clean Technologies and Environmental Policy, 2020, 22, 639-649.	2.1	35
234	Comparative Environmental Analysis of Seismic Damage in Buildings. Journal of Structural Engineering, 2020, 146, .	1.7	6
235	Net energy and cost benefit of transparent organic solar cells in building-integrated applications. Applied Energy, 2020, 261, 114429.	5.1	69
236	Environmental LCA on three note-taking devices. Procedia CIRP, 2020, 90, 310-315.	1.0	3
237	The environmental opportunity cost of using renewable energy for carbon capture and utilization for methanol production. Applied Energy, 2020, 279, 115770.	5.1	52
238	Sustainable Urban Transportation Approaches: Life-Cycle Assessment Perspective of Passenger Transport Modes in Qatar. Transportation Research Procedia, 2020, 48, 2056-2062.	0.8	9
239	Carbon Footprint of Biomimetic Carbon Fixation by Immobilizing Nature's CO ₂ -sequestering Enzyme and Regenerating Its Energy Carrier. ACS Sustainable Chemistry and Engineering, 2020, 8, 16833-16841.	3.2	6
240	Lean Construction Impact on the Environmental Footprint of a Construction Project in Colombia: A Case Study. , 2020, , .		0
241	Techno-Economic and Life Cycle Assessments for Sustainable Rare Earth Recovery from Coal Byproducts using Biosorption. ACS Sustainable Chemistry and Engineering, 2020, 8, 17914-17922.	3.2	30
242	Integrated techno-economic and environmental analysis of guayule rubber production. Journal of Cleaner Production, 2020, 273, 122811.	4.6	14
243	Computer-Aided Environmental Assessment Applied for Estimation of Ecological Impacts Derived from Topological Pathways Based on Lignocellulosic Biomass Transformation. Applied Sciences (Switzerland), 2020, 10, 6586.	1.3	3
244	Life cycle assessment of wheat production and wheatâ€based crop rotations. Journal of Environmental Quality, 2020, 49, 1515-1529.	1.0	7
245	Life Cycle Assessment: A Tool to Help Design Environmentally Sustainable Space Technologies. , 2020, , .		2

#	Article	IF	CITATIONS
246	Key Parameters Featuring BIM-LCA Integration in Buildings: A Practical Review of the Current Trends. Sustainability, 2020, 12, 7182.	1.6	26
247	Sustainable End of Life Management of Crystalline Silicon and Thin Film Solar Photovoltaic Waste: The Impact of Transportation. Applied Sciences (Switzerland), 2020, 10, 5465.	1.3	16
248	Life Cycle Thinking-Informed Approach to Support Pavement Design Decision Making. Journal of Transportation Engineering Part B: Pavements, 2020, 146, .	0.8	3
249	Biobased Products and Life Cycle Assessment in the Context of Circular Economy and Sustainability. Materials Circular Economy, 2020, 2, 1.	1.6	77
250	Green Design Tools: Building Values and Politics into Material Choices. Science Technology and Human Values, 2020, , 016224392097684.	1.7	3
251	Comparison of Different Monetization Methods in LCA: A Review. Sustainability, 2020, 12, 10493.	1.6	46
252	Comparison between Different Hybrid Life Cycle Assessment Methodologies: A Review and Case Study of Biomass-based <i>p</i> -Xylene Production. Industrial & Engineering Chemistry Research, 2020, 59, 22313-22329.	1.8	14
253	Environmental impacts of scandium oxide production from rare earths tailings of Bayan Obo Mine. Journal of Cleaner Production, 2020, 270, 122464.	4.6	25
254	Assessment of the life cycle of genetically modified and non-genetically modified rice cultivars. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	4
255	Exergetic Life Cycle Assessment: A Review. Energies, 2020, 13, 2684.	1.6	14
255 256	Exergetic Life Cycle Assessment: A Review. Energies, 2020, 13, 2684. Guiding the design space for nanotechnology to advance sustainable crop production. Nature Nanotechnology, 2020, 15, 801-810.	1.6 15.6	14
255 256 257	Exergetic Life Cycle Assessment: A Review. Energies, 2020, 13, 2684. Guiding the design space for nanotechnology to advance sustainable crop production. Nature Nanotechnology, 2020, 15, 801-810. The joint use of life cycle assessment and data envelopment analysis methodologies for eco-efficiency assessment: A critical review, taxonomy and future research. Science of the Total Environment, 2020, 738, 139538.	1.6 15.6 3.9	14 119 37
255 256 257 258	Exergetic Life Cycle Assessment: A Review. Energies, 2020, 13, 2684. Guiding the design space for nanotechnology to advance sustainable crop production. Nature Nanotechnology, 2020, 15, 801-810. The joint use of life cycle assessment and data envelopment analysis methodologies for eco-efficiency assessment: A critical review, taxonomy and future research. Science of the Total Environment, 2020, 738, 139538. Environmentally improved CdTe photovoltaic recycling through novel technologies and facility location strategies. Progress in Photovoltaics: Research and Applications, 2020, 28, 887-898.	1.6 15.6 3.9 4.4	14 119 37 12
