Virtual reality for assembly methods prototyping: a rev

Virtual Reality 15, 5-20 DOI: 10.1007/s10055-009-0153-y

Citation Report

#	Article	IF	CITATIONS
1	Object Behavior Specification and Simulation in Virtual Assembly. , 2011, , .		1
2	A Conceptual Framework to Support Natural Interaction for Virtual Assembly Tasks. , 2011, , .		5
3	Assembly/Disassembly Analysis and Modeling Techniques: A Review. Strojniski Vestnik/Journal of Mechanical Engineering, 2012, 58, 653-664.	0.6	14
4	Conceptualizing e-selling. , 2012, , .		1
5	Development and Evaluation of a Virtual Assembly Trainer. Proceedings of the Human Factors and Ergonomics Society, 2012, 56, 2560-2564.	0.2	7
6	Disassembly Sequence Evaluation Using Graph Visualization and Immersive Computing Technologies. , 2012, , .		6
7	Augmented reality applications in design and manufacturing. CIRP Annals - Manufacturing Technology, 2012, 61, 657-679.	1.7	549
8	3D Object Representation for Physics Simulation Engines and its Effect on Virtual Assembly Tasks. , 2012, , .		6
9	Virtual human modeling for interactive assembly and disassembly operation in virtual reality environment. International Journal of Advanced Manufacturing Technology, 2013, 69, 2355-2372.	1.5	43
10	CAD model based virtual assembly simulation, planning and training. CIRP Annals - Manufacturing Technology, 2013, 62, 799-822.	1.7	134
11	Assembly operation process planning by mapping a virtual assembly simulation to real operation. Computers in Industry, 2013, 64, 869-879.	5.7	37
12	The development of an integrated haptic VR machining environment for the automatic generation of process plans. Computers in Industry, 2013, 64, 1045-1060.	5.7	22
13	Shape-It-Up: Hand gesture based creative expression of 3D shapes using intelligent generalized cylinders. CAD Computer Aided Design, 2013, 45, 277-287.	1.4	56
14	A review of virtual reality and haptics for product assembly (part 1): rigid parts. Assembly Automation, 2013, 33, 68-77.	1.0	29
15	Integrated product design and assembly planning in an augmented reality environment. Assembly Automation, 2013, 33, 345-359.	1.0	27
16	Evaluation of CAD Model Manipulation in Desktop and Multimodal Immersive Interface. Applied Mechanics and Materials, 0, 325-326, 289-293.	0.2	1
17	An Approach for Automatic Generation of Multi-Mode 3D Exploded View. Advanced Materials Research, 0, 694-697, 2428-2431.	0.3	0
18	Multimodal training and tele-assistance systems for the maintenance of industrial products. Virtual and Physical Prototyping, 2013, 8, 113-126.	5.3	29

TATION REDO

#	Article	IF	CITATIONS
19	Assembly planning and evaluation in an augmented reality environment. International Journal of Production Research, 2013, 51, 7388-7404.	4.9	39
20	Assessment and comparison of immersive virtual assembly training system. International Journal of Rapid Manufacturing, 2013, 3, 266.	0.5	8
21	Handy-Potter: Rapid Exploration of Rotationally Symmetric Shapes Through Natural Hand Motions. Journal of Computing and Information Science in Engineering, 2013, 13, .	1.7	12
22	Analysis of Influence Factors of Virtual Human Real-Time Driven Accuracy and its Optimization in Virtual Reality Environment. , 2013, , .		0
23	Parameter computation of the hand model in virtual grasping. , 2014, , .		1
24	Automatic disassembly navigation for accurate virtual assembly path planning. Assembly Automation, 2014, 34, 244-254.	1.0	9
25	Immersive Computing Technology to Investigate Tradeoffs Under Uncertainty in Disassembly Sequence Planning. Journal of Mechanical Design, Transactions of the ASME, 2014, 136, .	1.7	16
26	Peg-in-Hole Revisited: A Generic Force Model for Haptic Assembly. , 2014, , .		1
27	Towards the Holodeck. , 2014, , .		39
28	Design of Virtual Machine Assembly Simulation System in Single-Channel Immersion. Key Engineering Materials, 0, 620, 556-562.	0.4	0
29	The Creation of Virtual Assembly System Based on Virtools. Advanced Materials Research, 2014, 998-999, 486-490.	0.3	1
30	A visual interactive method for service prototyping. Managing Service Quality, 2014, 24, 339-362.	2.4	12
31	Virtual assembly planning and assembly-oriented quantitative evaluation of product assemblability. International Journal of Advanced Manufacturing Technology, 2014, 71, 483-496.	1.5	28
32	Natural and hybrid bimanual interaction for virtual assembly tasks. Virtual Reality, 2014, 18, 161-171.	4.1	9
33	3D geometric removability analysis for virtual disassembly evaluation. , 2014, , .		2
34	Virtual human hybrid control in virtual assembly and maintenance simulation. International Journal of Production Research, 2014, 52, 867-887.	4.9	22
35	Virtual trial assembly of a complex steel structure by Generalized Procrustes Analysis techniques. Automation in Construction, 2014, 37, 155-165.	4.8	32
36	Wearable Wireless Tactile Display for Virtual Interactions with Soft Bodies. Frontiers in Bioengineering and Biotechnology, 2014, 2, 31.	2.0	59

