Chronic exercise modulates RAS components and impranti-inflammatory cytokines in the brain of SHR

Basic Research in Cardiology 106, 1069-1085 DOI: 10.1007/s00395-011-0231-7

Citation Report

#	Article	IF	CITATIONS
1	Chronic exercise modulates RAS components and improves balance between pro- and anti-inflammatory cytokines in the brain of SHR. Basic Research in Cardiology, 2011, 106, 1069-1085.	2.5	134
2	Molecular Mechanisms of Hypertension—Reactive Oxygen Species and Antioxidants: A Basic Science Update for the Clinician. Canadian Journal of Cardiology, 2012, 28, 288-295.	0.8	199
3	Interaction Between AT1 Receptor and NF-κB in Hypothalamic Paraventricular Nucleus Contributes to Oxidative Stress and Sympathoexcitation by Modulating Neurotransmitters in Heart Failure. Cardiovascular Toxicology, 2013, 13, 381-390.	1.1	41
4	Novel Role of the Renin–Angiotensin System in Preeclampsia Superimposed on Chronic Hypertension and the Effects of Exercise in a Mouse Model. Hypertension, 2013, 62, 1055-1061.	1.3	32
5	Swimming exercise ameliorates depression-like behavior in chronically stressed rats: Relevant to proinflammatory cytokines and IDO activation. Behavioural Brain Research, 2013, 242, 110-116.	1.2	117
6	Neuroimmune communication in hypertension and obesity: A new therapeutic angle?. , 2013, 138, 428-440.		41
7	Exercise Training Prevents TNF-α Induced Loss of Force in the Diaphragm of Mice. PLoS ONE, 2013, 8, e52274.	1.1	38
8	Angiotensin-(1–7) inhibits autophagy in the brain of spontaneously hypertensive rats. Pharmacological Research, 2013, 71, 61-68.	3.1	36
9	Angiotensin-(1-7) modulates renin–angiotensin system associated with reducing oxidative stress and attenuating neuronal apoptosis in the brain of hypertensive rats. Pharmacological Research, 2013, 67, 84-93.	3.1	79
10	Essential Hypertension: An Approach to Its Etiology and Neurogenic Pathophysiology. International Journal of Hypertension, 2013, 2013, 1-11.	0.5	71
11	Angiotensin II regulates ACE and ACE2 in neurons through p38 mitogen-activated protein kinase and extracellular signal-regulated kinase 1/2 signaling. American Journal of Physiology - Cell Physiology, 2013, 304, C1073-C1079.	2.1	56
12	Exercise Training Lowers the Enhanced Tonically Active Glutamatergic Input to the Rostral Ventrolateral Medulla in Hypertensive Rats. CNS Neuroscience and Therapeutics, 2013, 19, 244-251.	1.9	27
13	Angiotensin <scp>II</scp> causes imbalance between pro―and antiâ€inflammatory cytokines by modulating <scp>GSK</scp> â€3β in neuronal culture. British Journal of Pharmacology, 2013, 169, 860-874.	2.7	37
14	Paraventricular nucleus control of blood pressure in two-kidney, one-clip rats: effects of exercise training and resting blood pressure. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R1390-R1400.	0.9	18
15	Inhibition of TNF in the Brain Reverses Alterations in RAS Components and Attenuates Angiotensin II-Induced Hypertension. PLoS ONE, 2013, 8, e63847.	1.1	111
16	Inflammation and Oxidative Stress Are Elevated in the Brain, Blood, and Adrenal Glands during the Progression of Post-Traumatic Stress Disorder in a Predator Exposure Animal Model. PLoS ONE, 2013, 8, e76146.	1.1	152
17	Predator Exposure/Psychosocial Stress Animal Model of Post-Traumatic Stress Disorder Modulates Neurotransmitters in the Rat Hippocampus and Prefrontal Cortex. PLoS ONE, 2014, 9, e89104.	1.1	89
18	Time-Dependent Effects of Training on Cardiovascular Control in Spontaneously Hypertensive Rats: Role for Brain Oxidative Stress and Inflammation and Baroreflex Sensitivity. PLoS ONE, 2014, 9, e94927.	1.1	75

#	Article	IF	Citations
19	Differential effects of sertraline in a predator exposure animal model of post-traumatic stress disorder. Frontiers in Behavioral Neuroscience, 2014, 8, 256.	1.0	41