255 256 257 258 259	Exergetic Life Cycle Assessment: A Review. Energies, 2020, 13, 2684. Guiding the design space for nanotechnology to advance sustainable crop production. Nature Nanotechnology, 2020, 15, 801-810. The joint use of life cycle assessment and data envelopment analysis methodologies for eco-efficiency assessment: A critical review, taxonomy and future research. Science of the Total Environment, 2020, 738, 139538. Environmentally improved CdTe photovoltaic recycling through novel technologies and facility location strategies. Progress in Photovoltaics: Research and Applications, 2020, 28, 887-898. Environmental and cost benefits of co-digesting food waste at wastewater treatment facilities. Water Science and Technology, 2020, 82, 227-241.	1.6 15.6 3.9 4.4 1.2	14 119 37 12 4
255 256 257 258 259 260	Exergetic Life Cycle Assessment: A Review. Energies, 2020, 13, 2684.Guiding the design space for nanotechnology to advance sustainable crop production. Nature Nanotechnology, 2020, 15, 801-810.The joint use of life cycle assessment and data envelopment analysis methodologies for eco-efficiency assessment: A critical review, taxonomy and future research. Science of the Total Environment, 2020, 738, 139538.Environmentally improved CdTe photovoltaic recycling through novel technologies and facility location strategies. Progress in Photovoltaics: Research and Applications, 2020, 28, 887-898.Environmental and cost benefits of co-digesting food waste at wastewater treatment facilities. Water Science and Technology, 2020, 82, 227-241.Community-scale composting for food waste: A life-cycle assessment-supported case study. Journal of Cleaner Production, 2020, 261, 121220.	1.6 15.6 3.9 4.4 1.2 4.6	14 119 37 12 4 91
255 256 257 258 259 260	Exergetic Life Cycle Assessment: A Review. Energies, 2020, 13, 2684. Guiding the design space for nanotechnology to advance sustainable crop production. Nature Nanotechnology, 2020, 15, 801-810. The joint use of life cycle assessment and data envelopment analysis methodologies for eco-efficiency assessment: A critical review, taxonomy and future research. Science of the Total Environment, 2020, 738, 139538. Environmentally improved CdTe photovoltaic recycling through novel technologies and facility location strategies. Progress in Photovoltaics: Research and Applications, 2020, 28, 887-898. Environmental and cost benefits of co-digesting food waste at wastewater treatment facilities. Water Science and Technology, 2020, 82, 227-241. Community-scale composting for food waste: A life-cycle assessment-supported case study. Journal of Cleaner Production, 2020, 261, 121220. Life Cycle Assessment of Dietary Patterns in the United States: A Full Food Supply Chain Perspective. Sustainability, 2020, 12, 1586.	1.6 15.6 3.9 4.4 1.2 4.6 1.6	14 119 37 12 4 91 17
255 256 257 258 259 260 261	Exergetic Life Cycle Assessment: A Review. Energies, 2020, 13, 2684. Guiding the design space for nanotechnology to advance sustainable crop production. Nature Nanotechnology, 2020, 15, 801-810. The Joint use of life cycle assessment and data envelopment analysis methodologies for eco-efficiency assessment: A critical review, taxonomy and future research. Science of the Total Environment, 2020, 738, 139538. Environmentally improved CdTe photovoltaic recycling through novel technologies and facility location strategies. Progress in Photovoltaics: Research and Applications, 2020, 28, 887-898. Environmental and cost benefits of co-digesting food waste at wastewater treatment facilities. Water Science and Technology, 2020, 82, 227-241. Community-scale composting for food waste: A life-cycle assessment-supported case study. Journal of Cleaner Production, 2020, 261, 121220. Life Cycle Assessment of Dietary Patterns in the United States: A Full Food Supply Chain Perspective. Sustainability, 2020, 12, 1586. Integrated life cycle assessment of permeable pavement: Model development and case study. Transportation Research, Part D: Transport and Environment, 2020, 85, 102381.	1.6 15.6 3.9 4.4 1.2 4.6 1.6 3.2	14 119 37 12 4 91 17 29

#	Article	IF	CITATIONS
264	Comparative Life Cycle Assessment of Multiple Liquid Laundry Detergent Packaging Formats. Sustainability, 2020, 12, 4669.	1.6	6
265	Comparative Life-Cycle Assessment of a High-Rise Mass Timber Building with an Equivalent Reinforced Concrete Alternative Using the Athena Impact Estimator for Buildings. Sustainability, 2020, 12, 4708.	1.6	50
266	Environmental and economic comparison of reusable and disposable blood pressure cuffs in multiple clinical settings. Resources, Conservation and Recycling, 2020, 155, 104643.	5.3	28
267	A decision analysis approach to electronics standard development informed by life cycle assessment using influence diagrams. Journal of Cleaner Production, 2020, 254, 120036.	4.6	6
268	Estimation of energy flow and environmental impacts of quinoa cultivation through life cycle assessment methodology. Environmental Science and Pollution Research, 2020, 27, 21836-21846.	2.7	9
269	Life Cycle Assessment of Crop Rotation Systems on Rice Cultivars in Northern Iran. International Journal of Plant Production, 2020, 14, 531-548.	1.0	13