#	Article	IF	CITATIONS
37	The development of a physics and constraint-based haptic virtual assembly system. Assembly Automation, 2014, 34, 41-55.	1.0	50
38	A new methodology to evaluate the performance of physics simulation engines in haptic virtual assembly. Assembly Automation, 2014, 34, 128-140.	1.0	8
39	Method for an Enhanced Assembly Planning Process with Systematic Virtual Reality Inclusion. Procedia CIRP, 2015, 37, 152-157.	1.0	12
40	Virtual assembly with physical information: a review. Assembly Automation, 2015, 35, 206-220.	1.0	13
41	Assembly auxiliary system for narrow cabins of spacecraft. Chinese Journal of Mechanical Engineering (English Edition), 2015, 28, 1080-1088.	1.9	10
42	An innovative energy predictive process planning tool for assembly automation systems. , 2015, , .		1
43	Complex shape product tolerance and accuracy control method for virtual assembly. , 2015, , .		1
44	Virtual reality for manufacturing: A robotic cell case study. , 2015, , .		7
45	A novel tele-operation device allowing for dynamic switching between control points during learning from demonstration. , 2015, , .		1
46	A combination of static and stroke gesture with speech for multimodal interaction in a virtual environment. , 2015, , .		5
47	A Publishing Method of Lightweight Three-Dimensional Assembly Instruction for Complex Products. Journal of Computing and Information Science in Engineering, 2015, 15, .	1.7	16
48	Peg-in-Hole Revisited: A Generic Force Model for Haptic Assembly. Journal of Computing and Information Science in Engineering, 2015, 15, .	1.7	9
49	Haptic Assembly Using Skeletal Densities and Fourier Transforms. , 2015, , .		2
50	The Influence of the Stereo Base on Blind and Sighted Reaches in a Virtual Environment. ACM Transactions on Applied Perception, 2015, 12, 1-18.	1.2	14
51	Virtual reality applications in manufacturing industries: Past research, present findings, and future directions. Concurrent Engineering Research and Applications, 2015, 23, 40-63.	2.0	211
52	Parameter Estimation from Motion Tracking Data. Lecture Notes in Computer Science, 2015, , 113-121.	1.0	5
53	Design of a Virtual Reality Framework for Maintainability and Assemblability Test of Complex Systems. Procedia CIRP, 2015, 37, 242-247.	1.0	27
54	Rapid Prototyping for Assembly Training and Validation. IFAC-PapersOnLine, 2015, 48, 412-417.	0.5	16

#	Article	IF	CITATIONS
55	A fine motor skill training system using multi-fingered haptic interface robot. International Journal of Human Computer Studies, 2015, 84, 41-50.	3.7	10
56	A computer vision-based assistant system for the assembly of narrow cabin products. International Journal of Advanced Manufacturing Technology, 2015, 76, 281-293.	1.5	36
57	New Ways through Service Prototyping : Optimization of Communication and Decision Making in Service Development through adoption of Prototyping. , 2016, , .		0
58	Enhancing Our Lives with Immersive Virtual Reality. Frontiers in Robotics and Al, 2016, 3, .	2.0	824
59	Enabling Wearable Soft Tactile Displays with Electroactive Smart Elastomers. Lecture Notes in Computer Science, 2016, , 326-334.	1.0	1
60	Towards Feature-based Human-robot Assembly Process Planning. Procedia CIRP, 2016, 57, 516-521.	1.0	22
61	Real-virtual components interaction for assembly simulation and planning. Robotics and Computer-Integrated Manufacturing, 2016, 41, 102-114.	6.1	62
62	Geometric Design Model and Object Scanning Mode Based Virtual Assembly and Repair Analysis. Procedia CIRP, 2016, 44, 144-150.	1.0	5
63	Dual Reality for Production Verification Workshops: A Comprehensive Set of Virtual Methods. Procedia CIRP, 2016, 44, 38-43.	1.0	23
64	The evolution and future of manufacturing: A review. Journal of Manufacturing Systems, 2016, 39, 79-100.	7.6	478
65	When simulated environments make the difference: the effectiveness of different types of training of car service procedures. Virtual Reality, 2016, 20, 83-99.	4.1	12
66	An augmented reality tool to validate the assembly sequence of a discrete product. International Journal of Computer Aided Engineering and Technology, 2016, 8, 164.	0.1	4
67	Glove-based virtual hand grasping for virtual mechanical assembly. Assembly Automation, 2016, 36, 349-361.	1.0	13
68	Haptic Assembly Using Skeletal Densities and Fourier Transforms1. Journal of Computing and Information Science in Engineering, 2016, 16, .	1.7	4
69	Experimental Effort of Data Driven Human Motion Simulation in Automotive Assembly. Procedia CIRP, 2016, 44, 114-119.	1.0	12
70	Development of a virtual manufacturing assembly simulation system. Advances in Mechanical Engineering, 2016, 8, 168781401663982.	0.8	55
71	An improved horizontally reversible plow design based on virtual assembly semantics and constraint. Journal of Mechanical Science and Technology, 2016, 30, 257-266.	0.7	10
72	A comprehensive survey of augmented reality assembly research. Advances in Manufacturing, 2016, 4, 1-22.	3.2	343