20	Tissue Renin–Angiotensin Systems: A Unifying Hypothesis of Metabolic Disease. Frontiers in Endocrinology, 2014, 5, 23.	1.5	65
21	Pro-inflammatory cytokines in paraventricular nucleus mediate the cardiac sympathetic afferent reflex in hypertension. Autonomic Neuroscience: Basic and Clinical, 2014, 186, 54-61.	1.4	22
22	Systemic and renal oxidative stress in the pathogenesis of hypertension: modulation of long-term control of arterial blood pressure by resveratrol. Frontiers in Physiology, 2014, 5, 292.	1.3	56
23	Effect of Exercise on Oxidative Stress in Neurological Disorders. , 2014, , 287-327.		1
24	Central blockade of TLR4 improves cardiac function and attenuates myocardial inflammation in angiotensin II-induced hypertension. Cardiovascular Research, 2014, 103, 17-27.	1.8	136
25	Valproic acid effects in the hippocampus and prefrontal cortex in an animal model of post-traumatic stress disorder. Behavioural Brain Research, 2014, 268, 72-80.	1.2	68
26	Circulating Angiotensin II Gains Access to the Hypothalamus and Brain Stem During Hypertension via Breakdown of the Blood–Brain Barrier. Hypertension, 2014, 63, 572-579.	1.3	203
27	Chronic infusion of lisinopril into hypothalamic paraventricular nucleus modulates cytokines and attenuates oxidative stress in rostral ventrolateral medulla in hypertension. Toxicology and Applied Pharmacology, 2014, 279, 141-149.	1.3	53
28	Inhibition of TNF-α in hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by inhibiting neurohormonal excitation in spontaneously hypertensive rats. Toxicology and Applied Pharmacology, 2014, 281, 101-108.	1.3	52
29	Brain Stem NOS and ROS in Neural Mechanisms of Hypertension. Antioxidants and Redox Signaling, 2014, 20, 146-163.	2.5	76
30	Exercise Training Attenuates Hypertension and Cardiac Hypertrophy by Modulating Neurotransmitters and Cytokines in Hypothalamic Paraventricular Nucleus. PLoS ONE, 2014, 9, e85481.	1.1	43
31	Central blockade of salusin \hat{l}^2 attenuates hypertension and hypothalamic inflammation in spontaneously hypertensive rats. Scientific Reports, 2015, 5, 11162.	1.6	50
32	Differential control of vasomotion by angiotensins in the rostral ventrolateral medulla of hypertensive rats. Neuropeptides, 2015, 53, 11-18.	0.9	5
33	Blockade of Salusin-β in Hypothalamic Paraventricular Nucleus Attenuates Hypertension and Cardiac Hypertrophy in Salt-induced Hypertensive Rats. Journal of Cardiovascular Pharmacology, 2015, 66, 323-331.	0.8	19
34	Early Training-Induced Reduction of Angiotensinogen in Autonomic Areas—The Main Effect of Exercise on Brain Renin-Angiotensin System in Hypertensive Rats. PLoS ONE, 2015, 10, e0137395.	1.1	29
35	High Intensity Interval Training Favourably Affects Angiotensinogen mRNA Expression and Markers of Cardiorenal Health in a Rat Model of Early-Stage Chronic Kidney Disease. BioMed Research International, 2015, 2015, 1-11.	0.9	13
36	Contribution of oxidative stress to endothelial dysfunction in hereditary hemorrhagic telangiectasia. Frontiers in Genetics, 2015, 6, 34.	1.1	22

#	Article	IF	CITATIONS
37	Brain inflammation and hypertension: the chicken or the egg?. Journal of Neuroinflammation, 2015, 12, 85.	3.1	86
38	Oxidative Stress Causes Imbalance of Renal Renin Angiotensin System (RAS) Components and Hypertension in Obese Zucker Rats. Journal of the American Heart Association, 2015, 4, .	1.6	50
39	Opposing tissue-specific roles of angiotensin in the pathogenesis of obesity, and implications for obesity-related hypertension. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R1463-R1473.	0.9	27
40	Chronic exercise normalizes changes in <scp><scp>Ca</scp></scp> _v 1.2 and <scp><scp>K_{Ca}</scp></scp> 1.1 channels in mesenteric arteries from spontaneously hypertensive rats. British Journal of Pharmacology, 2015, 172, 1846-1858.	2.7	22