270	Life cycle assessment of emerging technologies on value recovery from hard disk drives. Resources, Conservation and Recycling, 2020, 157, 104781.	5.3	30
271	Incorporating uncertainty into life-cycle sustainability assessment of pavement alternatives. Journal of Cleaner Production, 2020, 264, 121466.	4.6	30
272	Eco-friendly mortar with high-volume diatomite and fly ash: Performance and life-cycle assessment with regional variability. Journal of Cleaner Production, 2020, 261, 121224.	4.6	59
273	Life Cycle Assessment of a stand-alone solar-based polygeneration power plant for a commercial building in different climate zones. Renewable Energy, 2020, 154, 1132-1143.	4.3	18
274	CFD modeling and environmental assessment of a VOC removal silo. International Journal of Environmental Science and Technology, 2021, 18, 141-150.	1.8	0
275	Waste materials in highway applications: An overview on generation and utilization implications on sustainability. Journal of Cleaner Production, 2021, 283, 124581.	4.6	50
276	Toward sustainable refrigeration systems: Life cycle assessment of a bench-scale solar-thermal adsorption refrigerator. International Journal of Refrigeration, 2021, 121, 105-113.	1.8	15
277	Life Cycle Assessment of Urine Diversion and Conversion to Fertilizer Products at the City Scale. Environmental Science & Technology, 2021, 55, 593-603.	4.6	43
278	Process Design and Sustainable Development—A European Perspective. Processes, 2021, 9, 148.	1.3	22
279	Sustainability concepts in biofuel supply chain. , 2021, , 95-126.		0
280	A Practical Model to Assess Life-Cycle Greenhouse-Gas Emissions for Australian Commercial Buildings. , 2021, , 1097-1105.		0
281	The Plant a Trillion Trees Campaign to Reduce Global Warming – Fleshing Out the Concept. Journal of Sustainable Forestry, 2021, 40, 1-31.	0.6	13

#	Article	IF	CITATIONS
282	Sustainability Health Initiative for NetPositive Enterprise handprint methodological framework. International Journal of Life Cycle Assessment, 2021, 26, 528-542.	2.2	20
283	The Environmental Impact of Ecological Intensification in Soybean Cropping Systems in the U.S. Upper Midwest. Sustainability, 2021, 13, 1696.	1.6	2
284	Moving from Protection to Prosperity: Evolving the U.S. Environmental Protection Agency for the next 50 years. Environmental Science & amp; Technology, 2021, 55, 2779-2789.	4.6	7
285	Towards a green and fast production system: Integrating life cycle assessment and value stream mapping for decision making. Environmental Impact Assessment Review, 2021, 87, 106519.	4.4	30
286	Development of Streamlined Life-Cycle Assessment for the Solid Waste Management System. Environmental Science & Technology, 2021, 55, 5475-5484.	4.6	12
287	An integrated approach of BIM-enabled LCA and energy simulation: The optimized solution towards sustainable development. Journal of Cleaner Production, 2021, 289, 125622.	4.6	67
288	Impacts of Nanosilver-Based Textile Products Using a Life Cycle Assessment. Sustainability, 2021, 13, 3436.	1.6	14
289	Process Synthesis, Analysis, and Optimization Methodologies toward Chemical Process Sustainability. Industrial & Engineering Chemistry Research, 2021, 60, 4193-4217.	1.8	13
290	Proposal of a holistic environmental metric based on environmental indicators. Revista Eletrônica Em Gestão Educação E Tecnologia Ambiental, 0, 25, e13.	0.0	0
291	Environmental trade-offs of relay-cropping winter cover crops with soybean in a maize-soybean cropping system. Agricultural Systems, 2021, 189, 103062.	3.2	17
292	Integrating dairy manure for enhanced resource recovery at a WRRF: Environmental life cycle and pilotâ€scale analyses. Water Environment Research, 2021, 93, 2034-2050.	1.3	10
293	Life-Cycle Cost Analysis of Seismic Designed RC Frames Including Environmental and Social Costs. Journal of Earthquake Engineering, 2022, 26, 5958-5977.	1.4	3
294	Evaluating alternative environmental decision support matrices for future Higg MSI scenarios. International Journal of Life Cycle Assessment, 2021, 26, 1357-1373.	2.2	2
295	Life Cycle Assessment of Perovskite/Silicon Tandem Solar Cells Coupled with Solar Flow Battery Systems. , 2021, , .		1
296	EXAMINING THE USER EXPERIENCE OF LIFE CYCLE ASSESSMENT TOOLS AND THEIR ABILITY TO CATER TO ECODESIGN IN EARLY-STAGE PRODUCT DEVELOPMENT PRACTICE. Proceedings of the Design Society, 2021, 1, 1441-1450.	0.5	4
297	Environmental sustainability challenges of China's edible vegetable oil industry: From farm to factory. Resources, Conservation and Recycling, 2021, 170, 105606.	5.3	29
298	Life-cycle assessment of redwood lumber products in the US. International Journal of Life Cycle Assessment, 2021, 26, 1702-1720.	2.2	10
299	Environmental Life-Cycle Assessment and Life-Cycle Cost Analysis of a High-Rise Mass Timber Building: A Case Study in Pacific Northwestern United States. Sustainability, 2021, 13, 7831.	1.6	26

#	Article	IF	CITATIONS
300	Developing Conversion Factors of LCIA Methods for Comparison of LCA Results in the Construction Sector. Sustainability, 2021, 13, 9016.	1.6	21