#	Article	IF	CITATIONS
73	Suitability of virtual prototypes to support human factors/ergonomics evaluation during the design. Applied Ergonomics, 2016, 56, 11-18.	1.7	115
74	Disassembly operations' efficiency evaluation in a virtual environment. International Journal of Computer Integrated Manufacturing, 2016, 29, 309-322.	2.9	23
75	An Industry Case Study: Investigating Early Design Decision Making in Virtual Reality. Journal of Computing and Information Science in Engineering, 2017, 17, .	1.7	65
76	Design Verification through virtual prototyping techniques based on Systems Engineering. Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 2017, 28, 477-494.	1.2	21
77	Ensuring Time-saving and Effective Production Planning by Prioritizing Activities based on Company-specific Validation Success Rates. Procedia CIRP, 2017, 61, 505-510.	1.0	2
78	A Review of the Capabilities of Current Low-Cost Virtual Reality Technology and Its Potential to Enhance the Design Process. Journal of Computing and Information Science in Engineering, 2017, 17, .	1.7	109
79	Evaluation of Motor Training Performance in 3D Virtual Environment via Combining Brain-computer Interface and Haptic Feedback. Procedia Computer Science, 2017, 107, 256-261.	1.2	9
80	A Multipath Methodology to Link Ergonomics, Safety and Efficiency in Factories. Procedia Manufacturing, 2017, 11, 1311-1318.	1.9	4
81	Virtual prototyping in design reviews of industrial systems. , 2017, , .		4
82	Implementation and evaluation of a model processing pipeline for assembly simulation. Assembly Automation, 2017, 37, 400-410.	1.0	8
83	Sensor Data and Information Fusion to Construct Digital-twins Virtual Machine Tools for Cyber-physical Manufacturing. Procedia Manufacturing, 2017, 10, 1031-1042.	1.9	216
84	A Virtual CMM Inspection Tool for Capturing Planning Strategies. , 2017, , .		4
85	An Exploration Study for Augmented and Virtual Reality Enhancing Situation Awareness for Plant Teleanalysis. , 2017, , .		1
86	Natural Finger Interaction for CAD Assembly Modeling. , 2017, , .		2
87	On Immersive Virtual Environments for Assessing Human-driven Assembly of Large Mechanical Parts. Procedia Manufacturing, 2017, 11, 1263-1270.	1.9	22
88	Modified genetic algorithms for solving facility layout problems. International Journal on Interactive Design and Manufacturing, 2017, 11, 713-725.	1.3	22
89	A mixed reality for virtual assembly. , 2017, , .		9
90	Butterfly valve in a virtual environment. IOP Conference Series: Materials Science and Engineering, 2017, 263, 062053.	0.3	0

#	Article	IF	CITATIONS
91	Virtual remote inspection $\hat{a} \in$ " A new concept for virtual reality enhanced real-time maintenance. , 2017, , .		23
92	An evaluation of multimodal interaction techniques for 3D layout constraint solver in a desktop-based virtual environment. Virtual Reality, 2018, 22, 339-351.	4.1	5
93	Survey on human–robot collaboration in industrial settings: Safety, intuitive interfaces and applications. Mechatronics, 2018, 55, 248-266.	2.0	660
94	A staged haptic rendering approach for virtual assembly of bolted joints in mechanical assembly. International Journal of Advanced Manufacturing Technology, 2018, 96, 161-171.	1.5	3
95	A Pragmatic System to Support Virtual Assembly for Military Armored Vehicle Integrated Transmission System in the Virtual Environment. Wireless Personal Communications, 2018, 102, 1337-1354.	1.8	3
96	Product carbon footprint for product life cycle under uncertainty. Journal of Cleaner Production, 2018, 187, 459-472.	4.6	43
97	An integrated simulation method for product design based on part semantic model. International Journal of Advanced Manufacturing Technology, 2018, 96, 3821-3841.	1.5	3
98	Virtual Serendipity: Preserving Embodied Browsing Activity in the 21st Century Research Library. Journal of Academic Librarianship, 2018, 44, 145-149.	1.3	15
99	Preventing falls: Choosing compatible Fall Protection Supplementary Devices (FPSD) for bridge maintenance work using virtual prototyping. Safety Science, 2018, 108, 238-247.	2.6	11
100	Symbolic joint entropy reveals the coupling of various brain regions. Physica A: Statistical Mechanics and Its Applications, 2018, 490, 1087-1095.	1.2	7
101	Echoes of Other Worlds: Sound in Virtual Reality. , 2018, , .		10
102	Applications of Virtual Reality. , 2018, , 299-362.		6
103	A force rendering model for virtual assembly of mechanical parts with clearance fits. Assembly Automation, 2018, 38, 173-181.	1.0	5
104	Evaluating the impact of a virtual reality workstation in an academic library: Methodology and preliminary findings. Proceedings of the Association for Information Science and Technology, 2018, 55, 300-308.	0.3	10
105	Immersive Educational Systems With Procedure-Oriented Combinations of Real and Virtual Environments. , 2018, , .		0
106	General Requirements for Industrial Augmented Reality Applications. Procedia CIRP, 2018, 72, 1130-1135.	1.0	83
107	Testing and validating Extended Reality (xR) technologies in manufacturing. Procedia Manufacturing, 2018, 25, 31-38.	1.9	146
108	Research and application of three-dimension electronic sand table for water resource in Three River Source Region. IOP Conference Series: Earth and Environmental Science, 2018, 191, 012101.	0.2	0