41	Modulation of angiotensin II signaling following exercise training in heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H781-H791.	1.5	38
42	The acute impact of polyphenols from Hibiscus sabdariffa in metabolic homeostasis: an approach combining metabolomics and gene-expression analyses. Food and Function, 2015, 6, 2957-2966.	2.1	25
43	Toll-like receptor 4 inhibition within the paraventricular nucleus attenuates blood pressure and inflammatory response in a genetic model of hypertension. Journal of Neuroinflammation, 2015, 12, 31.	3.1	106
44	Endogenous hydrogen peroxide in the hypothalamic paraventricular nucleus regulates neurohormonal excitation in high salt-induced hypertension. Toxicology Letters, 2015, 235, 206-215.	0.4	34
45	MicroRNA network changes in the brain stem underlie the development of hypertension. Physiological Genomics, 2015, 47, 388-399.	1.0	23
46	Chronic estrogen exposure affects gene expression in the rostral ventrolateral medulla of young and aging rats: Possible role in hypertension. Brain Research, 2015, 1627, 134-142.	1.1	12
47	Aerobic training normalizes autonomic dysfunction, HMCB1 content, microglia activation and inflammation in hypothalamic paraventricular nucleus of SHR. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1115-H1122.	1.5	63
48	High intensity interval training favourably affects antioxidant and inflammation mRNA expression in early-stage chronic kidney disease. Free Radical Biology and Medicine, 2015, 89, 466-472.	1.3	21
49	Brain-Targeted Angiotensin-Converting Enzyme 2 Overexpression Attenuates Neurogenic Hypertension by Inhibiting Cyclooxygenase-Mediated Inflammation. Hypertension, 2015, 65, 577-586.	1.3	66
50	Angiotensin <scp>II</scp> regulation of angiotensinâ€converting enzymes in spontaneously hypertensive rat primary astrocyte cultures. Journal of Neurochemistry, 2016, 138, 74-85.	2.1	78
51	Effects of telemetry implantation surgery on blood pressure and its underlying mechanism. Clinical and Experimental Hypertension, 2016, 38, 359-364.	0.5	3
52	Chronic infusion of epigallocatechin-3- O -gallate into the hypothalamic paraventricular nucleus attenuates hypertension and sympathoexcitation by restoring neurotransmitters and cytokines. Toxicology Letters, 2016, 262, 105-113.	0.4	29
53	Inflammation and Oxidative Stress in the Brain and Blood in an Animal Model of Post-Traumatic Stress Disorder: Mechanisms for PTSD Progression. , 2016, , 1587-1601.		0
54	TLR4/MyD88/NF-ήB signaling and PPAR-γ within the paraventricular nucleus are involved in the effects of telmisartan in hypertension. Toxicology and Applied Pharmacology, 2016, 305, 93-102.	1.3	48

#	Article	IF	CITATIONS
55	Heterologous regulation of the cannabinoid type 1 receptor by angiotensin <scp>II</scp> in astrocytes of spontaneously hypertensive rats. Journal of Neurochemistry, 2016, 139, 523-536.	2.1	14
56	Exercise training attenuates renovascular hypertension partly via RAS- ROS- glutamate pathway in the hypothalamic paraventricular nucleus. Scientific Reports, 2016, 6, 37467.	1.6	21
57	Oral CoQ10 attenuates high salt-induced hypertension by restoring neurotransmitters and cytokines in the hypothalamic paraventricular nucleus. Scientific Reports, 2016, 6, 30301.	1.6	20
58	Resistance training prevents the cardiovascular changes caused by high-fat diet. Life Sciences, 2016, 146, 154-162.	2.0	43
59	Sleep-related movement disorder symptoms in SHR are attenuated by physical exercise and an an an an an an an an	1.0	6
60	Physical exercise, reactive oxygen species and neuroprotection. Free Radical Biology and Medicine, 2016, 98, 187-196.	1.3	108
61	Neural Control of Non-vasomotor Organs in Hypertension. Current Hypertension Reports, 2016, 18, 30.	1.5	11