301	Assessing the Relative Climate Impact of Carbon Utilization for Concrete, Chemical, and Mineral Production. Environmental Science & amp; Technology, 2021, 55, 12019-12031.	4.6	16
302	Modeling spatially resolved characterization factors for eutrophication potential in life cycle assessment. International Journal of Life Cycle Assessment, 2021, 26, 1832-1846.	2.2	4
303	Environmental Product Declarations of Structural Wood: A Review of Impacts and Potential Pitfalls for Practice. Buildings, 2021, 11, 362.	1.4	22
304	Expanding the Dynamic Modeling of Water-Food-Energy Nexus to Include Environmental, Economic, and Social Aspects Based on Life Cycle Assessment Thinking. Water Resources Management, 2021, 35, 4349-4362.	1.9	9
305	Atmospheric Pressure DBD Plasma Ammonia Synthesis and Separation Process Design and Environmental Impact Assessment. ACS Sustainable Chemistry and Engineering, 2021, 9, 13233-13244.	3.2	11
306	Environmental and Economic Assessment of Portable Systems: Production of Wood-Briquettes and Torrefied-Briquettes to Generate Heat and Electricity. Fuels, 2021, 2, 345-366.	1.3	5
307	Biogas from source separated organic waste within a circular and life cycle perspective. A case study in Ontario, Canada. Environmental and Sustainability Indicators, 2021, 11, 100134.	1.7	6
308	Toward Sustainable Metal–Organic Frameworks for Post-Combustion Carbon Capture by Life Cycle Assessment and Molecular Simulation. ACS Sustainable Chemistry and Engineering, 2021, 9, 12132-12141.	3.2	10
309	Eco-friendly rice husk pre-treatment for preparing biogenic silica: Gluconic acid and citric acid comparative study. Chemosphere, 2021, 279, 130541.	4.2	13
310	Life cycle energy and environmental impacts of hydroprocessed renewable jet fuel production from pennycress. Applied Energy, 2021, 297, 117098.	5.1	14
311	Creating a harmonized time series of environmentally-extended input-output tables to assess the evolution of the US bioeconomy - A retrospective analysis of corn ethanol and soybean biodiesel. Journal of Cleaner Production, 2021, 321, 128890.	4.6	6
312	Comprehensive process and environmental impact analysis of integrated DBD plasma steam methane reforming. Fuel, 2021, 304, 121328.	3.4	20
313	Life cycle assessment of greywater treatment systems for water-reuse management in rural areas. Science of the Total Environment, 2021, 795, 148687.	3.9	14
314	A structural performance-based environmental impact assessment framework for natural hazard loads. Journal of Building Engineering, 2021, 43, 102908.	1.6	2
315	Environmental and economic implications of stormwater management alternatives in rural development. Journal of Industrial Ecology, 2021, 25, 1076-1088.	2.8	4
316	Life Cycle Assessment of Chemical Products and Processes. , 2021, , 67-105.		1
317	Environmental and Exergetic Analysis of Large-Scale Production of Citric Acid-Coated Magnetite Nanoparticles via Computer-Aided Process Engineering Tools. ACS Omega, 2021, 6, 3644-3658.	1.6	3

#	Article	IF	CITATIONS
319	Selection of Impact Categories and Classification of LCI Results to Impact Categories. LCA Compendium, 2015, , 17-37.	0.8	6
320	Human Toxicity. LCA Compendium, 2015, , 75-96.	0.8	5
321	Ecotoxicity. LCA Compendium, 2015, , 139-162.	0.8	9
322	Life cycle assessment and economic analysis of anaerobic membrane bioreactor whole-plant configurations for resource recovery from domestic wastewater. Journal of Environmental Management, 2020, 269, 110720.	3.8	32
323	Review of Methods for Sustainability Assessment of Chemical Engineering Processes. Industrial & Engineering Chemistry Research, 2021, 60, 52-66.	1.8	10
324	BioSTEAM-LCA: An Integrated Modeling Framework for Agile Life Cycle Assessment of Biorefineries under Uncertainty. ACS Sustainable Chemistry and Engineering, 2020, 8, 18903-18914.	3.2	26
326	Using Life-Cycle Assessments to Demonstrate the Impact of Using Wood Waste as a Renewable Fuel in Urban Settings for District Heating. Forest Products Journal, 2013, 63, 24-27.	0.2	5
327	Cradle-to-Gate Life-Cycle Assessment of Laminated Veneer Lumber Production in the United States*. Forest Products Journal, 2017, 67, 343-354.	0.2	9
328	Cradle-to-Gate Life-Cycle Assessment of Composite I-Joist Production in the United States*. Forest Products Journal, 2017, 67, 355-367.	0.2	6
329	Life-Cycle Assessment for the Cradle-to-Gate Production of Softwood Lumber in the Pacific Northwest and Southeast Regions*. Forest Products Journal, 2017, 67, 331-342.	0.2	9
330	Life-Cycle Assessment for Wood-Fired Boilers Used in the Wood Products Industry*. Forest Products Journal, 2017, 67, 381-389.	0.2	9
331	A Life-Cycle Assessment of Forest Resources of the Pacific Northwest, USA*. Forest Products Journal, 2017, 67, 316-330.	0.2	13
332	Health Care Pollution And Public Health Damage In The United States: An Update. Health Affairs, 2020, 39, 2071-2079.	2.5	261
333	Holistic impact assessment and cost savings of rainwater harvesting at the watershed scale. Elementa, 2017, 5, 9.	1.1	6