#	Article	IF	CITATIONS
109	Somatic Controlled Switches Using Relaxing and Grabbing Fingers. , 2018, , .		0
110	Use of Virtual Reality for the Evaluation of Human-Robot Interaction Systems in Complex Scenarios. , 2018, , .		15
111	Automatics. ACM Transactions on Computer-Human Interaction, 2018, 25, 1-44.	4.6	4
112	Enabling Technologies for Operator 4.0: A Survey. Applied Sciences (Switzerland), 2018, 8, 1650.	1.3	143
113	Relieving operators' workload: Towards affective robotics in industrial scenarios. Mechatronics, 2018, 54, 144-154.	2.0	36
114	Virtual Reality: Blessings and Risk Assessment. Indian Journal of Science and Technology, 2018, 11, 1-20.	0.5	5
115	Glassroom: Aus- und Weiterbildung mit Smart Glasses und Virtual Reality-Brillen im technischen Kundendienst. , 2018, , 901-919.		1
116	A systematic approach to parameter selection for CAD-virtual reality data translation using response surface methodology and MOGA-II. PLoS ONE, 2018, 13, e0197673.	1.1	5
117	Virtual Reality for Prototyping Service Journeys. Multimodal Technologies and Interaction, 2018, 2, 14.	1.7	2
118	CAD-VR Integration as a Tool for Industrial Assembly Processes Validation: A Practical Application. Lecture Notes in Computer Science, 2018, , 435-450.	1.0	1
119	Evaluation of an Experimental Virtual Learning Environment of Winemaking for Middle School and College Students in Chile. Revista Electronica Educare, 2018, 22, 1.	0.1	1
120	Manual Assembly Training in Virtual Environments. , 2018, , .		13
121	Virtual Reality Learning Environments for Vocational Education: A Comparison Study with Conventional Instructional Media on Knowledge Retention. , 2018, , .		25
122	Virtual reality training for assembly of hybrid medical devices. Multimedia Tools and Applications, 2018, 77, 30651-30682.	2.6	35
123	Virtual Reality Interventions for Personal Development: A Meta-Analysis of Hardware and Software. Human-Computer Interaction, 2019, 34, 205-239.	3.1	35
124	VEN-3DVE: vision based egocentric navigation for 3D virtual environments. International Journal on Interactive Design and Manufacturing, 2019, 13, 35-45.	1.3	11
126	Coordination of reach-to-grasp in physical and haptic-free virtual environments. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 78.	2.4	26
127	Modeling of Human Welders' Operations in Virtual Reality Human–Robot Interaction. IEEE Robotics and Automation Letters, 2019, 4, 2958-2964.	3.3	23