62	Paraventricular Nucleus Infusion of Epigallocatechin-3-O-Gallate Improves Renovascular Hypertension. Cardiovascular Toxicology, 2016, 16, 276-285.	1.1	15
63	PVN Blockade of p44/42 MAPK Pathway Attenuates Salt-induced Hypertension through Modulating Neurotransmitters and Attenuating Oxidative Stress. Scientific Reports, 2017, 7, 43038.	1.6	19
64	Inhibitory effects of alpha-lipoic acid on oxidative stress in the rostral ventrolateral medulla in rats with salt-induced hypertension. International Journal of Molecular Medicine, 2017, 39, 430-436.	1.8	13
65	Exercise for Cardiovascular Disease Prevention and Treatment. Advances in Experimental Medicine and Biology, 2017, , .	0.8	3
66	Experimental Evidences Supporting Training-Induced Benefits in Spontaneously Hypertensive Rats. Advances in Experimental Medicine and Biology, 2017, 999, 287-306.	0.8	2
67	Association between renin–angiotensin–aldosterone system blockade and future osteoporotic fracture risk in hypertensive population. Medicine (United States), 2017, 96, e8331.	0.4	10
68	Maintenance of Blood-Brain Barrier Integrity in Hypertension: A Novel Benefit of Exercise Training for Autonomic Control. Frontiers in Physiology, 2017, 8, 1048.	1.3	51
69	Neuroinflammation and sympathetic overactivity: Mechanisms and implications in hypertension. Autonomic Neuroscience: Basic and Clinical, 2018, 210, 10-17.	1.4	78
70	Exercise training to reduce sympathetic nerve activity in heart failure patients. A systematic review and meta-analysis. Brazilian Journal of Physical Therapy, 2018, 22, 97-104.	1.1	14
71	Exercise training improves the IL-10/TNF-α cytokine balance in the gastrocnemius of rats with heart failure. Brazilian Journal of Physical Therapy, 2018, 22, 154-160.	1.1	20
72	Effect of aquatic exercise on mental health, functional autonomy, and oxidative dysfunction in hypertensive adults. Clinical and Experimental Hypertension, 2018, 40, 547-553.	0.5	14

#	Article	IF	CITATIONS
73	Short hairpin RNA interference targeting interleukin 1 receptor type I in the paraventricular nucleus attenuates hypertension in rats. Pflugers Archiv European Journal of Physiology, 2018, 470, 439-448.	1.3	6
74	Molecular Basis of the Brain Renin Angiotensin System in Cardiovascular and Neurologic Disorders: Uncovering a Key Role for the Astroglial Angiotensin Type 1 Receptor AT1R. Journal of Pharmacology and Experimental Therapeutics, 2018, 366, 251-264.	1.3	24
75	The ACE2/Angiotensin-(1–7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1–7). Physiological Reviews, 2018, 98, 505-553.	13.1	756
76	Exercise Training Attenuates Proinflammatory Cytokines, Oxidative Stress and Modulates Neurotransmitters in the Rostral Ventrolateral Medulla of Salt-Induced Hypertensive Rats. Cellular Physiology and Biochemistry, 2018, 48, 1369-1381.	1.1	14
77	Role of the Renin Angiotensin System in Blood Pressure Allostasis-induced by Severe Food Restriction in Female Fischer rats. Scientific Reports, 2018, 8, 10327.	1.6	16
78	Tumour necrosis factor and interleukin 10 in blood pressure regulation in spontaneously hypertensive and normotensive rats. Cytokine, 2019, 113, 185-194.	1.4	18
79	Exercise training increases GAD65 expression, restores the depressed GABA _A receptor function within the PVN and reduces sympathetic modulation in hypertension. Physiological Reports, 2019, 7, e14107.	0.7	13
80	Prehypertension exercise training attenuates hypertension and cardiac hypertrophy accompanied by temporal changes in the levels of angiotensin II and angiotensin (1-7). Hypertension Research, 2019, 42, 1745-1756.	1.5	11
81	Blood-brain barrier permeability and physical exercise. Journal of Neuroinflammation, 2019, 16, 15.	3.1	148