334	LIFE-CYCLE ASSESSMENT OF ACTIVATED CARBON FROM WOODY BIOMASS. Wood and Fiber Science, 2018, 50, 229-243.	0.2	50
335	ENVIRONMENTAL IMPACT ASSESSMENT OF LIGHT-FRAME AND TIMBER FRAME STRUCTURES. Journal of Green Building, 2014, 9, 102-123.	0.4	5
336	LIFE CYCLE ENERGY AND ENVIRONMENTAL IMPACTS OF CROSS LAMINATED TIMBER MADE WITH COASTAL DOUGLAS-FIR. Journal of Green Building, 2019, 14, 17-33.	0.4	20
337	Development of the Assessment Framework for the Environmental Impacts in Construction. Journal of Construction Engineering and Project Management, 2013, 3, 1-9.	0.6	1

#	Article	IF	CITATIONS
338	LCIA Formatter. Journal of Open Source Software, 2021, 6, 3392.	2.0	6
339	Life cycle environmental impacts of regeneration options for anion exchange resin remediation of PFAS impacted water. Water Research, 2021, 207, 117798.	5.3	18
340	Environmental life cycle impacts of small wastewater treatment plants: Design recommendations for impact mitigation. Water Research, 2021, 207, 117758.	5.3	8
341	Hazardous Materials hazardous material Characterization hazardous material characterization and Assessment hazardous material assessment. , 2012, , 4846-4865.		0
344	Life Cycle Assessment Synthesis for a Volume of Lubricating Oil in Marine Applications. , 2015, , .		1
345	Sustainable technologies and their alication in industrial gearbox development. , 2016, , 849-858.		0
346	Paying for What You Get: Accounting for the Nonrenewable Component in Wood to Energy. Forest Products Journal, 2016, 66, 384-390.	0.2	2
347	Pavement life cycle assessment: A comparison of American and European tools. , 2017, , .		3
348	Life Cycle Assessment of Secondary Mangrove Forest in Bintuni Bay,West Papua, Indonesia. Current World Environment Journal, 2017, 12, 616-627.	0.2	0
349	Technical Note: A PRELIMINARY STUDY TO QUANTIFY THE ENVIRONMENTAL IMPACTS OF CONCRETE AND CORK FLOORING. Wood and Fiber Science, 2018, 50, 104-112.	0.2	1
350	Life cycle assessment (LCA) of nanocellulose composite panels (NCPs) manufactured using freeze-drying technique. Ormancılık Araştırma Dergisi, 2018, 5, 56-63.	0.2	3
351	Visualizing Relative Potential for Aquatic Ecosystem Toxicity Using the EPA Toxics Release Inventory and Life Cycle Assessment Methods. The Journal of South Carolina Water Resources, 2018, , 61-67.	0.7	1
352	Valorization of Treated Dredged Sediments in Light of Life Cycle Assessment. Lecture Notes in Civil Engineering, 2022, , 949-955.	0.3	0
353	More than the sum of its parts: Considering interdependencies in the life cycle material flow and environmental assessment of demountable buildings. Resources, Conservation and Recycling, 2022, 177, 106001.	5.3	20
354	Life Cycle Assessment of Coated-Glass Recovery from Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2021, 9, 15239-15248.	3.2	13
355	Optimal seismic retrofitting of existing buildings considering environmental impact. Engineering Structures, 2022, 250, 113391.	2.6	19
356	Production of Environmentally Friendly Concrete Incorporating Bauxite Residue and Silica Fume. Journal of Materials in Civil Engineering, 2022, 34, .	1.3	13
357	Life cycle design and efficiency strategy for sustainable membrane technology. IOP Conference Series: Earth and Environmental Science, 2021, 880, 012053.	0.2	2

#	Article	IF	CITATIONS
358	Quantifying Environmental and Economic Impacts of Highly Porous Activated Carbon from Lignocellulosic Biomass for High-Performance Supercapacitors. Energies, 2022, 15, 351.	1.6	7
359	Life cycle assessment of amine-based versus ammonia-based post combustion CO2 capture in coal-fired power plants. International Journal of Greenhouse Gas Control, 2022, 113, 103535.	2.3	18
361	Regionalized nitrogen fate in freshwater systems on a global scale. Journal of Industrial Ecology, 2022, 26, 907-922.	2.8	6
362	Life cycle assessment of stainless-steel reusable speculums versus disposable acrylic speculums in a university clinic setting: a case study. Environmental Research Communications, 2022, 4, 025002.	0.9	10
363	Well-to-wheel greenhouse gas emissions of electric versus combustion vehicles from 2018 to 2030 in the US. Journal of Environmental Management, 2022, 308, 114592.	3.8	22
364	Assessment of Sustainability. Green Energy and Technology, 2022, , 49-79.	0.4	1
365	How does COVID-19 affect the life cycle environmental impacts of U.S. household energy and food consumption?. Environmental Research Letters, 2022, 17, 034025.	2.2	4
366	Economic and environmental sustainability assessment of guayule bagasse to fuel pathways. Industrial Crops and Products, 2022, 178, 114644.	2.5	8
367	Comparative LCAs of Conventional and Mass Timber Buildings in Regions with Potential for Mass Timber Penetration. Sustainability, 2021, 13, 13987.	1.6	18
368	Life Cycle Assessment of Cross-Laminated Timber Transportation from Three Origin Points. Sustainability, 2022, 14, 336.	1.6	10
369	Techno-economic analysis and life cycle assessment of algal cultivation on liquid anaerobic digestion effluent for algal biomass production and wastewater treatment. , 2022, , 149-164.		1