#	Article	IF	CITATIONS
128	Virtual Simulation of Automatic Quality Measurement System for Tapered Roller Bearing Based on 3D Automate Software. Journal of Physics: Conference Series, 2019, 1284, 012022.	0.3	0
129	A Review on Significant Technologies Related to the Robot-Guided Intelligent Bolt Assembly Under Complex or Uncertain Working Conditions. IEEE Access, 2019, 7, 136752-136776.	2.6	12
130	A Survey on Information and Communication Technologies for Industry 4.0: State-of-the-Art, Taxonomies, Perspectives, and Challenges. IEEE Communications Surveys and Tutorials, 2019, 21, 3467-3501.	24.8	216
131	Multi-dimensional force sensor for haptic interaction: a review. Virtual Reality & Intelligent Hardware, 2019, 1, 121-135.	1.8	31
132	The effectiveness of traditional tools and computer-aided technologies for health and safety training in the construction sector: A systematic review. Computers and Education, 2019, 138, 101-115.	5.1	118
133	Assembly validation in virtual reality—a demonstrative case. International Journal of Advanced Manufacturing Technology, 2019, 105, 3579-3592.	1.5	15
134	Assessment of virtual reality-based manufacturing assembly training system. International Journal of Advanced Manufacturing Technology, 2019, 105, 3743-3759.	1.5	73
135	A Case Study of a Virtual Training Environment. Lecture Notes in Mechanical Engineering, 2019, , 352-367.	0.3	2
136	The Virtual Reality in Olive Oil Industry Occupational Health and Safety: An Integrative Review. Studies in Systems, Decision and Control, 2019, , 797-805.	0.8	0
137	Modeling Framework for a Consistent Integration of Geometry Knowledge During Conceptual Design. Journal of Computing and Information Science in Engineering, 2019, 19, .	1.7	3
138	Gamification vs. Privacy: Identifying and Analysing the Major Concerns. Future Internet, 2019, 11, 67.	2.4	23
139	Analyzing the potential of Virtual Reality for engineering design review. Automation in Construction, 2019, 104, 27-37.	4.8	184
140	A VR-based Complex Equipment Maintenance Training System. , 2019, , .		4
141	A multipath methodology to promote ergonomics, safety and efficiency in agile factories. International Journal of Agile Systems and Management, 2019, 12, 407.	0.6	4
142	Enhancing Students' Reasoning Skills in Engineering and Technology through Game-based learning. International Journal of Emerging Technologies in Learning, 2019, 14, 69.	0.8	4
143	Challenges and Strategies for Educational Virtual Reality. Information Technology and Libraries, 2019, 38, 25-48.	0.5	40
144	Virtual reality human-robot collaborative welding: A case study of weaving gas tungsten arc welding. Journal of Manufacturing Processes, 2019, 48, 210-217.	2.8	53
145	Investigating the Role of Task Complexity in Virtual Immersive Training (VIT) Systems. , 2019, ,		1

#	Article	IF	Citations
146	Flexible Framework to Model Industry 4.0 Processes for Virtual Simulators. Applied Sciences (Switzerland). 2019. 9. 4983.	1.3	23
147	AArDVARK: Aerospace Analysis and Design in Virtual and Augmented Reality toolKit. , 2019, , .		1
148	Human intention estimation based on hidden Markov model motion validation for safe flexible robotized warehouses. Robotics and Computer-Integrated Manufacturing, 2019, 57, 182-196.	6.1	70
149	Application of a Non-Immersive VR, IoT Based Approach to Help Moroccan Students Carry Out Practical Activities in a Personal Learning Style. Future Internet, 2019, 11, 11.	2.4	12
150	Reflecting on the Design Process for Virtual Reality Applications. International Journal of Human-Computer Interaction, 2019, 35, 168-179.	3.3	58
151	A collaborative apparel new product development process model using virtual reality and augmented reality technologies as enablers. International Journal of Fashion Design, Technology and Education, 2019, 12, 1-11.	0.9	39
152	A comprehensive survey of AR/MR-based co-design in manufacturing. Engineering With Computers, 2020, 36, 1715-1738.	3.5	38
153	Crossmodal perception in virtual reality. Multimedia Tools and Applications, 2020, 79, 3311-3331.	2.6	9
154	A meta-analysis of virtual reality training programs for social skill development. Computers and Education, 2020, 144, 103707.	5.1	108
155	Virtual prototyping in the design of see-through features in mobile machinery. Virtual Reality, 2020, 24, 23-37.	4.1	8
156	Using Digital and Physical Simulation to Focus on Human Factors and Ergonomics in Aviation Maintainability. Human Factors, 2020, 62, 37-54.	2.1	29
157	Procrustes analysis for the virtual trial assembly of large-size elements. Robotics and Computer-Integrated Manufacturing, 2020, 62, 101885.	6.1	12
158	Tactile display of softness on fingertip. Scientific Reports, 2020, 10, 20491.	1.6	28
159	Data-driven design: the new challenges of digitalization on product design and development. Design Science, 2020, 6, .	1.1	33
160	Experiential learning with virtual reality: animal handling training. Innovation and Education, 2020, 2,	0.6	5
161	Visual field movement detection model based on low-resolution images. International Journal of Embedded Systems, 2020, 12, 93.	0.2	0
162	Work-in-Progress—A Generalizable Virtual Reality Training and Intelligent Tutor for Additive Manufacturing. , 2020, , .		2
163	Towards Customer-Centric Additive Manufacturing: Making Human-Centered 3D Design Tools through a Handheld-Based Multi-Touch User Interface. Sensors, 2020, 20, 4255.	2.1	5