82	Aerobic exercise-induced inhibition of PKCα/CaV1.2 pathway enhances the vasodilation of mesenteric arteries in hypertension. Archives of Biochemistry and Biophysics, 2019, 678, 108191.	1.4	9
83	Effect of exercise training on the FNDC5/BDNF pathway in spontaneously hypertensive rats. Physiological Reports, 2019, 7, e14323.	0.7	11
84	Microglia in the RVLM of SHR have reduced P2Y12R and CX3CR1 expression, shorter processes, and lower cell density. Autonomic Neuroscience: Basic and Clinical, 2019, 216, 9-16.	1.4	15
85	Blockade of Endogenous Angiotensin-(1–7) in Hypothalamic Paraventricular Nucleus Attenuates High Salt-Induced Sympathoexcitation and Hypertension. Neuroscience Bulletin, 2019, 35, 47-56.	1.5	16
86	Angiotensin-Converting Enzyme 2 in the Rostral Ventrolateral Medulla Regulates Cholinergic Signaling and Cardiovascular and Sympathetic Responses in Hypertensive Rats. Neuroscience Bulletin, 2019, 35, 67-78.	1.5	19
87	High-intensity aerobic training lowers blood pressure and modulates the renal renin-angiotensin system in spontaneously hypertensive rats. Clinical and Experimental Hypertension, 2020, 42, 233-238.	0.5	4
88	Substances of abuse and the blood brain barrier: Interactions with physical exercise. Neuroscience and Biobehavioral Reviews, 2020, 119, 204-216.	2.9	14
89	Long-term exercise from adolescence to adulthood reduces anxiety- and depression-like behaviors following maternal immune activation in offspring. Physiology and Behavior, 2020, 226, 113130.	1.0	35
90	Gut microbiota and neuroinflammation in pathogenesis of hypertension: A potential role for hydrogen sulfide. Pharmacological Research, 2020, 153, 104677.	3.1	27

#	Article	IF	CITATIONS
91	HMGB1/RAGE axis mediates stress-induced RVLM neuroinflammation in mice via impairing mitophagy flux in microglia. Journal of Neuroinflammation, 2020, 17, 15.	3.1	87
92	Severe food restriction activates the central renin angiotensin system. Physiological Reports, 2020, 8, e14338.	0.7	5
93	Regular moderate exercise alleviates gastric oxidative damage in rats via the contribution of oxytocin receptors. Journal of Physiology, 2020, 598, 2355-2370.	1.3	13
94	Nerolidol improves cardiac function in spontaneously hypertensive rats by inhibiting cardiac inflammation and remodelling associated TLR4/ NF-ήB signalling cascade. Food and Chemical Toxicology, 2021, 147, 111837.	1.8	9
95	Angiotensin (1–7) Expressing Probiotic as a Potential Treatment for Dementia. Frontiers in Aging, 2021, 2, .	1.2	2
96	Paraventricular Nucleus Infusion of Oligomeric Proantho Cyanidins Improves Renovascular Hypertension. Frontiers in Neuroscience, 2021, 15, 642015.	1.4	14
97	Perindopril Reduces Arterial Pressure and Does Not Inhibit Exercise-Induced Angiogenesis in Spontaneously Hypertensive Rats. Journal of Cardiovascular Pharmacology, 2021, 77, 519-528.	0.8	4
98	Contrasting Roles of Ang II and ACEA in the Regulation of IL10 and IL1Î ² Gene Expression in Primary SHR Astroglial Cultures. Molecules, 2021, 26, 3012.	1.7	3
99	Protein overexpression of toll‑like receptor 4 and myeloid differentiation factor 88 in oral squamous cell carcinoma and clinical significance. Oncology Letters, 2021, 22, 786.	0.8	2
100	Angiotensin-(1-7)/Mas receptor modulates anti-inflammatory effects of exercise training in a model of chronic allergic lung inflammation. Life Sciences, 2021, 282, 119792.	2.0	1
103	Antihypertensive effects of exercise involve reshaping of gut microbiota and improvement of gut-brain axis in spontaneously hypertensive rat. Gut Microbes, 2021, 13, 1-24.	4.3	56
104	Detraining Differentially Preserved Beneficial Effects of Exercise on Hypertension: Effects on Blood Pressure, Cardiac Function, Brain Inflammatory Cytokines and Oxidative Stress. PLoS ONE, 2012, 7, e52569.	1.1	33
105	Pharmacological Potential of Exercise and RAS Vasoactive Peptides for Prevention of Diseases. Current Protein and Peptide Science, 2013, 14, 459-471.	0.7	7