370	Life cycle assessment of behind-the-meter Bitcoin mining at US power plant. International Journal of Life Cycle Assessment, 2022, 27, 355-365.	2.2	22
371	The Role of Eco-Industrial Parks in Promoting Circular Economy in Russia: A Life Cycle Approach. Sustainability, 2022, 14, 3893.	1.6	11
372	Global Warming and Toxicity Impacts: Peanuts in Georgia, USA Using Life Cycle Assessment. Sustainability, 2022, 14, 3671.	1.6	4
373	Early-stage evaluation of catalyst manufacturing cost and environmental impact using CatCost. Nature Catalysis, 2022, 5, 342-353.	16.1	13
374	Riskâ€based prioritization of organic substances in the Canadian National Pollutant Release Inventory using an evaluative regionalâ€scale multimedia mass balance model. Integrated Environmental Assessment and Management, 2022, 18, 1722-1732.	1.6	5
375	Novel system design for high solid lignocellulosic biomass conversion. Bioresource Technology, 2022, 350, 126897.	4.8	4
376	Eco-friendly design of Warm mix asphalt (WMA) with recycled concrete aggregate (RCA): A case study from a developing country. Construction and Building Materials, 2022, 326, 126890.	3.2	48

#	Article	IF	CITATIONS
377	Environmental Life Cycle Assessment of small water resource recovery facilities: Comparison of mechanical and lagoon systems. Water Research, 2022, 215, 118234.	5.3	8
378	A taxonomic review and analysis on biomass supply chain design and planning: New trends, methodologies and applications. Industrial Crops and Products, 2022, 180, 114747.	2.5	16
379	Trace contaminants in the environmental assessment of organic waste recycling in agriculture: Gaps between methods and knowledge. Advances in Agronomy, 2022, , 53-188.	2.4	8
380	Influence of different LCIA methods on an exemplary scenario analysis from a process development LCA case study. Environment, Development and Sustainability, 2023, 25, 6269-6293.	2.7	10
381	Assessing the use of land system archetypes to increase regional variability representation in country-specific characterization factors: a soil erosion case study. International Journal of Life Cycle Assessment, 2022, 27, 409.	2.2	1
382	Toxicity impacts in the environmental footprint method: calculation principles. International Journal of Life Cycle Assessment, 2022, 27, 587-602.	2.2	15
383	Life cycle assessment of incorporating recycled materials in pavement design. Journal of King Saud University, Engineering Sciences, 2022, , .	1.2	3
385	Readily Implementable Strategies for Reducing Embodied Environmental Impacts of Concrete Pavements in the United States. Transportation Research Record, 2022, 2676, 436-450.	1.0	4
387	Life cycle assessment of the wood pallet repair and remanufacturing sector in the United States. Biofuels, Bioproducts and Biorefining, 2022, 16, 1342-1352.	1.9	4
388	Economic input-output LCA of precast corundum-blended ECC overlay pavement. Resources, Conservation and Recycling, 2022, 184, 106385.	5.3	10
389	Cracking resistance and sustainability assessment of alkali-activated slag concrete incorporating lightweight aggregate. Cement and Concrete Composites, 2022, 131, 104556.	4.6	13
390	useeior: An Open-Source R Package for Building and Using US Environmentally-Extended Input–Output Models. Applied Sciences (Switzerland), 2022, 12, 4469.	1.3	5
391	CO2 conversion to syngas via electrification of endothermal reactors: Process design and environmental impact analysis. Energy Conversion and Management, 2022, 265, 115763.	4.4	7
392	Methodological framework to find links between life cycle sustainability assessment categories and the UN Sustainable Development Goals based on literature. Journal of Industrial Ecology, 2023, 27, 707-725.	2.8	5
393	Life Cycle Environmental Impact of Underground Plastic Recharge Chambers in Stormwater Management. Buildings, 2022, 12, 867.	1.4	2
394	Health effects of particulate matter formation in Life Cycle Impact Assessment: critical review and recommendation of models for Brazil. International Journal of Life Cycle Assessment, 2022, 27, 868-884.	2.2	3
395	Comparison of 4,4′-Dimethylbiphenyl from Biomass-Derived Furfural and Oil-Based Resource: Technoeconomic Analysis and Life-Cycle Assessment. Industrial & Engineering Chemistry Research, 2022, 61, 8963-8972.	1.8	6
396	Environmental sustainability in robotic and laparoscopic surgery: systematic review. British Journal of Surgery, 2022, 109, 921-932.	0.1	30

#	Article	IF	CITATIONS
397	Advanced technologies on the sustainable approaches for conversion of organic waste to valuable bioproducts: Emerging circular bioeconomy perspective. Fuel, 2022, 324, 124313.	3.4	45
398	Life-Cycle Approach to Healthy Airport Terminal Buildings: Spatial-Temporal Analysis of Mitigation Strategies for Addressing the Pollutants that Affect Climate Change and Human Health. Transportation Research Record, 2023, 2677, 797-813.	1.0	5
399	Environmental sustainability of negative emissions technologies: A review. Sustainable Production and Consumption, 2022, 33, 608-635.	5.7	22