#	Article	IF	CITATIONS
164	Haptic-enabled virtual planning and assessment of product assembly. Assembly Automation, 2020, 40, 641-654.	1.0	11
165	Evaluation of Interaction Techniques for Early Phase Satellite Design in Immersive AR. , 2020, , .		4
166	The Role of Gamification in Privacy Protection and User Engagement. , 0, , .		3
167	Development and Practice of Virtual Experiment Platform Based on Blender and HTML5Taking Computer Assembly and Maintenance as An example [*] . Journal of Physics: Conference Series, 2020, 1601, 032034.	0.3	0
168	VR FOR ASSEMBLY TASKS IN THE MANUFACTURING INDUSTRY – INTERACTION AND BEHAVIOUR. Proceedings of the Design Society DESIGN Conference, 2020, 1, 1697-1706.	0.8	0
169	Virtual Reality Simulation of a Quadrotor to Monitor Dependent People at Home. IEEE Transactions on Emerging Topics in Computing, 2020, , 1-1.	3.2	7
170	Effectiveness of Virtual Versus Physical Training: The Case of Assembly Tasks, Trainer's Verbal Assistance, and Task Complexity. IEEE Computer Graphics and Applications, 2020, 40, 41-56.	1.0	22
171	Virtual experience, real consequences: the potential negative emotional consequences of virtual reality gameplay. Virtual Reality, 2021, 25, 69-81.	4.1	75
172	Passive haptics: greater impact presented by pulsive damping brake of DC motor and physical indices for perceived impact. Virtual Reality, 2021, 25, 233-245.	4.1	1
173	A user-centric design approach for smart product-service systems using virtual reality: A case study. Journal of Cleaner Production, 2021, 280, 124413.	4.6	53
175	Ergonomics and Human Factors Research Challenges: The ErgoUX Lab Case Study. Lecture Notes in Networks and Systems, 2021, , 912-922.	0.5	2
176	Side-by-Side Comparison of Human Perception and Performance Using Augmented, Hybrid, and Virtual Reality. IEEE Transactions on Visualization and Computer Graphics, 2022, 28, 4787-4796.	2.9	5
177	Virtual, Augmented and Mixed Reality: What are the Benefits for SMEs?. Global Policy, 2021, 12, 167-170.	1.0	2
178	Skin Electronics: Nextâ€Generation Device Platform for Virtual and Augmented Reality. Advanced Functional Materials, 2021, 31, 2009602.	7.8	100
179	ϴϯϴœĐ•ϴϴϳϴʹϿʹϴϿϯͺϴ¢ϴ•ϴ¥ϴϴžϴͽϿžϴʹʹϴϯϴ‡ͺϴʹͺϴʹϴϯϴʹϴͽϴϯϴžϴ¢ϴ•ϴͺϸϯ;ͺϴžϴϴʹϴϴϙϯϴ—ϴϴͺϸϯϴ ⁻ ͺϴϯϴϴϿžϴ	' && 2 D†D	™ Ð ОГО I
180	Metrics development and modelling the mixed reality and digital twin adoption in the context of Industry 4.0. Engineering, Construction and Architectural Management, 2021, 28, 1355-1376.	1.8	37
181	A Soft Touch: Wearable Tactile Display of Softness Made of Electroactive Elastomers. Advanced Materials Technologies, 2021, 6, 2100016.	3.0	11
182	Extended Reality (XR) in Virtual Laboratories: A Review of Challenges and Future Training Directions. Journal of Physics: Conference Series, 2021, 1874, 012031.	0.3	23

#	Article	IF	CITATIONS
184	Measuring the Impact of Immersive Virtual Reality on Construction Design Review Applications: Head-Mounted Display versus Desktop Monitor. Journal of Construction Engineering and Management - ASCE, 2021, 147, .	2.0	11
185	A Simulation Design of Immersive Virtual Reality for Animal Handling Training to Biomedical Sciences Undergraduates. Frontiers in Education, 2021, 6, .	1.2	5
186	Classifying virtual reality-based collaboration environments: practical insights for application in fashion design. International Journal of Fashion Design, Technology and Education, 2021, 14, 314-324.	0.9	3
187	Human–Robot Collaborative Assembly Based on Eye-Hand and a Finite State Machine in a Virtual Environment. Applied Sciences (Switzerland), 2021, 11, 5754.	1.3	13
188	A small displacement torsor (SDT)-based haptic rendering model for assembly of bolted joints. Journal of Physics: Conference Series, 2021, 1948, 012158.	0.3	0
189	Comparative evaluation of WIMP and immersive natural finger interaction: a user study on CAD assembly modeling. Virtual Reality, 2022, 26, 143-158.	4.1	6
190	A VR-based approach in conducting MTM for manual workplaces. International Journal of Advanced Manufacturing Technology, 2021, 117, 2501-2510.	1.5	8
191	Virtual reality simulation of human-robot coexistence for an aircraft final assembly line: process evaluation and ergonomics assessment. International Journal of Computer Integrated Manufacturing, 2021, 34, 975-995.	2.9	19
192	Monitoring Physiological Reactions of Construction Workers in Virtual Environment: Feasibility Study Using Noninvasive Affective Sensors. Journal of Legal Affairs and Dispute Resolution in Engineering and Construction, 2021, 13, 04521016.	0.9	8
193	3D visual inspection system framework for structural condition monitoring and analysis. Automation in Construction, 2021, 128, 103755.	4.8	12
194	Physically Realistic Simulation of Mechanical Assembly Operations in a Virtual Reality Training Environment. Lecture Notes in Networks and Systems, 2022, , 177-188.	0.5	1
195	A GPS-based force rendering model for virtual assembly of mechanical parts. International Journal of Advanced Manufacturing Technology, 2022, 118, 465-477.	1.5	1
196	Digital simulation tools in aviation maintainability training. Computer Applications in Engineering Education, 2022, 30, 384-395.	2.2	2
197	Virtual reality supported interactive tower crane layout planning for high-rise modular integrated construction. Automation in Construction, 2021, 130, 103854.	4.8	26
198	Effect of Physical and Virtual Feedback on Reach-to-Grasp Movements in Virtual Environments. IEEE Transactions on Cognitive and Developmental Systems, 2022, 14, 708-714.	2.6	3
199	Structural factors influence on strength properties of S235JR steel welded joints. Journal of Physics: Conference Series, 2021, 1736, 012004.	0.3	0
200	Augmented Reality in Product Development and Manufacturing. , 2011, , 651-669.		11
201	The Interrelation of Game Elements and Privacy Requirements for the Design of a System: A Metamodel.	1.0	6