106	NADPH Oxidase and Neurodegeneration. Current Neuropharmacology, 2012, 10, 321-327.	1.4	50
107	Aerobic Exercise of Low to Moderate Intensity Corrects Unequal Changes in BKCa Subunit Expression in the Mesenteric Arteries of Spontaneously Hypertensive Rats. Physiological Research, 2017, 66, 219-233.	0.4	8
108	Brain inflammation in neurogenic hypertension. World Journal of Hypertension, 2014, 4, 1.	0.8	2
109	Effect of High Intensity Interval Training with Flaxseed on Interleukin-1 Beta and Lipocalin-2 Gene Expressions in the Heart Tissue of Rats. Journal of Archives in Military Medicine, 2019, In Press, .	0.0	2
110	Effects of the administration of a catalase inhibitor into the fourth cerebral ventricle on cardiovascular responses in spontaneously hypertensive rats exposed to sidestream cigarette smoke. Clinics, 2013, 68, 851-857.	0.6	8

#	Article	IF	CITATIONS
111	Participation of angiotensin-(1-7) in exercise-induced analgesia in rats with neuropathic pain. Peptides, 2021, 146, 170670.	1.2	1
112	Inflammation and Oxidative Stress in the Brain and Blood in an Animal Model of Post-Traumatic Stress Disorder: Mechanisms for PTSD Progression. , 2015, , 1-13.		Ο
113	Chronic Estradiol exposure-harmful effects on behavior, cardiovascular and reproductive functions. Reproduction, 2018, 156, R169-R186.	1.1	5
114	MedXercise: a promising strategy to promote remyelination. Current Opinion in Pharmacology, 2021, 61, 120-126.	1.7	3
115	COVID-19 in individuals adapted to aerobic exercise. Pulmonologiya, 2020, 30, 553-560.	0.2	2
116	The relationship of stress and blood pressure effectors. Hippokratia, 2015, 19, 99-108.	0.3	24
117	Voluntary Exercise Prevents Hypertensive Response Sensitization Induced by Angiotensin II. Frontiers in Neuroscience, 2022, 16, 848079.	1.4	5
119	Hydrogen sulfide ameliorated preeclampsia via suppression of toll-like receptor 4-activated inflammation in the rostral ventrolateral medulla of rats. Biomedicine and Pharmacotherapy, 2022, 150, 113018.	2.5	5
120	Exercise Normalized the Hippocampal Renin-Angiotensin System and Restored Spatial Memory Function, Neurogenesis, and Blood-Brain Barrier Permeability in the 2K1C-Hypertensive Mouse. International Journal of Molecular Sciences, 2022, 23, 5531.	1.8	0
121	Angiotensin Receptor Blocker is Associated with a Lower Fracture Risk: An Updated Systematic Review and Meta-Analysis. International Journal of Clinical Practice, 2022, 2022, 1-9.	0.8	4
122	Voluntary Exercise Eliminates Maternal Gestational Hypertension–Induced Hypertensive Response Sensitization to Postweaning High-Fat Diet in Male Adult Offspring. Hypertension, 2022, 79, 2016-2027.	1.3	3
123	Inhibition of cGAS in Paraventricular Nucleus Attenuates Hypertensive Heart Injury Via Regulating Microglial Autophagy. Molecular Neurobiology, 2022, 59, 7006-7024.	1.9	3
124	Effects of physical activity on the severity of illness and mortality in COVID-19 patients: A systematic review and meta-analysis. Frontiers in Physiology, 0, 13, .	1.3	7
125	Minocycline and Pyrrolidine Dithiocarbamate Attenuate Hypertension via Suppressing Activation of Microglia in the Hypothalamic Paraventricular Nucleus. Tohoku Journal of Experimental Medicine, 2022, , .	0.5	0
126	Role of blood-borne factors in sympathoexcitation-mediated hypertension: Potential neurally mediated hypertension in preeclampsia. Life Sciences, 2023, 320, 121351.	2.0	0
127	Neurogenic Hypertension, the Blood–Brain Barrier, and the Potential Role of Targeted Nanotherapeutics. International Journal of Molecular Sciences, 2023, 24, 2213.	1.8	2
128	Complications of COVID-19 on the Central Nervous System: Mechanisms and Potential Treatment for Easing Long COVID. , 2023, 14, 1492.		3