400	Using life cycle assessment at an early stage of design and development of zero discharge brine treatment and recovery. Water Resources and Industry, 2022, 28, 100184.	1.9	5
401	Life Cycle Environmental Impacts of Wastewater-Derived Phosphorus Products: An Agricultural End-User Perspective. Environmental Science & Technology, 2022, 56, 10289-10298.	4.6	14
402	Effectiveness of the National Pollutant Release Inventory as a Policy Tool to Curb Atmospheric Industrial Emissions in Canada. Pollutants, 2022, 2, 289-305.	1.0	2
403	An overview of LCA applied to various membrane technologies: Progress, challenges, and harmonization. Environmental Technology and Innovation, 2022, 27, 102803.	3.0	16
404	QSDsan: an integrated platform for quantitative sustainable design of sanitation and resource recovery systems. Environmental Science: Water Research and Technology, 2022, 8, 2289-2303.	1.2	7
405	Towards considering Planetary Boundaries in Life Cycle Assessments of ICT. , 2022, , .		2
406	Tools and Techniques for Impact Analysis. The Society of Fire Protection Engineers Series, 2023, , 289-322.	0.6	1
407	Financial Viability and Environmental Sustainability of Fecal Sludge Treatment with Pyrolysis Omni Processors. ACS Environmental Au, 2022, 2, 455-466.	3.3	7
408	Translating advances in microbial bioproduction to sustainable biotechnology. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	7
409	Environmental impacts management of grain and sweet maize through life cycle assessment in São Paulo, Brazil. International Journal of Environmental Science and Technology, 2023, 20, 6559-6574.	1.8	3
410	Circular utilization of urban tree waste contributes to the mitigation of climate change and eutrophication. One Earth, 2022, 5, 944-957.	3.6	16
411	Techno-Economic Analysis and Life Cycle Assessment of Pineapple Leaves Utilization in Costa Rica. Energies, 2022, 15, 5784.	1.6	0
412	Techno-economic and life cycle assessment of aluminum electrorefining from mixed scraps using ionic liquid. Sustainable Production and Consumption, 2022, 33, 932-941.	5.7	7
413	Life cycle assessment of utilizing freshly cut urban wood: A case study. Urban Forestry and Urban Greening, 2022, 76, 127723.	2.3	2
414	Life cycle assessment of enzymatic poly(ethylene terephthalate) recycling. Green Chemistry, 2022, 24, 6531-6543.	4.6	24

#	Article	IF	CITATIONS
415	Quantitative sustainable design (QSD) for the prioritization of research, development, and deployment of technologies: a tutorial and review. Environmental Science: Water Research and Technology, 2022, 8, 2439-2465.	1.2	7
416	A life cycle assessment perspective to conventional and modular wastewater treatment. , 2022, , 187-205.		2
417	Potential Life-Cycle Environmental Impacts of the COVID-19 Nucleic Acid Test. Environmental Science & Technology, 2022, 56, 13398-13407.	4.6	7
418	Prospective Life Cycle Assessment of Synthetic Graphite Manufactured via Electrochemical Graphitization. ACS Sustainable Chemistry and Engineering, 2022, 10, 13607-13618.	3.2	5
419	LCA of Disposal Practices for Arsenic-Bearing Iron Oxides Reveals the Need for Advanced Arsenic Recovery. Environmental Science & amp; Technology, 2022, 56, 14109-14119.	4.6	8
420	A Life Cycle Greenhouse Gas Model of a Yellow Poplar Forest Residue Reductive Catalytic Fractionation Biorefinery. Environmental Engineering Science, 2022, 39, 821-833.	0.8	6
421	Life Cycle Data Interoperability Improvements through Implementation of the Federal LCA Commons Elementary Flow List. Applied Sciences (Switzerland), 2022, 12, 9687.	1.3	0
422	The environmental and moral implications of human space travel. Science of the Total Environment, 2023, 856, 159222.	3.9	2
423	Economic and Environmental Sustainability of Vegetative Oil Extraction Strategies at Integrated Oilcane and Oil-Sorghum Biorefineries. ACS Sustainable Chemistry and Engineering, 2022, 10, 13980-13990.	3.2	3
424	Comparative Life Cycle Assessment of Water Disinfection Processes Applicable in Low-Income Settings. Environmental Science & Technology, 2022, 56, 16336-16346.	4.6	0
426	Greener sheep: Life cycle analysis of integrated sheep agrivoltaic systems. , 2022, 3, 100036.		16
427	Full lifecycle-based sustainability evaluation for remanufacturing ecosystem services: A novel perspective of technology-ecology synergy. Journal of Cleaner Production, 2022, 381, 135187.	4.6	5
428	Towards a circular economy for PET bottle resin using a system dynamics inspired material flow model. Journal of Cleaner Production, 2023, 383, 135208.	4.6	14
429	Comparative life cycle assessment of corn stover conversion by decentralized biomass pyrolysis-electrocatalytic hydrogenation <i>versus</i> ethanol fermentation. Sustainable Energy and Fuels, 2023, 7, 797-811.	2.5	3
430	The capabilities and deficiencies of life cycle assessment to address the plastic problem. Frontiers in Sustainability, 0, 3, .	1.3	3
432	Comparative Life Cycle Assessment of Injection Molded and Big Area Additive Manufactured NdFeB Bonded Permanent Magnets. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2023, 145, .	1.3	1