	CITA	TION REPORT	
#	ARTICLE	IF	CITATIONS
202	Implementing Virtual Assembly and Disassembly into the Product Development Process. , 2014, , 111-1.	16.	1
204	Virtual Bodystorming: Utilizing Virtual Reality for Prototyping in Service Design. Lecture Notes in Computer Science, 2017, , 279-288.	1.0	9
207	Motivations, design, and preliminary testing for a 360° vision simulator. Virtual Reality, 2021, 25, 247-255.	4.1	1
208	State-of-the-Art control strategies for robotic PiH assembly. Robotics and Computer-Integrated Manufacturing, 2020, 65, 101894.	6.1	49
209	Handy-Potter: Rapid 3D Shape Exploration Through Natural Hand Motions. , 2012, , .		7
210	Assessment of Pointshell Shrinking and Feature Size on Virtual Manual Assembly. , 2010, , .		1
211	Levitation Simulator: Prototyping Ultrasonic Levitation Interfaces in Virtual Reality. , 2020, , .		8
212	Towards efficient interdisciplinary authoring of industrial augmented reality applications. , 2020, , .		3
213	Design of Hybrid Refractive/Diffractive Lenses for Wearable Reality Displays. Balkan Journal of Electrical and Computer Engineering, 0, , 94-98.	0.4	2
214	Can Virtual Observers Affect Our Behavior? Social Facilitation in Virtual Environments: A Mini-Review. Psychologia SpoÅ,eczna, 2019, 14, .	1.8	7
215	Thinking in Virtual Spaces. International Journal of Virtual and Augmented Reality, 2019, 3, 23-40.	0.4	11
216	The Design of Virtual Reality Flight Simulation Platform Based on Rigidbody Kinematics. International Journal of Digital Content Technology and Its Applications, 2013, 7, 949-957.	0.1	1
217	DataSHIELD $\hat{a} {\in} ``$ New Directions and Dimensions. Data Science Journal, 2017, 16, .	0.6	41
218	Comparative Study on the Interface and Interaction for Manipulating 3D Virtual Objects in a Virtual Reality Environment. Korean Journal of Computational Design and Engineering, 2016, 21, 20-30.	0.0	8
219	Potential of Virtual Reality in the Current Digital Society: Economic Perspectives. , 2021, , .		5
220	Well-being Messaging for Mammalian Milks: A Scoping Review. Frontiers in Nutrition, 2021, 8, 688739.	1.6	3
221	Collaborative Maintenance Simulation System Using Virtual Mockup. Journal of Korea Multimedia Society, 2012, 15, 148-165.	0.1	2
223	Role of VR Throughout the Life of Low Volume Products Towards Digital Extended Enterprises. IFIP Advances in Information and Communication Technology, 2017, , 404-415.	0.5	0