433	Environmental Impact Comparison Analysis between a Traditional Hot Mixed Asphalt (HMA) and with the Addition of Recycled Post-Consumer Polyethylene Terephthalate (RPET) through the Life Cycle Assessment (LCA) Methodology. Sustainability, 2023, 15, 1102.	1.6	4
434	Life cycle assessment of anoxic treatments for cultural heritage preservation. Resources, Conservation and Recycling, 2023, 190, 106825.	5.3	2

#	Article	IF	CITATIONS
435	Life cycle assessment of e-waste management: current practices and future research agenda towards sustainability. , 2023, , 237-252.		0
436	Linking Life Cycle and Integrated Assessment Modeling to Evaluate Technologies in an Evolving System Context: A Power-to-Hydrogen Case Study for the United States. Environmental Science & Technology, 2023, 57, 2464-2473.	4.6	5
437	Techno-economic analysis and life cycle assessment of cellulose nanocrystals production from wood pulp. Bioresource Technology, 2023, 377, 128955.	4.8	10
438	Manufacturing Energy and Greenhouse Gas Emissions Associated with United States Consumption of Organic Petrochemicals. ACS Sustainable Chemistry and Engineering, 2023, 11, 2198-2208.	3.2	7
439	Life Cycle Environmental Impacts Assessment of Post-Combustion Carbon Capture for Natural Gas Combined Cycle Power Plant in Iraq, Considering Grassroots and Retrofit Design. Energies, 2023, 16, 1545.	1.6	3
440	A life cycle assessment of guar agriculture. Clean Technologies and Environmental Policy, 0, , .	2.1	0
441	Environmental Impacts of Biodiesel Production Cycle from Farm to Manufactory: An Application of Sustainable Systems Engineering. Atmosphere, 2023, 14, 399.	1.0	10
442	Design of a High-Rate Wastewater Treatment Process for Energy and Water Recovery at Biorefineries. ACS Sustainable Chemistry and Engineering, 2023, 11, 3861-3872.	3.2	4
443	Economic and Environmental Benefits of Modular Microwave-Assisted Polyethylene Terephthalate Depolymerization. ACS Sustainable Chemistry and Engineering, 2023, 11, 4209-4218.	3.2	15
444	Environmental optimization of warm mix asphalt (WMA) design with recycled concrete aggregates (RCA) inclusion through artificial intelligence (AI) techniques. Results in Engineering, 2023, 17, 100984.	2.2	22
445	Life Cycle Assessment of Metal–Organic Frameworks: Sustainability Study of Zeolitic Imidazolate Framework-67. ACS Sustainable Chemistry and Engineering, 2023, 11, 4219-4225.	3.2	3
446	Review of carbon capture and storage technologies in selected industries: potentials and challenges. Reviews in Environmental Science and Biotechnology, 2023, 22, 451-470.	3.9	15
447	Sustainability assessment of recycled aggregate concrete structures: A critical view on the current stateâ€ofâ€knowledge and practice. Structural Concrete, 2023, 24, 1956-1979.	1.5	10
448	Planning sustainable carbon neutrality pathways: accounting challenges experienced by organizations and solutions from industrial ecology. International Journal of Life Cycle Assessment, 2023, 28, 746-770.	2.2	3
449	Sustainable Hydrogen and Ammonia Technologies with Nonthermal Plasma Catalysis: Mechanistic Insights and Technoeconomic Analysis. ACS Sustainable Chemistry and Engineering, 2023, 11, 4903-4933.	3.2	4
450	At-Field and On-Demand Nitrogenous Fertilizer Synthesis. ACS Sustainable Chemistry and Engineering, 2023, 11, 5803-5818.	3.2	4
451	Environmental impact assessment of multi-source solid waste based on a life cycle assessment, principal component analysis, and random forest algorithm. Journal of Environmental Management, 2023, 339, 117942.	3.8	8
453	Towards the principles of life cycle sustainability assessment: An integrative review for the construction and building industry. Sustainable Cities and Society, 2023, 95, 104604.	5.1	8

# 455	ARTICLE Techno-Economic and Life Cycle Analyses of Thermochemical Upcycling Technologies of Low-Density Polyethylene Waste. ACS Sustainable Chemistry and Engineering, 2023, 11, 7170-7181.	IF 3.2	CITATIONS
463	TEA and LCA of bio-based polyurethanes. , 2023, , 153-176.		0
466	A review on environmental chemodynamics, isothermal, kinetics, and thermodynamics modeling for the adsorptive removal of Cr(<scp>vi</scp>) from the industrial effluent using magnetic nanoparticles as a bio-sorbent. Environmental Science: Water Research and Technology, 2023, 9, 1764-1782.	1.2	1
469	Process Design and Bayesian Optimization of 5-Hydroxymethylfurfural Hydrodeoxygenation. Computer Aided Chemical Engineering, 2023, , 2187-2193.	0.3	0
488	The Use of Wastewater for Algal Growth. , 2024, , 231-271.		0
489	Quantifying the Direct and Indirect Demand for Ecosystem Services. , 2023, , 47-64.		Ο
491	A new approach of study towards environmental impact assessment for sustainable product design. AIP Conference Proceedings, 2023, , .	0.3	0
495	Life Cycle Sustainability Assessment: Integrating Life Cycle Analysis and Decision Analysis. , 2023, , .		0
514	Sensing of nitroaromatics. , 2024, , 193-210.		0