CITATION REPORT ARTICLE IF CITATIONS Motion Capturing., 2017, , 219-262. 0 Added Value of a 3D CAVE Within Design Activities. Lecture Notes in Computer Science, 2018, , 230-239. 1.0 Using Virtual Prototyping to Select Compatible Fall Protection Supplementary Devices for Bridge 0 Maintenance Work., 2018, , . Virtual Reality Simulation and Ergonomics Assessment in Aviation Maintainability. Advances in 0.5 Intelligent Systems and Computing, 2019, , 141-154. Making Meaning: How Experience Design Supports Data Commercialization. Lecture Notes in Computer 1.0 1 Science, 2019, , 288-299. Assembly motion automatic planning technology using geometric constraint conditions (Calculation) Tj ETQq1 1 0.784314 rgBT /Ove 0.1 Framework for developing alternative reality environments to engineer large, complex systems. 4.1 10 Virtual Reality, 2021, 25, 147-163. Fast Verification of Space Based on Hierarchical Bounding Boxes in Virtual Assembly., 2020, , . User Experience Research on Product Design Evaluation based on Virtual Reality Prototyping., 2020, , . 0 Vertriebsmanagement für Industriegüter. Edition Sales Excellence, 2020, , 75-106. 0.2 Preliminary design of assembly system and operations for large mechanical products using a game 1.0 1 engine. Prócedia CIRP, 2021, 104, 1395-1400. Study and Analysis of Virtual Reality and its Impact on the Current Era., 2020, , . Multimodality in VR: A Survey. ACM Computing Surveys, 2022, 54, 1-36. 16.1 28 Virtual Reality Simulation for Disaster Preparedness Training in Hospitals: Integrated Review. Journal of Medical Internet Research, 2022, 24, e30600. 2.1 24 User Experience of Real and Virtual Products: a Comparison of Perceived Product Qualities. Springer 0.2 3 Series in Design and Innovation, 2022, , 105-125. VR-enabled engineering consultation chatbot for integrated and intelligent manufacturing services. Journal of Industrial Information Integration, 2022, 26, 100331. Correlation between Brain Cognitive Response and Online Questionnaire during Construction Safety 1 Training in Virtual Reality., 2022,,.

245VR Realism Scaleâ€"Revalidation of contemporary VR headsets on a Polish sample. PLoS ONE, 2021, 16,
e0261507.1.14

#

224

227

229

232

234

236

239

240

241

242

#	Article	IF	CITATIONS
246	INVESTIGATION OF THE EFFECTS OF USING AUGMENTED REALITY APPS ON STUDENTS' LEARNING ACHIEVEMENT AND MOTIVATION IN ENGINEERING DRAWING COURSES. UludaÄŸ University Journal of the Faculty of Engineering, 0, , 787-798.	0.2	0
247	Task-State EEG Signal Classification for Spatial Cognitive Evaluation Based on Multiscale High-Density Convolutional Neural Network. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 1041-1051.	2.7	3
248	Digital Transformation in Smart Farm and Forest Operations Needs Human-Centered AI: Challenges and Future Directions. Sensors, 2022, 22, 3043.	2.1	37
250	VR–MOCAP-Enabled Ergonomic Risk Assessment of Workstation Prototypes in Offsite Construction. Journal of Construction Engineering and Management - ASCE, 2022, 148, .	2.0	5
251	3D visualization processes for recreating and studying organismal form. IScience, 2022, 25, 104867.	1.9	7
252	Robot-enabled tangible virtual assembly with coordinated midair object placement. Robotics and Computer-Integrated Manufacturing, 2023, 79, 102434.	6.1	5
253	Method to Create Virtual Mock-Ups of Complex Technical Objects. , 2022, , .		0
254	Feasibility Analysis of Safety Training in Human-Robot Collaboration Scenario: Virtual Reality Use Case. Lecture Notes in Mechanical Engineering, 2023, , 246-256.	0.3	2
255	Mixed Reality forÂMechanical Design andÂAssembly Planning. Communications in Computer and Information Science, 2022, , 572-579.	0.4	0
256	Prototyping industrial workstation in the Metaverse: a Low Cost Automation assembly use case. , 2022, , .		1
257	State of the Art and Future Prospects of Virtual and Augmented Reality in Veterinary Medicine: A Systematic Review. Animals, 2022, 12, 3517.	1.0	1
258	Escaping the Holodeck: Designing Virtual Environments for Real Organizations. , 2023, , 223-249.		0
259	Student Emotions in Virtual Reality: The Concept of Psychopedagogy by Design. , 2022, , 51-69.		1
260	Visualization in virtual reality: a systematic review. Virtual Reality, 2023, 27, 1447-1480.	4.1	16
261	Design and Simulation of a Novel Digital Technology for Assembly Operations: A Case Study of Railcar Bogie Application. Lecture Notes in Networks and Systems, 2023, , 539-550.	0.5	0
262	Analysis of Geometric Obstacles in the Assembly of Complex Products: A Lattice-Theoretic Approach. , 2023, , .		0
264	A Gaze-Speech System in Mixed Reality for Human-Robot Interaction. , 2023, , .		0
266	Multimodality: Exploring Sensibility andÂSense-Making Beyond theÂMetaverse. Lecture Notes in Computer Science, 2023, , 307-322.	1.0	1

#	Article	IF	CITATIONS
270	Digital Twin and Extended Reality in Industrial Contexts: A Bibliometric Review. Lecture Notes in Computer Science, 2023, , 269-283.	1.0	0
273	A Virtual Reality Development Methodology: A Review. Lecture Notes in Computer Science, 2024, , 26-39.	1.0	0
274	DataVisage: A Card-Based Design Workshop to Support Design Ideation on Data Physicalization. Lecture Notes in Computer Science, 2023, , 471-483.	1.0	0
277	Radar Engineering Immersive Laboratory (REIL) application to support Air Traffic Surveillance Radar Engineering Training. , 2023, , .		0